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EXISTENCE OF SOLUTIONS TO THE ELASTOHYDRODYNAMICAL
EQUATIONS FOR MAGNETIC RECORDING SYSTEMS*

MICHEL CHIPOT AND MITCHELL LUSKIN$

Abstract. The existence of steady-state solutions to the system of nonlinear partial differen-
tial equations which are used to model the elastohydrodynamics of magnetic recording systems is
demonstrated.
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1. Introduction. The purpose of this paper is to demonstrate the existence of
steady-state solutions under appropriate conditions to the system of nonlinear partial
differential equations which are used to model the elastohydrodynamics of magnetic
recording systems. There are two components to these mechanical systems: a medium
such as a disk pressure which develops in the air bearing between the medium and
the recording head causes a deflection in the medium and since the deflection of the
medium influences the pressure in the air bearing.

For simplicity, we shall restrict our attention to disk systems. Let f C R2 be the
annular region of the disk

f= {x= (xl,x2) R < r < l }
where r V/x21 / x22 and let F C f be the region where the head is in close proximity
to the disk. Thus, we have scaled the spatial variables by the outer radius of the
disk. The mathematical model that we use for the transverse displacement of the
disk, u u(x, t), is given by [8], [13]

p - +w- u V.(TVu)-12(I_ 2)A2u- - +w- u+p-pa,
(1.1)

X--- (Xl,X2) E ’, --OO < t < (DO,

where t is time, is the angular coordinate in polar coordinates, p is area density, w is
the angular speed of rotation of the disk, T is tension, Ep > 0 is Young’s modulus, tp
is the disk thickness, is Poisson’s ratio, > 0 is the air damp coefficient, p p(x, t)
is the pressure developed in the air bearing, and Pa is the ambient pressure.

It is reported in [13] that "earlier work has shown that by bonding tensioned flex-
ible recording media to rigid support disks it is possible to have performance features
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similar to rigid disks, while retaining the advantages of flexible-media technology."
For tensioned flexible recording media, the imposed tension is a scalar constant and
the centrifugal tension is insignificant [13]. Thus, we shall take the total tension, T,
to be a scalar constant. Since tensioned flexible recording media are bonded to rigid
support disks at the inner and outer edge of the media (the support disk rotates with
the medium), the appropriate boundary conditions are that the disk is clamped at the
edges,

(1.2) u 0, r R, 1,

and

(1.3)
Ou Ou

0, r R, 1,On Or
where n is the exterior normal to Ft. More details about tensioned flexible recording
media and their advantages with respect to rigid (hard) disks and floppy disks are
reported in [11].

The pressure, p p(x, t), is obtained from the compressible Reynolds lubrication
equation [3]-[5], [8], [13]

12# + 6#V. V(ph) V. (h3pVp), x (xl,x2) e F,
(1.4)

p p, x (x, x) OF,

where # is the dynamic viscosity of the air, h h(x, t) is the thickness of the fluid
layer between the head and the disk, and V V(x) w(-x2,xl) is the velocity of
the disk. We extend p to Ft F by p pc. If (x) represents the transverse
coordinate of the head, then

(1.5) h h(u) u.

It will be convenient to define the dependent variables as functions of Cartesian coor-
dinates, x (x,x2), and as functions of radial coordinates, (r, 0), in different parts
of this paper. However, we will denote the pressure, for example, by p p(x, t) or
by p p(r, , t). It will always be clear from the context which representation is
appropriate.

Since h h(u) - u, the system (1.1) and (1.4) is a highly nonlinear, coupled
system of partial differential equations. The physical problem requires that the vari-
ables be constrained by p _> 0 and h _> 0 (h < 0 would mean that a "head crash" has
occurred). In this paper, we demonstrate the existence of a steady-state solution to
(1.1)-(1.4) provided the parameters satisfy a given inequality. It is not known if there
always exists a steady-state solution to the elastohydrodynamical system (1.1) and
(1.4). Further, it is not known in general when unique asymptotically stable steady-
state solutions exist to the elastohydrodynamical system. We note, though, that it
has been demonstrated in [12] that steady-state solutions to (1.1) are asymptotically
stable.

These questions of existence, uniqueness, and asymptotic stability for realistic
parameter values are of practical interest in the design of magnetic recording sys-
tems. "Steady-state" solutions are often found numerically by integrating the time-
dependent equations, and it can be difficult to determine whether we have converged
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to a steady-state, a slowly varying transient, or a slowly varying periodic solution.
In this paper, we show that steady-stat.e solutions do exist for appropriate material
constants, design parameters, and operating conditions.

In 2, we shall give some estimates for the steady-state of (1.1). In 3, we shall
review the estimates that we have obtained for (1.4) in [5], and we shall give the
analysis for the existence of steady-state solutions for the coupled system (1.1) and
(1.4). Applications to floppy disk systems and tape systems are also given in 2 and
3.

We suppose the reader familiar with the usual Sobolev spaces Hl(f), Hk(f), and
H0k(f), and we refer to [1] for details and notation.

2. The steady-state for the deflection of the rotating disk. In this section,
we shall analyze the following steady-state equation for (1.1) to find u E H02(f)fqH4(f)
such that

Ou Ou
(2.1) pw2

08----ff V. (TVu) EA2u /w- + p, x e It,

where

(2.2) E
12(1- u2

and p 6 L2(f).
Since p p(r,/9) is mean square integrable, we have the Fourier expansion

-{-(:x

(2.3) p(r, tg) Z pm(r)eim

where the coefficients are given by

1 fo
2r

(2.4) pro(r) p(r, tg)e-ira dO.

It follows from the orthogonality of eimo that

+oo 27r

Z 27r/R ’Pm(r)]2rdr-o0 /R ]p(r, /)]2r dr dO < oo

and, hence,

lpm(r)12r dr <

We also assume the solution u u(r, O) to be mean square integrable, and we
similarly expand

We again have that

where

lf02 urn(r) - u(r, O)e-’m dO.

2r / lu(r, 0)12r dr dO lu,(r)12rdr < oc.
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Now

rN +;g- u,

so from (2.1) we obtain from matching the coefficient of ei in both sides that

--lxo2m2Um T "r r’r - um

0 (r 0 2

um- i/wmum + Pro,

=0, r= R, 1.Urn 0r

Let {m,n(r)}n__ be a complete set of eigenfunctions for the eigenproblem

+ N ---(2.6) Am,nqom,n, R < r < 1,

Orn,n= Or =0, r=R, 1,

which are normalized by the condition

lqOm,nl2rdr 1

and where

Thus, m,n (respectively, qom,n) are critical values (respectively, critical points) of the
functional

O m E 1 0 r rdrJm() + will2 +

subject to the constraints that the real-valued functions, (r), satisfy

llZr 1,dr

qo(R) qo(1) 0,

0o 0O---(R) r(1) 0.
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It can be shown by classical arguments [6] that for m O, +/-1, +/-2,...

(2.7) lim Am,n

We also note that Am,n depends on R, i.e., Am,n Am,n(R) and that we can obtain
from the representation of Am,n as critical values of Jm(o) that Am,,(R) _> A.,n(0)
for0<R<l. Now

r dr

10
r-r r3 Or

and since 0 satisfies the above boundary conditions it follows from integration by parts
that

r3 Or r-r r dr

Or Or

-r r dr + 2m2 r 3 -r r dr

-m2 r-2 r dr + 2m2 r-alol2r dr.

All the calculations in this paragraph can be used to show that

(2.8)

+
2 m4 _4m2+

r4

for satisfying the imposed boundary conditions.
Classical arguments [6] can also be used to show that

m,n(r)am,p(r)r dr

2m2 2] rdr
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Further, if

then the expansion

where

has the properties that

and

Vm,n v(r)om,n (r)r dr

+oo

N

n--1

2 +oo
rdr Z

n=N+l

as N --, oc. Finally, since

and since

[Vm,.[2 --+ 0

E/j (m4 4m2)Jm(O) >_ " r4 1o12r dr

2

Jm() --]]2r dr,

Note that

where

jr02’/ [p[2r dr dO 2r
+o -boo

We will now show that there exist unique coefficients, urn,n, such that

(2.11) u(r,O)
-boo -boo

pansion

we have that

(2.9) m,n >_ m,1

_
max (- (m4 4m2) m2)

These properties of the eigenfunctions om,n(r) can be used to construct the ex-



ELASTOHYDRODYNAMICAL EQUATIONS 7

is a mean-square integrable solution to (2.1). If we formally substitute the ex-
pansions (2.10) and (2.11) into (2.1) we obtain the result that

-pw2m2Um,n -T.m,nUm,n i/WmUm,n + Pm,n

or

Um,n [TAm,n pw2m2 + i/wm]-lpm,n.

We note that by (2.9)

flw2m2)2 -4- 3’2u2m2 >

T2/,l

-y2T
2p

2

ifm 0,

if me0, Tg2pw2,

if m 0, T > 2pw2.

Thus,

(2.12) lUm,,] 2 <_ Cl[pm,,l 2

where

min (T2A2 72T T)o,1, 2p ’2

We have thus shown that if p(r,O) is mean-square integrable, then the formal
solution to (2.1)

u(r,O)-- Z Z um,nm,n(r)e’mO’
m (:x:) 1

is unique and by (2.12) satisfies the estimate

(2.13) fo
2

lu(r, O)12r dr dO < C Ip(r, O)12r dr dO.

Since m,n satisfies the boundary conditions in (2.6), it follows that u(r, ) satisfies
(formally) the boundary conditions of (2.1).

Now it follows from (2.6) that eimm,n(r) are the eigenfunctions of

(2.14)

E ] (r) ,m,,eimqom,n(r),-A + - A2 eiOo.,,

0
[eimOqom,n](R)

0
[eimOqom,n](1) O.
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Thus, since by integration by parts

2

/[TV(eimOm,n)" V(eiqOq,p) / EA(eimO(Pm,n)A(eiqOq,p)]r dr dO

[(-TA + EA2)(eimOm,n)]eiqOq,pr dr dO

T,m,n (eimm,n)(eiqOq,p)r dr dO

27Tm,nSm,qSn,p,

we also have the bound

jfo2/’[TIVul2 + EIAul2]r dr dO 2rT
m----c

IPm,nl 2_
27rC2

+oc +c 2

lPm,nl2"-C2o /llP(r,O)12rdrdO
m=-oo n=l

where by (2.7)and (2.9)

C2 max [ TAm,, ]m,n (TAm,n pwm2)2 + "/2w2m2
<

Since

2 /(-TA + EA2)(eimOm,n (-TA + EA2)(eiqOOq,p)r dr dO

Joo2 ] (TAm,heimem,n)(TAq,peiqq,p)r dr dO

27rT2,m,n,,q,pSm,qtn,p,
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we have the stronger bound

2 /; TAn + EA2ul2r dr dO 2rT2

m=--oo n=

(2.16)

+ + (TAm,n)2 122r E E (TAm,n pw2m2)2 + 2wm2 [Pm,n

_< 27rC3

ca Ip(, o)1 dr dO

where by (2.7) and (2.9)

(T,)C mx[(T, p.) +- < "
The inequalities (2.13), (2.15), and (2.16) can be used to show that if p(r, ) is

mean-square integrable, then the solution u(r,O) to (2.1) that we have constructed
has the property that all of its partial derivatives of order less than or equal to four
are mean-square integrable [1]. Further, this implies that all of the partial derivatives
of u(r, ) of order less than or equal to two are continuous and that the boundary
conditions are satisfied in the classical sense [1].

We review the above results by the following theorem.
THEOREM 2.1. We suppose that Ep > O, T > O, "y > O, and p E L2(). Then

there exists a unique solution u H(t)tH4(gt) to (2.1). Further, there exist positive
constants C1, C2, and C3 such that

(2.17) /audx<_ C1/fp2dx,
(2.18) TIX7ul + EIAul] dx

_
62 p2 dx,

(2.19) TAu + EA2u]2 dx <_ C3 /np2 dx.

The constants CI, C2, and C3 can be chosen independent ofF. Also, the constant Ci,
can be chosen independent of w.

A more detailed analysis of Am,n and the constant C2 can be used to demonstrate
that C2 is independent of w for po)2

_
T. However, we prefer to give the following

elementary proof.
PROPOSITION 2.2. Assume that

(2.20) pw2 g T.
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Ifp 6 L2(fl), then there exists a unique solution to

(2.21)

02U OU
EA2u TAu + pw2"x’z’4..ot + "Tw’- P

u e

Moreover, there exists a constant Ca Ca(E), independent of w, such that

(2.22)

Proof. This is a straightforward application of the Lax-Milgram theorem. Indeed,
consider the weak formulation of (2.21), i.e., set

Ou Ow
a(u,w) EAu. Aw + TVu. Vw pw200 O0

OU
f" 7w== w dx.

O0

Then clearly a(u, w) is a bilinear, continuous form on Ho2(). Moreover,

(2.23)

a(u, u) EAu Au + TVu Vu pw2 --EAu. Au + TVu. Vu- pw -- dx.

(We used the fact that since C R2, H02(2) C C(fi) and u(r, O) u(r, 0 + 27r).) Now,
recall that

Ou Ou Ox Ou
O- Ox O0 + Ox O0

o Ou
-r sin

Oxl + r cos 00x--"
Hence, by the Cauchy-Schwarz inequality,

Ou 2

Recalling (2.23) we obtain

oOu o u)=r -sin
Oxl

+es
Ox

_< IVul 2 a.e. on g/.

a(u, u) =/ EAu Au + (T pw2)lVul2 dx

> E/a(zhu)2 dx.
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Since E is assumed to be positive, and since

rt(Au)2

dx

defined on H(f) is a norm equivalent to the usual one, a(u, w) is a bilinear, contin-
uous, coercive form on H(t). Now, for p e L2(f) it is clear that

w fnpwdx
is a continuous linear form on H(t), so, by the Lax-Milgram theorem there is a
unique u in H02(2) satisfying

a(u, w) ./o_ pw dx Vw e H) (t).

Moreover, taking w u in the above equality, we can easily see that (2.22) holds.
It is easy to see that u satisfies (2.21) in the distributional sense. So, we have

Au e L(ft)
since all the other functions appearing in (2.21) are in L2(ft). Hence, by well-known
results u H4(t). In particular we recover the fact that the condition

Ou
u= =0 on0f

Or
holds in the usual sense (see [1], [7] for details). El

We could have assumed p in the dual of H02(fl) and the existence of a weak
solution to (2.21) would still have held true.

We note that (2.20) is the condition that (2.21) be elliptic when E 0. In the
case that 7 0, existence and uniqueness can fail when pw2 > T. If 7 =- 0, then

(TAm,n pw2m2)um,n Pm,n.

Hence, if TAm,n pw2m2 for some m, n, then there exist pressures, p, such that (2.21)
does not have a solution. One example is clearly

0) (r).
Also, in this case (TAm,n pw2m2 for some m, n) solutions to (2.21) are not unique
since if u(r, ) is a solution to (2.21), then

+
is also a solution to (2.21). However, Theorem 2.1 guarantees existence and uniqueness
when /> 0 for all w.

We note that for the floppy disk, the outer edge is not bonded to a rigid support
disk. In this case, the tension depends on r. Furthermore, the radial tension coefficient
vanishes at the outer edge [2]. Although clamped plate boundary conditions are
appropriate at the inner edge, the plate is free at the outer edge [2]. The head in a
floppy disk system does not fly above the medium on an air bearing. In this case,
p in (1.1) represents the load on the disk from contact with the head. The analysis
given for Proposition 2.2 applies to the floppy disk system if E is sufficiently large.
In this case it is no longer true that pw2

_
T everywhere in ft. However, for E/pw2

sufficiently large, we can use the inequality

pw2 fa (Ou) dx <_ -E /t(Au)2 dx
Ou

for u H2(t) and u 0- 0 on the inner edge of the disk.
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3. The coupled problem. The steady-state solution of (1.1), (1.4) is

(3.2) V. (h(u)3pVp) 6#V. V(ph(u)), inr,

(3.3) EA2u TAu + pw
c32u Ou
--ff + w-- v/’ , inf,,

(3.4) V. (h(u)3Vv) wW. V(v h(u)), in F,

v=va, on OF,

where we have set va p], W 12#(-x2, xl).

P pa on OF,

whereV=w(-x2,xl), { x (x,x2) R < r < l }.
We shall restrict p so that p >_ 0 and set v p2. The problem then becomes to

find (u, v) such that

We are going to solve (3.4) in a weak sense. Noting that V. W 0 we see that
if v satisfies (3.4)--say in a classical sense--we have

f()w,va -/ (u)W. va 0 v (),
(3.)

v v on 0.

om the Sobolev embedding theorem [1], [7] we have that

H() C C()
with continuous inclusion. So, for some positive constant C we have that

IwlL() ClwlHg(), w 6 H().

Let us now collect our assumptions. We assume that the function (see (1.5))
satisfies

is a Lipschitz continuous function on F,
(3.6)

O<mS(x)M a.e. forxeF,

where m and M are two positive constants.
Assume also that

(3.7) F C is a domain of with Lipschitz boundary;

O2U (U
(3.1) EA2u Tu + pw2- + 7w- p Pa, in ,

u e H(2),
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let Irl denote the Lebesgue measure of r and let d denote the smallest width of a
strip containing F. Then we can prove the following theorem.

THEOREM 3.1. Let m’ be any positive number such that

0<m’<m.

There exists a solution (u, v) o.f (3.3), (3.4) if (3.6) and (3.7) hold and i]

(3.8)
a + via + 4b ) < Pa2

m m’)

where

Proo]. Set

[12dw#(M + m m’)]21Fl/
(,)

(3.9) K. { v e L(r) v > 0 a.e. on F, Iv- ValL2(r) < }

where ’ is a positive real number that we will choose later on. It is clear that Kg is
a closed convex set of L2(F).

For v E K. we have

(3.10) v-
(v is, of course, supposed to be extended by va outside of F). Indeed, this is an easy
consequence of the inequality

(3.11)

So, by Theorem 2.1 and Proposition 2.2 there exists a unique solution u of

(3.12)

C2U CU
E u TAu + -g + -gg v v
u e H2o(fl),

and there is a constant Ca Ca(E) such that

(3.13)

(we use here the fact that, by (3.11), we have Iv vl(r) < Iv- vl(r)/v).
The constant C4 is independent of w for pw < T. Let m’ be any positive number
such that

0<m’<m.

Let us show first that we can select ’ in such a way that

(3.14) h(u) o u >_ m’ > O.
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Recall from the Sobolev embedding theorem given above that

Now, by (3.6), (3.14) will hold if

(3.15)

So (3.14) will hold if

or, equivalently,

(3.16) < a(ra- m
C,C

(by (3.13)).

Assume that ’ has been chosen such that (3.16) holds. Then since h(u) is strictly
positive there exists a unique function gr(v) _> 0 which is a solution of

L(.)vx(,). v L /x(,)(.)w. v o, v e H(a),
(3.17)

(v) , on r
(we refer to [5] for a proof of this result).

If we can prove that (v) h a fixed point we will be done. First, let us prove
that for a suitable choice of, T maps K into itsel Indeed, we already know that
(v) 0. Next, if we take (v)- va in (3.17) we get

(m’)3lV((v) v.)l,(r) h3(u)V((v) Ua)]2 dx

w h(u)(v)W V((v) va) dx.

Using the Cauchy-Schwarz inequality and recalling (3.6), (3.14) we deduce

(m’)alV((v) v)l(r N 12w(M+m-m’)lV((v)

(noge gha SUpr IwI 1). Hence, we have

(m’)lV(9(v) v)lL(r) < 12w#(M + m m’) ..9(v) dx
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By the Poincard inequality,

(m’)3l(v) VlL(r)

_
d(m’)alv("(v)

(3.19) <_ 12du;/z(M + m m’)(lr’l/21(v) VlL(r) + Irlv.} 1/2

where d denotes the smallest width of a strip containing F. So, we get

I’(v) vl(r) _< alg(v) ValL2(r) + b

with

[12dw#(M -t- m .+,)]lrlv [12dw#(M + m -+’)]lrl,(3.20) a b
(.,)6 (.,)6

and r maps Kgz into itself provided that

(3.21)

Assume that (see (3.16))

(3.22)
a + x/a + 4b) (m m’)

2 <v CC

then we can select such that (3.16) and (3.21) hold. Thus for v E Ks, ’(v) E Ks.
Now, from (3.18) it is clear that (K) is relatively compact in Ks (since Hi(f/) is
compactly embedded in L2(), see [7]). So, provided we prove that " is continuous
on Kg, by the Schauder fixed point theorem (see [7]) we can conclude the existence
of (u, v) satisfying (3.3), (3.5).

To prove the continuity of " we proceed as follows: let v, 6 K be such that
vn ’-* v in L2(F). Let us denote by un the solution of (3.3) corresponding to v vn,
and by u the one corresponding to v. From Theorem 2.1 and Proposition 2.2 we derive
easily

I UlHo(a) --< Cl(x/- x/) (- x/)lL(r)

(We used the Cauchy-Schwarz inequality.) Hence un -* u inH(fl) and also uniformly
on l. (Recall that H(l) C C () continuously.)

Now, from (3.19) we deduce that for some constant C independent of n we have

I(v)l(r) _< c.
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So we can extract a subsequence nk from n such that

(3.23) ’(vn) w in H(F), (v)
If we let k go to + in the equality

we obtain (recall that h3(u,) h3(u) uniformly)

in L- (r).

v,1 e HI(a),

h3(u)Vw V wv/-h(u)W Vdx 0 V e
(3.24)

w v on OF.

By uniqueness of the solution of such a problem we have w -(v) (see (3.17)).
It results from (3.23) that the whole sequence ’(vn) converges toward -(v). This
proves that ’(vn) converges toward -(v). Hence, - is continuous on K92 and this
completes the proof of the theorem.

COROLLARY 3.1. Ifw or IFI are small enough or m is large enough with M/m
fixed and (3.6) and (3.7) hold, then there exists a solution (u, v) of (3.3), (3.4).

Proof. Clearly, (3.8) holds for w or ]F small enough, all other quantities being
kept fixed. Also, (3.8) holds if we set m’ m/2 and m is large enough with M/m
fixed. E!

It should be possible to apply the techniques of this paper to prove results similar
to Theorem 3.1 for tape systems. Tape systems are usually modeled by a simplified
shell model for the displacement of the tape and the compressible Reynolds lubrication
equation for the air bearing [9].

REFERENCES

[1] S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965.
[2] R. BENSON AND D. BOGY, Deflection of a very flexible spinning disk due to a stationary

transverse load, ASME J. Appl. Mech., 45 (1978), pp. 636-642.
[3] M. CHIPOT, On the Reynolds lubrication equation, Nonlinear Anal., 12 (1988), pp. 699-718.
[4] M. CHIPOT AND M. LUSKIN, The compressible Reynolds lubrication equation, Metastabil-

ity and Incompletely Posed Problems, IMA Volumes in Mathematics and its Applications
3, S. Antman, J. Ericksen, D. Kinderlehrer, and I. Muller, eds., Springer-Verlag, Berlin,
New York, 1987, pp. 61-76.

[5] Existence and uniqueness of solutions to the compressible Reynolds lubrication
equation, SIAM J. Math. Anal., 17 (1986), pp. 1390-1399.

[6] R. COURANT AND D. HILBERT, Methods of Mathematical Physics 1, Interscience, New
York, 1952.

[7] D. GILBARG AND N.S. TRUDINGER, Elliptic Partial Differential Equations of Second
Order, Second edition, Springer-Verlag, Berlin, New York, 1985.

[8] H.J. GREENBERG, Flexible disk-read/write head interface, IEEE Trans. Magn., MAG-14
(1978), p. 336.

[9] , Study of head-tape interaction in high speed rotating head recording, IBM J. Res.
Develop., 23 (1979), pp. 197-205.

[10l D. KINDERLEHRER AND G. STAMPACCHIA, An Introduction to Variational Inequalities,
Academic Press, New York, 1980.



ELASTOHYDRODYNAMICAL EQUATIONS 17

[11] J. KNUDSEN, Stretched-sur]ace recording disk for use with a flying head, IEEE Trans.
Magn., MAG-21 (1985), pp. 2588-2591.

[12] M. LUSKIN, A theoretical analysis of a mathematical model for the deflection of a spinning
disk, University of Minnesota Mathematics Report 84-144, 1984.

[13] D. PERRY, J. KNUDSEN, AND W. SKELCHER, Design ofjying heads for tensioned flexible
recording media, IEEE Trans. Magn., MAG-22 (1986), pp. 1005-1007.



SIAM J. MATH. ANAL.
Vol. 21, No. 1, pp. 18-36, January 1990

() 1990 Society for Industrial and Applied Mathematics
OO2

A QUASI-VARIATIONAL INEQUALITY ARISING IN
ELASTOHYDRODYNAMICS*

BEI HUt
Abstract. In this paper, a quasi-variational inequality arising in elastohydrodynamic lubrication

is studied. In the two-dimensional case modeling a thin fluid film between an elastic ball and a plane,
the existence of a smooth solution is proved provided that the viscosity is assumed to be constant. In
this case, estimates for the support of the solution are also established and uniqueness of the solution
is also proved under some restrictions. In the case where the viscosity is not constant, the existence,
regularity, and uniqueness are proved under additional restrictions. Finally, for the one-dimensional
problem describing a thin fluid between a rolling cylinder and a plane, the fact that the free boundary
consists of at most one point is established in addition to existence and uniqueness.

Key words, variational inequality, free boundary problem, a priori estimates, fixed point
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1. The model. The lubrication of a ball rolling in the positive x direction gives
rise to a variational inequality:

(1.1)

(1.2)

(1.3)

Ox 12#0x -y 12#0y -x
fi>0

+ =0

where fi is the pressure, v is the average surface speed (v > 0), p is the density of the
liquid which shall be assumed to be constant, # #(fi) is the viscosity coefficient of
the liquid, and is the film thickness which takes the form:

(1.4) (x, y) + x2 + y2
2R

2 f z(s, t)dsdt+
+

where E is the effective modulus, and is a positi_ve constant.
The variational inequality (1.1)-(1.3) (with h a given function) occurs in a

simplified model of a lubrication problem (see [2]); the dependence of h on the
pressure, as in (1.4), assumes that the ball is elastic; this is the case when the load
is large. The system (1.1)-(1.4) forms an elastohydrodynamics lubrication model;
for more details see [3], [6]. In this paper, we study the quasi-variational inequality
(1.1)-(1.4) in a bounded, but large domain f. Since fi is small on 0f, it seems natural
to impose the boundary condition

(1.5) fi=0 on Off.

If # is constant, then setting the new variables

4R 12#v(2R)3

(1.6) h=2Rh, u=-E-7fi, k=2Rk, A=
rE’

Received by the editors August 15, 1988; accepted for publication (in revised form) March 21,
1989.

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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we can rewrite (1.1)-(1.5) in the form

Oh
(1.7) -V(h3Vu) >- -Axx for (x,y). t

(1.8) u_0 for (x,y) E

(1.9) u. -V(h3Vu)+xx =0 for (x,y) ea

(1.10) u 0 for (x, y) e 02

and

(I.ii)
u(s,t)dsdth(x, y) k + x2 + y2 +

V/(x s)2 + (Y t) 2

In 3 we prove the existence of a C:’: solution by using the fixed point theorem;
the proof uses some estimates derived in 2. In 4 we take 2 to be a disc with large
radius M and obtain some estimates for the support of the solution, i.e., we prove
that for some small e > 0,

(1.12) u) > 0 for -M<x<-eM.

In 5 we prove the uniqueness of the solution provided A is small. In 6 we study the
problem (1.7)-(1.11) in the case where

(1.13) # #0eau, #o > 0, a > 0;

this case is of particular physical interest (see [1], [6]). In [7], by a penalty formulation
of the quasi-variational inequality, the existence of Ho() solution has been proved
provided c is small. On the other hand, we are going to prove the existence of a C:’

solution provided a is small (the case a 0 is treated in 3).
In 7 we consider a rolling cylinder instead of a rolling ball; the lubrication problem

then reduces to a one-dimensional quasi-variational inequality:

(1.14) 3 >_ -6v’ for x

_
[-M,M]

(1.15) fi_>0 for xe[-M,M]

(1.16) ft.- ha +6v’ =0 for x e[-M,M]

(1.17) fi(M) 0

and

(1.18)
x2 4 /_M 2M

Setting analogously to (1.6)

8R
(1.19) h 2Rh, u -7fi, k 2Rc, A 24#v(2R)3rE’
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the problem, with # given as in (1.13), reduces to

(120) (h3 U’ ) >_-Ah’ for xE[-M,M]

(1.21) u E 0 for x [-M,M]

e--f-4u + Ah’ 0 for x e [-M, M]

(1.23) u(+M) 0

and

(1.24)
2M

h k + x2 +
M

u(s) log
ix_ sl

ds.

Assuming a to be small, we prove the existence of a C1,1 solution. It is also proved
that the solution is unique and that the free boundary consists of at most one point
provided A is small.

Numerical work for this case can be found in [1]. In [7], numerical work has been
done based on a penalty formulation of the variational inequality.

2. A priori estimates. Later on we shall need some estimates for the solution
of the quasi-variational inequality

(2.3)

-V(h3Vu) > -AN
Oh

for (x, y) e 2
Ox

u_>0 for (x,y)

u. -V(h3Vu) 4- ANx 0 for (x,y) e a

u=0 for (x,y) e0ft

and

(2.5) u(s, t)dsdt
h k + N2(x2 4- y2) 4- N

y/(x_ s)2 + (Y t) 2

where , k, N are positive constants, g A, and gt is a smooth domain in R2.
Remark. Later on we shall take N to be different constants in the proof of the

existence and the estimation of the support of the solution.
TI7I’2LEMMA 2 1 Assume that (u, h) is a solution of (2 1)-(2.5) with u e o (),

h Wl’2(gt). Then

A2I IN2.(2.6) h3lVul2dxdy <
k
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Proof. Integrating (2.3) over It, we get

h31Vul2dxdy

(2.7)

Oh
-AN u 0---

Ou
AN 0--

AN h20u
ANI]/2 h3

k/2 Vul2dxdy

and hence (2.6) follows.
Extend u by zero outside Ft. Then u E W’2(R2) and, by a change of variables,

a

1
u(x s s)dsdt.(2.8) h(x, y) k + N2(x2 - y2)

_
g

x/S2 + t2
y

Thus

(2.9) Vh(x, y) (2N2x, 2N2y) + N
+ t2Vu(x- s, y- t)dsdt.

LEMMA 2.2. Under the assumption of Lemma 2.1, we have

(2.x0) IlVhllL(a) _< CN2

where 2 < p < c, and C is a constant depending on p, and A.
Proof. Applying Young’s inequality (see, for example, [5, Lemma 7.12]) to (2.9),

we get

(2.11) I]Vh[IL( <_ C(t)N2 + C(t,p)NI]VUlIL(a).

Since, by (2.6),

(2.12) k3 ]Vu]2dxdy <- k

and iherefore,

(2.13) ]]VU,]L2(ft) < (A2,k k___.5__ hr.

Substituting this into (2.11), (2.10) follows. [:]
Setting

AN Oh3Vhvu(2.14) f h h30x

we can rewrite (2.1)-(2.4) as

(2.15) -Au > f for (x, y)
(2.16) u

(2.17) u(--Au- f) 0 for (x, y)
(2.18) u 0 for (x, y)e 0f.
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LEMMA 2.3. Under the assumption of Lemma 2.1, we have, ]or any 2 < p < ,
(2.19) Ilu]lw2.p(a) < C(, N, p)A
(2.20) Ilu]lw2.(a,) < C(, ’, N)A
(2.21) Ilhllw,,(a) <_ C(,Y)
(2.22) ][h[w,(,) C(, ’, N)
where ’ CC 2, and the constants in (2.19)-(2.22) depend on k and h.

Proof. We shall use C to denote various constants depending on 2 and N and
use Cp to denote various constants depending on , N, and p.

First let 1 < p < 2. Then by (2.14)

(2.23) Ill < ClVhF(lVuJ / ).

Applying HSlder’s inequality we get

(2.24) f]Vdxdy C [Vh2V/(2-V)dxdy (]Vu + A2)dxdy

since 1 < p < 2, 2 < 2p/(2- p) < , and by Lemm 2.1 and 2.2 it then follows that

(2.25) ][fJ]Lv(a) CvX (1 < p < 2).

Thus, by LV estimates for the variational inequality (2.15)-(2.18) give

(2.26) Ilull,a c (1 < < 2).

Using the Sobolev Embedding Theorem we conclude that

(2.27) Ilull,., c
for any 1 <p < .

Now from (2.9) and HSlder’s inequality it follows that

(2.28) JlVhllL(n) c + CJlVullL(a) (o)(S2 + t2)-3/adsdt

if K is large enough so that C Bk/(O). Using (2.27) it follows that

(2.29) IlVhllL(a) C.

Next, using (2.14), (2.27), and (2.29), we find that

(2.30) IJfllL(a) GA
for any 1 < p < , and thus by a similar argument as above we obtain the estimate

(2.3) IlulIw,) cA
for any 1 <p < .

To get higher regularity, we differentiate (2.9) using a similar argument as in [5,
p. 53-55], and obtain:

(.) h N + N
j, ( ) + ( )

N
Jo (-) + (- )
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Similar expressions can be derived for h=y and huy.
By the Sobolev Embedding Theorem and (2.31), it follows that

(2.33) Ilullw,<> cA

and thus if (x, y) E t’, where ’ CC 2, then

u(s, t) cos(, x)
x/(x- 1 + ( 1

<CA.

Next, applying Young’s inequality [5, Lemma 7.12], and using (2.31), (2.34), we con-
clude that

(2.35) IIh[Iw,(,) < cp + c,llullw,() < cp for any 2 < p < c,

the constants in (2.35) depend on dist(fl’, Of).
By the Sobolev Embedding Theorem, (2.31), and (2.35), for any 0 < a < 1 and

" CC Ft’,

(2.36) Ilhllc’.(") <- C’

(2.37) II,llc,,,,() <_ c"A

where C’ depends on a and ft" and C" depends on a. Therefore, using (2.14) it
follows that

(2.38) Ilfllc,(,,) <_ c’"A

where C’" depends on fl and ". Hence, by elliptic estimates for variational inequal-
ities,

(2.39) Ilullw,<,,,) < cA

where Ft’" CC Ft", and 0 < a < 1 (see [4]).
3. The existence of a solution.
THEOREM 3.1. Suppose that fl is a smooth bounded domain, then there exists a

solution (u,h) of (1.7)-(1.11) such that

1/172,cx) C1 /,’},. l,cz(3 1) u E W2’p(f) n ,oc (gt), h

.for any 2 < p < cx and O < a < l.

Proof. Take 2 < p < (fixed) and let

B w,’(a) w’(fl).
For each u E B, define

(3.3) u+(s, t)dsdtHu k + x2 + y2 +
V/ x s) "2 - -( t)2
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Then, by HSlder’s inequality,

(3.4)
(3.5) IlHul Hu2llc,(Ct) <_ CllUl U2IlWI,p(a).

Now define Tu to be the solution of (1.7)-(1.10) with h Hu (it is unique for fixed
h).

From (3.4), Lp estimates for the variational inequalities and the compactness of
the inclusion W2’p(Ft) WI’p(f), it follows that T B - B is compact.

The compactness of T, the uniqueness of the solution of the variational inequality,
and (3.5) altogether imply that T B B is continuous.

Next, for any 0 < a < 1, consider any fixed point u of the operator aT:

(3.6) u aTu.

Notice that since u/a Tu, u is a solution to the following problem:

Oh-V(haVu) >-Aax for (x,y)E ft

u>0 for (x,y) E gt

u. -V(h3Vu) + Aa--x 0 for (x,y) e 9t

u=0 for (x,y)0ft

and

(3.7) u(s,t)dsdth(x,y) k + x2 + y2 +
V/(x- s)2 + (Y- t)2

Hence by Lemma 2.3 (with N 1),

(3.8) II llw ,.(a) <_ c

where C is a constant independent of a.

From this fact and the previous properties of T it follows that the Laray-Schauder
fixed point theorem [5, Thm. 10.3] can be applied. Thus, there is a fixed point u for
T, that is, there exists a solution (u,h) to the problem (1.7)-(1.11).

Finally by Lemma 2.3,

i,(,, e W  o’2C(a), e (a),

and the theorem is proved. [-1

Remark. If the domain ft is symmetric with respect to the x-axis, then we may
take in (3.2)

(3.10) B wl’p(a)CI W’2(a)CI {ulu(x y) u(x,-y)}

and the preceding argument shows that there exists a solution symmetric with respect
to y.
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4. Estimate on the support. As a simple result of (2.33), we have the following
theorem for fixed .

THEOREM 4.1. For any e > O, there exists A, > 0 such that if 0 < A < A,, then

u(, ) > 0 o x < -, (, ) e a.

Proof. From (2.9) (with N=I) it follows that

(4.2) hx
u(s, t)dsdt

2 +
v/( ) + ( t)

=_ 2x+I.

By (2.33)

dsdt

(4.3)
I _< CA

V/(x_s)2+(y-t)2

_< CA;

hence, for x < -,

(4.4) hz<-2e+CA<O for x<-e, A<A,,

provided A, is small enough, and hence u(x, y) > 0 for x < -. [:]
If A is not small, a similar result still holds if the domain is "large" enough, i.e.,
BM(O) in (1.7)-(1.11), where M is large. We shall prove the following theorem.
THEOREM 4.2. For any > O, there exists a K > 0 such that if M > K, then

(4.5) u(x,y) > O for M < x < -eM, (x,y) q BM(O).

To prove this theorem, we start with a scaling:

(4.6)
(4.7)

UM(X, y) u(Mx, My)
hM(x, y) h(Mx, My)

for x2 + y2 <_ 1

for x2+y2_<1.

A simple calculation shows

(4.8) OhMV(h3MVUM) >_ -AM bx for (x, y) E B

and

(4.9)
B

u(s, t)dsdthM(x, y) k + M2(x2 + y2) + M
V/(x 8)2 + (Y t) 2

This shows that (uu, hu) satisfies (2.1)-(2.5) with Ft BI(0).
It clearly suffices to show that

(4.10) UM(X,y) > 0 for 1 < x < -e

for M large enough; for simplicity, we drop the subscripts M from UM and hM.
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Since h >_ 2M2 if X2 -[-y2

_
2, we get from (2.6),

(4.11) /BI\B, A27r M-4.IVul2dxdy <_

We shall use C to denote various constants independent of M (although they may
depend on e, k, and A ).

We are going to carry out a proof similar to that in Lemma 2.3, but this time we
shall use the fact that h _> e2M2 if x2 + y2 _> e2 to find a better estimate on h when
x2 + y2 _> (4e)2.

By HSlder’s inequality, for 1 < p < 2

L(BI\B,)

1

By using (4.11) to estimate Vu and Lemma 2.2 to estimate Vh, we get

By Lemma 2.2, also

L(BI\B)

1
"e2’M2 (CpM2)(CM-2) <

AM Oh <_ IIVhIIL(B1)(4.14) "---x LP(BI\B) 2M2)3_
(CM-5)(CpM2)

_
CpM-3.

From (2.14), (4.13), and (4.14), it now follows that

IlfllL,(Bl\) CpM-2

Thus we prove the following lemma.
LEMMA 4.3. For f defined in (2.14) (with N M),

(4.16) IIfIIL,(I\B,) CpM-2 (1 < p < 2).

Notice that u satisfies the variational inequality

(4.17) -Au >_ f, u >_ O, u(-Au- f) O in B1
(4.18) u 0 on OBI

where f is given by (2.14) (with N M); by Lemmas 4.3, (4.11), and the Poincar4
inequality,

(4.19)

we get"

(4.20) llU[lL.(,\)

_
CM-2 (1 < p < 2)

(4.21) llVU[lL2(l\

_
CM-2 (1 < p < 2)

(4.22) [[f[[L(BI\B) -- CpM-2 (1 < p < 2).
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LEMMA 4.4. For 1 < p < 2

(4.23) IlUlIw2,,(S,\B,) <_ CpM-2

and hence, by the Sobolev Embedding Theorem,

(4.24) IlU]IwI,,(B,\,3,) <_ C,M-2

(1 < p < 2),

Take a cutoff function E C so that

1

0

and0g<_l. Letw=u. Then

for 2e<_ v/X2+y2 <_1

for X/x2+y2ge

(4.25) Aw uA + 2VCVu + CAu,

and w satisfies the variational inequality

where

By (4.20)-(4.22), we get

-Aw>_F for e< V/X2/y2<1
w>_0 for e< V/x2+y2<l
w(-Aw-F)=O for e<V/x2+y2<1
w--0 for V/X2/y2=e, V/X2/y2-1

F -uA 2VCVu

(4.27) IIFIILp(BI\B) <_ CM-2 (1 < p < 2).

Thus by L’ estimates for the variational inequality,

(4.28) IIWlIw,,(B,\S) <_ CpM-2 (1 < p < 2)

and (4.23) follows. [’!

Next, we prove the following lemma.
LEMMA 4.5. There exists a constant C such that

(4.29) u(x, y)dxdy CM-1/5

uniformly for large M.
Proo]. If (4.29) is not true, then there exists a sequence Mn such that

(4.30) [_ UM, (x, y)dxdy > riM:1/.
JB

Thus

1/s I.M_I/5dsdt >_ - UMn (x, y)dxdy > - n
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hence

(4.32)
l nMn_(1/5 >

n It,f4hM. >_- "-’-n
By Lemma 2.1,

n 3

IVUMn 12dxdy < CM2n,

and thus

IVUM.12dxdy < Cn-3M2n-(12/5) Cn-3M2/5

Using HSlder’s inequality and (4.19) with e ---, 0, we get

(4.35)
B

UM. (x, y)dxdy <_ 7r/21[UM

d/2llVUM. IIL2(B1)
< Cn-al2Mgl5.

From (4.30) and (4.35), it follows that

(4.36) nM15 < Cn-312M/5

or

(4.37) n < Cn-3/2

which is a contradiction.
Proof of Theorem 4.2. From (2.9)

(4.38) h 2xM2 + MI

where

(4.39)
u(s, )I

/( 7 i 1
dsdt.

Take a cutoff function E C such that

(4.40)
1
0

for V/X2 "+" y2 >_ 3e
for / + y _< 2e

and0<_(<_l. Then

(4.41)
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Assume that (x, y) E B1 \ B4e. Then

(4.42) V/(x s)2 + (y t) 2 _> e for (s, t) e B3.

Since u(1- ) 0 on 0B3, no boundary term will appear when we use integration
by parts for J2. Hence

/B ((1- ))(s t)dsdtJ2
3 V/(x-s)2+(y-t)2

(4.43)
u(1 o- v’( + (

and thus

(4.44) J21 <- C fB luldsdt
3

< CM-I/5

the last inequality is obtained by Lemma 4.5.
By HSlder’s inequality

IIJIlILO(B1)< II(U)xlIL3(BI\B2)[ sup II 1

(,) /(- .) + (- .)

(4.45)
where the last inequality is obtained by using (4.24).

Thus, by (4.44), (4.45), and (4.21), for (x, y) BB4
(4.46) III <_ IJl + J21 <_ CM-/5,
and thus, for x _< -4e, we have

(4.47) hx _< 2xM2 + CMI-(/5)
-8eM2 + CM2/5 < 0

if M > K(e), and hence u(x, y) > 0 for x < -4e. [l

5. Uniqueness. In this section we prove uniqueness provided is small. The
estimates that we obtained in 2 and 3 are uniform for , that is, the constants C
depend only on A. gt will be a fixed smooth domain.

THEOREM 5.1. There exists > 0 such that the solution of (1.7)-(1.11) is
unique if 0 <_ <_ ), where depends on and k.

Proof. We shall use C to denote constants that do not depend on .
If (u, h),(, ) are two solutions, then we have

[-V(h3Vu) + Ahx](fi- u) >_ 0

[-V(V) + ](u- ) > 0.

Thus

(5.4)

A .] h(fi u)

h(u fi);
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hence

halV(u i)12 + (3 h3)VfiV(i u)} g ,/n IV(u fi)llh 1.

Using (2.19) and (2.21), we get

(5.6) k3/n IV(u ’)12
<_ CAJlV(u- )lJL(a)Jlh hJlL(a).

By Young’s inequality [5, Lemma 7.12] with p q 2, we get

(5.7) ]lh hllL(a <_ CI]u ft]lL(a).

Now (5.6) and (5.7), together with Poincar’s inequality give:

Thus, if , is small, then

(5.9) IV( 0

which implies that u

6. The case # #0e
au In the previous sections we studied the case when the

viscosity is constant. We now study the case when the viscosity is given by (1.13).
We shall extend all the previous results to this case provided a is small.

Using the transformation

(6 1) w 1 e-a’

we obtain from (1.1)-(1.5) the variational inequality:

(6.2) -V(h3Vw)
(6.3) w_>0 for (x,y)
(6.4) w[-V(h3Vw) +
(6.5) w=0 for (x,y)

and

/61( 1) dsdt
(6.6) h(x, y) k + x2 + y2 + log

a 1-w(s,t) V/(x-s)2+(y-t)2

The main difficulty is to show that 1 -w stays uniformly positive. To overcome this
difficulty, let us fix e (0, 1) and take a cutoff function such that C, 0 g <_ 1
and

(w) 1 for w<_l-e

0 for w_> l-e/2.
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Define

1
(6.7) G(w) (w)log

1 w
for 0

then G E C. Let us take, for instance, e 1/2. Next, instead of (6.6), take

al dsdt
(6.8) h(x, y) k + x2 + y2 + -G(w(s, t))

v/(x- ) + (- t)"
Let us consider the system (6.2)-(6.5) and (6.8). From (6.2)-(6.5), it follows that

(6.9) ]Vwl2dxdy
ka

Differentiating (6.8), we get

(6.10) Vh 2(x, y) + f G’(w(s t)) Vw(s, t dsdt

( ) + (- t)"
Note that G’(w(s,t))] is bounded uniformly, and thus, by Young’s inequality [5,
Lemma 7.12], we get, for 2 < p < ,

Vw](a);(.1) ]lVh() C + Cl
by (6.9)

(6.12) ]]VhIL(a) C

where the constant C is independent of a. Thus, if

3Vhvw(6.13) f h h30x

then, as in the proof of Lemma 2.3 (using (6.9)),

(6.14) ]II]() c (1 < < ).

om (6.9) and (6.14), it follows by using the Lp estimates for the variational inequality
that

(.1) l,(a) c (1 <

Applying the Sobolev Embedding Theorem to (6.15), we obtain

1
(6.16) w CaA 1- e

provided aA is small, and then the expressions (6.8) and (6.6) coincide. The existence,
regularity, and uniqueness of the solution now follows as before. Let us summarize
the results as follows.

THEOREM 6.1. There exists a constant c c(k, ) > 0 such that if 0 < aA < c,
then there exists a solution (u, h) such that

12, C 1,(6.17) u W2’p() o () h () toc ()"

Moreover, there exists a constant (k, ) > 0 such that if 0, then the solution (u, h) is unique.
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7. The one-dimensional problem. Consider the one-dimensional variational
inequality:

>_-Ah’ for xE[-M,M]

(7.2) u_>0 for xE[-M,M]

+Ah’ =0 for xe[-M,M]

(7.4) u(4-M) 0

and

2M
(7.5) h k + x2 +

M
u(s) log IX sidS

where M, , and k are positive constants; and a is a positive constant which shall be
assumed to be sufficiently small in proving the existence of the solution; both a and
A will be assumed to be sufficiently small in proving the uniqueness of the solution.

Introducing the transformation

(7.6) w 1 e-au,

as before, we obtain

1 1
(7.7) u log,

and (7.1)-(7.5) is transformed into the following problem:

(7.9)
(7.10)

-(h3w’)’ >_ -Aah’ for x e [-M,M]
w_>0 for x e [-M, MI
w[-(h3w’) + Aah’] 0 for x e I-M, M]
w(4-M) 0

and

(7.12) lJ_( 1 ) 2M
h k + x2 + log log ds.

a M 1 w(s) ’Ix --s
As we did in 6, instead of (7.12), we consider

1/_
M

x2M,(7.13) h k + x2 + (G(w(s))) log, s’dSlO M

where G(w) is defined in (6.7). The system (7.1)-(7.5) is equivalent to (7.8)-(7.11)
and (7.13) if we can establish the bound:

(7.14)

but this follows, for small a, from the following lemma.
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LEMMA 7.1. Suppose that < A. If w satisfies (7.8)-(7.11), then

(7.15) Iw(y)l <_ 2M- for IY] <- M.

Proof. Integrating (7.10) over I-M, M], we get

M

h3lw’[ 2 -As h’w a hw’
M M M

(7.16) g AC h21w’l2 (2M)1/2
M

Aa
(2M)/2 h3jw, 2

and hence
M

h31w’l 2 <(7.17) (2M)
M k

It follows that

(7.18)
As (2M)1/2Ilzo’IIL t--M,M] <--

so that

(7.19) I o( )1
M

Using (7.18), (7.15) follows.

Iw’(s)lds < (2M)I/211W’IIL[-M,M].

Lemma 7.1 tells us that if we choose, for instance, e 1/2, then there exists an
A > 0 (we may take A (k2/2M)(1- e)= k2/4M) such that

1
(7.20) w(y)<l-e= for 0<aA<A,

and hence (7.12) and (7.13) coincide. Next we shall use constants C to denote various
constants depending only on M, k, A, and A. Since we are going to use the same
method as in [}3 to prove existence, care has to be taken so that the constants will
not change when we replace A by aA (0 < a g 1).

Note that,

(7.21) lim
1 1 2M

-o
log

1 2Mh/k2 k2

and, consequently, by (7.15),

sup
IaI<M

1
log

1

1- w(s)

By (7.12),

1 )1- 2Ma)/k2
< CA.

h<C+C
2M

log , ds < C.
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To derive an estimate for w’(x) for all x, it suffices to derive an estimate for w’(x) for
every interval [a, b] such that w(a) w(b) 0 and w(x) > 0 for x e (a, b).

By Rolle’s theorem, there is a number c E (a, b) such that w’(c) O. From (7.10),
it follows that

(7.24) h3(x)w’(x) Aa(h(x) h(c)).

And hence, by (7.23),

h(x) h(c)
h3(x)

Differentiating (7.13) (which is now the same as (7.12)), we get

1 w’(s) 2M
(7.26) h’(x) 2x + log ds,

M a 1-- w(s) Ix-- S

and, by (7.20), (7.25),

2M
(7.27) Ih’(x)l < 2M + C log ...ds < C.

M Ix--sl

By (7.10),

h3w" + 3h2hw Aah if w(x) > O,

and thus, by (7.25), (7.27),

(7.29) sup _< cA.

Using these estimates, we can prove the existence of the solution by using the same
method as in 3. In the case a 0, we may work with u instead of w. We have
proved the following theorem.

THEOREM 7.2. If a is sufficiently small such that

2MAa
(7.30) k2 < 1,

then there exists a solution to (7.1)-(7.5). Yl
Remark. This condition on a is much more precise than that derived in Theorem

6.1.
Next, we prove that the free boundary consists of at most one free boundary

point.
THEOREM 7.3. There exists A0 A0(k, M) such that if 0 _< aA _< A, 0 _< A _< A0,

then there is at most one free boundary point.

Proof. We can rewrite h as"

1 w’(t + s) 2M
(7.31) h’(x) 2x +

M-x a 1 w(t + s) --;w-.,itl dt,log
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then

[2+
M Ol 1 W(S) +

w’(M)log
M- x

2-I.

(w’(s))2 llg 2M
(1 w(s))2

j Ix sl

lw, 2M- (-M) log
a M+x

By (7.25), (7.29), we get

(7.32) h"(x) >_ 2- C1

so that if A is small

(7.33) h"(x) > 0

By (7.25), (7.26), if A is small enough, then

M(7.34) h’(x) E M-AC2 > 0 for x>m
2
M

(7.35) h’(x) < -M+AC2 < 0 for x<
2

Take A0 so that (7.33)-(7.35) hold for A < A0. Then h’(x) has only one zero in
I-M, M], say, at x d. Then

(7.36) h’(x) < 0 for -M<x<d

(7.37) h’(x) > 0 for d<x<M.

Suppose now that b is the first free boundary point, i.e.,

(7.38) w(x) > 0 for -M<x<b

(7.39) w(b) 0 for b<M.

By regularity, w’(b) O. By (7.36), w > 0 on (-M,d). Hence b >_ d.
Let us define

(7.40) (x) w(x) for -M_<x<b
0 for b<x<M.

Since h’(x) > 0 for x > b, is also a solution of (7.8)-(7.11). Since the solution is
unique (for fixed h), we have w , and hence b is the only free boundary point.

We also have uniqueness if A is small.
THEOREM 7.4. There exists a number A1 > 0 so that the solution (w, h) to the

problem (7.8)-(7.12) is unique provided that 0 < A < A1.
Proof. The proof is essentially the same as that in Theorem 5.1. It is necessary

only to check that

(7.41) IIh hlIL[-M,M] < CXllu 5IIL[-M,M]
which is obviously true. [-1
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Remark. Several problems remain open: the uniqueness of the solution without
assuming that A is small, the shape of the free boundary in the two-dimensional case,
and the existence of the solution when # #0e

u without assuming a small.
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fessor Avner Friedman for his direction and help while working on this paper.
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SUR UNE CLASSE DE FONCTIONNELLES NON CONVEXES ET
APPLICATIONS*

RABAN TAHRAOUIt

Abstract. Varions questions of physical or mechanical nature are frequently solved by a variational
approach . In many situations, minimizers for the total energy associated with the system are being sought .
This energy is represented by an integral functional

J (v) = f g(x, v, A v) dx
n

where v is a vectoriel function mapping a bounded open subset SZ of W' into R`", and A is a difierential
operator.

The goal of this paper is closely related to the study of the elastostatic equilibrium for materials whose
constitutive laves are nonlinear . In some realistic situations, the shape of the body, the nature of the
deformation, or some symmetric arguments require SZ to be an annulus or a disc .

For exemple, let B be an isotropic and homogeneous body occupying a reference configuration
before deformation and P' after deformation

x=(x 1 ,x 2 ,x3)EP-+x'=x+u(x)c J'

where u(x) is the displacement function . It is assumed that the deformation is of the form

x=(r, e, z)-~x'= (u(r), 8+v(r), z+w(r))

where r = ((xi + x2) 1 ~ 2 z = x3 and 9 = arctg (x2/x 1 ) . The associated energy can be represented by

J1(u) = f g1(U(IYI, u, Vu)) dy+A

	

h1(IYI, u) dyn

	

n
where U is a certain function that will be specified later . The function J1 is, in general, nonconvex ; then
the direct method of calculus of variations is flot applicable . The lack of weak louver sequential semicoi~tinuity
does flot make it possible to tend toward the lirait in minimizing sequences . Despite this, some existence
and regularity results are proved by relaxation techniques .

Key words. elasticité non linéaire, fonctionnelle énergie, non convexe, calcul des variations, relaxation,
minimisation

AMS(MOS) subject classifications . 73050, 73B05, 58E30, 49A50, 58020

1. Introduction . L'étude de nombreux phénomènes physiques conduit à la
recherche de fonctions minimisant l'énergie interne du système . Cette énergie est en
général donnée par des fonctionnelles du type

J(v) = f
g(x, v, A v) dx,

où v = (v i , v2 , , vm) désigne une fonction définie sur l'ouvert borné f de R" à
valeurs dans R m , et A est un opérateur différentiel . Une motivation de ce travail est
l'étude de l'équilibre élastostatique de certains matériaux dont la loi de comportement
est non linéaire (cf. [6], [19], [15], [7]) . La géométrie de certains corps et la nature
de leur déformation nous imposent de travailler avec SZ à symétrie radiale, i .e ., S1 est
soit une couronne soit un disque de R 2 , de centre zéro : il s'agit, par exemple, de l'étude

* Received by the editors March 1, 1988 ; accepted for publication (in revised form) February 2, 1989 .
t Université de Paris-Sud et Centre, Bâtiment 425, Nationale de Recherche Scientifique, Laboratoire

d'Analyse Numérique d'Orsay, Orsay 91405, France and Université de Picardie, U .F.R. Cedex Mathematique
et Informatique, Amiens, France .

37
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du déplacement u = (u 1 , u2 , u 3 ) d'un corps B élastique, isotrope, et homogène qui
occupe les positions = SZ x ]-L, +L[ et Pi', respectivement, avant et après défor-
mation :

x=(x1,x2 , x3)E --~x' =x+u(x)E ',

on suppose que cette déformation est de la forme

x=(r, 8, z)->x'=(u(r), 6+v(r), z+w(r))

avec r = (x ; + x2) 1 " 2 et z = x3 ; B désigne l'angle polaire du vecteur Ôm d'extrémité
m = (x1 , x2 ) . Sa densité d'énergie de déformation est supposée de la forme [16]
g1 ( U( (y ~, u, Vu)) et son énergie totale est

( ~1)

	

J1(u) = f g1(U(IYI, u, Vu)) dy+À f h1(IYI, u) dy

où U est une fonction assez spécifique que nous préciserons ultérieurement . De plus,
signalons que ces fonctionnelles sont en général non convexes (cf . [9], [5], [1], [10], [6]) .

Le modèle de mécanique exposé ci-dessus a fait l'objet d'une étude en [12] avec
des hypothèses restrictives par rapport à notre travail . Notre méthode (cf. [4], [17])
est différente de celle mise en oeuvre en [12] .

Nous aborderons également l'étude de fonctionnelles plus générales que les
précédentes, de la forme

(~2)

	

J2(v) = f g2(IxI, IVviI, . . , IVVmI) +À f h2(Ixl, v) dx
fl

où V v = av;/axe , (1 i n, 1 j m), désigne la matrice gradient de v, et celles du type

J3(v)=

	

g 3(Av) dx+

	

h(Ixl, v) dx
JfL

où Av = (A1 v 1 , A2v2 ) est un opérateur différentiel uniformément elliptique .
Etant donnée une fonctionnelle J(v) semi-continue inférieure faible séquentielle-

ment (s .c .i .f.s .), la méthode directe du calcul des variations consiste à considérer une
suite minimisante u,, convergeant vers u, et à passer à la limite dans J(un ) . La s.c.i .f.s .
permet alors d'avoir l'inégalité essentielle

lim J(un ) J(u)

prouvant ainsi que u réalise le minimum de J( . ) .
La difficulté majeure que l'on rencontre dans l'étude des fonctionnelles introduites

ci-dessus provient de l'absence de semi-continuité inférieure séquentielle faible qui
rend inopérante la méthode directe du calcul des variations [9], [8] .

Pour la résolution de ces problèmes, nous utilisons l'idée de base contenue dans
[3] . La conclusion proviendra d'une analyse fine des conditions d'extrémalité pour
obtenir des informations qualitatives sur les solutions des problèmes relaxés correspon-
dants. Cette analyse fine est intimement liée à la structure de chaque problème. Dans
cette étude, nous ne présenterons en détail que les points spécifiques aux problèmes
abordés ici .

Nous traiterons également dans ce travail la question de l'unicité .
Enfin signalons que ce travail a été annoncé dans [18] .

2. Hypothèses et notations du problème (e). Pour simplifier l'exposé nous
prendrons, d'une part des "fonctions modèles" U de type assez simple mais suffisam-
ment expressives pour la méthode, et nous travaillerons, d'autre part, dans l'espace



où a1 et a2 sont des constantes positives et gi* désigne la convexifiée de g1 . La seconde
est une fonction régulière de [a, b ] x 11 3 dans satisfaisant

c1 'q 2 +d1 Çh1 (s, ij)~c2 1 g 2+d2 d(s,(3)

(4)
ah 1

ag i
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fonctionnel V =

	

ce qui nous amène à supposer les hypothèses de croissance
convenables sur les fonctions g 1 et h 1 . La première est une fonction de H1 dans D

où c2 est une constante positive et et une constante convenablement choisie ;

(r, rj)~0, i=2,3, d(r,'n)E]a, b[x(F3 ,

ah 1
=-(5)

	

a

	

(r, 7n)0,

a h 1

	

a h1
r

	

< 0 d(r

	

E ]a bCx 11 3 .(6)

	

a

	

(r,' n)+ a

	

(,~ n)

	

,~n)

	

,
~Î3

	

~2

La fonction U est supposée de la forme

U 2 -= U2(Ixl, v, Vv) = Iov 1 I 2 +13 2 (IxI, y 1 ) • IVv 2 I 2 +IVv3 I 2
où I3 est une fonction régulière qui vérifie

(7)

	

Ia (s, t) lao > 0,

8)

	

/3 1 (s,s, t)-

	

(a~(

	

st)>0as ,

	

,

(9) t •
af3

s t> O t - ' • a~3
s t< c pour t voisin de zéro .

at ( ' )

	

at ( ' )

On note:

r 1 = {x E ~2/IxI = a},

	

r2 = {x E Œ2 /Ixl = b},

fl={xEll~ 2/a<IxI<b},

(10)

	

V1 = (Hô(f) 3 + ~p,

où 'p = ('p,, (P 2 , P 3 ) appartenant à (H 1ffl)) 3 vérifie les conditions aux limites

(11)

	

(P/r1 = a = (a1, a2, a3),

	

(P/F2 = y = ( yl, 7 2 , y3) ;

les a i and y. sont des constantes supposées vérifier, pour fixer les idées,

(12)

	

&=yl - ai>0,

	

i = 2,3,

(13)

	

a1=0, y>0.

régulière, paire telle que

(1)
dg** c

Vt,0<ea~ t-' •-

	

dt (t) = e t

(2) a1t 2 + b1 Ç g1(t) Ç a2t2+ b2 Vt,
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Nous voulons montrer que le problème

(~i)

	

Trouver une solution de inf {Ji (v ), v E V1}

admet au moins une solution, et que cette dernière possède une symétrie radiale . Cette
propriété de la solution désirée nous amène à associer à (P i ) le problème relaxé, en
dimension un d'espace :

(Tri )

	

Trouver u dans V1 solution de inf {Ji(v), v E V1},
N

	

N

l'espace Vi et la fonctionnelle J i sont définis par

où l'on a noté

2

	

dvi 2

	

2

	

dv2 2

	

dy3 2
(V(v)) = dr +/3 (r, v') ' dr + dr

Pour simplifier la présentation nous noterons, si nécessaire, v' = dv/dr. Le problème
(Tr i ) admet au moins une solution u = u A . L'idée est de montrer que u vérifie

g**(V(u(r))) _ gi(V(u(r))) p.p . r E ]a, b[ .

Ce sera l'étape 1 . L'étape 2 sera consacrée à la régularité de u. Enfin à l'étape 3, nous
montrerons que la fonction i (x) = u(IxI) est solution de (?P) .

Etape 1 . Cette étape comprend plusieurs propositions .
PROPOSITION 2.1 . On suppose les hypothèses (1)-(3), (10), et (11) . La fonction u

solution de (Tri ) satisfait les relations d'extrémalités suivantes :

g1*'(V)
(14)

	

r'	V

~* t
• gl (V)

	

' 2+Ar ahi

	

'(15)

	

r	
V

	

~~2 (u2)

	

a (r,u) =-p 1 ,
ij 1

g *' (V)
(16)

	

r .l	
V

	

2 p2

g
**~
l(V) u' _-(17)

	

V

	

3

	

p3~

ah i
(18)

	

Ar'

	

(r, u) = --pl,

	

i=2,3,

où V = V(u), N2 = af3/at(r, u1), etg;`*'(t) = dg* */dt. De plus lesfonctionspl , u; appartien-
nent à W 1 '°°(a, b), i=1,2,3 .

Démonstration . La preuve de ce résultat s'obtient aisément à partir des équations
d' Euler de ir1 :

d ro - • u)' +Ar

	

(ahi(

	

r, u)+ro- • f3/32 (u)' 2 =0
tir

'

	

a

	

2

d
-

	

2u)' + Ar ahi r u)=0,
dr

(rŒ . ~ 2

	

a i1 2 ~
i12

d

	

ahi
-dr (ro

-u3)+Ar a (r, u) =0 .
l73

Nous la laissons au lecteur .

Vi = {v E H'((a, b)) 3/v(a) = al , vi (b) =
b

	

b

Ji(v)=J rg**(V(v)) dr+A

	

rhi(r, v) dr,
a

	

a



à L°°(a, b) . Transformons quelque peu cette expression de v'(r) à l'aide de
(14), (15), et (16) ; nous obtenons

2 p2 p i

	

,

	

2

	

h i 2

	

p2 z

	

p3 2

	

21a i

	

P2 2
(19)

	

v(r) =2

	

+p3 •p3

	

- -~

	

+ -

	

_
r

	

13 2

	

r

	

r

	

rf3

	

r J 1

	

r~3

on voit bien que l'on aura i/(r) < 0 si l'on montre par exemple que

• p'+ pzp
z
2 <0.p3 3 ~

Remarque 2.1 . Les solutions (u i , pi ), i =1, 2, 3 du système (14)-(18) dépendent
du paramètre À, i.e., que l'on a en fait

(20)

ou

Les pi étant ainsi définies, considérons la fonction de L°°(a, b )

Pi 2

	

p2 2

	

p3 2v,, ( r) = v( r) _ - +

	

+ -
r

	

rf3

	

r

	

'

nous avons le résultat suivant .
PROPOSITION 2.2. Nous supposons (1)-(8) et (10)-(12) . La fonction v(r) appartient

à W" (a, b) ; de plus, il existe À 0 > 0 tel que pour tout À, 0 < À <À 0 , on a v(r) <0,
u2(r) >_- 0, et u3(r) 0 p.p.r dans ]a, b[ .

Démonstration. v(r) appartient à W 1 ' °° ( a, b) car p2, p3 appartiennent à C'([a, b]) ;
et 1/13 2 et p; appartiennent à W 1 '°°( a, b) . Ainsi, la dérivée au sens des distributions

2pipi + 2P2pi + 2P3p3
r2

	

r2
f32

	

r2

2

	

pi 2

	

p2 2

	

p3 2

	

2(la1+la2'ui) ( P2 \ 2
r

	

r

	

rf3

	

r

	

f3

	

\rf3J

v'(r) _
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ul - ui , pi = p i , i

On montre aisément les estimations suivantes :

~lu II L°O(a,b)

	

c,

	

i =1, 2, 3,

(21)

	

IIuiIIH'(a,b)_c,

	

i - 1,2,3,

IIPIIH'(a,b)-i

	

c,

	

i =1, 2, 3 ,

où c = c (g 1 , h 1 , a, b, Si ) désigne diverses constantes indépendantes de À .
Montrons (20) . Par une intégration par parties à partir de (16) et (17), on montre

les inégalités suivantes :

0<6 2 u2(b)u2(a)=

	

-
b ah1

_ -p2(b) 2(b) - À

	

r a (r, u) ' ~ 2 dr,
a

	

X72

0 < 63 = u3(b) - u3(a)

_ -P3(b)>3(b) - À

=1,2,3 .

J
b ah1

r

	

(r, u)

	

dr
a aTÏ3

r - j r

	

V' ds
2( )

	

.

	

~

	

3(r)= [ r

	

V' ds
.2

	

*' V)'

	

aa13 s g1 s' g**'( V)
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Et ainsi, grâce aux estimations (21), il existe Â 0 > 0 tel que pour tout A dans ]0, À 0 [
on a

-p(b)1(b)>0,

	

i ~i=2,3,

p(b)<0,

	

i=2,3 ;

ceci entraîne que les fonctions p2 et p3 sont strictement négatives puisque nous avons
supposé l'hypothèse (4) à savoir

ah,
(r,)0,

	

i=2,3 .
a 1') i

Et enfin l'hypothèse (6) entraîne que (20) est vérifié, i .e ., v'(r) <0 . Ainsi s'achève la
preuve de la proposition 2 .2 .

	

D
Remarque 2.2 . Une question naturelle se pose : a-t-on une propriété de monotonie

pour u,?
La réponse à la question ci-dessus nous sera donnée par la proposition 2 .4 .
PROPOSITION 2.3 . Sous les hypothèses (1) à (8) et (10) à (12), toute solution u du

problème (ir l ) satisfait

g** ( V(u(r))) = g 1( V(u(r))) p.p. r E ]a, b[ .

Démonstration . Il suffit de montrer que l'ensemble

E _ {r E ]a, b[/g**( V(u(r))) <g1( V(u(r)))}

est de mesure nulle . Cela se montre, comme dans [17], à l'aide de la propriété suivante
de la fonction v conséquence de la proposition 2 .2 :

{rE[a, b]/v(r)= t}I =0 Vt.

Remarque 2 .3 . La fonction v étant sans palier, il est aisé de voir que l'on a de
plus le résultat suivant: s'il existe une partie affine commune aux graphes de gl et g i *,
soit par exemple

0={(t,gi(t)), tEK}cll:2

ou

K= {t E ll/g~(t) = g**'(t) = c= constante}

alors l'ensemble {r E ] a, b[/ V (u (r)) E K } est de mesure nulle . Ainsi "n'interviennent"
que les parties strictement convexes du graphes de g i* .

Cette information nous sera utile pour obtenir un résultat d'unicité (cf. le
théorème 2.2) .

Revenons maintenant à la monotonie de u 1 . Pour cela nous aurons besoin des
hypothèses supplémentaires (9) et (13) .

PROPOSITION 2.4. Si l'on suppose que (9) et (13) ont lieu, alors on a

p1(r)0 dr,

u(r)0 p.p. r,

0u1(r)y1 Vr.

Démonstration . La fonction u l vérifie l'équation

d

	

du' + ra- ~2

	

' 2-

	

ra
dr

	

dr

	

~ u(
u 2) u

'1

u1(a)=0,

	

ul(b)= y,>0,

RABAN TAHRAOUI
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avec ra ? a, 00 >0, (u2) 2ro-f3 . f3 2/ u 1 0 . Le principe du maximum entraîne que l'on a
u 1 (r) > 0 sur la, b[ ; d'autre part on a par (15) p i (r) 0 p.p . r, i .e., que p1 est décroissant .
Et pour montrer que p1 est négatif nous raisonnerons par l'absurde . Supposons qu'il
existe r0 E la, b ] tel que pl (r) > 0 V r E ]a, r0 [ ; (14) entraîne que l'on a u ;(r) 0 p.p .
r E ] a, r0[ i .e ., u 1(r) 0 pour tout r dans ]a, r0 [ . Ceci contredit le principe du maximum .
La conclusion suit .

	

D
Remarque 2.4 . A travers la preuve de ce résultat il est aisé de voir que si u 1 (a) _

a1 >0, il peut exister r0 E ] a, b [ tel que l'on ait

u ; (r) 0 p.p . sur ] a, r0[,

u(r)0 p.p. sur ]r0 , b[,

u 1 (r) ? 0 sur ]a, b[ .

Remarque 2.5 . Si l'hypothèse (5) n'a plus lieu et si par exemple

h1(r, q) = Àh(r, 112, 7/3) + yk(r, Xh), 0 < A À0, 0 < y yo

étant deux paramètres réels indépendants, alors le résultat de la proposition 2 .2 subsiste
pour A0 et y0 suffisamment petits . En revanche, nous ne pouvons obtenir un résultat
de monotonie sur u 1 , propriété dont on aura besoin à la § 4 où est traité un exemple
issu de l'élasticité .

Etape 2 . Régularité de u solution de (?T1) . D'après la proposition 2 .2, la fonction
v(r) est continue strictement décroissante . Introduisons, suivant [171, les notations
suivantes qui nous seront utiles pour le résultat d'unicité :

E (A)_
y
E + dgi*

(y)_A,

	

AE +
dt

	

R ,

a(A) = inf {y, y E E(A.)},

	

b(A) = sup {y, y E E(A)},

S = {AE R /a(A) < b(A)},

	

(t) _
dg;

(t) .dt

Soit A .0 < A1 <A2 < . . . <A,,--- les éléments de S. La fonction continue

~(r) _ ~lv(r) _
dg;

(V(u(r)))
dt

étant strictement décroissante, il existe une suite de nombres réels

{sk}k=o 1 [a, b]

satisfaisant

çb(sk)=A,

	

k=0,1, . . . ,n 1 .

D'après la remarque 2 .3 la fonction

( T /}b(Ak),a(Ak+t)[)( t)

est inversible puisque g** est strictement convexe sur ]b (Ak), a (Ak+1) [ • Ainsi :

V(u(r)) _ [ i/J/]b(Ak),a(Ak+1)[]i1(fi(r))

pour tout s E ] sk, sk+1 [, i .e ., la fonction V (u (r)) est continue sur ] s k , sk+1 [ tout k =
0, 1,- . • , n 1 . Ceci prouve à l'aide de (1) et de la proposition 2 .2 que u (r) et (r) sont
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de classe C 1 sur ] s k , sk+ 1 [ ; donc V(u (r)) est C 1 sur ] Sk, sk+ 1 [ ; et ainsi de suite on
montre que u est C °° par morceaux si g 1 et h i sont C°° .

Ainsi, nous venons de démontrer le résultat suivant :
PROPOSITION 2.5 . La fonction u solution de (sri ) est C °° par morceaux si g1 et h 1

sont C°° .
Etape 3. û(x) = u(Ixf) est solution de (?P 1 ) .
Comme conséquence des 2 étapes précédentes, on obtient le résultat suivant .
THÉORÈME 2.1. Sous les hypothèses (1) à (8) et (10) à (12), il existe A0 tel que le

problème (?1 ) admet, pour tout À dans ]0, À 0[, une solution û possédant les propriétés
suivantes

(1) û(x) est radiale : iTi(x) = û(IxI),
(2) IVii(x)ICp.p . x E 1Z
(3) û est C °° par morceaux si g 1 et h 1 sont C °° ,
(4) û2 et 14 3 sont croissantes le long des rayons .

De plus si (9) et (13) ont lieu ii est croissante le long des rayons .
Démonstration. Il suffit de voir que û(x) = u(xf) convient .

	

D
Abordons maintenant l'unicité . Rappelons que ce point n'a pas été abordé dans

[4] et [17] . Nous avons le résultat suivant .
THÉORÈME 2.2. On suppose f3 (r, t) _ /3(r), h convexe, et (1)-(8) et (12) . Alors (1T 1 )

admet une solution unique.
Démonstration. La preuve de ce résultat nécessite une étape préliminaire : le lemme

2.1 . Soient u w deux solutions de (ir 1 ) . Elles vérifient

g**( V(u(r))) = g 1 ( V(u(r))) p.p. r E ]a, b[,

gi`*( V(w(r))) = g1( V(w(r))) p.p. r E ]a, b[ ;

pour tout 8 dans [0, 1], la fonction u e = 8u + (1- O) w solution de (r1) vérifie la même
relation :

(22)

	

gi *( V(ue(r))) = g1( V(ue(r))) p.p. r E ]a, b[ d8 E [0, 1] .

D'après le résultat de régularité il existe une partition de ] a, b [ en intervalles Jk =
] Sksk+1 [, k =1, 2, • • • , n 1 tels que : u'(r) et V(u (r)) soient continues sur Jk pour tout
k. Quitte à redécouper les Jk en sous-intervalles, on peut toujours supposer que w'(r)
et V (w(r)) sont continues sur Jk pour tout k. Posons alors

Gll(r,O)=V(u e(r))

=[(ule)2+/32(r) (u28)2+ (u39)
2] 1/2

où u 0(r) = 8u (r) + (1- e) w (r) . Il est clair que °l1 (r, e) est continue sur Jk x ]0, 1 [ à
valeurs dans

F = {t E (f~+/gi*(t) = g1(t)} •

Nous avons le résultat suivant .
LEMME 2.1 . Nous avons Jk (1 V(u)+ 1(I) =Jk (1 V(w)1(I) pour tout k et toute

composante connexe I de F.
Démonstration. Il suffit de montrer que l'on a

[V(u) -1(11)nJk]n[V(w) -1 (I2)nJk] = 0

pour tout k et toutes composantes connexes de F, I i , et I2 telles que Ii ~ 12 . Nous
raisonnerons par l'absurde .



Supposons qu'il existe ko E [1,

	

, n 1 ] et deux composantes connexes I, et 12
(I1 ~ I2 ), de F tels que l'ensemble

fl = V(u) -1(11) (1 V(w '(I2 ) (1 J,~

soit non vide ; soit ro E SZ; nous avons

V(u(ro)) = t (r0 , 1) E I1,

	

V(w(ro)) = 1)l1 (ro , O) E 12,

et puisque °l1(J,~ x ]0, 1[) est connexe, il existe 0 0 E ]0, 1[, 8 1 et S2 tels que

°1(r0 ,00)E]3 1 ,62[~K

où K est le complémentaire de F. Et par continuité il existe un voisinage Y(r o ) tel que

Glt(r, 00)E]61, S2[ Vr E CV()~

c'est à dire

g1( V(ueo(r))) > gi`* ( V(ueo(r))) p.p . r E V(ro)

contredisant ainsi (22) . Ainsi le lemme 2 .1 a lieu .

	

D
Démonstration du théorème 2.2 . Si u w, d'après la remarque 2 .3 et le lemme 2 .1,

il existe k0 E [1, • • • , n 1 ] tel que

J ** (V(u r))) dr<1 ** (V(u r))) dr + 1 **(V(w(r))) ~dr •g l

	

1/2(

	

2 J gl

	

(

	

2 J gl
Jko

	

Jtio

	

Jko

cette inégalité entraîne la contradiction

J1(u112) < Inf {J1 (v), v E V1} .

Remarque 2 .6 . Le théorème 2 .2 entraîne que la solution radiale de (P 1 ) est unique .

3. Hypothèses et notation du problème (P2) . Soit la fonction g2 de [a, b] x ~ 2 dans
B, régulière telle que

(1)

	

a t ~t~ 2 +b 1(r) ~g2(r,t)~ a 2 ItI 2 +b 2(r) V(r,t)

où les a i désignent des constantes positives et les b i des fonctions L°°(a, b) . Désignons
par g2*(r, •) la convexifiée de g2 (r, •) par rapport à t, à r fixé, et posons :

(2)

	

lC _ {(r, t) E [a, b] x lf 2/g**(r, t) < g2(r, t)} •

On suppose que, d'une part les composantes connexes

	

de 1C, indexées par I, sont
au plus dénombrables :

(3)
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C= U C ;
iE t

d'autre part, pour tout i dans I il existe une fonction

ki : (r, t) E ]a, b[ x (Fl 2 -~ ki (r, t) E t

affine en t telle que

(4)

	

gi* (r, t) = k~(r, t) = Œ (r) • t+ 4(r) V(r, t) E ïC,

où o-i = (o- i, o-?) sont deux fonctions de W "(a, b) satisfaisant :

2
(5)

	

cr (r) • o- '(r) >- 0 p.p. r E ]a, b[ .
j=1
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(6)

($)
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Cette hypothèse (4), (5) jouera un rôle essentiel dans l'existence . On suppose aussi
que g 2 vérifie

-1 , ag2*0 < 90= t~

	

at
(r, t) = 0 . ( r, t3 ) ~dt = (t1, t2) ~d i ~ j,

1

00(r, t3) y~

où eo et yz sont des constantes positives :

g2(r, t1, t2) = g2(r, r 1 t 1 , c2t2) V (r, t),
( 7 )

£ 1 =±1,

	

E2=±1 .

On se donne une fonction h2 de [a, b] x [~2 dans Q, régulière telle que

c1~'q~ 2 + d1 h2(r, q) c2Ir,12+ d2 d(r, q),

où c 2 est une constante positive et c 1 une constante réelle convenable :

(9)

	

ah2(r~)< 0 V(r,~),
i=1,2 .

a

	

,' t

Nous nous proposons alors de résoudre le problème suivant :

(~2)

	

Trouver û dans V2 solution de inf {J2(v), v E V2}

ou

J2(v) = f g2(kI~ IVviI, IVviI) dx+À f h2(I xI, v) dx,

V2 ={v E (H1(fl)) 2/ vt/r1 = d ., v~1r2 = 1Qi} ;

ai et /3 r sont des constantes données, qu'on suppose satisfaisant, pour simplifier,
l'inégalité

(10)

	

a i < /3 ~,

	

i=1,2.

L'idée utilisée pour résoudre (3) reste valable : on part du problème variationnel, en
dimension un d'espace, qui est naturellement associé à (P 2 ) :

(?T2)

	

Trouver u E V2 solution de inf {J2(v), v E V2}

avec

J
b

	

J
b

J2(v) =

	

rg2*(r, vi, v2) dr+À

	

rh2(r, v) dr,
a

	

a

V2 ={vE(H 1(a, b))2/v(a)=a, v~(b)=/l} .

Ce problème relaxé (?T2) admet au moins une solution u = u À satisfaisant les relations
d'extrémalités

ag2
r

a ti
- -p1 E H1 (a, b),

ah2
rÀ

	

(r, u)=--p~,

	

i=1,2.
a 1')i
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Nous allons montrer (comme précédemment) à l'aide des hypothèses (3)-(5) et (9)
que pour tout i E I l'ensemble

Ei = {r E ]a, b[/(r, u'(r)) E

est de mesure nulle, i .e .,

g2 * ( r, u'(r)) = g2(r, u'(r)) p.p. r E ]a, b[ .

PROPOSITION 3 .1 . La solution u = u À de (7r 2 ) satisfait

ui =(u)'>~

	

0

Démonstration . Pour A dans ]0, 1 ] on montre les estimations suivantes :

IIiIIH'

	

u IIIIH'(a,b)uiÇ C,

	

IIPiIIH' = IIPIIH'(a,b)

	

iÇ C

où c est une constante indépendante de A. A l'aide d'une intégration par parties
partir de (11) on obtient les relations

0 < 3 i = ui(b) - ui(a)

= -pi(b)~i(b) - A

où ~ i a pour expression

~

	

j
r /

	

1 ag,2 *

	

-1

~i (r) =(r) =

	

u(s)

	

(s, u

,

)

	

ds,
a

	

s

	

9ti

On peut alors affirmer l'existence d'un A o dans ]0, 1 ] tel que

-pi (b)~'(b) > 0 VA E ]0A 0] .

Cette inégalité entraîne p i ( b) < 0 puisque ~ i (b) est strictement positif à l'aide de (6) ;
ainsi on a

(12)

	

pi (r)<0 drE[a, b], i=1,2,

en vertu de l'hypothèse (9) . Par conséquent on peut dire, utilisant l'hypothèse (6), que

a **
0 r • ul .	 g2

(r, u') = -pi . ul,
a ti

u(r)0 p.p, r E [a, b], i=1,2 .

Ceci termine la preuve de la proposition .

	

D
PROPOSITION 3.2 . La fonction u vérifie

(13)

	

g2* (r, u'(r)) = g2 (r, u'(r)) p.p. r E ]a, b[ .

Démonstration . Considérons la fonction v(r) _ =1 (pi ( r)/ r) 2 ; à l'aide de (12) et
(9) on montre que v'(r) < 0 p.p. r E ]a, b[ . Comme pour tout i and I la fonction

( .J ) 2o est croissante, il s'ensuit que l'ensemble {r E ]a, b[/p(r) = (r)} est
de mesure nulle ; ce qui entraîne que pour tout i dans I l'ensemble E i =
{r E ]a, b[/(r, u'(r)) E 7C,} est de mesure nulle . Ainsi (13) a lieu .

Enfin nous pouvons montrer facilement que u, appartient à W1 '°°(a, b) . Une
conséquence immédiate de ces résultats est le théorème suivant .

47

a

J
b ah2
r
a

	

(r, u) • ~ i (r) dr
a

	

~~
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THÉORÈME 3 .1 . On suppose les hypothèses (1) à (10) . Alors il existe À 0 > 0 tel que
pour tout A dans ]0, À 0 [ le problème (P 2) admet au moins une solution û . Cette solution
possède les propriétés suivantes :

(1) û(x) est radiale, i.e., û(x) = û(I xI ) ;
(2) ~Vï (x)I c p.p. x E f ;
(3) u est monotone le long de chaque rayon .
Remarque 3 .1 . Il est possible d'envisager des fonctions g 2 dépendant de r, u, u' ;

mais cela nécessite des hypothèses supplémentaires qu'il serait fastidieux de décrire ici .

4. Application. Nous considérons un tube T homogène isotrope de section la
couronne C = [0, 2ir[ x ]a, b[ . Nous supposons qu'avant déformation ce corps élastique
a ses génératrices parallèles à l'axe Oz :

T = C x [-L, +L] _ {(r, 6, z) E ]a, b[ x [0, 21r] x [-L, L]}

où nous notons

x -(x1 , x2), r = V x1 + x2 , x1 = r cos e, x2 = r smri e .

Nous nous intéressons aux déformations de la forme

(1)

D'après [16], [2], les trois invariants principaux du tenseur de Cauchy-Green ont pour
expressions :

(2)

(3)

(x, z) _ (r, e, z) - (u(r), 9 + v(r), z+ w(r)) _ (r', 8', z') .

u 2
Ii _ (u') 2 + ( uv') 2 + ( w') 2 + - + 1,

r

uu' 2

	

uw' 2

	

u 2
I2 = (u') 2 + (uv') 2+

	

+

	

+ - ,
r

	

r

	

(r)

uu'

r
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Dans la situation la plus générale, la fonction densité d'énergie de déformation a pour
expression (cf. la remarque 3 .1)

W(I1,I2iI3)=g(r,u,u',v',w') .

Et dans ce cas la réponse au problème n'est pas simple, notamment à cause de la
condition d'invertibilité

u(r) u'(r) > 0 .
r

Aussi, pour illustrer simplement ce qui précède, nous allons examiner quelques situ-
ations particulières .

Exemple 1 . Le cas incompressible . La déformation est de la forme

(r, 8, z)-* (r, 8+v(r), z+w(r))

I = I1 = 12 = r 2 (v') 2 + ( w') 2 + 3,

	

13 - 1,

W(I) = g(\/I -3) .

Nous représentons par U = (v, w) le déplacement et par a T =0 1 T U 0 2T le bord de T
où

(4)
0 1 T ={(x, z)/z= ±L},

a2T = {(x, z)/Ix) = a ou fxI = b} .
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Nous supposons que le déplacement est fixé sur 3 2T:

(5)

	

(v, w) _ (vo , w o) sur a2 T,
et que la traction t est nulle sur a, T

(6)

	

t(x, ±L) = 0.

Alors le problème de l'équilibre élastostatique de T s'écrit: trouver û = ( v, w) réalisant
dans l'espace V = (Hô( C ) ) 2 + (v o, w0 ), par exemple, le minimum de la fonctionnelle

(7)

	

J(v, w) -

	

g(~1I - 3) de + À

	

h(Ixl, v, w) dx
c

	

c

où h représente la prise en compte des forces volumiques . Le théorème 2 .1 s'applique .
Exemple 2 . Le cas faiblement compressible . Nous supposons que la loi de com-

portement du matériau est telle que son énergie soit de la forme g(I), où
j2= I,-2I3 -1

2

	

2
( v')2 + ( w') 22 ( l4

[(ri j
r 2

	

u"
=

	

-)i+r

Remarque 4 .1 . Des situations particulières du même type ont été envisagées par
divers auteurs : dans [13] et [14] par exemple, on considère des densités dépendant
uniquement du premier invariant I, .

Transformons quelque peu l'expression de I en posant

u(r) = r+ r • y(r) = r(1 + y(r)),
j2 = r 2 (y') 2 + r 2(1 + y) 2 (v') 2 + ( w') 2.

On s'impose les conditions aux limites suivantes :

y(a)=O, i .e ., u(a)=a,

y(b) = y, > o, i .e ., u(b) - b(1 + y,),
v(a)=v0 ,

	

v(b)=v1 ,
w(a)=w0 ,

	

w(b)=w 1 ;
la donnée y, sera prise assez petite . Ceci sera justifié plus loin . Il est difficile de contrôler
une minoration du terme positif 1 +y(r) . Aussi nous perturbons la fonctionnelle J( • )
par

(9)

ou

b

	

J
b

J(y,

	

N

v, w) =

	

g(I)rdr+A

	

h(r, y, v, w)rdr
a

	

a

I = r 2 (y') 2 + r 2 (1 + ors (y))2(v')2
+ ( w') 2 ,

la fonction ors(y) étant la régularisation classique de IYI :
y

~s(y)=

	

s(e)lle,
0

1

	

si e ? s,

e)= 1 •e sis>e>-sfis(

	

s

	

,

-1 si e < s,

s étant un paramètre réel, positif assez petit . Il est aisé de voir que l'on peut appliquer
les résultats du paragraphe 2 en s'imposant les hypothèses adéquates du théorème 2 .1 ;
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et en particulier on obtient que la solution (Y, v, îv) du problème
inf {J(y, v, w)/(y, v, w)}, vérifie :

0<9(r)y1 Vr E ]a, b[,

7(r) ? 0 p.p . r,

	

IIYIIL(a,b)-' °°Co

ce qui donne bien la condition

uu'
=(1+Y)(1+y+r9')>0 p.p . r.

r

Le modèle de fonction énergie que nous avons considéré est valable pour les matériaux
dont le comportement est voisin de celui des matériaux incompressibles (i .e ., faiblement
compressibles) . Il est utile de savoir, lorsque y i tend vers zéro, si notre problème (8)
"tend" vers le problème incompressible (6), et dans quel sens .

Nous avons le résultat suivant .
PROPOSITION 4.1 . On se donne une suite

	

> 0 tendant vers zéro ; et on considère
(y", v", w") une solution de (8) . Alors on a

(i) y" - 0 uniformément ;
(ii) llY,lt L 0 (a,b)

	

o--~ 0, v" -* v, w" - ' dans H 1(a, b) faible ;
(iii) (v, w) est solution du problème incompressible (6) ;
(iv) u"u,/r->1 dans L°°(a, b) .
La preuve s'obtient en établissant les estimations adéquates en suivant la même

démarche que dans les paragraphes précédents .
Remarque 4.2 . La perturbation suivante :

(10)

	

Ï = r2(y')2 + r2(1 + lyJ)2(v')2 + ( w')2

permet également d'obtenir que y est positif; cependant elle n'est pas satisfaisante
N

pour notre méthode car I n'est pas différentiable par rapport à y.
Remarque 4.3 . Il serait intéressant de savoir si l'on peut passer à la limite quand

5 tend vers zéro et obtenir la résolution de notre problème avec (10) .

5. Fonctionnelles d'opérateurs elliptiques . Soit SZ un ouvert borné régulier de R" ;
on se donne, par exemple, deux opérateurs A, et A2 uniformément elliptiques d'ordre
2m, à coefficients réguliers, et deux fonctions régulières g 3 de f x R 2 dans R et h3 de
SZ x R2 dans R satisfaisant les hypothèses classiques de croissance suivantes :

(1)

	

al ~ t~ p + b l g3(x, t) Ç a2l tl p + b2,

	

1 < p < +oo,

(2 )

	

C1I ~i I p + dl Ç h3(x, ~i ) Ç C2) ?Î l p + d2 ;

les constantes a,, a2 , c2 sont positives; c, est un réel convenablement choisi pour
assurer la coercitivité du problème considéré . On se donne également les deux
opérateurs suivants :

Ai =

	

(_1) I a I Da(a«pD P ), a«a =aga,
(a~=m
~f3~=m

dont les coefficients sont supposés réguliers . Et on pose

RABAN TAHRAOUI

(3)

i

K = {(x, t) E iZ X R 2/g3* ( x, t) < g3(x, t)} .

1,2

Nous faisons les hypothèses essentielles suivantes : il existe une famille I, au plus
dénombrable de fonctions a i = (a i , a?) dans (W2m"(fl))2, f3 i E L°°(SZ), d'ensembles
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K. SZ x g2 et une constante c tels que

K=UKi Viel,
i€I

(4)

	

*g3,7(x, t)_a l (x) t + f3 1 (x) b(x, t) E K1 ,

A1«1(x)+

	

(ah3 x +c
A2«2(x)+-(x,)

>0 bi7 ER 2 h h. x€fL
377i

~~)

	

a

	

~~)
X72

Remarque. Une condition du type (5) est donnée dans [4] dans le cas scalaire,

(5)

régulier et dans [5] dans le cas scalaire non régulier
Enfin notons par V3 l'espace (W2m"(SZ) fl Wô"(SZ)) 2 + ~p, où cp est une fonction

donnée dans (W2m'p(fl))2 ; et soit à minimiser la fonctionnelle

J3(v) = f g3(x, A 1 v 1 , A2v2 ) dx +

	

h3(x, v) dx
J0

	

f1

sur l'espace V3 . Alors nous avons le résultat suivant .
THÉORÈME 4.1 . Le problème (~3) : inf {J3(v)/v E V3 } admet au moins une solution

u=(1.11, u 2)E V3 .
Idée de la preuve. Le problème relaxé

( ~ )

	

inf

	

g3* ( x, Av) dx + f h 3 (x, v) dx/ v E V3 .
sZ

	

o

admet au moins une solution u = (u 1 , u2 ) qui vérifient

ag**

a tt (x, Au) =pl,

ah3
Aipi =

	

(x, u),

	

i=1,2
a'n i

où pi E W2m"ffl) . Comme dans le cas des problèmes (gP 1 ) et (~2), on montre à l'aide
de (4) et (5) que l'ensemble

E _ {x E SZ/(x, Au(x)) E K}

est de mesure nulle, i .e ., que l'on a

g3 * ( x, Au(x)) = g3(x, Au(x)) p.p . x E C,

montrant ainsi que u est solution de (?P3 ) .

	

J
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SEMIDISCRETIZATION METHOD FOR THREE-DIMENSIONAL MOTION
OF A BINGHAM FLUID*

JONG UHN KIM

Abstract. By the method of semidiscretization in a time variable, the existence of a strong solution to
an initial boundary value problem associated with the three-dimensional motion of a Bingham fluid is
established. The main tool used is a discretized version of the variation of constants formula combined with
the LP-theory of the Stokes operator.

Key words. Bingham fluid, semidiscretization method, variation of constants formula, LP-theory of the
Stokes operator

AMS(MOS) subject classifications. 35B10, 35B65, 35K55, 76D99

0. Introduction. In this paper, we present a new result on the existence of solutions
of an initial-boundary value problem associated with the motion of a Bingham fluid
in a three-dimensional domain. A Bingham fluid is a rigid viscoplastic fluid that is a
particular kind of non-Newtonian fluid. This material behaves in a rigid manner when
a certain function of stresses does not reach the yield limit; it moves like a Newtonian
fluid beyond this limit.

Common examples of Bingham fluids are slurries, drilling muds, oil paints, and
toothpaste. Engineering applications (particularly in the chemical and process indus-
tries), such as experimental techniques, rolling and extrusion processes, and heat
transfer, are discussed in [ 16], where a list of engineering references will also be found.
For the continuum mechanics foundations, see [13].

Since the relation between strains and stresses becomes very different depending
on the state of stresses, the motion of a Bingham fluid cannot be described by a single
equation. This difficulty was overcome by Duvaut and Lions, who derived a variational
inequality that can take care of the unknown interface between rigid medium and fluid
zone [3], [4]. They formulated an initial-boundary value problem for a Bingham fluid
as follows:

(0.1) (au/at, w-u)+a(u, w-u)+b(u, u, w)+J(w)-J(u)>-(f, w-u) in (0, T),

for each test function w such that V. w 0 in f and w 0 on 0,

(0.2) V.u=0 infx(0, T),

(0.3) u 0 on Of x [0, T],

(0.4) u(x, O)= Uo(X) in f.

Here, I is a bounded domain in R with C boundary df, u(x, t) denotes the velocity
of the fluid, and f(x, t) stands for external force. The density, the yield limit, and the
viscosity are assumed to be positive constants. In particular, the density is taken to be

* Received by the editors October 5, 1987; accepted for publication (in revised form) February 2, 1989.
This research was supported by Air Force Office of Scientific Research grant AFOSR-86-0085 and by National
Science Foundation grant DMS-8521848.

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061.
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1. We employ the notation"

a(u, w)= 2tz I D"i(u)D(w) dx,
i,j

2\Oxj Ox/’

1 Do(u)Dn

-x dx.

viscosity,

g yield limit,

(,) is a scalar product that will be defined in the next section.
The conservation of momentum is expressed by (0.1) and the condition of incom-

pressibility is given by (0.2).
It is easy to see that (0.1) reduces to the Navier-Stokes equations if the yield limit

g vanishes. The nonditterentiable functional J(.) causes a serious mathematical
difficulty in addition to the difficulties inherited from the Navier-Stokes equations.
This makes the initial boundary value problem very challenging. In the case of laminar
flow in a cylindrical pipe, the problem simplifies to a special case, for which the
mathematical analysis is complete. This special case also has been used as a typical
model in the finite-element analysis of parabolic variational inequalities (see [8] and
references therein). We focus on the existence of solutions to the more general problem
in a three-dimensional domain.

We will survey known results that have motivated the present investigation.
Duvaut and Lions [3] have proved for the first time the existence of weak solutions

of (0.1)-(0.4). The weak solutions according to the definition in [3] and [4] belong to
the same function class as the Leray-Hopf weak solutions of the Navier-Stokes
equations. For a three-dimensional domain, these weak solutions satisfy a weak version
of (0.1) and the uniqueness of weak solutions is an open question.

It is known that for smooth data, there is a local strong solution to the initial-
boundary value problem for the Navier-Stokes equations. For the Cauchy problem
associated with (0.1) in R2 or R3, it is known that strong solutions (local in time in
R3) exist if the data are regular. The result is the same as that for the Navier-Stokes
equations (see [9], [14]). For the initial-boundary value problem shown above, a
different kind of strong solution was obtained in [3] and [4] in the case of a two-
dimensional domain. An analogous result was established in [10] for a three-
dimensional domain by assuming that the initial data are stationary states with external
force in L2(I)3. Under the same assumption on the data, Naumann and Wulst [12]
obtained a similar result for a variant of a Bingham fluid through a different method.
This assumption on the initial data is not satisfied in general even by C divergence-free
vector fields with compact support. Hence, this is not an ordinary regularity assumption
and is very restrictive.

The purpose of the present paper is to eliminate this assumption on the initial
data. We show that if the initial data are divergence-free vector fields that belong to
Lr()3, r> 3, and whose normal component vanishes on the boundary, there indeed
exists at least a local solution regular enough to be unique (see Theorem 2.2). The
result is comparable to that of Giga and Miyakawa [7] for the Navier-Stokes equations.
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The basic approach for the problem (0.1)-(0.4), initiated by Duvaut and Lions,
consists of three steps. The first step is to reduce inequality (0.1) to an equation by
substituting a differentiable function with regularizing parameter for J(. ). The second
step is to obtain a solution for the regularized problem together with uniform estimates
independent of the regularizing parameter. The third step is to prove that the limit of
a sequence of approximate solutions exists and is a solution of the original problem.

In the second step, we are tempted to use one of two well-known techniques for
the Navier-Stokes equations. One such technique is the Galerkin approximation
method. For our problem, it seems that we cannot obtain enough estimates independent
of the regularizing parameter through this method unless special assumptions are made
on the initial data as in [10]. The other method, used in [7], is to set up the variation
of the constants formula involving the analytic semigroup generated by the Stokes
operator in Lr() and then to employ the related iteration scheme to find a solution.
When we attempt to apply this method to our problem, serious technical difficulties
arise. These difficulties can be avoided, however, if we use a discretized version of the
variation ofthe constants formula. The method we will use is basically the semidiscretiz-
ation method used in 15] to give an alternate proof of the existence of the Leray-Hopf
weak solution to the Navier-Stokes equations. While our scheme of discretization is
a slight modification of that used in [15], we obtain substantially better estimates by
interpreting the scheme as a discretized version ofthe variation ofthe constants formula,
and we retain all the basic L2 estimates of [15]. The estimates obtained through this
procedure are sufficient for the pointwise convergence of approximating solutions.

Finally we also prove the existence of global solutions and time-periodic solutions
by assuming that the initial data and external force are sufficiently small; see Theorems
3.1 and 3.2.

1. Notation and preliminaries. Throughout this paper, 1) denotes a bounded
domain in R with C boundary. We employ the notation defined in the Introduction,
as well as the following:

0 0

0,=, 0,= for l l, 2, 3, A=Y 0,2., V (01, 02, 03),
0Xi i=

V. f= E 0,f forf= (f,,f:,f3).
i=1

When E is a Banach space, Lr(o, T; E) is the set of all E-valued strongly measurable
L" functions on [0, T] with the obvious norm. C(I; E) is the set of all E-valued
continuous functions on the interval L

We introduce the following function spaces"
S={b e C(I))3"V 6=0 in
wm"(Ft) {v e Lr(ll): O[,OOv e Lr(f), 1 <__- o + if2 + if3 m},
W"(f) =the completion of C(I) in
W-"’’(f) the dual of W’(f), where 1 / r’ + 1/ r 1, 1 _-< r < 0%
X =the completion of S in L(O)3, 1 < r <
v= Wo,(a) c x,
V’= the dual of V.

stands for the duality pairing between V and V’. In particular, if v e X2 and
we V, then (v, w) coincides with the scalar product of v and w in X2. We can
characterize Xr by

Xr {re Lr(l’)3: 7"t =0 in lI and the normal component of v vanishes on
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We let Pr denote the projection from Lr([) onto Xr and write the Stokes operator as

A -PA forl<r<oo,

with the domain

(A) W2’(fl) fq W’r(fl)3 f’l X.
We list some basic properties of A. Giga [5] proved that for any e > 0 and 1 < r < c,
there is a positive constant C. such that

(1.1) II(AI + a,)-’ II-<- c,,/Ixl
for all A e C such that A 0 and larg A <- 7r-e, where I1" is the norm of a bounded
linear operator from X into Xr. We also note that zero belongs to the resolvent set
of A.

Using (1.1), we can define Ar, 0< 0 < 1 by the Dunford integral and the domain
of Ar is defined by complex interpolation:

(A)=[X,(Ar)]o, 0_-<0<-1

(see [6]). Since (A) is compactly embedded into X, we have Lemma 1.1.
LEMMA 1.1. For 0<- 01 < 02 <- 1, the embedding (A2)c (Ar,) is compact.
Next we obtain some estimates to be used later.
LEMMA 1.2. Let l < r < oo and O <- a <- l. Then, for any integer k >-_ l and any

0<e<-l,

(1.2) IIAT(I + eA)-* =< C, exp (-Sek)/(ek)’,

where Cr, and are positive constants independent of e and k.
Proof By virtue of (1.1) and the fact that the resolvent set of A contains zero,

we can write, for any positive number A and any integer k => 2,

(1.3) -A(AI + A)-k 1 I z(A-z)-k(zI+Ar)-1 dz,
2 vri

where F={-+pei" O<-p<o}U{-+pe-i" 0<-p <} and we choose :>0, 7r/2<
0 < 7r and the orientation of F so that F is contained in the resolvent set of A and
Im F is increasing along F.

It follows from (1.1) and (1.3) that

IIA(AI/A)-II<=M (A / :/plcos 01)- dp,

(1.4)
<- M(A + )-k+l/(k-1),

where M denotes positive constants independent of A and k. Hence, by setting
and assuming 0 < e _-< 1, we derive

(1.5)
IIA(I + eA)- =< M(1 + e)-k+l/e(k- 1)

<- M exp (-8lek)/(ek),

where M and t denote positive constants independent of e and k. The second
inequality in (1.5) is also true for k-1, which is easily seen by virtue of (1.1). Since
Ar is the infinitesimal generator of a bounded analytic semigroup and the resolvent
set of A contains zero, it is known that for any integer k_-> 1,

(1.6) II(hI / A)- II-<_ M(A + g)-,
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where M and s are positive constants independent of h and k. Hence, by setting
e 1/A, we have

(1.7) I1(I + ea)- II--< M(1 + e)-,
which, together with the assumption 0 < e <= 1, yields

(1.8) I1(I + A)- II--< M exp (- 82ek),

where M and 8 are positive constants independent of e and k. For 0< a < 1, we
obtain (1.2) from (1.5) and (1.8) by means of the interpolation inequality.

LEMMA 1.3. Let 1 < r < oo and 0 < c <= 1. Then, for any integer k >-_ 1 and any e > 0,
we have

(1.9) I1((I + eA)-k- I)a;- II--< C,,(ek),
where C,, is a positive constant independent of e and k.

Proof. We first note that

(1.10) (I + eA)-- I -eA(I + eA)-1,
which, combined with (1.7), yields

(1.11) I1((I + eAr)-1-1)37’11--< eM,
where M is a positive constant independent of e. Following [2], we write for k >-2

k-1

(1.12)((I + eA)-k I)A-[’ ((I + eA)-’- I)AT’ + E (I + eA)-J((I + eA)-’- I)A-[’.
j=l

Again by (1.7), we derive from (1.12)

(1.13) II((I + eA)-k- I)AIII <= Mek,
where M is a positive constant independent of e and k. Inequality (1.9) is now a
simple consequence of (1.7), (1.11), and (1.13) through the interpolation. El

LEMMA 1.4. Let v Xr, 1 < r < oo. Then, for any given > O, there is 8(s, v) > 0
such that for all e > 0 and k >= 1 satisfying ek <-_ 8(se, v),

(1.14) I1((I + eAr)-k I)vllx <- s.
Proof. Suppose that the assertion above is false. Then there are s> 0, {e,} and

{k,}7= such that e>0, k_->l, e,k,O as n--> oo, and

(1.15) II((I+e,Ar)-.-I)vllx> s for all n.

It follows from (1.13) that for all we (A),

(1.16) II((I+e,a)-"-I)wllx<=Me.k. llarwllx
where M is a positive constant independent of e,, k,, and w.

In the meantime, (1.7) implies that

(1.17) II(I+.A)-o-III<-_ for all e, and

We now choose w (Ar) such that

(1.18) IIv- Wllxr <- /2M.
Then we find that

I1((I + e,A,) -k" I)vllx, <= I1((I + e,a,)-k" I)(w- v)llx, / Me,k, IImwllx,
(1.19)

<- 1/2se + Me,k, 11Arw x,

which contradicts (1.15) as e,k,-->0. This concludes the proof.
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We list some properties of the operator APrO-i, j 1, 2, 3, that are proved in [7].
Let 1 < r <. Then there is a positive constant Cr such that

(1.20) IIA-;’/=PojVllx,. <- Crllvll,:m, j= 1, 2, 3,

for all v W’(fl)3. Hence, A-//2prOj can be extended to a bounded linear operator
from Lr(-) into Xr, 1 < r<cC. If3< r<, 6r/(3+r)<p<=r and 6=1/2+-(2/p-1/r),
then there is a constant Cr,p such that

(1.21) [[A-PrO-iV][xr <- Cr,p[[)[[Lp/2(l’)3 for all v Wl’r(-)3.

Hence, A-/PrO-i can be extended to a bounded linear operator from LP/2(’) into
Xr(l-l), for 3 < r <, 6r/(3 + r) < p -< r. If 3 < r < c, 0< u < 3/2r and 6 3/2r+1/2- 2u,
then there is a constant Cr such that for all v, w (Ar),

(1.22) [IA-fP y oj(vjw)llx,.<= CrllATvllxllATwllx,.,
j=l

where v (Vl, v2, v3).
Hence, the mapping (v, w)A-Pr ,= cg-i(v-iw) can be extended to a bounded

bilinear mapping from (Ar)2 into
Next we consider the boundary value problem:

(1.23) u-eAu+Vp=h inf,, e>0,

(1.24) V.u=0 inf,,

(1.25) u=0 on

It is understood that (1.23) and (1.24) hold in the sense of distribution in f. If h O-iv
and v Lr(-)3, 1 < r < oo, then the unique solution of the problem above in W’r(f)3

can be expressed as

(1.26) u Alr/2(I + eAr)-lA71/2prO-iv.
Suppose that 3 < r<, 6r/(3+r)<p<=r, 6=1/2+-(2/p-1/r) and that h Y=
where v (v, v2, v3) and v, w Xp. Then, the unique solution in W’p/2(I)) can be
expressed as

(1.27) u ar(I + ear)-laTPr Oj(vjw).
j=l

If 3 < r <, 0=< u < 3/2r, 6 3/2r+1/2-2u, and h )= O-i(v-iw) with v, w (AT), then
the unique solution in w’r/-(l’)3 can be expressed as

(1.28) u a(I + ear)-laTPr Oj(vjw).
j=l

These expressions will be used in the subsequent section. We prove (1.26). Let h O.iv
and vLr(12)3, l<r<c. We choose a sequence {v,}= in w’r(12) such that
converges to v strongly in U(I)3. For each n, we write

(1.29) u,, (I + ear)-lprOfl)n.
Then u, e (Ar) and u, satisfies

(1.30) Un-eAUn+Vp,,=O-iv,, in f

for some function Pn W’r(f).
We now rewrite (1.29) as

(1.31) u, Aar/2(I + eAr)-’A-f’/ZPrO-iv,,.
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Since A-l/2ert9 is a bounded linear operator from Lr([’) into Xr and Alr/2(I + eAr)-1

is a bounded linear operator from Xr into (Alr/2), {un}=l converges strongly in
(A1/2) to

(1.32) u A/(I + eA)-A;/POv.
From (1.30), we find that u above satisfies

(1.33) u-eu+p=Ov

in the sense of distribution in for some scalar function p. Hence, u is a solution of
(1.23)-(1.25). The uniqueness of u in W’(O) follows by the duality argument and
the existence of the solution in W’’()3, 1/r’ + 1/r 1, when h W-’’(O)3. Now the
proof of (1.26) is complete.

We proceed to prove (1.27). Choose {v}=l and {w,},l in S such that v, and
w, converge to v and w, respectively, strongly in Xv. It is apparent that v,w, W’()3,
for j= 1,2,3, where v,=(v,, v,2, v,3), and thus, PO(v,w,)= Pp/20(v,w,), for j=
1,2,3.

As above, we write for each n

A1/2 -l-,/2pp/20(v.w.),(1.34) u, E p/(I+ eAp/2) p/=
j=l

[A1/2Xand note that u, converges to u strongly in p/2, where u is the unique solution
in W’p/2() of (1.23)-(1.25) with h =E= d(vw). Rewriting (1.34) as

3

Un E (l + 8mp/2)-lpp/20j(vnjwn)
j=l

(1.35) E (I+eAr)-lprOj(n)wn)
j=l

X A(I + emr)-’maPrOj(VnjWn),
j=l

1/2we derive (1.27) from (1.21) and the fact that u, converges to u strongly in (Ap/2).
The proof of (1.28) is very similar and we omit it.

We use a regularized version of J(.),

(1.36) J(v) 2g (n + Dn(v))/ dx,

where is a positive number and g is the yield limit. The Gfiteaux differential J (.)
is given by

(1.37) (J;(v), w) g f (n + Dn(v))-/Do(v)Do(w) dx
id

for each v, w s E Since J(. is convex, J(. is monotone and

(1.38) .(v)-.(w) ((w), v-w)

for all v, w We also use the inequality

(1.39) II(n+O(o))-’/=Oo(v)ll.) for i,j= 1,2,3

for every r/> 0 and v wl’l([)3.
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2. Local existence and uniqueness of solutions.
DEFINITION 2.1. A function u(x, t) is called a solution (0.1)-(0.4) on an interval

[0, T)if
(i) u L2(0, T; V) and Otu L2(O, T; V’);
(ii) (0.1) is satisfied for every w V, for almost all (0, T);
(iii) u(x, O)- Uo(X).
Condition (iii) makes sense since (i) implies u C([0, T]; X2), possibly after a

modification on a set of measure zero.
This definition of solution is stronger than that of weak solution in [3] and [4].

Our main result is Theorem 2.2.
THEOREM 2.2. Suppose that 3 < r < o, Uo(X) Xr, and f L(O, T; w-l’r(’)3).

Then there is a unique solution u(x, t) on an interval [0, T*), where 0 < T*<= T. Further-
more, u C([0, T*); Xr) and, for each 0< 6 <-_1/2, u is (A1/E-*)-valued locally Hiilder
continuous on (0, T*).

In fact, the assertion above is a consequence of Theorem 2.3.
THEOREM 2.3. Let Uo(X)(A),fL(O, T; w-l’r(fl)3), O<=v<-3/4r, and 3<

r <. Then, there is a unique solution u(x, t) on an interval [0, T1), where 0 < T1 <= T,
and T1 depends only on 9, r, Iluoll < :> ]]f[[L(O,T;W-’.r(t)3). In particular, T is
nonincreasing in  oll Furthermore,

(2.1) u C([0, T1]; (A’)),

and, for each 0 < p < T and each 0 <- a < a + fl < 1/2 3/2r + ,,
(2.2) u t C((0, rl]; (A+’)),

(2.3) Ilu(s)-u(sl)ll(ar+) <--M(s-sl)t for all O<pNsl <s< T1,

whereM is apositive constant depending on r, p, a, , u, uoll(A:), and II/ll (O.T; w-’.(.)).
We will show that Theorem 2.3 implies Theorem 2.2. Let us fix 3 < r < oo, Uo(X) X,

andfe L(0, T; W-l’(l))3). Then, by Theorem 2.3 with , 0, there is a unique solution
u on an interval [0, T1), and u satisfies (2.1)-(2.3) with u=0. Next we show that u is
flO(Alr/-)-valued, locally H61der continuous on (0, T1] for each 0 < -< 1/2. We use the
uniqueness of solution and the fact that the solution becomes more regular than the
initial datum.

Without loss of generality, let us assume 0< T1 < T. Choose any 0<< T1/2.
Then, u e C([sc, T1]" (A)) with h min(3/4r, (- 3/2r)) and

(2.4) [[U[I(A-<_ M for all [:, T1]

for some positive constant M.
For any s e [, T1], we can apply Theorem 2.3 with s as initial time, u(s) as an

initial datum, and ,- h. We then obtain a solution

(2.5) v e C([s, s+ hi; (A))) f’l C([s + r, s+ hi; (ArX)),

where h>0 can be chosen independently of s by (2.4) and -= min (hi2, :/2). By the
uniqueness of solutions, v u on Is, s + hi. Hence we can derive that

(2.6) u e C +, T1 @(A’)

If _--< r, (2.6) implies

(2.7) U G C((0, T1]; )(A3r/4r)).
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If 3 < r < , we can repeat the same argument until we arrive at (2.7). Next choose any
0< 6 <1/2 and 0< p < T1/2. Using p/2 as initial time and u(p/2) as an initial datum,
we can apply Theorem 2.3 with v= 3/4r and a =max (0, 1/2-3/4r- 6) to conclude that
u is (Alr/2-)-valued locally H61der continuous on (0, T1]. Finally we choose

T* sup { ’: T1 =< -<- T and there is a solution that is Xr-valued continuous on [0, ’]}.
By repeating the above argument, we find that u is (A1/2-)-valued locally

H61der continuous on (0, T*). This ends the proof of Theorem 2.2.
We outline the strategy of proof of Theorem 2.3.
Step 1. We replace J(.) by J,(.). Using the differential J(.) and discretizing

time variable, we construct a sequence of approximate solutions that are piecewise
linear in time. The standard L-estimates are obtained as in the case of the Navier-
Stokes equations (see [15]). With the aid of the properties of the Stokes operator in
U, we also obtain L estimates independent of r/ and the meshsize in time variable.

Step 2. It is shown that this sequence of approximate solutions converges to a
solution of (0.1)-(0.4) with J(. replaced by Jn(. as the meshsize tends to zero.

Step 3. We pass r/ to zero to obtain a solution according to Definition 2.1 and
prove the uniqueness of solution.

Throughout this section, we fix 3 < r < c and use the notation

A=/xA and P=Pr.
We also suppose that 0_<- u_<-3/4r, Uo(X)(A"), and fL(O, T; W-l’()3) are
given.

2.1. Construction and estimates of approximate solutions. We choose any positive
integer N and set

T
(2.8) e --.

N

Define an approximate solution Wu by

t- ke
(2.9) WN (l,lk+l--Uk)-f-Uk forke<-t<-(k+l)e, k=0,1,’.’,N-1,

e

where Uo is the given initial datum and /’/k+l is determined from the equation

(2.10) (Uk+l, ck)+ea(uk+l, ck)+eb(Uk, Uk+l, )--,(J(Uk+l) )= (Uk,
ftk+l fdt, for k 0, 1, N- 1for all b S, k 0, 1,. , N- 1, where fk+ 1/e k

and (,) denotes the duality pairing between V and V’.
LEMA 2.4. If Uk Xr and fk+l w-l’r(’)3, then there is a unique solution Uk+l of

(2.10) in V Wo’(a)3.
Proof Fix any u X and define a mapping A from V into its dual V’ such that

for every v, w V,

(2.11) (av, w) (v, w)+ea(v, w)+eb(u, v, w)+e(J’(v), w).

Since J(.) is monotone, it is easily seen that A is monotone. Furthermore, A is
bounded, hemicontinuous and

(2.12)
(Av, v)_oo as Ilvll-,oo.

By virtue of Theorem 2.1 of [11, p. 171], A is surjective. Since fk+l can be regarded as
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an element of V’, there is a function Uk+1E V such that

(2.13) (AUk+l, W)= (Uk + efk+l, W) for all w E V,
which implies (2.10). Uniqueness follows from the strict monotonicity of A. Equation
(2.13) implies that

(2.14) Uk+ E[uI, AUk+ "}- ,F, 2 UkjOjl’lk+l- eg Z O{(r/+ Dn(Uk+l))-l/2Di;(Uk+l)}
j=l j=l

-}- Vp IIk -t- I?,fk+l
holds in the sense of distribution in 12 for some scalar function p, where
Uk =(Ukl, Uk2, Uk3) and the fourth term is a vector function represented by its ith
component.

It remains to prove Uk+l W’r(f)3. Since Uk+l V c W’2(O)3, it follows that
/’/k+l L6(- w-l’6r/(6+r)(-and thus Yi= UkjOjUk+I )3. This, combined with (1.39),
yields Uk+IE W’6r/(6+)(O) (see [1]). If r>6, then W’6r/(6+)(12)cL(f), which
implies ;=lUkjOjUk+lW-l’r(f)3, and hence Uk+w’r(f)3. If r=6, then
;=1 UkOUk+ W-’3()3. Consequently, Uk+I W’3(1)3, which yields ;=l UkOjUk+
W-’q()3, for any 1 _--<q < 6. It now follows that Uk+I w’q(l))3, for any 1 =<q < 6.
Thus, Uk+I L(f)3, which gives Uk+I W’6(12) by the same argument. If 3 < r < 6,
then W’6/(6+r(12) C L6r/(6--r)("), and hence ;=1 UkjOUk+I w-l’6r/(12-r)(-)3, which
yields Uk+I Wo’6r/(12-)(O)3. By induction, we find that Uk+l W’6r/(6"-(2"-ar)(f)3,
for each positive integer 2 <-_ tn <- (3r-6)/(2r-6). By repeating the same argument, we
arrive at Uk+I W’()3.

Next we substitute Uk+I for w in (2.13) and derive
N-I

(2.15) e
k=O

(2.16) WNIIc(to, T];L2(a)3) <= M,
N--1

(2.17) Y llUk+l-- Ukll2(a)3<_-- M,

where M denotes positive constants that are independent of r/and N, and that depend
only on IlUollLm) and IlfllL2o,r;v,).

We now proceed to obtain the L estimates. Recalling that 0 -< v<=3/4r, we find
that Uk+ (A’), for k-0, 1,..., N-1, since Uk+l V t3 w’r()3. By making use
of (1.26), (1.28), and (1.39), we can write (2.14) as

Uk+l (I + eA)-luk eA1/2+3/2r-2u(I + 6A)-lA-1/2-3/2r+2’P Oj(blkjtlk+l)
j=l

(2.18) + eA’/2(I + eA)-IA-’/2pg E Oj{(n + Dn(Uk+l))-l/2Dij(llk+,)}
j=l

+ eA/(I + eA)-lA-1/apfk+l
from which it follows that

k

Uk (I + eA)-kUo e Z A1/2+3/2r-2u( I -k 6A)-(k-m+l)A-1/2-3/2r+2t’P Z Oj(U(m-1)jUm)
m=l j=l

k

(2.19) + e 2 A1/2(I + eA)-(k-m+l)A-/2Pg 2 Oj{(rl + DrI(Um))-l/2Dij(Um)}

k

+ e Y AI/2(I+ eA)-(k-"+l)A-/:Pf,, for k 1,. , N.
m=l
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Now we set

(2,20) auk for k 0, 1,- , N.

By virtue of (1.2), (1.7), (1.20), (1.22), and (1.39), we derive from (2.19)
k

Ek <= M1 + eM2 (e(k- m + 1))-(1/2+3/2r-)Em_lEm
m=l

(2.21)
k

+ eM (e(k- m + 1)) -(1/2+) for k= 1,. ., N,
m=l

where Mi’s are positive constants independent of r/, k, and N. To estimate Ek from
(2.21), we observe that

(2.22) e
m=-" (e(k-m+l))-(/2+3/2r-)<(ek)/z-3/2+’-- -+

)e 2 (e(k-m+l))-(/2+)N(ek)/- -m=l
(2.23)

We may assume that

(2.24)

and

(2.25) 0< e < 1 and

since we are interested only in large N.
We choose T such that

(2.26)

(2.27)

M => max (1, Eo)

’t2
K i,,tl /i// e 1/2-3/2r+v < 1_

2,

(2.28)

o< rl=< T,

M3 TI/-/ (1/2- ) <-

36M1M2Tll/2-3/2r+v/(13 )----+v <-_1.
2 2r

Consequently, we find that if e TN < T,

(2.29) Ek <- 6MI for all k such that e(k 1) N T,

from which it follows that

for all large N such that e TN satisfies (2.25) and e < T.
Next we obtain more regular estimates on WN. Let us fix any p such that 0 < 2p < T

and choose any s and s2 such that p _-< s < s2 -< Ta. We then take N so large that (2.25)
holds and

T p
(2.31) e =----<_-.

N 2

Then there are positive integers k and n such that

(2.32) ke -< s < (k+ 1)e,

(2.33) ne <- s2 < (n + 1)e.
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We now choose any a and/3 such that

1 3
(2.34) 0 < a < a +/3 < - v.

2 2r

Then Urn - fig(A"+), for rn 1,. -, N, since Urn E V ’) w’r()3, for rn 1,. ., N. To
estimate IIA+( W,,,(s=)- W(s))ll, we treat three different cases separately

In estimates (2.35)-(2.46), M denotes positive constants independent of r/, e, k,
n, sl, and s2.

Case 1. n k _-> 2. According to (2.19), we write

A"+’(u, uk) A’((I + eA)-" -(I + eA)-k)A"uo
k

e A’+3+1/2+3/2r-’((I + eA) -("-rn+l)

rn=l

3

-(I + eA)-(k-rn+))A-3A-1/2-3/2"+2’P Z Oj(u(rn-l).iurn)
j=l

8, Aa+l/2+3/2r-v

rn=k+l

(2.35)

(I + eA)-(n-rn+l)A-1/2-3/2r+2vp ’ cgj(tl(rn_l)jtlrn
j=l

k

+ e, Z A’+’+1/2+13(( I + eA) -(’-rn+)

rn=l

-(I + eA)-(k-rn+))A-1/2-3P

frn + g 20{(r + Dn(urn))-l/Do(urn)}
j=l

m=k+l
A’+"+I/2(I + eA)-(n-rn+)A-/2p

( )frn +g Z O{(n +Drl(um))-l/2Dij(um)}
j=l

and estimate each term on the right-hand side.

IIA’((I + cA)-" -(I- ea)-’)Auollx
(2.36) --< Ila(I + eA)-k((I + eA) -(’-k)- I)A-’-)Auollx

M M
)l--a<---(e(n-k))-[lAuol[x,<-_--(s2 s using (1.2) and (1.9),

-ek p
k

e Z IIA’+3+’/2+3/2-(I + eA)-(k-rn+l)(( I + eA) -(’-)- I)A-3
rn=l

(2.37) A-1/2-3/2r+2’p _, o.i(u(rn-1)urn)llXr
j=l

k

<=M(e(n-k))3 Y, e(e(k-m+ 1))-(+t3+’/2+3/2r-’)Ern_lErn,
m=l

using (1.2), (1.9), (1.22), and (2.20),
<-_ M(e(n k))3(ek)l-(+3+l/2+3/2r-’)/{1 -(or + [3 +1/2+ 3/2r- v)}
< M(S2- S1)3T11-(a+3+l/2+3/2r-v) using (2.29),
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m=k+l

3

IIA+’/+/-( + eA) -(n-m+l)A-1/2-3/2’+2’P o.-,>>llx
j=l

e(e(n m + l))-(+l/2+3/2r-")Em_lEm

<__ M(s2 Sl
1/2-a-3/2r+v

k

IlA’+"+l/2+t3((I + eA)-("-’+l)-(I + eA)-(k-m+l))A-t3A-1/2p

(2.39)
( )fm +g L 0j{(r/+ Dn(um))-l/2Oq(um)}

j=l

k

<-M(e(n-k)) E e(e(k-m+l))-(++1/2+t3)

m=l

M(s2-sl)t3T/2-(’+’+3) using (1.2), (1.9), and (1.39),

l] Aa+U+l/2(I + eA)-(n-m+l)A-1/2p
m=k+l

(2.40)

( )fm +g O{(r/+ Dn(um))-l/2Dq(um)}
j=l

<= M e(e(n m+ 1)) -(c+v+l/2)
m=k+l

-< M(e(n k))1--(a+ v+l/2)

Xr

< M(s2-- S1) 1/2--v.

Combining the above estimates, we have

M
IIA+(u.- u)llxr -<- --($2--S1) 1-a -[" MTl/2+"-’-t3-3/2r(s2 sl

P

(2.41) + M(s2- s,)1/2+v-ot-3/2r "JI- MTI/2---(S2 s1) fl

+M(s2--S1) 1/2--v

< M(s2- s1)3.

Similarly, we can also obtain

(2.42)

(2.43)

Since sl ke + Ale, s2 ne + A2e with O-< A1 < 1, O--< A2 < 1, and s2- sl > e,

IIA+(WN(S2) w,,,(Sl))llx, <= (1 X)llA+(u. u) IIx
(2.44) + A2IIA+(u,+I u,+,)llx.+l,=-l[ IlA+(u+, u)llx

<= M(s2 s1) t3.
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Case 2. n=k+l. In this case, sl=(k+l)e-Ae and s2=(k+l)e+A2e, where
0 -< A2 < 1, 0< A1 -<- 1 and s2- Sl (A1 + A2)e. Hence, (2.43) yields

IIA/( w,,,(s)- WN(Sl))llx,<= IIA/((1- A=)u+ /

-A’+"(A,u, + (1 A,)u+,)llx
<A,IIA+-(u+, Uk)llx,+ A2IIA’+(Uk+

(.45)

(1+)Me MeoS-S_ M(s_ Sl)

-M(s- s) M(s-,s).
Case 3. n=k Using O<s-s<e and (2.43), we have

+ S2- SlA ( WN(S2)- w,(,))llx- (u/,- u)llx
E

(2.46) <- M(s2- Sl)/3 s2- sl
E

<- M(sa- s).
On account of (2.44)-(2.46), we conclude that if e T/N satisfies (2.25) and

(2.31 ), then

(2.47) IIA+(W(s2) W(s,))ll,,,.<=M(s2-s,) for s,<s2

Through an analogous procedure, we can also derive

(2.48) [IA+"W(s)I[M for ,sZ

In (2.47) and (2.48), M stands for positive constants independent of , e, s, and
s2, and dependent on a, fl, , p, T, [[Auol[x,, and [[f[[(o,r;w--,,,(a).

2.2. Convergence as the time meshsize tends to zero. In this section, we prove
that the approximate solution Wu defined by (2.9) converges to a solution of
the regularized problem as N. We recall that 03/4r, Uo(X)(A), and
f L(0, T; W-"()3), and that T was chosen according to (2.26)-(2.28).

LEMMA 2.5. e seOuence { Wu}= is precompact in C([0, T]; (A)).
Proof First we fix a positive integer No such that TNo < T and e TNo satisfies

(2.25). Let t* (0, T] be given. Then, we can choose an integer N* No and a positive
number p so that 2p < t* T1 and e TN p/2, for all N N*. By viue of (2.48),
it is evident that {WN(t*)}=* is precompact in (A) and, consequently,
{Wu(t*)}=N is precompact in (A). Fuhermore, it follows from (2.47) that
{Wu}=u. is equicontinuous at t* where each Wu is regarded as a continuous
function from [0, T] into (A). Thus, { Wu}=No is equicontinuous at t*. Next we
show that { WN}=Uo is equicontinuous at 0. Let us recall that WN(O) UO for every
N, and derive an analogue of (2.21) from (2.19)"

llA"(u- .o)llx = I((I + A)-k

(2.49) + eM2 (e(k- m + 1))-(’/a+/2r-"m_,E
m=l

k

+eM3 (e(k-m+l)) -(/2+) fork=l,...,N,
m=l
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where M2 and M3 are the same as in (2.21). Let any ’> 0 be given. By assuming
N=> No and combining Lemma 1.4, (2.22), (2.23), (2.29), and (2.49), we can find a
positive number 6 depending on " and Uo, but independent of r/, N, and k such that
ek <- 6 implies

(a.50)

Using this 6, we set

(2.51) 6 min
2 7 ]/1

where M is the same as in (2.29); see also (2.24).
If N -> No, N _-> 2T 6, and 0 -< s _<- , then (2.50) gives

(2.52) liar( WN(S)- UO) IlXr<= .
IfN=>No, N<2T/6, and 0-< s=< 6", then e-T/N>6/2->and

$

[IA’( W(s)- .o)IIx -liAr(u,- .o) x

S
(2.53) -<-7M, by (2.24) and (2.29),

=< sr by (2.51).

We now conclude that for any given " > 0, there is 6 > 0 independent of r/and N such
that

(2.54) IIA(WN(s)-- Uo)llx,.<= for all s [0, 6] and all N => No.
Hence, {Wrv}=rVo is equicontinuous at t-0. According to the Ascoli Theorem,
{ Wrv}V=No is precompact in C([0, T1]; (A)) and so is { Wu}V=l. This completes
the proof of Lemma 2.5.

We can now extract a subsequence still denoted by {WN} such that for some
function u

(2.55) lim WN u
Noo

in the norm of C([0, T1]; @(A)).
LEMMA 2.6. The limit u in (2.55) satisfies

(2.56) u L2(O, T,; V), O,u L:(O, T,; V’),

(2.57) u(x,O)=uo(x),

(2.58) (O,u, w-u)+a(u, w-u)+b(u, u, w)+Jn(w)-Jn(u)>-(f w-u)

for all W V, for almost all (0, T1). Furthermore, it holds that for any 0 < p < T1 and
a, fl satisfying (2.34),

(2.59) Ilu(s)llao+)<- M for p <=s<= T1,

(2.60) ]]U(S2)--U(S1)II(A’+’)M(s2--S1) 13 for p<=sa<s2=< T1,

where M denotes positive constants independent of, tJ, p, T1, IlUoll(A), and IlfllLO,T;W-,,r(,)3).
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Proof. Equation (2.57) is obvious since WN(0)= Uo, for each N. By virtue of
(2.47), (2.48), and Lemma 1.1, we can use the Ascoli Theorem to obtain (2.59) and
(2.60). Next let us fix a positive integer No such that T/No < T1 and e T/No satisfies
(.5).

Then, it follows from (1.39), (2.14), (2.15), and (2.29) that for N>=No and
T/N<-p< T,,

(2.61 w (,,; v) -<- M,
(2.62) II0,w II’?(o,T,;V’) =< M,
where M denotes positive constants independent of rt, p, and N. Consequently, (2.55)
implies that for each 0 < p < T,

(2.63) WN --) u weakly in L2(p, T: V) as N--),

(2.64) OtWN-*otu weakly in L2(p, T; V’) as N

and consequently,

(2.65) Ilull,(o,,;)<_- M,
(.66) I10,. II,?(o.,; ’)<= M,
where M stands for positive constants independent of

We proceed to prove (2.58).
Let us define

(2.67) UN(t)=uu+, forke<--t<(k+l)e, k=0,1,...,N-1,

(2.68) U*(t)=uu forke<=t<(k+l)e, k=0,1,...,N-l,

(2.69) FN(t)=fg+, forke<-t<(k+l)e, k=0,1,. .,N-1.

Then it is proved in [15, p. 329] that as N-,

(2.70) FN-f strongly in L(0, T; V’),

(2.71) WN- UN -0 strongly in L(0, T; X2).

Likewise, by using (2.17), it is easy to see that

(2.72) WN- U*N- 0 strongly in LZ(0, T; X).

Furthermore, it follows from (2.15) and (2.29) that

(2.73) ull(o.;) <-- M for a N,

(2.74) [[Wu[[-(o.T;V)<--M for all p, N such that T/g<=p< T,

(2.75) IIe*ll(o.,;x)<=g for a N>=No,

where M stands for positive constants independent of r/, p, and N.
Consequently, (2.55) implies that as N--)c

(2.76) UN--) u strongly in L(0, T; Xz),

(2.77) U*N- u strongly in L(0, T1; X2),

(2.78) UN "-)u weakly in L(0, T; V),

which, together with (2.73) and (2.75), give

(2.79) U*NUN- UU weakly in L(0, T; L-(I)3)
for j 1, 2, 3, where U*N U*N, U*NZ, U’N3) and u (u, u2, u3).
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Next it follows from (2.10) that for each N,

io io io(2.80) (0,w,, q,) dt + a( U,, ,) dt + b( U*, U,, q,) dt

+ (J;(u, = (, t,

for all e L(0, T; g). By making use of (1.38) and the fact that U
we infer that for each N,

or’ (o,W, - U) dt + Ior’ a( U, - U) dt

(.a + b(u, u, + (J(l J(ul

T

e (F, - u) t
0

for all e L(0, T1; g). We next observe that for keNt<(k+l)e,k=O, 1,... ,N-l,

and hence,

f (O,W, U) dt for’ (o,W, W) dt + Ior’ (o,W, U W) dt

T

0

1 1

Accordingly, we use (2.55), (2.65), and (2.66) to deduce
T

lira inf (0W, U) dt lira inf (0,W, W) dt

1 1
(2.84) = Ilu(T,)ll- Iluoil=

o’ (o,u, u) dr.

By viaue of (2.78) and (2.79), we see that

j" ’ Ior’ j u dt,(2.85) lim inf J.( U) dt
N 0

(2.86) lira inf a U, U) dt

(2.87) lira b( U, U, ) dt b(u, u, ) dt for each e L(0, T; V).
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Combining (2.64), (2.70), and (2.84)-(2.87), we can pass N-oo in (2.81) to arrive at

Ior’ (0,u, -u) dt + Ior’ a(u, -u) dt + Iorl b(u, u, ) dt

’" J,(u)) dt(2.88) + (J,(v

>= for’ (f ,- u) dt

for every q 6 L2(0, T; V). By the same argument as in [4], (2.88) implies (2.58). This
ends the proof of Lemma 2.6.

2.3. Convergence as /tends to zero. For each r/> 0, we denote by u, the function
in Lemma 2.6 to signify its dependence on r/. We will show that u, converges to a
solution of (0.1)-(0.4) as r/tends to zero. Since T1 was chosen according to (2.26)-(2.28),
T is independent of r/ and nonincreasing in

LEMMA 2.7.The set {u,},>o is precompact in C([0, T1]; (A)).
Proof By (2.54) and (2.55), it is easily seen that {u,(t)},>o is equicontinuous at

=0. Inequalities (2.59) and (2.60) imply that {u,(t)},>o is precompact in (A) and
equicontinuous at each 0 < =< T1. Now we apply the Ascoli theorem to conclude the
proof.

Let us extract a sequence still denoted by {u,} such that for some function u,

(2.89) lim u, u

in the norm of C([0, T]; @(A)).
LEMMA 2.8. The limitfunction u in (2.89) is a solution of (0.1)-(0.4) on the interval

[0, T). Furthermore, it holds that for any 0 < p < T and a, fl satisfying (2.34),

(2.90) IlU(S)II(A,+) <=M for p<=s<= T,

(2.91) Ilu(s)-u(s,)ll(a-+.) <-_M(s2-s,)3 for p<=s, <s2-<_ T,,

where M denotes positive constants independent of s, s, and s, and dependent on
/,’, p, rl, ]lUollA, and IlfllLO.T;W-’.r,?).

Proof Since the positive constants denoted by M in (2.59) and (2.60) are indepen-
dent of r/, we use Lemma 1.1 and the Ascoli Theorem to derive (2.90) and (2.91).
Meanwhile, (2.65), (2.66), and (2.89) yield

(2.92)

(2.93)

and thus

(2.94)

weakly in L2(0, T1; V),

Otu, - Otu weakly in L2(0, T; V’),

r’
lim inf Iolim inf J, u, dt >-_ J u, dt

rtO

>= J(u) dt.

Now, by the same argument as in the proof of Lemma 2.6, we can show that u satisfies
(0.1) for every w V, for almost all (0, T). We omit the details.
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2.4. Conclusion of the proof of Theorem 2.3. It remains to establish the uniqueness
of solution. Let u be the solution obtained in Lemma 2.8, and let t be another solution
on [0, T1) according to Definition 2.1. Then, we have

(2.95) (ct(u-a), u-a)+a(u-ff, u-ff)<-b(u, u, ff)+b(ff, a, u),

for almost all (0, T).
As in [11, p. 85], we have

Ib(u, u, a)+ b(a, a, u) Ib(u-a, u-a, u)l
(2.96)

< MII I1,11 u all;ll. all V
where 2/s+3/r= 1 and M is a positive constant. Since u C([0, T]; X), we combine
(2.95), (2.96), and the H/51der inequality to deduce

(2.97) (O,(u a), u a) <= MIIu
for almost all (0, T1).

It now follows that u on [0,
This and Lemma 2.8 complete the proof of Theorem 2.3. l-]

Finally, we remark that if T1 < T, then the solution can be extended to a larger
interval by means of Theorem 2.3 itself. Let us choose

(2.98) T*=sup{T: TI<-T<-T and there is a solution that is (A)-valued
continuous on [0, T]}.

Then, u C([0, T1]; (A)) can be extended to u C([0, T*); @(A)). If T*< T,

(2.99) lim u(t)l[(a) OO.
t- T*-

In this case, it is not known whether there is a solution (according to Definition 2.1)
defined on an interval [0, T**), T**> T*.

3. Global existence. Our assertion on the existence of global solution is Theorem

THEOREM 3.1. Let

6r r-(2r/p)
3<<p < r and

r+3 r-2

There is a positive number C such that if uo Xr andf L(0, ; w-l’r(’)3) satisfy

(3.1) (11Uoll2 / IlflJ Lo,oo;v’)=’-(1 / uoll,. / IlfllL<o,oo;w-’,’3) <= C,

then there is a unique solution, u according to Definition 2.1 on the interval [0, T), for
any 0<T<oo. Furthermore, uC([O,o);Xr) and, for each 0<B=<1/2, u is

(A1/--a)-valued and locally H61der continuous on (0, oo).
The idea of proof is to choose any T> 0 and establish the existence of solution

u on [0, T] together with the estimate of sup,t0.T Ilu(t)ll. Under assumption (3.1),
it will be shown that this estimate is independent of T, and hence the time interval
can be extended indefinitely with the aid of the uniqueness of solutions.

Proof. We will follow the scheme of 2.1. Choose any T> 0 and any positive
integer N. As before, we set e T/N. Let us write

(3.2) G u Ilx for k 0, 1,. , N,

(3.3) O1 =ess sup Ilf(t)ll v,.
t_>0
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By substituting Uk+ for b in (2.10), we can derive

(3.4) G2+1- G2 + eC1G2k+l <--- eC202 for k 0, 1,. , N- 1,

where C1 and C2 are positive constants dependent only on f/ and /x. Since we are
interested only in small e, we may assume

(3.5) 0< e < man (1, 21).
It then follows from (3.4) that

k

G2k <-- (1 + eC,)-kG+ eCu(R) , (1 + F_,Cl)-m,
(3.6)

<-Gexp(-61ek)+W20 fork=l,...,N,

where 61 is a positive number independent of e, k, and T.
We will obtain a new estimate of Ek Ilullx" we are considering the case u 0

in (2.20).
Recalling that 3 < 6r/(r+ 3) < p < r, we set

(3.7) b
2 2

and rewrite (2.19) by using (1.27) as

k

Itk (I + eA)-kuo e Ab(I + eA)-(t-m+l)A-bp 20j(U(m--1)jUm)
m=l j=l

k

(3.8) + e , 31/2(1+eA)-k-"+l)A-1/2Pg 0){(r//Dri(U,))-l/2Dij(u,,)}
m=l j=l

k

/ e A1/2(I / eA)-(k-m+l)A-1/ZPfm for k 1,. ., N.
m-l

By means of (1.2), (1.20), (1.21), (1.39), and the inequality

r-(2r/p)
(3.9) Ilhll,,.)_-< Ilhll- for all h L)llhll Lr(’) (’) where A

r-2

we deduce

(3.10)

k

Ek<= C3 exp (-62ek)Eo+ C4e Z exp(-t33e(k- m + l))
m=l

b/,-. --A --A A A(e(k- m + 1))- .-,m-lGm E,,-1Em
k

+Cse E exp(-t4e(k-m+l))(e(k-m+ l))-l/2(02+C6),
m=l

(3.11) C7 Ca exp (-3s)s-b ds,

where 02 ess sup,o Ilf(t)llw-l,rm) and C’is and 6is are positive constants indepen-
dent of rl, e, k, T, E’,,s, G’,,s, (R)1, and 02.

Let us set
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(3.12)

(3.13)

(3.14)

(3.15)

We then choose " > 0 such that

(3.16)

(3.17)

and suppose that

(3.18)

Then, by virtue of (3.6),

(3.19)

C8 C5 exp (-4s)s-1/2 ds,

C9 max (1, C3, C8),

M1 max (1, Eo, 02+ C6),

Me 4C9M1

C42(1-X)M < ,
C7-2(1-A)M < 1

6

Go+

Gk <= for all k 0, 1, , N.

We proceed to show by induction

(3.20) Ek <- M2 for all k 0, , N.

It is obvious that Eo<_-M2 and M2 >_-4.

If E <= M2, for m =0,..., k-1, then by (3.10), (3.16), and (3.17), we have

(3.21) Ek <- 2C9M1 +M_+Ek.1

If Ek <= 1, then Ek <= M..
If Ek > 1, then (3.21) yields

(3.22) Ek <- 2C9M1-I--M2
and hence Ek <= M2. This proves (3.20).

Now we can choose a proper positive constant C in (3.1), subject to the constants
above, independent of Uo and f so that (3.1) guarantees (3.16)-(3.18), from which
(3.20) follows. The remainder of the proof of Theorem 3.1 can be carried out precisely
in the same manner as in the previous section, and we omit it. [3

Next we present a result on the asymptotic behavior of solutions when the external
force f is time-periodic. Our assertion is given in Theorem 3.2.

THEOREM 3.2. Suppose thatfis L-periodic in time and that Uo andfsatisfy (3.1) and

(3.23) (ll Uoll,= / o,) (1 / Uoll, / o=)- <-- t,
where 0 02 are the same as above, and d, are positive constants that will be determined
below. Then the solution u(x, t) of the theorem above converges to an L-periodic solution
as t-->o. More precisely, there is afunction uL(x, t) satisfying (0.1) on (-o, ) such that

(3.24) u/ E L2(0, L; V) and OtUL L2(0, L; V’),

(3.25) UL( t) UL( + L) for all (-c, o),

(3.26) Ilu(t)-u(t)ll<-M exp(-tot) for all t>=O,

where M and to are positive constants, and for each 0 < 5 <-1/2, ut. is a H61der continuous
(A1/2-)-valued function on (-, ).
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Proof. The method of proof is similar to that of Theorem 4.2 of [10]. Let u(x, t)
be the global solution obtained in Theorem 3.1. Then, by setting w 0 in (0.1), we have

ld
(3.27)

2 at Ilull:= / a(u, u) <-_ (f, u) for almost all (0, oo),

from which it follows that

(3.28) Ilull2<- llUollx exp (-,o,t)+ flo ess sup llf(t)ll,,
to

where to1 and Clo are positive constants depending on f and/x. We next define

(3.29) Vk(X, t) U(X, + kL) for k 0, 1, 2,. .
Then, each Vk satisfies (0.1) on the interval (-kL, o) and it is easily seen that

ld

(3.30)

for almost all (0, ),

where C, C2, and C3 are positive constants depending only on ft and/x, and d is
a number satisfying d/2+(1-d)/r=1/2.

In the meantime, it follows from (3.20) that

(3.31) IlVo(t)llx-Ilu(t)llx <-- C,4( 1"4- Eo4-O2) for all t->0,

where C14 is a positive constant independ.ent of Eo and 02. By virtue of (3.28) and
(3.31), we can choose a positive number C in (3.23) so that (3.23) implies

(3.32) c,llo(t)llllo(t)ll ’-xr =<1/2C for all t>0.=

Hence, under conditions (3.1) and (3.23), we obtain from (3.30)

d
(3.33) for almost all t(0,

which yields

(3.34) IlVk Vollx2 <= C5 exp (-to2t) for all => 0 and all k >= 0,

where C15 and to2 are positive constants.

Now we find that

V+m(t)- V,,(t)IIx-II v(t / rnL) Vo( + mL)ilx
(3.35)

=< C5 exp (-to2mL) for all => 0 and all k, rn => 0.

Consequently, {Vk}k=o is a Cauchy sequence in C([0, oo); X2). Let uL be its limit. By
the same argument as in [ 10], uL satisfies (0.1) and (3.24)-(3.26). We omit the remaining
details.
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GLOBAL BIFURCATION OF STEADY-STATE SOLUTIONS
ON A BIOCHEMICAL SYSTEM*

CHUNQING LUf

Abstract. The differential equation u"- (u/k/32(u + 2eu + 4ke2)) 0 with the boundary conditions
u(0) u(1)= governs the steady-state solutions from a mono-enzyme membrane model. It is proved that
for a given k > 0 there are at most three solutions for all e > 0 and for all/3 > 0, and that there exists an

e,= e,(k), a value of e, at which a pitchfork bifurcation occurs in the corresponding reaction-diffusion
equations.

Key words, steady state, pitchfork, global bifurcation

AMS(MOS) subject classification. 92A09

1. Introduction. A model describing the diffusion and reaction of a substrate in
a mono-enzymatic artificial membrane was established by Thomas (see Kernevez and
Thomas [5]). The biochemical system is a membrane with the enzyme uricase linked
to a support. The substrate is uric acid, and the cosubstrate is oxygen. The substrate
and cosubstrate diffuse only within the membrane and they react in the presence of
the enzyme (they are not parts of the membrane). The stoichiometric equation is"

uricase
uric acid + oxygen allantoin + other products.

Let S S(x, t) be the concentration of the substrate of the membrane. Then it satisfies
the following reaction-diffusion equation"

(1.1) St-DsS,x+R(S)=O,

together with boundary conditions

$=So at x=0 and x=L (membrane thickness),

and the given initial condition, where Ds is the coefficient of diffusion, a constant, and

R(S)= V4S/[ks+ S(l + S/kss)]

is the rate of the reaction where ks is the Michaelis constant, kss the inhibition constant
of S for the enzyme, and V4 is the maximal value of the reaction rate. Nondimension-
alizing the equation, we obtain the following partial differential equation:

(1.2) st-Sxx-i-o’F(s)--O, 0<x<l, t>0

with boundary conditions

(1.2’) s(0, t) s(1, t) So,

and the given initial data s(x, 0), where s S/ks and F(s)= s/(1 + s+ ks2), and
tr=(V/ks)(L2/Ds), k= ks/kss, and So So/ks are positive constants. Then the
steady-state equation associated with (1.2)-(1.2’) is the two-point boundary value
problem:

(1.3) -s"+trF(s)=O, 0<x<l,

(1.3’) s(0) s(1 So.

* Received by the editors April 18, 1988; accepted for publication (in revised form) February 27, 1989.
f Institute of Software, Academia Sinica, P.O. Box 8718, Beijing, People’s Republic of China.
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Kernevez [4] showed that there exist at least three solutions for (1.3)-(1.3’) for large
tr and for some So. In 1976, Brauner and Nicolaenko [1] studied the stability of the
multiple steady-state solutions using the Crandall-Rabinowitz theorem for large r

based on the assumption that there are at most three solutions without a proof. In
1985, Lu [7] gave a rigorous proof: given k > 0, there exists an So, So,(k) such that
if So> So,, then there are at most three solutions for any tr > 0. Lu also indicated that
the method can also be applied to the case for large o-. In this paper, Lu continues his
work of [6] and [7], and studies the global bifurcation for all So and tr > 0 for given
k to prove that a pitchfork bifurcation point exists in the system.

Biologically, the results will explain that multiple stable steady states and a
hysteresis phenomenon occur in a very simple biochemical system, such as this one,
where diffusion and enzyme reaction interact, because So is very large compared with
the membrane thickness L. Mathematically, questions about numbers and stability of
steady-state solutions of reaction-diffusion equations depend heavily upon the.ir non-
linear terms, and there is no general way to handle them. Smoller and Wasserman [9]
studied a case in which the nonlinearity is a polynomial. Hastings and McLeod [2]
dealt with an exponential nonlinearity. In this paper, we consider a different non-
linearity from theirsma class of rational functions.

2. Main results. We again apply the changes of variables used in [6] and [7]:

u(x) sls(x), Soo’-1/2, e (2kso) -1.

Then the given steady-state equation takes the form"

U
(2.1) -u"+kfl2(u2+2eu+4ke2)=O 0<x<l,

(2.1’) u(0) u(1) 1,

and the reaction-diffusion equation becomes

Ou O2u u

2(/,/2(2.2)
Ot Ox2 k + 2eu +4ke2) 0, 0 < x < 1 > 0,

(2.2’) u(0, t)= u(1, t)= 1, t> 0,

(2.2") u(x, 0) given.

The main results are the following three theorems.
THeOreM 1. For any given k > 0, there exist at most three solutions of (2.1)-(2.1’)

for all positive and e.

THeOReM 2. For any given k > O, there exists an e, e,(k), a value ore, such that
for each e < e, there is a pair (,, /32) depending on e and k such that (2.1)-(2.1’) has
exactly three solutionsfor fl (fl,, 2), and only one solution for e >- e, andfor any fl > O.

THEOREM 3. Suppose that e, is chosen as in Theorem 2. If e > e,, then the unique
solution of (2.1)-(2.1’) is stable to (2.2)-(2.2"); if e (0, e,) and (2.1)-(2.1’) has three
solutions, then two of them are stable and the other unstable.

Remark 1. Let u(x) be any solution of (2.1)-(2.1’) and u(x, t) a solution of
(2.2)-(2.2"). If for any given a > 0 there exists a 6 > 0 such that [lu(x, t)- u(x)ll <
for all t>0 as long as [lu(x, 0)-u(x)ll < 6, then u(x) is called stable to (2.2)-(2.2");
otherwise, it is unstable, where II" is the C-norm.

Remark 2. It is observed from Theorems 2 and 3 that when the initial boundary
value problem (2.2)-(2.2") is treated as a local flow in a certain function space (cf.
[10]), e. is a bifurcation point at which a pitchfork bifurcation occurs.
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Remark 3. Because of the practical background of the equations, all parameters
appearing in the u-equations are positive. Also, we assume that all solutions studied
in the paper are positive as well. The existence of such solutions has been proved in [7].

3. Proofs of Theorems 1 and 2. We need some lemmas.
LEMMA 1. If tl (X) solves (2.1)-(2.1’), then u (1/2) O.
Proof. Multiply (2.1) by u’, and then integrate both sides. This yields

[u’(x)]2 1 fu(x) udu [U’(1/2)]2
(3.1)

2 -kfl2du(1/2)| u2+2eu+4ke2+--T-"

Then U’(0)2--U’(1)2. Since u>0, u’>0 and u is convex. Then u’(0)=-u’(1). Let
x=1/2+z and v(z)= u(1/2+ z). Then v(z) satisfies (2.1)in (-1/2, 1/2)with v(-1/2)= v(1/2)= 1,
and v’(1/2)=-v’(-1/2). It is observed that w(z)= v(-z) is also a solution of (2.1) with
the same initial values as v. By the uniqueness of v(z), v(z)= v(-z), implying that
u’(-) =0.

Lemma 1 implies that the number of steady-state solutions will be determined by
the number of values of u(1/2), which must satisfy certain conditions. To determine such
conditions, as in [7], denote u(1/2)= l/y, solve u’(x) from (3.1), and integrate the
obtained equation. Then introduce the change of variable: e+u=(e+(1/y))e. It
follows that

( )IO t2[ (l+ey)2e2t2+(4k-1)e2Y2

2 e+ te In (l+ey)a+(4k_l)e2y2

(3.2)

l
(l+ey)e’2-ey ds ]--1/2 1

2ey dt
(S"" ey)2+(4k 1)e2y2 2flx/’

where v v(e, y) (ln (e + 1)-In (e + 1/y)) 1/2. We denote the function on the left-hand
side of (3.2), the so-called response function, byf(y; e). In this paper it may be written
as f or f(y) depending on the context. Thus, the number of multiple steady states will
be uniquely determined by the number of solutions of the function equation f(y; e)
(2flx/-) -1. Denote

(1 + ey)2 e2t2+ (4k 1)eEy2

G G(y, t, s)= In
(1 + ey)2 + (4k 1)e2y2

(3.3)
(l+ey)e --ey ds

-2ey Zy2,(s+ey)2+(4k-1)e
and H= H(y, e)= G(y, V(y, e), e). Then (3.2) becomes

1
(3.4) f(y; e) 2 e + te G-/2 dt.

Hence,

(3.5)

(3.6)

Io ( ;)Yoof_ 1 + e _2 tetaa_l/2 1

Oy l + ey)yH 1/2 yZ dt e+ te

Oy2-- -(1 + ey)y2H1/2-2(1 + ey)yH3/2 Oy =

Io io4 1/2 3(1+ ey) tet0-5/2+ tetG- dt +
2y k Oy

ky20y Y j
dt.

0_3/20G dt,oy

dt
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Since Of/Oy and 02f/Oy2 are too complicated, we introduce an auxiliary function
P= P(y; e)= ( + 6y)3y((o-f/oy2)+(2/y)(of/oy)).

For the remaining lemmas in this section, we present analytic proofs in detail
only for k , because the proof for general k would be very tedious, as is pointed
out in [6]. Also, the numerical results in [4] give good evidence that all propeies of
the response functions f(y; ) are demonstrated by the following lemmas. In the case

(3.7) P
e(y 2) 1 o e-t)G-/ dt.

YH3/2
+662 tetZ(1 2

LEMMA 2. Function P has a unique zero in (1, oo) for any 6.

Proof It is observed from (3.7) that P> 0 for y -> (2 + 6 -1) and limy_,l+ H(y: 6) O,
and hence Limy_l P(y; 6)--oo. This proves the existence of zeros of P in (1, oo).
To see the uniqueness, we differentiate P with respect to y once:

(3.8)

OP 1+26

Oy y2H3/9-+
3{62(y 1)2-(1 + 6)[e(y-2)- 1]}

(1 + ey)2y-(1 + e)H5/2

3063 I0 t2)3G-7/2
(1 + 6y)2 tel2(1 e- dt.

Then OP/Oy > 0 for y e (1, 2 + 6-1). The conclusion of the lemma follows readily.
We now proceed with the proof of Theorem 1. We mean that a function Q(x)

has a wiggle at a critical point x Xo, or that Xo is a wiggle-point of Q, if there exists
a 6>0 such that Q’(x) <0 (Q’(x)> 0) for xe(xo-6, Xo) and Q’(x)>0 (q’(x) <0) for
x e (Xo, Xo+ 6). Therefore, to prove Theorem 1, we ought to show that f(y; 6) is either
monotonic or so-called "S-shaped," i.e., having two wiggles. We prove this by contradic-
tion. Since f(1; 6)=0 and f(y; e)oe(yoo), f must be a function with an even
number of wiggles. Suppose that f is neither monotonic nor does it have two wiggles.
Then it must have at least four wiggles. Without loss of generality we assume that f
has exactly four wiggles. Let the leftmost wiggle-point be xl at which f takes the local
maximum and f"_-< 0; the remaining wiggle-points in turn are x2 < x3 < x4. By Lemma
2, given 6, there is at most one zero among f"(xi) (i 1,2, 3, 4). We consider two
subcases about f"(xi): (1) neither of them is zero; (2) only one is zero. If case (1)
holds, then f"(x) < 0 and P(xi) < 0 for 1, 3, and f"(xj) > 0 and P(xj) > 0 for j 2,4,
which contradicts Lemma 2. If case (2) holds, say f"(xl) 0, then P(xl)= 0. However,
the fact that f"(x2) > 0 and f"(x3) < 0 implies P(x2) > 0 and P(x3) < 0. Again, it violates
Lemma 2. Similarly, we can prove that it is impossible for any of the f"(xj)(j 2, 3, 4)
to become zero. This means the previous assumption that f has at least four wiggles
is wrong. The proof of Theorem 1 is complete.

The remaining lemmas are concerned with the proof of Theorem 2.
LEMMA 3. There exists an 60, a value of e, such that f(y; 6) is a function with two

wiggles for 6 (0, Co).
LEMMA 4. f(y; O) is a function with exactly one wiggle, and takes its maximum at

Xo 2 + a, where a is a constant.
LEMMA 5. Let a be chosen as in Lemma 4. Then f’(y; e)> 0 for all y > 1 and for

all e >- 1/a.
Lemma 3 is the main result of [6].
Proof of Lemma 4. Elementary calculations show that

(3.9) f(y O) e t2 dt,
Y ao
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(3.10) f’(y; O)=yx/2 lny y2 o
e dt,

-2 v --=-2/ ,a- ,
(3.11) f"(y, O) e dr.

y2v’21ny 4y2(21ny)’/2+ y ao

Let A (y)=f(y; 0)+ 2f’(y; O)/y. Then < 0 for all y > 1, which means that f’< 0
wherever f 0; hence f(y; 0) is a function with only one wiggle at x Xo, and takes
the global maximum at Xo. Fuhermore,

292 In 2 f’(2; 0) 1- e dt
#o

(3.12) 1- at
dO 0

{ (ln 2)2+ (In 2)3 [1_]}>1- ln2+
3 10 o

Using In 2 < 0.7, we obtain 292 In 2 f’(2; 0) > 0.09, and hence f(2; 0) > 0. Similarly, we
prove f’(e; 0)<0. Therefore, the wiggle-point of f(y; 0), xo =2+ for some e
(0, e- 2). This proves the lemma.

oofof Lemma 5. Differentiating f’(y; e) with respect to e yields

Ozf 2(y 1) 6e o’ ,)2(3.13) OeO (1 + ey)yH/ (1 + ey)
te’=(1 e- dr.

It is seen from (3.13) that given y > 1, f’(y; e) increases as e does. Thus f’(y; e)> 0
for y e (1, 2 + and for all e > 0, because f’(y; 0) > 0 for y e (1, 2 + a) by the preceding
lemma. If y > 2 + a, then y > 2 + e-, and hence P(y; e) > 0. Therefore, f’(y; e) > 0 for
y > 2 + a, for otherwise f’ 0 leads f"> 0; i.e., f would reach its minimum first on the
left, which is impossible. This proves Lemma 5.

The geometrical meaning of Theorem 2 is as follows. There exists a value of e,

e. > 0 such that f(y; e) has exactly two wiggles for e e (0, e,), and that f’(y; e) 0
for e g e.. To prove this, we define two subsets M and N on the real line as follows:

(3.14) M {ef(y; e) with only two wiggles for all y > 1},

(3.14’) N={ee>O and f’(y; e)<0 for some y> 1}.

LeMMa 6. M is an open interval, and M N.
Proof We first prove M N. It is trivial that M N by the definition about the

wiggle-point. Take an e e N, so that f’(y’; e)<0 for some y’> 1. Since f’(y; e)+m as
y + 1 + and f(y; e) as y + m, therefore f’(y-; e) > 0 and f’(y+; e) < 0 for some y-
and y+, where 1 < y- < y’ < y+. This leads us to the fact that f has at least two wiggles.
Then, from the proof of Theorem 1, such e e M; hence N M. Obviously, N is open
and so is M. Also, M is nonempty and bounded from Lemmas 3 and 5. Note that the
complement of N, N {e ]f’(y; e) 0 for all y > 1} is a continuum because e’e N
implies that (e’, m)c N by ozf/oeOy > 0 from (3.13). Therefore, M is an open interval
containing (0, Co), where eo is given by Lemma 3. This proves the lemma.

Now set e.=Sup M. We see from the proof of Lemma 6 that e.e N and
f’(y; e) 0 for all e g e,, and that e e M and f has exactly two wiggles for e < e.. In
fact, the next lemma shows that e. bifurcates the numbers of the steady-state solutions.
LMM 7. f’(y; e) > 0 for all e > e., andf’(y; e) has a unique zero y. (of. Fig. 1).
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f(y; e)

f
(y; e,)

f(y; e,,+)

f(y; e.)

Y Y+ Y, y+

FIG.

Proof. Take a monotonically increasing sequence {s.} n 1, 2 such that e. ’ e.
as n c. Lety < y+ be the two wiggle-points off(y; e.). Thenf’(y; e.)=f’(y.+; e.)
O,f’(y-, e.)=<0 and f"(e+.; e.)-<0 for all n. Also, f’(y+l; e.)<0 and f’(Y.++l; e.)<0

/ such that y-’y.by 02floe Oy > 0. Thus [y, y,+] [y,+l, y,++]; hence there exist y: -<_ y,
and y+.’y- as n . Since f’ and f" are continuous on any subsets of the y-e plane,
[y’,y"]x[e’, e"] where y’, y", e’, and e" are arbitrary real numbers, f’(y;
f’(y; e,) and f’(y,;+ e,) f’(y,;- e,) as n--> c. Therefore f’(y; e,) has zeros y,- and
+y,. Next we prove the uniqueness of the zero by contradiction. Suppose that y is the

leftmost zero off’(y; e,), and Y2 the nearest zero to y. Thenf"(yl; e,) _-< 0. Iff"(y; e,) <
0, then f’(yl; e,) 0 implies f’ < 0 for some y > Yl; hence e, N. This violates e, M.
If f"(y; e,)=0, then 9C’(y2; e,)> 0 by Lemma 2, and hence f’ < 0 for some y < Y2.
Again, it violates s, M. The lemma is proved.

Since O2f/Oe Oy > O, f’(y; e)> 0 for all e > e, and for all y > 1. For e (0, e,), let
y_(e)<y+(e) be the two wiggle-points. We set fl=[2vf(y_; e)]- and /32(e)=
[2x/f(y+; e)]-. Then the conclusions of Theorem 2 follow immediately.

4. Proof of Theorem 3. We will use the Morse Index Theorem to investigate the
eigenvalue problem. For convenience, let Q= Q(u)=trF(u), where F(u) is given in

1. In this paper we use the following definition.
DEFINITION. A number A and a nontrivial function v(x) are called an eigenvalue

and an eigenfunction (corresponding to A) associated with u(x), a solution of (2.1)-
(2.1’), respectively, if they satisfy the following boundary value problem"

(4.1) v"-Q,v=Av, 0<x<l,

(4.1’) v(0) v(1) 0.

It is well known that there exists a unique positive eigenfunction on [0, 1], and
that the corresponding eigenvalue is real and simple (cf. [8]). They are called funda-
mental or principal eigenfunction and eigenvalue. In this paper we always mean such
eigenfunction and eigenvalue. Also, it is known that the parabolic partial differential
equation (2.2)-(2.2’) may be treated as a local flow in a certain function space W, and
that the steady-state solution u(x) is stable for A <0, and unstable for A > 0 in the
sense of Lyapunov.
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Given u(x), a solution of (2.1)-(2.1’), we introduce an operator L= (dE/dxE)-Qu
on W. Define L[v] v"-Q,v for v W. Then the Morse index of L on the interval
(0, 1] equals the number of positive eigenvalues associated with u(x). Therefore, u(x)
is stable when the index is zero; u(x) is unstable when the index is 1.

Remark. Suppose that w(x) W and satisfies

(4.2) L[w] 0, 0<x < 1,

(4.2’) w(0) 0, w’(0) 0.

Then the number of zeros of functions of this kind on the interval (0, 1] does not
depend on choices of w(x). We now introduce the Morse Index Theorem in this simple
case.

MORSE INDEX THEOREM. The Morse Index of the operator L is finite and equal to
the number of zeros of any function w(x) satisfying (4.2)-(4.2’) (cf. [3]).

To apply the Morse Index Theorem we construct the following functions:

u’(x) (u’) -2 dt, O<=x <1/2,

(4.3) w(x)

u’(x) A+ (u’)-2 at 1/2<-x< 1,

where

2 [ 1 /2u’(1/2)-u"(t)dt](4.4) A=
U"(1/2) U’(0)if’d0 [u’(t)]2

It can be proved that w(x) given by (4.3) is a C2 function and satisfies (4.2)-(4.2’).
All we need is to compute their zeros for different cases of u(x).

LEMMA 8. The number of zeros on (0, 1] of w(x) given by (4.3) is at most one. It
is zero for A < O, and one for A > O.

LEMMA 9. Suppose that u(x) solves (2.1)-(2.1’) and u(1/2)- 1/y. Iff’(y; e) 0, then
u(x) is nondegenerate, i.e., the eigenvalue of the operator L is nonzero. Furthermore, if
f’(y; e) > O, then u (x) is stable; iff’(y; e) < 0, then u (x) is unstable.

Proof of Lemma 8. Since the solutions of (2.1)-(2.1’) we studied are positive,
u"(x)> 0; hence u’(x)<0 in [0,1/2) and u’(x)> 0 in (1/2, 1]. We observe from (4.3) that
if A < 0, then w(x) < 0 for all x (0, 1], and that if A > 0, then w(1) Au’(1) > 0 implies
that w(x) has at least one zero on (1/2, 1]. On the other hand, since the function
{A+[u’(t)]-2 dt} is monotonically increasing and u’>0 for x(1/2, 1], w(x) has at
most one zero on (1/2, 1]. This proves the lemma.

ProofofLemma 9. For simplicity, let M(u)= Q(u) du. Then the response func-
tion f(y; e) becomes

1 f du
(4.5) f(y; e)=- 1/y /M(u)- M(1/y)"

Denote u(1/2)= r/ (= 1/y) and T(q)=flf(1/rl; e). Then

(4.6) T(r/) x/M(s+q)-M(q)’
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1 In M’(u)-M’(rl)
T’(r/) -x/M(1)- M(r/)- 2[x/M(u)_M(rl)]3

du

(4.7) =x/[ 1 I’ u"(t)-u"(1/2)]u’(1) / [u,(t)]
dt

u"(),( ]
dt(0) + [ t)

because u"= Q(u) and u’2=2[M(u)-M(n)]. It turns out from (4.4) that

T’(n) Bf’(y; )
(4.8) A

"() u"()y

We have checked that L[ w] 0 and L[ u’] 0, and that u’ and w are linearly independent
on (0, 1). Therefore, the general solution of the second-order differential equation
L[z] =0 can be expressed by z ClU’+ c2w, where c and c2 are arbitrary constants.
Suppose that Y(0) Y(1) 0 and L[ Y] 0. Then Y 0 on [0, 1] by the uniqueness
of the solution of L[z] =0, which implies that the eigenvalue of L is nonzero. Iff’> 0,
then A < 0 by (4.8), and the Morse Index is zero by Lemma 8. Hence, by the Morse
Index Theorem, the eigenvalue of L is negative. Therefore, u(x) is stable. Similarly,
if f’< 0, then u(x) is unstable.

The proof of Theorem 2 has already shown that (i) if e > e, then f’(y; e) > 0 for
all y 1 and hence the unique steady-state solution is stable; (ii) if 0< e < e. and
fl (fl, 2), then there are three solutions u, u2, and u3 of (2.1)-(2.1’). Let u()) 1/y
(i= 1,2,3); hence f(y;, e)>0 for j=l 3 and f’(Y2; e)<0 By Lemma 9, we prove
Theorem 3 immediately.

We can apply the Conley Index Theory to get more information about the global
structure of the multiple steady states. It is seen that the Conley Index of u2, h (u2) X,
is a pointed circle, and the Conley Index of u;, h(u;)= E, is a pointed zero sphere
(j 1, 3). Then there exist solutions v and v2 of (2.2)-(2.2’) connecting u2 to u and
u2 to u3, respectively [10, Thm. 22.33], namely, v(x, t)o u(x) and v2(x, t)o u3(x) as, v(x, t)o u2(x) and v2(x, t)o u2(x) as - uniformly on [0, 1]. Suppose that
u.(x, t) solves (2.2)-(2.2’) with u.(x, O) u.(x). We claim that if u2(x) < u.(x) < u(x)
for x (0, 1), then u. lies in the stable manifold of u, i.e., u,(x, t) u(x) as ,
while if u3(x) < u.(x) < u2(x) for x (0, 1), then u. lies in the stable manifold of u3.
To see this, suppose, for example, that u(x)> u.(x)> u2(x) for x(0, 1). Then
u(x) > u.(x, to) > u2(x) for some t0 > 0 and x (0, 1), and it follows that 0u.(0, to)/Ox <
0 (because u.(x, to)< Ul < 1 and u.(0, to)= 1), and Ou.(1, to)/Ox > 0. Thus if v is the
solution connecting u2 to u, then by the fact that v(x, t)o u2 as - uniformly
on [0, 1] we see that v(x, to- t) < u.(x, to) for some t > 0. Let w(x, t) v(x, t- t).
Then w(0, t)= w(1, t)= 1 and w(x, to)< u.(x, to). By the comparison theorem we obtain
w(x, t) < u.(x, t) for all to and for x (0, 1). Meanwhile, w(x, t) u(x) uniformly
as , so that the same is true for u.(x, t); in other words, u. lies in the stable
manifold of u. In the same way, we can prove that if u3 < u. < u2, then u. lies in the
stable manifold of u3.

We can also investigate the stability using the maximum principle to prove that
the region of attraction of Ul includes all initial distributions v(x, 0) satisfying u2(x) <
v(x, 0) 1, while that of u3 includes all v(x, 0) satisfying (x) v(x, 0) < u2(x), where
(x) (cosh (x-)/2ke)/(cosh (1/4ke) is a lower solution of (2.1) (cf. [7]). This
is illustrated in Fig. 2.
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FIG. 2
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SINGULAR LIMIT ANALYSIS OF STABILITY OF TRAVELING WAVE
SOLUTIONS IN BISTABLE REACTION-DIFFUSION SYSTEMS*

Y. NISHIURA, M. MIMURA, H. IKEDA, AND H. FUJII

Abstract. The stability properties of the traveling front solutions to bistable reaction-diffusion systems
in which there are big differences in both the diffusion rates and the reaction rates between two species are
studied. In contrast to the scalar case, this bistable system has multiple existence of traveling waves in the
appropriate region of parameters. Each wave can be constructed by using a singular perturbation method,
and its stability or instability is determined by a simple algebraic quantity appearing in its construction:
namely, the sign of the Jacobian of inner and outer matching conditions. The singular limit approach (which
is quite different from formal limiting arguments) adopted in this paper is rigorous and very useful in the
study of stability problems of singularly perturbed solutions.

Key words, stability, traveling wave, singular perturbation, reaction-diffusion system

AMS(MOS) subject classifications. 35B25, 35B40, 35K57

1. Introduction. Bistable media are one of the basic machineries that create a
variety of propagating patterns. Especially, traveling front waves describing the transi-
tion from one stable state to the other are the most essential and interesting ones for
such media. For a two-component model system, we meet the following equations:

erut e2uzz +f(u, v),
(P) ., (t, z) (0, c) R.

v, Vz + g(u, v),
Here e and r are real parameters, where er and e/r are, respectively, the ratios of
the rates of reaction and diffusion ofthe quantities u and v. Suppose that e is sufficiently
small. When r is of the order e, the diffusion rates of u and v are of the same order,
but u reacts much faster than v. On the other hand, when " is of order l!e, u reacts
with the same order as v, although there is a big difference between the diffusion rates
of u and v. The qualitative information about f and g is depicted in Fig. 1" f is a
cubic-like function, and g 0 intersects with f= 0 at three points E+/- and Eo.

Note that E/ and E_ are stable constant solutions of (P),. It is natural to expect
the existence of traveling fronts connecting E_ to E/. For such an existence problem,
we know at least numerically that, when r O(e), there occurs a multiple existence
of traveling front solutions. On the other hand, when r O(1! e), there is one solution
[9] that is proved to be stable in 11 ]. We can imagine from this that a certain transition
process might happen to the structure of solutions when r varies between two extreme
values. In fact, Ikeda, Mimura, and Nishiura [10] have recently studied the case

-= O(1), where there are differences in both reaction and diffusion rates between u
and v, namely, u reacts much faster than v but diffuses much slower than v. It is
noteworthy that the number of traveling fronts connecting E_ to E/ depends crucially
on the parameter r. More precisely, on the one hand, there exists a unique traveling
front solution for large " and, on the other hand, there exist at least three solutions
for small r. In fact, when f and g are specified, respectively, as

(1.1) f(u, v)=u(1-u)(u-a)-v and g(u, v)=u-Tv
with constants a and 7, Fig. 2 shows a typical situation of the dependency of traveling
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Department of Mathematics, Toyama University, Toyama 930, Japan.
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Vmax

Vr

Vmin

g(u,v) 0

f < 0 E+ (u+,v+)
g<O

Eo
(v)

f(u,v) 0

FIG. 1. Functional forms off 0 and g O.

FIG. 2. Global bifurcation diagram of traveling front solutions in (z, c)-plane, where s (respectively, u)
represents the stable (respectively, unstable) branch.
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front solutions on z. This contrasts with the scalar reaction-diffusion equation ofbistable
type (see, e.g., Fife and McLeod [6]) where the front solution is always unique and
stable. Multiple existence of traveling front solutions is also shown by Rinzel and
Terman [16] for the bistable FitzHugh-Nagumo system with piecewise nonlinearity.

The aim of this paper is twofold concerning the stability properties of traveling
front solutions of (P), when e is sufficiently small and -= O(1). First, we clarify the
stability properties of the front solutions by using the Singular Limit Eigenvalue
Problem (SLEP) method originated in [13] (see Theorems 3.1 and 3.2). Second, in
Theorem 4.1 we give an alternative form of the stability criterion of Theorems 3.1 and
3.2, which essentially stems from the geometrical nature of the construction of singular
limit traveling front solutions in 2. Loosely speaking, our results can be summarized
as follows.

MAIN THEOREM. The linearized eigenvalue problem at a traveling front solution
has a unique real simple eigenvalue besides the translation free zero eigenvalue and the
rest of the spectrum lies strictly inside of the left halfplane independently of the parameters
e and z. This critical eigenvalue is obtained as a zero ofa scalar equation called the SLEP
equation (see (3.68) and (3.69)), and its sign determines the stability of the traveling
front, namely, positive respectively, negative) means unstable respectively, asymptotically
stable in the orbital sense). Moreover, the sign of the critical eigenvalue is equal to that
ofthe Jacobian ofthe C 1-matching conditionsfor outer and inner solutions ofa singularly
perturbed traveling front wave (see (2.16) and (4.25)).

The last statement is close to the spirit of Evans’ works [3], [4], which relate the
stability of nerve pulse to the intersecting manner of stable and unstable manifolds.
This geometrical interpretation of the stability criterion is very useful in a practical
sense. Namely, when we construct a lowest-order approximation to a traveling front
solution as e $ 0, we can judge its stability simultaneously. In fact, by looking at the
schematic diagram Fig. 2, we can say from the construction of each solution that,
except for the limit point, the upper and the lower branch are stable, while the middle
one is unstable. This is quite reasonable from a bifurcation point of view. The details
will be shown in 4.

The idea of the SLEP method is to derive a limiting linearized eigenvalue problem
as e 0 without losing information coming from the transition layer. It turns out that
a Dirac point mass (in the one-dimensional case) appears in the limit of e 0 after an
appropriate scaling, and the coefficient of it is determined by the global geometrical
quantities off and g. After some computation, the whole problem is reduced to solving
a transcendental equation, or more geometrically, to finding intersection points of a
straight line and a convex curve, which tells us the limiting location of dangerous
eigenvalues to the stability (see (3.69)). See [12]-[15] for the details of the SLEP
method and its applications.

What we would like to emphasize in this paper is that the singular limit analysis
as e 0 (which is essentially different from e 0) sheds light on the world of e > 0.

Finally, Jones and Gardner 17] have notified us that a topological approach may
work to solve the same stability problem as above.

We impose the following assumptions on the nonlinearities off and g (see Fig. 1).

(A0) f and g are smooth functions of u and v on some open set Q in R2.

(A1) f= 0 is S-shaped and consists of three branches u h_(v), ho(v), and h/(v)
(h_(v) <= ho(v)<= h/(v)), while g =0 intersects once with each branch at E_=
(u_, v_), Eo, and E/ (u/, v/) (v_ < v/), respectively, as in Fig. 1. The signs
off and g are both negative in the upper region of the curves f 0 and g 0.
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(A2)

(A3)

(A4)

to

h+(v)J(1)) h_(v)f(u, I)) du has a unique isolated zero at v* (Vmin, /)max)-

fu(h+/-(v), v)<0 for v[v_, v/],

g(h_(v), v)<0< g(h/(v), v) for v (v_, v+),

go(h+/-(v), v) < 0 for v v,

o(f, g)
(h+(v), v)>O forv[v_,v/].
(u, v)

fv(U,v)<O for (u,v){(u,v)lh_(v)<=u<=h+(v),v_<=v<=v+},
gu(U, v)>0 at (u, v)=(u+/-, v+/-).

Remark 1.1. The assumption forthe sign of(cg(f, g)/9(u, v))(h+/-(v), v)is equivalent

d
.m g(h+/-(v), v) < 0 for v Iv_, v+],
va

since, from f( h (v), v) 0,

d fugo -fvg,,
d--- g(h+/-(v), v)=

f
holds.

(u,v)=(h+/-(v),v)

Throughout this paper, we will use the following function spaces and notation.
Let I R_, R/ or R,/9, and o" be positive numbers, and let n be a nonnegative integer;

Xo,,(I)= u e C"(I) Ilullx;,,)-- sup eOlXl o" u(x) <
i=O

Cunif(I) {Ul U is bounded and uniformly continuous on I},

Cuir(I) Cubit(I) x Cnr(I),

n(I) u n"(I) IlulI-z,) e 11 u(x) dx <
i=0

where H"(I) is the usual Sobolev space on I;

(I)n(I),
(H)(I) the dual space of H(I),

(.,.); L2 inner product. (.,.) is also used to specify the independent variable;

e() identically equals the set of the essential spectrum of the operator ; C..(I)
identically equals the uniform convergence on any compact subset of I in C"(/)-sense.

2. Construction of traveling front solutions. In this section we will summarize the
existence results oftraveling front solutions studied in the previous paper 10]. Introduc-
ing the traveling coordinate x z + ct, we find that traveling front solutions with velocity
c satisfy

e2Uxx-eczu+f(u, v)=0,
(2.1) xR

Vxx-CVx+g(u, v)=0,

with boundary conditions

(2.2) u()= u, v() v..
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To avoid the phase ambiguity, we impose the following condition on u(x)"

(2.3) u(0) cr

where cr is an arbitrarily fixed value in some interval (see 2.2). Moreover, we put

(2.4) v(0)=fl

for/3 (v_, v+), which will be determined later.
We divide the whole interval R into two subintervals R_ and R/. First, fix c and

/3 arbitrarily, and look for solutions (u+, v+/-) of the following boundary value problem
on each subinterval R+/- with the aid of outer and inner approximations:

e:’(U+/-)x, ec’r(U+/-)x +f(u+/-, v+) O,

(2.5)+/-
V+/-)xx c(v+/-), + g(u+, v+/-) O,

x R+/-,
u+/-(+/-o) u, u(0) a,

v(+/-) v, v+/-(0)

Second, we derive two relations between c and/3 through C-matching of the outer
and inner solutions of (2.5)+/- at x 0, respectively, and construct singular limit solutions
by taking the intersection of these two relations. Finally, using a singular limit solution,
we obtain a solution (u, v) of (2.1), (2.2) for some c= c(e) (see Fig. 3).

2.1. Outer solutions. Fig. 3 shows that the derivatives of u+/-(x) are moderate in
the region away from a layer position. Therefore, the solutions of the following limiting
equations of (2.5)+/- as e 0 could become good approximations there:

f(u+/-, v+/-) 0,

(2.6)+/- V+)x, c( V+/-)x + g(u+/-, v+/-) O, x R+,

v+/-(+) v, v:(o) .

u(x;,)

v(x; -) Vo

(Uo,Vo)
(u(x;c,) ,v(x;c,))

FIG. 3. The profile of a traveling front solution (u(x; e, ’), v(x; e, ’)) and its outer solution Uo, Vo).
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As particular solutions ofthe first equation, we take u+ h+(v+) (see (A1)). Substituting
this into the second equation, we see that (2.6)+ is reduced to

(2.7)+
V+/-)xx c( V+/-)x + g(h+(V+/-), V+/-) O,

V(+/-) v, V+/-(0) =/3.

xR+/-,

LEMMA 2.1. For anyfixed c R and fl v_, v/), there exist unique strictly monotone
increasing solutions V(x; c, fl) of (2.7)+/- satisfying

2V:(x; c,/3)- v+/-l X,(c),I(R+/-)
where i(c)=min{tz_(c),tz+(c)} and I+/-(c) are positive roots of I-c+/-+
(d/dv)g(h+/-(v+/-), v+/-) =0. Moreover, V:(x; c, ) are continuous with respect to (c,)
R x (v_, v+) in the X2(c).(R+/-)-topology and satisfy

(2.8)

and

(2.9) 0-- x V(O; e,/3)-x V-(O; c, fl) > O.

LEMMA 2.2. (outer matching condition). For any fixed c R, there uniquely exists

fl flo(C) C(R) satisfying

d
V(0; c,/o(C))-

d
v(o; o()) o,

which is a strictly monotone decreasing function of c R and converges to v+/- as c o,
respectively. Moreover, for v* (v_, v/),

I( v*) 0 if and only if/30(0) v*
where I(/3) =v

_
g(h_(v), v) dv+ g(h+(v), v) dv.

We define U:(x; c, fl) by

U(x; c, fl)=h+/-(V(x; c, fl)), xR+.
We denote the C-matching outer solution on the whole line by

Vff(x; c, flo(C)), x R_,
(2.10)a Vo(X; c)--- V-(x; c, flo(C)), x R+
and

(2.10)b Uo(x" c)=-- (
h-( Vff(x;( C, flo(C))), xER_,
h+( V-(x; c, flo(C))), x R+

(see Fig. 3.)

2.2. inner solutions. Since the outer solutions U:(x; c, fl) do not satisfy the
boundary condition at x 0, we must remedy them in a neighborhood of x 0. For
this purpose, it is convenient to introduce the stretched variable y x/e. Substituting
(U: + Wg:, Vg:) into (2.5)+/- with remedy terms W:(y), and putting e =0, we obtain
the following problems for W:"

W)yy c7"( W)y +f(h+/-(fl + W, fl) O, y R+/-,

(2.11)+/- W(O) a h+/-(fl ),

w(+/-oo) =0
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where /3 and a are arbitrarily fixed constants satisfying /3 (v_, v+) and a

(h_(/3), h+(/3)). That is, the inner transition layer is stretched on the whole line and
connects h_(fl) to h+(fl).

LEMMA 2.3 (Fife and McLeod [6]). For anyfixed v_, v+], consider thefollowing
problem:

(2.12)
Wyy cWy +f( W, O, y R,

w(+/-) h(13), W(O) .
Then there exists c= Co() such that (2.12) has a unique strictly monotone increasing
solution W(y; Co( ), satisfying

]W(y; Co(/3 )"/3 h+/-(/3)] m X2(,),,(R+/-)
where

(/3 :o(/ +4 Co(/ 4 h(/,
and

Co(/3)0 if and only ifJ( O.

It is almost clear from Lemma 2.3 that the derivatives of W- and Wff are matched
at x 0 if and only if c is equal to Co(B) r.

LEMMA 2.4 (inner matching condition). For any fixed [v_, v+], let

(2.13) c,(/3; z) =- Co()/ ’.

Then there exists o> 0 such that for any fixed (,/) A
{(,/)[l-c,(; )l/J/-l-<-o}, (2.11) have unique strictly monotone increasing
solutions W-(y; ’, , fl) satisfying

2[Wo (y; ’, ,/)- h+/-(/)l X,I(R+/-)
where o’+/-(-)= infe,A, r+/-(’; ,/) with

r(r; c, 13 =- : c + 4(c 4 h (13 / / 2

Furthermore, W:(y; ’,,) are continuous with respect to (c",/)Aa in the
2X,(R+/-)-topology and

d d- w(0; , c,(t. ) )--= w;(0; , c,(t. ), )=0,(2.14)
dy ay

(2.15)a o__oc d
w-(0; , c,(; ),/)-y wff(0",, c,(/; ),/) >0,

(2.15), W(O; ’, c,(fl; ’),fl)---y Wo(O; r, c,(fl; ’), fl) >0.

Remark 2.1. It follows from (2.14) and (2.15) that (d/dfl)c(fl, -)(=(1/’)
(d/dfl)Co(fl)) is strictly negative for fie[v_, v+]. Therefore there exists an inverse
function of (2.13), say fl=fl(c; ), that is strictly decreasing for ce(c(v+; r),
c,(v_; )).

Remark 2.2. The definition domain for fl can be extended to (Vmin, /)max) in Lemma
2.4, since Lemma 2.3 holds for/3 e (Vmin, Vmax).

2.3. Singular limit traveling front solutions. It is clear that the lowest-order
approximations (U(x; c, fl)+ W:(x; -, c, ), V:(x; c,/3)) of (2.5)+/- are matched at
x 0 in the C-sense. To construct an exact solution for small positive e on the whole
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line R, the singular perturbation method requests C 1-continuity ofthese approximations
so that their derivatives must be matched at x- 0 in the C-sense. Thus, we impose
the following conditions on (W:, V:)"

(2.16)

d d
*o(, c, t)---7- w;(o; , c, t)--7- w(o; , c, t) o,

ay ay

d d
o(C,)=---r-ax vo-(o; c, )- Vo(O; c,)=o.

It turns out from Lemmas 2.2 and 2.4 that the above relations are equivalent to the
conditions"

(2.17) fl =/3o(C)

and

(2.18) C= Co(fl)/’.

From Remark 2.1, the latter is equivalent to

(2.19) fl fl,(c; -).

Note that both/30 and /3 are Cl-functions and strictly decreasing as in Fig. 4 (see
also Remark 2.2). Geometrically, the solution set for (2.16) is represented by the
intersection points of two curves/3 =/3o(C) and/3 l(C; ’).

For any given r>0, let (c*,/3") be an arbitrary intersection point of (2.17) and
(2.19). Define (Uo(X; e, ’), Vo(X; e, ’)) by

(2.20)a

and

U(x; c*, *)+ w , c*, *Uo(X; e, )=
U(x; c*, 13")+ Wo , c*, *

V-(x; c*,/3"), x R_,
(2.20)b Vo(X; e, r)= V-(x; c*, *), x R+.

x R__,

xR+

(2.21)
0(o, qo)

0 at (c*,/3"),
O(c,)

2.4. Traveling front solutions for e >0. Using a singular limit traveling front
solution as an approximation, we can construct the exact solution of (2.1)-(2.3) with
the aid of the standard singular perturbation method. Let (c*,/3*) be an arbitrary
intersection point of (2.17) and (2.19), and assume that

We call (Uo(X; e, r), Vo(X; e, ’)) a singular limit traveling front solution of (2.1)-(2.3)
with the singular limit velocity c*.

The following theorem shows that the number of the singular limit traveling front
solutions varies depending on " and the location of v* (see (A2)).

THEOREM 2.1. Suppose that (A0)-(A4) hold. When v* (v_, v+), (2.1)-(2.3) has
three singular limit traveling front solutions for small " and has only one for large -. (See
Fig. 2.) On the other hand, when v* (/)min, /)max)\(/)- /)+), it has only onefor both small
and large -.
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(a) ’" large

(b) ’: small

FIG. 4. The graphs of outer and inner matching conditions and their intersections. For large r they have
a unique intersection, but for small they have three intersecting points.
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which is equivalent to the following"

(2.22) The two curves of Cl-matching conditions/3 rio(C) and/3 =/3(c; r)
intersect with each other transversally at (c*, fl*).

First we fix r, c, and/3 and construct exact solutions of (2.5)+ on each subinterval
R+ for sufficiently small e, which we denote by (u+(x; e, r, c, ), v+(x; e, r, c,/3)) (see
Lemma 3.2 of [10]), and then match these solutions at x 0 in C 1-sense. For this
purpose, we define two functions and xI, as follows:

(2.23)

d d
(, , c,/)---7 u-(0; , , ,/)--7-u+(0; , , c,),

ax ax

d d
,(, , c, t)= v-(0; , , c, t)- v+(0; , , c, t),

and determine c and/3 as functions of e such that

(2.24) (e, r, c,/3)=0= (e, r, c,/3)

hold. Noting that , , and their first derivatives with respect to c and/3 are uniformly
continuous for e > 0, we can extend them continuously up to e 0. Letting e 0, (2.23)
is reduced to (2.16), i.e.,

(2.25) (0, r, c,/3 Co(r, c,/3), (0, r, c, fl o(C, fl ).

As before, for any fixed r > 0, let (c*,/3*) be an arbitrary solution of (2.25). Recalling
the nondegenerate condition (2.21), we easily see that

(2.26)
0(, )
o(c,)

holds at (s, , c, fl)= (0, r, c*, fl*). Thus we can apply the Implicit Function Theorem
to (2.24). That is, there is eo> 0 such that there exist continuous functions c(s; r) and
fl(s; r) satisfying (2.24) for s e [0, So) and lim$o c(s; r)= c* and lim$o fl(s; r)= fl*.
We have reached the goal.

THeOReM 2.2. Suppose that (A0)-(A4) hold and that, for a given r > 0, the curves
(2.17) and (2.19) interect transversally at (c*, fl*). Then, for any s (0, eo) there exists

2 2a travelingfront solution (u(x; , r), v(x; e, r)) X,(R) X,I(R) ofthe problem (2.1)-
(2.3), satisfying

Ilu(. , r)- no(" , )[[,,,0./ [Iv(.; , r)- Vo(" ,
as e $ O. Furthermore, the velocity c(e; r) converges to the singular velocity c* as e $ O.

We simply denote this solution by 0//= (u, v).
COROLLARY 2.1. Suppose that (A0)-(A4) hold and fix e to be sufficiently small.

When v*. (v_, v+), (2.1)-(2.3) has three traveling front solutions for small r and has
only one for large r. On the other hand, when v* (/)min, Vmax)\(V-, /)+), it has only one

for both small and large r.

Let us specify f and g as (1.1). Then the solution structure is revealed for all r

as in Fig. 2.
Finally, we show the asymptotic behavior of the stretched traveling front solutions

of Theorem 2.2 on any compact interval as e $ 0, which plays an important role in the
next section.
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LEMMA 2.5. Let (u, v) (u(x; e, 7"), v(x; e, ’)) be a traveling front solution
obtained in Theorem 2.2, and let , ) be the stretched solution of u, v), namely,
(, )=(u(ey; e, ’), v(ey; e, ’)). Then we have

(2.27) lim(u, (W(y, Co(fl*) fl*) fl*) in C.u.(R)-sense

where W(y; Co(fl*), fl*) is the unique monotone increasing solution of (2.12).
Proo By using (2.20) and Theorem 2.2, we can easily show (2.27). So we leave

the details to the reader. See also Lemma 1.1 of [13].
Remark 2.3. Note that (2.27) contains the following result:

da d
,)1} = W(y; Co(fl*) fl in C.u.(R)-sense.

The following result is a direct consequence of Lemma 2.5.
COROLLARY 2.2. Let F(u, v) be a smooth function of u and v. en, the composite

function F(a, satisfies

Vlim F(u F( W(y Co(*), *), *) in C..(R)-sense.

We close this section by presenting a lemma on the embedding properties of the
Hilbert space Hlo(R).

LEMMA 2.6. The Hilbert space H(R) (p > 0) satisfies the following properties"
(i) HI(R) is continuously embedded in Cunif(R).
(ii) A bounded set in H(R) p > 0) is precompact in L,(R) for 0 < p’ < p.
Proof. Taking an expanding sequence of compact intervals that converges to the

whole line, and applying the diagonal arguments with the Sobolev Embedding Theorem
on a compact interval, we can prove two claims without difficulty by virtue of the
exponential weight function in the definition of H(R).

3. Criterion for the stability of traveling front solutions. In this section, we will
study the stability of the traveling fronts obtained in the previous section. If we consider
the linearized equations of (P), around the specified traveling front solutions, the
spectrum ofthe resulting linearized problem consists oftwo parts; the essential spectrum
and isolated eigenvalues. It is proved later that the former one is not dangerous (see
Proposition 3.1) but the latter one is crucial to the stability (see Lemma 3.9 and Theorem
3.2). In 3.3 we clarify the limiting location of the real isolated eigenvalues as e 0,
which varies depending on the parameter r. Finally, we show in 3.4 that the limiting
analysis in 3.3 is valid for small but positive e.

3.1. Linearized problem and preliminaries. Let us take an arbitrary traveling front
solution q/ (u, v) of (2.1)-(2.3). Recall that when - is arbitrarily fixed, the velocity
c is determined as a function of e with the singular limit velocity c* lime0 c(e). The
original evolutional system (P), takes the following form after using the traveling
coordinate x z + c(e) and shifting the origin to :

o -where
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with

L e-c(e)e,r +f,
dx2 M

d2 d

dx c(e)-x+ g;,

and

{ f(u, v)-f(u, )-f,
H(, )

\g(u,v)-g(u, )-g,-g,v/

Heref ,f, g,, and g denote, respectively, the paial derivatives off and g evaluated
at . The corresponding linearized eigenvalue problem is given by

’ g M k
=A

0

The underlying space for (), and (LP), can be taken as X Cunif(R) with

(3.1) D(e)={U=(w,z)t[U, Ux, UxxeX}.

Using the standard arguments, we can show that becomes a sectorial operator (see,
for example, Henry [8]) and the spectral distribution of determines the nonlinear
stability (or instability) in X-topology, where X denotes the Banach space associated
with the fractional power of , namely,

(3.2) X7 D((- + I)

for an appropriate positive constant and a e[0, 1) with the usual graph norm.
Although the choice of the underlying space might be a problem of taste depending
on the phenomena described by the model systems, Cnir(R) seems to have a natural
topology for reaction-diffusion systems. Another choice is, for example, L(R);
however, in this case, the initial peurbation must satisfy some sort of decaying propey
at infinity. Neveheless, it should be noted that there are no essential differences
among underlying spaces as far as the discrete spectrum of (LP), is concerned, since
the associated eigenfunctions decay exponentially as Ixl- . Taking this advantage,
we will look for the eigenfunctions in Ho(R) (LZ(R)) instead of Cuni(R), which is
more convenient for our purposes. In view of (LP),, we see that it becomes highly
degenerated as e 0: the highest order of L vanishes, and each coefficient in has
a discontinuous point at the layer position in this limit. Therefore, it is not clear in
advance what kind of singular behaviors and degeneracies will occur for eigenvalues
as well as eigenfunctions in the limit of e $ 0. As we will see in 3.3, the SLEP method
is very useful in solving these problems, and it has worked nicely in various other
problems (see Nishiura and Fujii [13], [14], Nishiura [12], and Nishiura and Mimura
[5]).

In the remaining part of this section, we will present several preliminaries used
to derive the SLEP equation in the next section. Hereafter we simply write c instead
of c(e ). The main thing is to clarify the spectral behavior ofthe singular Sturm-Liouville
eigenvalue problem:

L’ ,
(3.3)

e D(L) {, 6x, e C,ni(a)}.

Let and be the principal eigenvalue and its eigenfunction of (3.3) satisfying
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L2(R)"-" 1, respectively. It is convenient to introduce the stretched problem of (3.3)"

(3.4)

@ . D(Le) - (( @, @y, (yy E Cunif(R)}

L2_where y=-x/e is a stretched variable and f, is defined by f--f,(u ). The
normalized principal eigenfunction of (3.4) is defined by

(3.5) bo -= b v/ th(ey).

Of course, the eigenvalues for (3.4) remain the same by stretching.
Remark 3.1. In general, the existence of the discrete spectrum for (3.3) is not

trivial, however, we will show in the proof of Lemma 3.2 that there exists the principal
eigenvalue of (3.3), which tends to zero as e 0, and that the associated eigenfunction
decays exponentially as Ixl-,

Recalling Corollary 2.2, we see that the limiting form of the potential term f,
becomes

limf =f,(W(y; Co(/3"), fl*),/3*) in C2.u.-sense.
e$o

We denote this limiting function byf. Therefore, the limiting Sturm-Liouville problem
of (3.4) becomes

(3.6) dy2 r

Remark 3.2. Differentiating (2.12) with respect to y for c Co(/3") (=c*-), we see
that the limiting problem (3.6) has zero eigenvalue and the associated eigenfunction
is given by Wy(y’, Co(fl*), fl*).

Formally, the adjoint problem for (3.3) is given by

(L)* qb *b*, dp e D(L) D(L)(3.7)
where

d2 d
(L)=_e -x2 + ce"r -dx +f

Apparently, the stretched adjoint problem is defined by

(3.8)

where

(). d2 d
dy----+ c’-y+f,

with the same definition domain as (3.4). We denote by d* (respectively,
b*(ey)) the L2-normalized principal eigenfunction of (3.7) (respectively, (3.8))

associated with the principal eigenvalue sr*= sr. Applying the change of dependent
variables from d (respectively, d*)to 0= e-(C/2)xd (respectively,
it is easily seen that (3.3) (respectively, (3.7)) is converted to the formal self-adjoint
operator:

(3.9) L q-= e2

-5x+ f,- q ’.
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Remark 3.3. Since the element in D(L) has no decaying property near +o, the
formal adjoint operator of L is not defined as (3.7). Therefore, at the present stage,
it is not appropriate to call (3.7) the adjoint problem for (3.3). However, as we will
see in the proof of Lemma 3.2, the eigenfunctions in Cunif(R) of (3.3) (or (3.4)) decay
exponentially as Ix[- (or lyl - o), which may justify the above abuse. In fact, we
will see that the problem (3.3) (or (3.7)) is equivalent to (3.9) in L2(R), as far as
isolated eigenvalues are concerned.

Remark 3.4. There exists a one-to-one correspondence between the isolated eigen-
values and their eigenfunctions of L and those of (L)*. Namely, suppose (’, b)
(respectively, (’, )) is an eigenpair of (3.3) (respectively, (3.4)); then (’, e-C’X/qb)
(respectively, (’, e-CYc)) becomes an eigenpair of (3.7) (respectively, (3.8)). Note that
eigenvalues are unchanged.

The principal eigenfunction of (3.4) and the y-derivative of the stretched u-
component of the traveling front solution converge to the stretched inner layer solution
as follows.

LEMMA 3.1. Let d? (respectively, d) be the L2-normalized principal eigenfunction

ofL (respectively, (L)), and let (respectivel ) be the L2-normalized stretched
function of qbo (respectively, Cho ), namely, ch v/ qb(ey) (respectively, qb

ch*(ey)).,,Then it holds that
(i) lim b (respectively, y)= yWy(y" Co(/3"),/3*) (respectively, Wy(y; Co(fl*) *))

e,O
in C.u.(R)-sense,

(ii) lim-/ *) C..(R)
e,O_

/#
Wy (y, Co(fl*), fl in -sense

where and are the positive normalized constants given by
4 [3: --1

V- We(Y; Co(fl*), fl*)ll. and y w (y; o(*), )llv,
respectively, with W(y; Co(fl*), fl*) =- e-c(*y We(y; Co(fl*), fl*).

Proof. In view of the construction of (u , v) (see 2, Ikeda, Mimura, and Nishiura
[10]), and Remark 3.4, we can prove the above lemma as in Lemma 1.3 of Nishiura
and Fujii [13].

LEMMA 3.2 (spectral properties of L). The essential spectrum of (3.3) is contained
in the union of the left regions inside or at the boundaries of the two parabolas"

(3.10) Re r= -(Im )2/("FC)2"" a+/-

where a+/- limx_,+/-fS < 0. The spectrum lying outside the above region consists of real
isolated eigenvalues, and they have a strictly negative upper bound -tZo for small e except
the principal eigenvalue where tZo is a positive constant independent ofe. The principal
eigenvalue is the unique critical eigenvalue of (3.3) (i.e., it approaches zero as e , O)
and behaves as

(3.11) sr=ff(e)e as e O
where o(e) is a continuous function of e up to e 0 satisfying

(3 12) o lim o(e) c*(* v_) g( Uo Vo) dx
dco(

> 0
e+O dfl

where (Uo, Vo) is the outer solution defined in (2.10) and Co(fl) is the inner velocity
defined in Lemma 2.3. (See Fig. 5.)

Proof (i) Location of the essential spectrum. Since the traveling front solutions
o-//, converge to the critical point with exponential order as Ixl , the coefficient fS
of (3.3) becomes an asymptotically negative constant as [x[-*. It is known (see, for
example, Henry [8]) that the location of the essential spectrum tre(L) for such an



STABILITY OF TRAVELING FRONT SOLUTIONS 99

Im t;la0

v^ Re i;

FIG. 5. Spectral behavior of the singular Sturm-Liouville operator L.
operator as L is contained in the union of the left regions inside or the boundaries
of the following curves"

(3.13) S+ {r -e2T2- icer’y+ a+/-- ’=0, -oo< /<

where lim,_+/-f, a+/-. It is easy to see that the sets S+/- are two parabolas in C defined
by

(3.14) Re ’= -(Im )2/(cr)2+ a.
Note that the above two parabolas are uniformly bounded away from the imaginary
axis for small e.

(ii) Location of the isolated eigenvalues. Let ff lie outside the union of the left
regions inside or the boundaries of S+/-. Suppose that such a ff belongs to the spectrum
of (3.3); then it must be an isolated eigenvalue. First, we will show that the associated
eigenfunction must decay exponentially as Ixl- . To do this, it suffices to consider
the limiting first-order systems of (3.3) as x

(3.15)+/-
bx (-a+/-+’)/e cr/e] chx

The eigenvalues of the matrix of the right-hand side are given by

+/-- + (-,+/- + ’).(3.16)
2e 2

Here we denote by 1/2x/(cr/e)2+ (4/e2)(-c+/- + ’) the complex number whose real part
is greater than Iclr/2e. Note that the numbers in (3.16) become pure imaginary numbers
if and only if " lies on the parabolic curves S+ (see (3.13)). Since we assume that " is
outside the parabolic regions, the real parts of (3.16) are not equal to zero. Therefore,
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the real parts of two eigenvalues of (3.16) have the opposite sign. Suppose " is an
eigenvalue and th is the associated eigenfunction of (3.3) in Cunif(R). Then it is well
known from the general theory (see, for example, Coddington and Levinson 1]) that
tk has the same asymptotic behaviors as those of solutions of (3.15)+ when x-* +/-.

Namely, b must decay exponentially as

(3.17) ,, exp(C }r() x asx

where r() are defined by

1 () 4
Re ((3.18) r() +(-a+ff) >2el"

Now let us apply the change of independent variables from to as

(3.19) e-(CZ/2)x.
Then, (3.3) is conveed to the self-adjoint form (3.9). Note that the eigenvalues are
invariant. It follows from (3.17) and (3.18) that ff also decays exponentially strictly
faster than O(exp (-(lc[r/2e)lx[)) in both directions x . Conversely, it is clear
that any eigenvalue of (3.9) is real and the corresponding eigenfunction that belongs
to L(R) must decay exponentially as ]x +. Therefore, it is easily seen that there
is a one-to-one correspondence of the isolated eigenvalues between the problem (3.3)
in Cunir(R) and the problem (3.9) and L2(R). In fact they are exactly the same. Thus
we can conclude that the eigenvalues of (3.3) are real and the associated eigenfunctions
decay as does (3.17).

Next we will show the existence of the principal eigenvalue , and that the
remaining eigenvalues (if they exist) are strictly smaller than ff up to e =0. It is
convenient to consider this problem in the self-adjoint form (3.9) in L(R). The principal
eigenvalue is characterized by the maximum value of the variational problem:

(3.20) Q(,) max(e(x,x) ((fS ()2}
where varies in H(R) satisfying 1.

First note that = (u, vx) satisfies (LP), with A =0. Therefore, applying the
same change of variables as (3.19) to u, we find that ’ e-(Cr/Ee)xu satisfies

+fS 0. Thus   /ll  ll =  )satisfies
Q(,) (-f >.

In view of Lemma 3.1 and the construction of (u, v), we see that (-f e-(c/2)v,
is uniformly bounded for any small e and that 11 (a)= O(1/). Hence, Q(,)
satisfies

for some positive constant c that is strictly larger than the supremum of the essential
spectrum (see (3.10)). This implies the existence of the isolated principal eigenvalue. Let attain the maximum value; then also attains the same value. Therefore
we can take ff to be nonnegative. Moreover, noting that HZ(R), is strictly
positive (so is the principal eigenfunction (e(’/)x) of (3.3)), since if if(x) 0
’(x) at some point, ff becomes identically zero. Let be an arbitrary eigenvalue of
(3.9) and let be an associated eigenfunction; then it holds that

(3.21) dx
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Apparently, ’>= ( holds. Suppose ( ’; then it follows from (3.21) that
const., which implies that ’ is a simple eigenvalue. Now we will show that all the
other eigenvalues are strictly below the principal eigenvalue ’ up to e 0. Namely,
there exists a positive constant/Zo independent of e such that

(3.22)

holds for any eigenvalue ’ (’;) and small e. To show (3.22), it is convenient to
introduce the stretched variable

X
(3.23) y =-.

E

Then (3.9) becomes

(3.24) LO= y+ jT,_ =-.
Let be defined by

(3.25)

Then Oo is the principal eigenfunction of (3.24) with Similarly, O is
defined to be O(ey). Formula (3.21) can be rewritten as

(3.26) (;) d__ dy=;_("

Suppose the claim (3.22) does not hold. Then we can find a sequence e, 0 as n
such that there exists another eigenvalue - satisfying

(3.27) lim ;-= lim ff-.

Here we use the fact that ff remains bounded for small e. We can assume without
loss of generality that ff- is the second eigenvalue of (3.9) (or (3.3)). Let us denote
by (or in y variable) the corresponding normalized eigenfunction to . Note
the following ohogonal propey:
(3.28) (, )=0 and (O,Oo)y=0.
Here we need Sublemma 3.1.

SBLEMMA 3.1. ere exist a subsequence {e,,}, of {e,}, and two functions o and

7 in H2(R) such that

lim ,,’ in H2(R)-sense for O, 1

Proo Noting that both eigenfunctions decay exponentially as Ixl , it can be
shown that both families of functions remain bounded in H(R) for an appropriate
p > 0. Using Lemma 2.6 and (3.24), we can easily reach the conclusion. The details
are left to the reader.

Substituting the results of Sublemma 3.1 and (3.27) into (3.26), we see in the limit
of e,, 0 that

(3.29) (o } dy=O.

This implies that is a constant multiple of o. However, this contradicts the
ohogonal propey (3.28), which is also valid for o and . This completes the
proof of (3.22).
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Finally, we will prove the asymptotic behavior of the principal eigenvalue sr when
e $ 0. The basic fact is that zero is an eigenvalue of and the associated eigenfunction
is given by the spatial derivative of as has been seen before. Namely, it holds that

(3.30) Lu+f,v=O, gUx+ Mv,=O.

Using the stretched variable y, this becomes

(3.31) L"~Uy +f,~rye=O, g, + hT/v0~Uy

where

d2

Cry+jT /Q 1 d2 c d d u
dy2

E
2 dy2

8 dy
g’ tly =y (ey),

and so on. Recalling the construction of = (u v (see } 2), we see that both uy
and decay exponentially as Yl m. The adjoint operator ()
dE/dy2+ cr(d/dy)+fS has the same principal eigenvalue and the corresponding

--czyeigenfunctlon s given by e (see Remark 3.4). Multiplying * to the first
equation of (3.31), after integration by pas we obtain

(Uy, ()6o +(fVy, 6 =0.

Since (.L)*tko ’;;*, we have

(3.32) st;

On the other hand, t; satisfies

1 d 2

e: dye. --
-f l)y,

c d
+g(u,’ )=0.

dy

Integrating this with respect to y, we have

(3.33) Vy e c(g-g(-oo))-e g(u dy

Substituting (3.33) into (3.32), we obtain

(3.34) ’;=e -f2 c(t-v-) e g(t, Be) dy 49o (uy, ;
By using Lemma 3.1 and Corollary 2.2, the numerator and the denominator of (3.34)
have the following limits as e 0:

c(-v_)-e g(u dy (-f) 6o

and

(3.36) leio (Uy, (o -(Wy,
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Recall that W(y; Co(), ) satisfies (see Lemma 2.3)

d2 d
W- co(fl --7- W+f W, /3 0.

dy ay

Differentiating this with respect to/3, we have

d2 d d d
(3.37)

dy--i W co fl y W +f W, fl W -d co fl -dy W+f W, fl O

Taking the inner product with W on both sides of (3.37) and using the fact that W
satisfies

we obtain for/3 =/3*

dE d

dy W + Co(fl Wy +f, W, fl Wy O,

d
(3.38)

dfl
Co()(Wy, w)+(f,(w, ,*), w;)=o.

Substituting (3.35), (3.36), and (3.38) into (3.34), we can conclude that

lim ’ d {,o e d/
Co() c(* v-)-I g( Uo, Vo) dx},

which is strictly positive from Remark 2.1 and the strict monotonicity of Vo, i.e.,

d Yo(O)=c*(*-v_)-Ig(Vo, Yo)dx>O.

This completes the proof of Lemma 3.2.

3.2. Location of the essential spectrum. In this section we will consider the location
of the essential spectrum of (LP),. It is known that there are several different kinds
of definitions for the essential spectrum. Here we adopt the definition employed in
Goldberg [7] (see also Henry [8]). However, it should be noted that even if we take
a different one, we can obtain the same a priori bound as in Proposition 3.1, since it
is known that sup re{(LP),} does not depend on the choice of the definitions (see,
for example, Edmunds and Evans [2]). Our goal is the following.

PROPOSITION 3.1. For a given " > O, there exists a positive constant e independent
of e and " such that

Re {cre(LP)..,.} <= -e < O

holds for small e.

Proof The location of the essential spectrum is determined by the following sets:

(3.39) S {h[det (-ix2D itxM + N: AB) 0, -</x < c}

where



104 V. NISHIURA, M. MIMURA, H. IKEDA, AND H. FUJII

It is clear that

det (-/z2D ilxM + N+ AB)

becomes

--/282-- ilzcer + +-- era
I+/-

era {-(er + e)z + (a + er+/-) 2iacer}a

+ (/z 2e 2 + ilxce’r- a+) (/z 2 + ilzc 8+/-) +/- y+/- O.

The roots of this equation are given by

1
A [-(er + e2)/z 2 + (a+/- + er8+) 2ilce’r +/- v/--]

where

O-- {(er+ e2)/x2- (a+/- + erS+/-)}2-4(i,zcer)2+4ilzcer{(e’r+ e2)/z2- (c+/- + er8+/-)}

4er{(/z2e2- a+/- + ilxce’r)(ix2- 8+/- + ilzc) + 3’+/-}.

After some computation, we have

Re O {(er- e2)/x2 + (a+/-- erS+)}2 + 4erfl+/-y+, ImO=0.

Therefore,

1
X =2er[-(er+ e2)jt2-/- (0.’+-] er8+/-)-2itxcer

=0

1 1
c++(3.42)
2er -which is apparently strictly negative uniformly for small e and r> 0 from (A3). On

the other hand, if the inside of the x/----part takes the plus sign, we need to take it
into account. Without loss of generality, it suffices to consider the case where the
x/---part becomes a real number, namely,

{(er- e2)/z2 + (e+- erS+)}2 + 4erfl+y+

In this case, it follows from/3+/-y+/- <0 (see (A4)) that

1
Re a

2e--7 [-(er + e) ix
2 + a+ + er8+)

(3.43) +/- x/{(er- e2)/x2 +(a+ era+)}2 + 4er+
1

2er
[-(=+ =)=+ (+/- + a)+I( =)=+ (=+/- ) ].

It is obvious that the right-hand side of (3.41) is majorized by

(3.40)
+/- /{(er e 2),u, 2 + (a+/- era+)}2 + 4erfl+/-

We will compute the supremum of the real part of (3.40) when/z varies in R, which
gives us the upper bound of the essential spectrum. Suppose the inside of the x/---part
of (3.40) takes the minus sign or zero; then it is clear that

1
(3.41) Re A <- [-( er + e2)tz2 + a+/- + erS+ ].

2er
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According to the sign of the inside of I" l, (3.43) becomes

(3.44)

1
{--2e2/Z2+2a+}

e 1 1
2er r er er

Reh<=
1

2er
(-2z/x+ 2z8+} -/x + 8+ <_-

Thus we see from (3.44) that

(3.45) Re A-<max a+, 8+

Combining the results (3.42) and (3.45), we can derive the conclusion of Proposition
3.1. Note that we can take --6e to be max {a+, 1/26+} when e is assumed to be taken
smaller than r-1 (i.e., er< 1).

3.3. The SLEP equation and the behavior of the isolated eigenvalues in the singular
limit. We will study the location of the isolated eigenvalues and their dependency on
r. As has been shown in 3.2, the essential spectrum of is strictly bounded away
from the imaginary axis, so that the stability properties of the traveling front solutions
depend solely on the behavior of the isolated eigenvalues. In fact as we will see later,
some of the isolated eigenvalues really cross the imaginary axis, and therefore we must
track their behavior rather than try to obtain a priori bounds for them. The main
difficulty in doing so is that, when e$0, the eigenfunctions associated with those
dangerous eigenvalues do not remain in the usual function space such as Cunif(R) or
L2(R). The eigenfunctions actually fall into the measure space (a point measure for
the one-dimensional case). However, the SLEP method enables us to overcome this
difficulty and control these eigenvalues uniformly for small e.

First, we will study the asymptotic behavior of the eigenfunctions as Ixl-, /o.
Since the traveling front solution a// approaches the equilibrium states E/ and E_

with the exponential order as Ixl -+ oo, the asymptotic behavior of the eigenfunctions
for large Ix[ can be described by the limiting constant coefficient system of (LP).:

(3.46)+

d 2 d )E2dx2-Cer-dx+ a+ w++z erhw,

d d )w + dx---5- C --dx + 6+ z hz

where a+ lim,,++oof, =f(E+),/3+ =f(E+), 3,+ gu(E+), and 6:= gv(E+). It follows
from (A3) that

(3.47) and

It suffices to consider the + case only and, for notational simplicity, we omit the
subscript + hereafter. We rewrite (3.46)+ in the form

(3.48)a

dw d
e -x , e -x Cr aw z + erhw,

dz dn
dx

rl,
dx crl yw- 6z + hz
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or in a vector form

(3.48)b

W 0 1/e 0 0 w

d cle+A cle -le 0

zdx z 0 0 0 1

’q -y 0 -6+h c r/

li/fe,’r,

W

The eigenvalues of the matrix of ,,A/t’’c, determine the asymptotic behavior of the
eigenfunctions. The characteristic polynomial with the unknown K becomes

(3.49)

Examining the roots of (3.49), we have Proposition 3.2.
PROPOSITION 3.2. Assume that A belongs to

(3.50) {A C[ Re A > det/a }.

The eigenvalues of the matrix M]’’ are divided into two classes. One is of the order 0(1)
and the other is of the order 0(1/e) as e $ O, each of which consists of two eigenvalues
with positive and negative Re-parts, respectively:

(i) The O(1)-class consists of two eigenvalues, say , which remain finite in the
limit e $ O. Their principal parts are given by

c /c2 det
(3.51) +/----+ V 4 -/a X + O(e)

<>0.with Re g

(ii) The O(1/e)-class has two eigenvalues, say , which diverge with order lie as
e , O. The principal parts of them are given by

(3.52) : : -= 1/2 (c-r + ,,/(c’r)2 4a )/e + O(1)

with Re K 0.
The eigenvectors associated with the above eigenvalues are denoted by .. and

E:, respectively. If we need to distinguish the eigenvalues and the eigenvectors at E/
1+ ,e-and E_, we add / or after the superscript one or e such as r+

Remark 3.5. Let A satisfy

max {det+ det_}(3.53) Re h >-/2
o+ o_

then, it is clear from the above proposition that, at both E+ and E_, (3.49) has two
eigenvalues with positive real parts of the orders O(1) and O(1/e) and two eigenvalues
with negative real parts of the same property.

Proof of Proposition 3.2. (i) Multiplying e 2 to (3.49) gives

(3.54) oK
2

co/ / ot ’)/) oA / O(E 0.
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The two roots of the principal part of (3.54) are both simple under (3.50), leading to
(3.51) with the aid of the Implicit Function Theorem.

(ii) Introducing the new unknown by K /e and then multiplying (3.49) by
4e we have

(3.5) ( c+ a) + o() 0.

The two roots of the equation ,2_ c-, + a =0 are simple. Therefore, by using the
Implicit Function Theorem again, we obtain (3.52). Since (3.49) is of fourth order, the
above four solutions are all roots of it. The sign properties of the real parts, i.e.,
Re ,

+/- 0 and Re ,
+/- 0, can be shown by a simple computation under the assumption

(3.50).
Proposition 3.2 clearly shows that if we suppose there is an isolated eigenvalue

satisfying (3.53) with the eigenfunction in Cunif(R), then must decay with the
exponential order as Ixl oe. This guarantees us that later we will be able to work in
much more comfortable Hilbert space Hlo(R) for the isolated eigenvalues.

Now we return to the problem (LP).,"

(LP)., Lw+fz =erAw, gw+Mz Az

where A is an isolated eigenvalue and (w, z) is the associated eigenfunction. In view
of Proposition 3.2, we may think that it seems to be appropriate to regard the mapping
of the left-hand side of (LP),, to be the one from xE,(R)xxE,(R) to X,I(R)x
X,(R). However, our basic strategy is to find the nice limiting eigenvalue problem
from which the necessary information for positive e can be easily extracted. Unfortu-
nately, the above setting for function spaces is not fit for this purpose, since it turns
out that eigenfunctions associated with the isolated eigenvalues are no longer usual
functions in the limit e $0. More precisely, their w-components approach the Dirac
point measure after some scaling, and, at the same time, z-components tend to smooth
functions except the jump discontinuity of the first x-derivative at the layer position.
Therefore, it is necessary to replace the above function spaces by weaker ones with
the decaying property. For this purpose, we first convert (LP),, into a single equation
with respect to z by solving the first equation of (LP).,, with respect to w, and then
we put a new appropriate function space for z, namely, Ho(R which is valid up to
e $ 0. The following lemma is needed for this procedure.

LEMMA 3.3. For small e, it holds that

’--- cr{(LP) ,.}.

Proof. We can prove this in a similar way to that of Lemma 2.1 in [13], so we
leave the details to the reader.

Owing to Lemmas 3.2 and 3.3, we can solve the first equation of (LP)., with
respect to w for A e CZ (see Remark 3.5 for the definition of/2)"

(3.56) w (L erA )-(-fz).
For later use, we decompose (3.56) into two parts

1
(3.57)a (L erA)-l(.)=p(. )+ (L erA)*(.

where P is the projection operator on the principal eigenfunction of L defined by

(3.57)b P(" --= (’, 6*>6,
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and (L- erA)* is the remaining part of the resolvent, i.e.,

1
(3.57)c (L erA)t(. )= (L e’A)-(")-P(. ).

Remark 3.6. In view of Lemma 3.1 and (3.57) (see also Lemma 3.4), it is easy
to see that

(3.58) II(t- A)*II,)M,

holds for any small e and h C with M being an appropriate positive constant
independent of e. Here the underlying space X is L(R) (p 0) and (X, X) denotes
the set of bounded linear operators from X to X.

Substituting (3.56) into the second equation of (LP), we have a closed eigenvalue
problem with respect to z:

(3.59) Mz+
g

P(-fz)+g2(L-ezh)*(-fSz)=hz.

The core of the SLEP method consists of the following two key lemmas, which
characterize the asymptotic behaviors of the second and the third terms of the left-hand
side of (3.59).

LEMMA 3.4 (the first key lemma). Let F(u, v) be a smooth function of u and v.
en it holds that

(L erA)*(Fh) F*h/f strongly in L-sense
for any function hL(R)OL(R), rR+, and AC, where FF(u, and
F* F( Uo, Vo). Moreover, the convergence is uniform on a bounded set in C; x H,(R)
p > p O) with respect to (A, h).

Proo We can prove this in the spirit of the proof of Lemma 2.2 in Nishiura and
Fujii [13] with the aid of Lemma 2.6. So we leave the details to the reader.
LEA 3.5 (the second key lemma). It holds that

Wo k3o

where o (x) is the Dirac -function at x O, and k (i 1, 2) are positive conscants
given by

d
k*=-v(w, w) Co(t*) > 0,

k* 2’{g(h+(fl*),/3*) g(h_(fl*),/3*)} > 0.

Proof. With the aid of Lemma 3.1 and (3.38), we can prove this in a way similar
to that of Lemma 2.3 in Nishiura and Fujii [13], so we omit it.

Now we are ready to derive the singular limit eigenvalue problem of (3.59). First
we rewrite the second term of (3.59) through e-scaling:

P(-f,z)= g;/..
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Using the above two key lemmas and Lemma 3.2, we see that, as e $0, (3.59)
becomes

d2 d k* det*
(3.60)

dx2 z c* -x z + o% -’cA
(z, 60)60 + z Az, z Ho(R)

where k*= k*k*2, det*=-f*,g*-f*g*, f*=--f,(Uo, Vo), and so on. Here, of course,
(3.60) should be written in a weak form; however, for notational simplicity, we write
it in a classical form. We call (3.60) the SLEP differential equation of (LP).,. The
formal adjoint equation to (3.60) is given by

d2 d k* det*Z:nt_C* Z :(3.61)
dx2 Z +

0̂*-’ca (Z*’ 60)60+-, az*, z e (H)*(R).

Without loss of generality, we can take

(3.62) (z, 6o)= 1

as a normalization for z, since if (z, 6o)= 0, z becomes identically zero. Under (3.62),
(3.60) is equivalent to

d 2 d
z

det*
(R+/-),(3.63)a dx2 Z+/--C*-x +--f--u z Az +/-, z 6 Ho

(3.63)b Z+(0) Z-(0),

dz___+ dz- k*
(3.63)c

dx
(0) -x (0) o "cA

It is clear that z/ and z- are smooth functions of x on R/ and R_, respectively. The
task is to find A such that the associated solutions of (3.63)a and (3.63)b satisfy the
jump condition (3.63)c with respect to the first derivative.

Let us convert the SLEP differential equation (3.60) into the equivalent transcen-
dental equation, which is much easier to deal with. We first introduce the inverse of

T.... c. Hlo(R)_>(Ho)e(R),the following differential operator -x

d d
(3.64)a T....c=__+C g(L

_
--a dx2 --dx- e’cA )*(-f g; + A

through the associated bilinear form

B’"c(z1, z2) ((Zl)x, (Z2)x) -" c((Zl)x, g2)
(3.64)b

-(g,(L e’cA )*(-fSz,), z2) + ((A -g;)z,, z2)

for z, z2 6 H(R). Recall that c is not an independent parameter but a function of e
with c* lim -.o c(e).

LEMMA 3.6. There exist positive constants eo and p such that the differential operator
(in the generalized sense) T.... (R) - *-a Ho Ho) (R) is uniformly invertiblefor 0 <- e <- eo,
c in a bounded set in R+, and A C;, where is a positive constant stated in Remark

e,’r,c....C’(H)#(R)- Ho(R) Moreover, Kx3.5. We denote this inverse operator by Kx
depends on "c and A analytically, and depends on e continuously up to e 0 in operator
norm sense, respectively.

Proof. We can prove this lemma in a way parallel to that of Lemma 3.1 of Nishiura
and Fujii [13], so we leave the details to the reader.
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E, T,Applying the operator K to (3.59), we have

which shows that z is a constant multiple of K’"C(g,(dp/x/-)), namely, for a
constant

(3.66) (z aK"’ g,
x/-] H(R).

Substituting (3.66) into (3.65), we see that the nontrivial solution z of (3.65) exists if
and only if A satisfies the algebraic-like equation

(3.67) rh=(K,,c ( dp e)---e a g’
x/-]’ -f

We set

(3.68) (h; e, r, c)-= ---’he K’’" gu x/]’ -f’ 0.

This is the basic relation among e, z, c, and h in the sense that the behaviors of isolated
eigenvalues with respect to e (including e 0), z, and c are governed by (3.68). Recalling
Lemma 3.1, the left-hand side of (3.67) is defined continuously up to e--0. On the
other hand, in view of Lemmas 3.5 and 3.6, the right-hand side of (3.67) is also well
defined up to e- 0. Therefore (3.68) holds uniformly for small e up to e 0. Thus,
the limiting equation of (3.68) as e $ 0 is given by

(3.69) (A; 0, % c*)--sro-zh-k*(K*’’*8o, 80)=0.

We call (3.69) the SLEP equation of (LP).. The great advantage of the SLEP equation
is that not only the limiting location of isolated eigenvalues but also the behaviors of
those for positive e can be obtained from (3.69) by applying a usual Implicit Function
Theorem to it at e- 0. This is due to the nice limiting characterization as in Lemmas
3.4 and 3.5.

We first analyze the SLEP equation (3.69), and then we will return to (3.68) in
the next section. The following lemma enables us to concentrate on the study of the
behavior of real eigenvalues of (3.69).

LEMMA 3.7. For a given r > O, there exists a positive constant [db (which may depend
on -) such that the SLEP equation (3.69) does not have complex isolated eigenvalues in
the region C,.

Proof. See the Appendix for the proof.
The real eigenvalues of (3.69) have a simple geometrical interpretation, namely,

they are the intersection points between the straight line S(A; % c*)-= o*-rh and the
curve

(3.70) O(h’, z, c*) k*(K *’’*x 80, 80).
G satisfies the following properties as a function of A.
LEMMA 3.8. G(A; r, c*) is a strictly decreasing and convex function of real h for

h >- and satisfies thefollowing"
(i) G(0; r, c*)-- sro,-*
(ii) limx_+ G(A; r, c*)=0.
See Fig. 6.
Proof We can prove this, except property (i), exactly in the same manner as the

proof of Lemma 3.3 in Nishiura and Mimura 15], so we leave the details to the reader.
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<
d

G(0; % c*) (stable)(a) -- dA

d
(b) -"> d G(0; z, c*) (unstable)

FIG. 6. The limiting location of the critical eigenvalue of (LP),, is represented as an intersecting point

of two curves G(A" z, c*) and *o -ZA, which becomes negative (respectively, positive) when -z < (respectively,
>)(d/dX)G(O; ’, c*).

As for the property (i), this is a direct consequence of the translation invariance
property. In fact, the spatial derivative of the traveling front solution , (u, v,) is
an eigenfunction of (LP), with h =0 for any small e. Therefore the SLEP equation
(3.69) must also have a zero eigenvalue, implying the property (i).

It is easily seen from Lemma 3.8 that there are exactly two intersection points
including the multiplicity between S and G" as is expected, one is the zero eigenvalue
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that comes from the translation invariance (see Lemma 3.8(i)), and the other is called
the (real) critical eigenvalue. We denote this critical eigenvalue by A*(r, c*) or simply
A*(r). In view of Fig. 6 and Lemma 3.8, we easily see the following lemma.

LEMMA 3.9. There exists a unique real critical eigenvalue A A*(r, c*) and its sign
is determined as follows:

< d
c*;t*(r, c*)O if and only if-- G(X; -,

A=0

From Lemmas 3.7 and 3.9, and Proposition 3.1, we can conclude the following
stability properties of traveling front solutions in the singular limit sense.

TI-IEOREM 3.1 (linearized stability in the singular limit sense). Let li= (u, v)
be a traveling front solution of (P), with the asymptotic velocity c* as e O. Then, its

singular limit traveling front solution is

stable] d
marginally smble if and only if-Z-d- G(A; -, c*)

unstableJ
:o

respectively. Here the terms stable, unstable, and marginally stable are used in the linearized
sense; for example, stable means that all the spectrum have strictly negative real parts
except the zero eigenvalue associated with the translation invariance.

3.4. Stability of the traveling front solutions for positive e. In the previous section,
we have studied the stability properties of the traveling front solutions in the singular
limit sense. Namely, we have derived the SLEP equation (3.69), which tells us the
limiting location of the real critical eigenvalue, and have given a criterion for the
stability of traveling fronts (see Theorem 3.1). The great advantage of the SLEP method
is that stability properties for positive e can be obtained directly from (3.69) by using
a usual Implicit Function Theorem, despite the fact that the linearized problem (LP),
and the associated eigenfunctions behave in a singular manner as e $ 0.

Generically speaking, stability properties are preserved when e becomes positive.
The only exceptional case is the third one (the marginal case) in Theorem 3.1 where
stability properties as well as existence for positive e become more delicate problems.
The discussions of the details for this case are postponed to a forthcoming paper where
we have a nice qualitative description about what happens to the tangential case in a
structurally stable manner when we look at the behavior of the solution branch in
(z, c)-space rather than looking at just one particular solution.

The location of eigenvalues of (LP). for positive e is determined by (3.68), i.e.,

(3.68) (A; e, r) ’e rA-(K’’c (gx/_],_fel=O.
We can analyze this equation as a perturbation of the SLEP equation (3.69). We use
the simple notation h*(z) as a critical eigenvalue of (3.69) (see Lemma 3.9).

LEMMA 3.10. The real critical eigenvalue h*(’) of (3.69) can be extended uniquely
to the solution h c(’) of (h; e, z)= 0 for small e, where h (’) is real and continuous
with respect to e satisfying

lim A(z) A *(’).

Moreover, there exists a positive constant tx such that there are no real solutions of
(A; e, ’)= 0 in C, for small e except A (’) and the zero eigenvalue coming from the
translation invariance property.



STABILITY OF TRAVELING FRONT SOLUTIONS 113

Proof. Recall that (h; e, r) is analytic with respect to h in C and continuous
with respect to e up to e 0. Since h -0 is always a solution of 0 because of the
translation invariance property, can be decomposed as

(A; e, r)= AH(A; e, z)

where H depends on (A; e, r) in a similar way as and H is real-valued for real A.
The critical eigenvalue A *(r) ofthe SLEP equation (3.69) is a solution of H(A; 0, z) =0,
namely,

(3.71) H(Ac*(r); 0, z)=0.

When A *(r)# 0, it follows from Lemmas 3.8 and 3.9 that the straight line S and the
convex curve G intersect each other transversally at A A*(r), which implies that

o; OH
(*(); 0, )= x*() -- (*(); 0, ) 0.

Therefore, it holds that

OH
(3.72) O-- (h*(’); 0; z) # 0.

When hc*(’)=0 (the tangential case), it holds that

0
(0; 0, -) o.

However, after some computation we have

02; OH
0 t0- (0; 0, "r) 2- (0; 0, ’r) -2k*(K o) < 0.

Thus, (3.72) holds whether or not h *(z)=0. Combining (3.71) with (3.72) and applying
the Implicit Function Theorem to H 0 (if necessary, we extend H to the negative e

continuously), we obtain the unique real critical eigenvalue h h (’) of 0 satisfying
limo h(z) h*(z).

Noting Lemma 3.9 and the uniqueness property of the Implicit Function Theorem,
the latter part of Lemma 3.10 can be proved by contradiction without difficulty.
Therefore we leave the details to the reader.

Lemma 3.10 is essential for judging the stability properties, since we have the
following a priori bound for the remaining spectrum.

LEMMA 3.11. Both the essential spectrum and the nonreal isolated eigenvalues of
(LP), are uniformly bounded awayfrom the imaginary axisfor small e. Namely, suppose
that h belongs to the above spectrum; then it holds that

(3.73) h C,

for a positive constant tz3 independent of small e.

Proof. For the essential spectrum, this result is already proved in Proposition 3.1.
For complex eigenvalues, we first show the following sublemma.

SUBLZMMA 3.1. Suppose that h C; is an isolated eigenvalue of (3.68) or the
definition of I, see Remark 3.5); then for small e it satisfies

where M is a positive constant independent of e.



114 V. NISHIURA, M. MIMURA, H. IKEDA, AND H. FUJII

Proof. In view of Remark 3.6 and Lemma 3.6, we can easily prove by contradiction
that there does not exist a divergent sequence of eigenvalues in Ca of (3.68) as e 0.
The details are left to the reader.

Using this sublemma, we will prove (3.73) for complex eigenvalues by contradic-
tion. Suppose that there does not exist such a u. for any small e. It follows from
Sublemma 3.1 that we can find a sequence of complex eigenvalues (An} n>_-i (Im An # 0)
of (3.68) with e, 0 as n ’ oo, which converges to A. satisfying the SLEP equation (3.69)
with Re A. >-0. By recalling Lemma 3.7, the only possibility is that A. is equal to one
of the real eigenvalues of (3.69). However, in the view of Lemma 3.10 and its proof,
we see that both eigenvalues A*(-) and the zero of (3.69) are uniquely extended as
real solutions of (3.68), which is a contradiction and completes the proofofLemma 3.11.

Except in the tangential case, i.e., A *(z)= 0, we can conclude the following from
Lemmas 3.10 and 3.11.

THEOREM 3.2. Let ll be a travelingfront solution of (P), with the limiting velocity
c*= limo c(e) constructed in 2. Then, for small e, ore is

(i) Asymptotically orbital stable in Cunif(R)-topology if
d .,,c.2

0 0,(3.74) -r<- G(A r, c*) =-k*((K
A=0

or

(ii) Unstable if
d

ld :’g"r’c* 2
0(3.75) -" >- G(A z, c*) k*(( 30, 30).

A=0

Proof of Theorem 3.2. It is clear from Lemmas 3.9 and 3.10 that the inequality
z > (respectively, <) -(d/dh)G(h; z, c*)[x=o implies the unique existence of the nega-
tive (respectively, positive) eigenvalue A(r) for small e. The simplicity of this critical
eigenvalue h(z) and the zero eigenvalue associated with the translation invariance
can be proved in an analogous way to that of Theorem 4.1 of Nishiura and Mimura
[ 13]. Therefore we omit the details. Thus, noting Lemma 3.11, we obtain the conclusion
of Theorem 3.2.

4. Relation between stability and the sign of the Jacobian of matching conditions. In
the previous section, we have obtained a stability criterion in which the location of
the unique real critical eigenvalue is determined via comparison of slopes at the origin
of two curves of the SLEP equation. In this section we will show that the stability
criterion in Theorem 3.2 corresponds exactly to the sign of the Jacobian
0(o, o)/0( c, /3 ), where o and o are the functions used in Cl-matching conditions
for singular limit solutions in 2. In other words, the intersecting manner of two curves
/3 =/3o(C) and fit(c), associated with o=0 and o =0, respectively, determines
the stability properties of traveling front solutions.

This not only gives us a clear geometrical interpretation of the stability criterion,
but also has a useful practical application. In fact, when we construct the singular
limit solutions, we can also judge their stabilities simultaneously. To prove this relation,
we will prepare three lemmas: the first one deals with the formula of (d/dc)o(C);
similarly, (d/dc)(c) is computed in the second one; and, finally, in the third lemma
a relation between the coefficient of the SLEP equation and the depth of the jump
j(fl) at fl =/3* (see (4.1)) is given.

We introduce the following notation for later use:

(4.1)a G+/-(V) -= g(h+/-(V), V),
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Gt(V)_=G.(V) for/3<_- V< Dmax,
(4.1)b

G_(V) for/3min < V<,

and

(4.1)c j(/3) a+(/3) a_(/3).

LEMMA 4.1. Let o(C) be the relation for and c (see Lemma 2.2) where the
outer equation (2.7)+/- for v has a unique Cl-matching solution Vo(x; c) (see (2.10)).
Then it holds that

(4.2) cc/3O(C)=-j(o(C))- c(flo(C)-V_)- g(Uo, Vo) dx <Zo, Z*)

where Uo =- h3o(c)( Vo), and Zo (respectively, z is given by d/ dx)
Vo(x; c)/(d/dx) Vo(0; c) (respectively, e-CXZo). Moreover, if (c, rio(C)) is an intersection

point with (c), then Zo (respectively, z is the limiting z-component ofthe eigenfunc-
tion associated with the translation free zero eigenvalue of (LP). (respectively, the
adjoint problem LP)) under the normalization Zo(0) 1 (respectively,
z(0) 1).

Proof. For arbitrary c R, the outer solution Vo matched in Cl-sense at the origin
exists uniquely for/3 =/3o(C) and satisfies the following equation (see Lemma 2.2):

d 2 d
(4.3) Vo c --x Vo+ Gto( Vo O.

Although (4.3) should be written in a weak form due to the jump discontinuity of
Go()(. at the origin, we write it in a classical form for notational simplicity. Note
that the Cl-matched solution Vo of (4.3) can be regarded as a function of the velocity
c; Vo Vo(x; c). We rewrite (4.3) as

(4.4)
d 2 d

dx--Z Vo- C-x Vo +j(flo( c)) Ho(c)( Vo) + o(c)(Vo)=0

where Ho(c)(. denotes the Heaviside function with unit jump at/3o(C), and Go(c)(.
Go()(.)-j(o(c))Ho(c)(.), which is a continuous function of x. Note that
Ho(c)(Vo(x)) is the Hcaviside function with unit jump at x =0 as a function of x.
Differentiating (4.4) with respect to x, we obtain

d2 d d
(4.5) dx2 (Vo),-C-x (Vo)x+j(flo(C))8o(X)+-- Gto()(Vo)(Vo)x=O.

On the other hand, differentiating (4.4) with respect to c, we have

d2 d d dj
dx

(/o- Vo+ Vo)o(C)

(4.6) -j(/3o( c))(Vo) (0) -’ 8o(X)/o(c) +j(/3o(c) )go(X)

dd
+ O,

where means c-differentiation. In view of (4.5), it is easily seen that
satisfies

d d d
(4.7) x-: Vo) + C-dx Vo) +j(flo(C))8o(X)+- (o()( Vo) =O.
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This is apparently the adjoint equation of (4.5). Multiplying (Vo) to (4.6) on both
sides, after integration by parts we obtain

-((Vo),,, (Vo)’)+ ((d (flo(c))Ht()(Vo), (Vo)’)
(4.8) -(j(flo(C))( Vo)x(O)-ico(X), (Vo)x)

+ o()(Vo), (Vo) fo(C) o.

We will show the following equality:

(4.9)
dj

(flo(c))Ho(c)(Vo), (Vo) + o(c)(Vo), (Vo) -0.

Making the Newton quotient of G, we see that

{G+a(Vo)- G(Vo)}. (Vo) dx

(4.10)

-A- {j( + A)-j()} I/o) dx
+,

where x denotes the value of x where Vo becomes . Here, for definiteness, we only
consider the case of Aft > 0. Note that x is uniquely defined because of the monotonic-
ity of Vo(x). Since I(t+t(Vo(x))-Gt(Vo(x))[<-_maxt,[t,t+/t]lj(’)-j()l <-

const. 5/3 and Xt+A tends to xt as 5/3--)0, the first term of the right-hand side of
(4.10) goes to zero when 5/3-)0. Therefore, it follows from (4.10) that

/ Ixd 8(Vo), Vo)*
dj

(Vo) dx,

which shows (4.9) at fl flo(C). Substituting (4.9) into (4.8) and noting that (Vo),
(Vo) * (0), we have

(4.11) /o(C) =-((V)x’ V) x)-- -j(jo(C))-l(( Yo)x(O))2(Zo, z)
j(flo( C

where Zo (respectively, z) is defined by (Vo),/(Vo)(O) (respectively, (Vo)/(Vo)x(O)).
Let us compute the value of (Vo),(O). Integrating (4.3) from - to O, we obtain

V)x(O) c{ V(O)- v-}- Io Gt(c)( V(x)) dx"

Since x =0 is the switching point from the left branch h_(v) to the right one h+(v),
and Vo(0)= rio(C), this becomes

(4.12) (Vo)x(O)=c{flo(C)-V-}-Ig(Uo, Vo)dx.

Substituting this into (4.11), we obtain (4.2).
The last claim of Lemma 4.1 is clear from the fact that the x-derivative of the

traveling front solution becomes an eigenfunction associated with the zero eigenvalue
of (LP), for any small e.
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In view of Lemmas 2.3 and 2.4, the inner layer solutions were defined by solutions
of the following stretched scalar equation"

(4.13) Wyy c,’l’Wy +f W, O, W(+/-) h+(fl), W(O)= a

where c= Co()/" for any /3 (v_, v+). By recalling Remark 2.1, the inner relation
c Co(/3)/" can be solved with respect to/3 as/3 =/3i(c). Here, of course,/3t depends
also on -; however, for simplicity, we do not write the r-dependency explicitly.
Therefore the solution of (4.13) can be regarded as a function of c for any fixed ’.

LEMMA 4.2. Let fl =ill(C) (=fit(c; ’)) be the inverse function of the inner C 1-

matching condition c Co(fl)/" in Lemma 2.4. Then, it holds that

(4.14)

Proof. Differentiating (4.13) with respect to c, we have

(4.15) V’yy-CT’Cry-7"Wy-t-fu(W,l(C))V-k-fv(W,[3l(C))t(c)=O
where means c-differentiation as before. On the other hand, differentiating (4.13)
with respect to y, it is easily seen that Wy satisfies

d 2 d
(4.16) Wy c" --;S Wy +f W, fl c Wy O.

dy ay

Therefore, W e-CY Wy satisfies

d 2 d
(4.17) _,_.---5 W + c-_. W +f( W, ill(C))W =0.

uy ay

Note that both Wy and W decay exponentially as [y[ +o (see Lemma 2.3). Taking
the inner product with W on both sides of (4.15) and using (4.17), after integration
by parts we obtain

(4.18)

When we recall the relation (3.38), it follows from (4.18) that

which proves (4.14).
Now let (c*,/3*) be an arbitrary transversal intersection point between/3 flo(C)

and/3 fit(c), and a//= (u, v) be the corresponding traveling front solution. As we
have remarked before, the spatial derivative , (u,, v,) satisfies (LP).. with A =0
for any small e. Therefore the SLEP differential equation (3.60) must also have zero
eigenvalue and the z-component of the associated eigenfunction, under the normaliz-
ation (Zo, go)= 1, is given by

k* ,’,c*R(4.19) Zo Ko ’o.

Recall that c* is the limiting velocity of as e $ 0. Also noting that z (=e-c*’zo) is
a kernel function of the adjoint problem (3.61), we see that it is represented by

k *,’,’,-c*o(4.20) z Ko
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On the other hand, recalling that v remains as a Cl(R)-function up to e 0, we
see that v, converges to (Vo),,. In view of (4.5) and Lemma 3.6, (Vo)x is represented by

(4.21) Vo)x =j(fl*)K *’*’c*
0 tOo

Here we use the fact that dG./dV(Vo) det /f and limo (0). It is clear that
Zo (=limo (v/v(O))) and (Vo)x/((Vo)x, 8o) must coincide with each other. Thus in
view of (4.19) and (4.21), we see that the following relation holds among the numbers
k*, f, and j(fl*).

LEMMA 4.3. Let (c*, fl*) be an arbitrary intersection point of fl flo(C) and fl
fl(c). en it holds that

j(*) k*
(4.22)

(Vo).(0) =.
As has been seen in 2, the singular limit traveling front solutions can be

constructed by finding the intersection points between/3 =/3o(C) and fl =ill(C). We
will show that the manner of intersection of these two curves is exactly equivalent to
the sign of the real critical eigenvalue in Theorem 3.1. In other words, the inequalities
/t (c) X/o(C) at c c* are equivalent to those in Theorem 3.1. Our goal is the following.

THEOREM 4.1 (stability and matching conditions). For a given z > O, let (c*,/3*)
be an arbitrary intersection point ofouter and inner relation curves fl flo( C) and fl fit(c)
in 2. Then, the inequalities

(4.23) /, (c*) ---/o(C*) ( "=ccd)
are equivalent to

d
c* "*"r’c*2R(4.24) -r-- G(A’, % =-k*((,o ,o, o),

A=0

which determine the stability properties of the traveling front solution. Moreover, the
inequalities (4.23) (or (4.24)) are equivalent to the sign of the Jacobian of Cl-matching
conditions (dPo(C fl; z), Wo(C, fl))= (0, 0) (see 2), namely,

(4.25)
0(o, o)0 at (c*, fl*).
o(c,) <

Proof Using Lemmas 4.1 and 4.2, the inequalities (4.23) can be rewritten as

(4.26)

Recalling the formula (3.12) for o and using Lemma 4.3 and (4.12), (4.26) becomes

(g)
(4.27) -r

k*
(Zo,

Substituting the expressions (4.19) and (4.20) into (4.27), we have
,,-r,c*(4.28) -r-k*(K*o’*’C*o, --o’*’*’-* to) -k*((Ko ,80)2, to),

which is clearly equivalent to (4.24). Finally, we will prove the equivalence to (4.25).
Rewriting the Jacobian as

O(*o, *o)_O*o O*o {O*o/O__c- O*o/O___c}o(c, ) o/3 o Oo/O/ Oo/O
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we see from the formula of derivative of the implicit function that, at the intersection
point (c*,/3*) of/3 =/3o(C) and/3 l(C), it holds that

(4.29)
0(o, o) 0o Oo
o(c, I) c,=.,.- 0 0

(/,(c*)-to(C*)).

This combined with (2.9) and (2.15) proves the last claim of Theorem 4.1.
Example 3.1. Suppose that/3 =/3o(C) and/3 =/3(c) intersect each other as in Fig.

4(b). The traveling front solutions corresponding to P and Q (respectively, R) are
stable (respectively, unstable).

Appendix. ProofofLemma 3.7. The basic idea of the proof is essentially contained
in the proof of Theorem 3.1 of Nishiura and Mimura [15]. However, it should be

^* C*noted that ’o and G(A; z, (see (3.12) and (3.70)) depend on the parameter r, which
is a different point from the case treated in [15].

For a given r Zo, we must show the nonexistence of the complex eigenvalues in
C,, for the SLEP equation (see (3.96) and (3.70))"

() (; 0, ,o, c*) o*-,o (; ,o, c*) 0.

The strategy is that we consider the following modified equation of (1)"

(2) (; ,) o G(; ,o, c*) 0,

namely, the coefficient of the second term of (1) is not fixed to be Zo and all the
remaining terms are exactly the same as before. We study the behavior of the solutions
of (2) when - varies in R+, and prove the lemma by contradiction. For this purpose,
we prepare four lemmas, the proofs of which will be given in the last part. First it
follows from Lemma 3.8 that A 0 is always a solution of (2) and there exists a unique

^,value z re (which depends on to) such that the straight line Ko -ZcA is tangent to the
convex curve G(A; to, c*) at A 0. The first lemma describes the behavior of solutions
of (2) near (z, A)= (z 0) as follows.

LEMMA A1. Equation (2) has exactly two solutions near (z, A)= (rc, 0). One is the
zero solution (A 0), which is independent of% and the other is the real solution A =- (r)
with zc O, which behaves, near r rc, as does

(3) ()= -c(-)
where C7- is a positive constant given by

1
CT =- k,((Ko,.,o.,)315o, o)"

Besides the zero solution, (z) is a unique zero of (2) in an appropriate complex
neighborhood of A O.

Remark A1. When z r, it holds that O/gA ((r); r)# 0 at the unique nonzero
real solution A (z) of (2).

The next lemma shows the uniqueness of solutions of (2) on the imaginary axis.
LEMMA A2. Suppose there exists a solution of (2) that crosses the imaginary axis

when z varies. Then it must be a real one and must coincide with the solution .(z) in
Lemma A1. Therefore, there are no complex solutions with Im-part # 0 that cross the
imaginary axis.

The following lemma shows that a complex solution of (2) can always be extended
uniquely as a function of z.
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that
LEMMA A3. Let (A 1, rl) be a solution of (2) in Ca x R/. If Im A 0, then it holds

Finally, the next lemma shows the nonexistence of solutions of (2) for large r.

LEMMA A4. There exist positive constants zs and txs such that there are no solutions

of (2) in C,. for r >-_ z except the simple zero solution.
Now we are ready to prove Lemma 3.7 by contradiction. Suppose that Lemma

3.7 is not true; then we can find a nonreal solution Ao(ro) of (1) with Re (Ao(ro))=> 0.
Here we use the fact that A 0 is not an accumulation point of solutions of (1), which
can be easily checked by using the properties of G (see Lemma 3.8) and the proof of
Lemma A1. Note that ro must be strictly smaller than r in Lemma A4. Regarding
Ao(ro) as a special solution of (2) for r ro, we trace its behavior when r varies. We
denote by Ao(r) the solution of (2), which is a continuation of Ao(ro) as r varies. In
view of Lemma A3, Ao(ro) is uniquely continued as far as it remains a nonreal solution.
When r increases, we see from Lemma A4 that Ao(r) must cross the imaginary axis
before r reaches r. However, owing to Lemma A2, )to(r) cannot cross the imaginary
axis. Therefore )to(Z) must fall into the real solution of (2) before it reaches the
imaginary axis. But we see from Lemma A1 and Remark A1 that this is not possible,
which is a contradiction and completes the proof.

Proof ofLemma A1. It is clear from Lemma 3.8(i) that A 0 is always a solution
of (2) independent of r. Therefore, since is analytic with respect to A, can be
rewritten locally near A 0 in the following form:

(4) (A; r) A/-]r(A r)

where H is a smooth function with respect to all variables. After some computation,
we obtain

(5) --i (0; re)=-2k*((Ko*"o’C*)3ao, ao) < 0.

Since O2/OA2(0; rc)=2Offt/OA(O, r), it follows from (5) that

(6) O/ (0; r) k*((Ko*"’c*)3ao, ao) < 0.

This implies via the Implicit Function Theorem that =0 has a unique solution
A (r) in an appropriate complex neighborhood of A =0 with (r)=0. It also holds
that

(7)
di(r) 0/0r(0; r)_ 1

de ..... -olZlIox (0; ) k*((Ko’o’*.)36o, 6o)

which completes the proof of Lemma A1.
Proof of Lemma A2. We will show that the origin (A 0) is the unique solution

on the imaginary axis of (2). The real and imaginary parts of (2) are given by

(8)a 0 tAR A(AR, (AI)2) O,

(8) (, (/))-=0
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where A =AR+/At, and A and B are smooth functions of hR (>--) and (hl)20
defined by

(9)a A(An, (X,)2) k*(fK,,8o, 8o),

(9)b B(An, (A,)2) k*(iK],o, 60).

Here Kx" (H,) H, is the inverse operator of

d 2 d det*
Ta-- dx2 c* t-An and {I+(A,)2 2 - H

dx f*
Ka,} Ho- p.

The following results are useful, the proofs of which are left to the reader (see also
Lemma 3.2 of Nishiura and Mimura [15]).

SUBLEMMA A1.

OA oB
(i)

0(A, )2<0 and )2<0,
(ii) lim A=0 and lim B=0,

OB
(iii) <0 for An>-12,

d
(iv) B(An, 0)- A(An, 0).

dA

Let us set AR =0 in (8) and Bo B(0, 0). It follows from Sublemma Al(i) that
(8)b can be solved uniquely with respect to (At)2 as a function of r for z<-Bo. We
denote it by (A)2(z). Note that (A)2(z) is a strictly decreasing function of r with
(A)2(Bo)=0 and lim_o (A)2(’) =+o. Substituting this into (8)a, we have a scalar
equation of " (-< Bo):

(10) o*- A(0, (A,)2(’)) 0.

In view of Sublemma Al(i), we see that A(0, (A)2(r)) is a strictly monotone increasing
function of . Therefore (10) has a unique solution, if it exists. On the other hand, we
already know that A =0 is a special solution of (8) coming from the translation
invariance, which shows that z Bo is a unique zero of (10). Thus, all the eigenvalues
that cross the imaginary axis must go through the origin. Recalling the local uniqueness
of the zero solution of (2) in some complex neighborhood (see Lemma A1), we see
that X(z) is the unique solution of (2) which crosses the imaginary axis as z varies.

Proof of Lemma A3. This can be done in the spirit of the proof of Proposition
3.1 of Nishiura and Mimura [15]. So we leave the details to the reader.

ProofofLemma A4. First note that, from Sublemma Al(i) and (iii), B is a strictly
decreasing function AR and (At)2. Let z =- B(-/2, 0). Then, in view of (8)b we see
that there are no complex eigenvalues in the region Re h >--/Xl/2 for z >_- z. Recalling
Sublemma Al(iv) and A(AR, 0)-= G(AR;zO, c*) (see (3.70)), we see that - is the slope
ofthe convex curve G(A; Zo, c*) at h -/2/2. A simple geometric consideration implies
that there are no real eigenvalues h satisfying h _-->-/2/2 for _--> . Combining these
results, we can conclude Lemma A4 with -/z=max {--/Z/2,--6e} for ’>--z. (see
Proposition 3.1 for the definition of 6e)-
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TRAVELLING WAVE SOLUTIONS TO A SEMILINEAR
DIFFUSION SYSTEM*

J. ESQUINASt AND M. A. HERREROf

Abstract. This paper considers the semilinear system

tit tixx + vP O,

(S) v, v.. + u" 0,

-oo < x < +oo, > 0

with p > 0 and q > 0, and looks for nonnegative and nontrivial travelling wave solutions to (S): u(x, t)=
o(ct-x), v(x, t) (ct-x) possessing sharp fronts, i.e., such that o(:) ,(:) =0 for : =< Go and some finite
:o, which after a phase shift can always be assumed to be located at the origin. These solutions are called
finite travelling waves (FTW). Here it is shown that if pq < 1, for any real c there exists an FTW that is
unique up to phase translations and unbounded, whereas no FTW exists if pq >_-1. The asymptotic wave
profiles near the front as well as far from it are also determined.

Key words, semilinear diffusion systems, travelling waves, fronts, asymptotic behaviour

AMS(MOS) subject classifications. 35K55, 35K57, 35R35

1. Introduction. In this paper we will consider the system

tit ttxx + I
p O,

(1.1) 1)t --1)xx -l- uq O,

-<x< +, t>O

where p and q are positive real numbers. More precisely, we are interested in the
existence of nonnegative finite travelling waves (FTW). By a travelling wave of (1.1)
with speed c we mean a solution (u(x, t), v(x, t)) defined in

S {(x, t): -o < x < +o, > O}

of the form

(1.2) u(x, t)= (ct-x), v(x, t)= d/(ct-x)

where o(:) and ,(:) are nonnegative and different from zero, o, , c2(_, +c),
and q(:), ,()-->0 as -->-o0 and are nondecreasing in :. Here o and are the
respective wave profiles, and c may be any real number. If q(:) ,() 0 when -< o
for some real :o we say that (u, v) is a finite travelling wave. In this case the line
x ct-o is a front separating the region P/(u, v)= {(x, t): u > 0, v > 0} from the one
where u= v=0. Clearly, P/(u, v) expands in time when c>0 and recedes if c<0, to
remain stationary for c 0. In the context of scalar heat conduction problems the two
first cases are referred to as the onset of heating and cooling waves, respectively.

There exists a wide literature on reaction-diffusion systems and their stationary
states (cf., for instance, I-A], IS], and references therein), and, in particular, on the
existence of travelling waves to them (see [AW], IF], [FM], [BNS], [CL], [HI, IT],

* Received by the editors January 13, 1988; accepted for publication (in revised form) February 14,
1989. This work was partly supported by Comisi6n Interministerial para la Ciencia y la Tecnologia grant
PB86-0112-C0202.

Departamento de Matemfitica Aplicada, Facultad de Matemfiticas, Universidad Complutense, 28040
Madrid, Spain.
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124 J. ESQUINAS AND M. A. HERRERO

and the references therein). Here we will concern ourselves with one of the simplest
cases of semilinear systems exhibiting a nontrivial coupling involving zeroth-order
terms, but the techniques employed extend to a wide class of diffusion-absorbing
problems. See in this context the remark at the end of 4.

Let us proceed to describe our results. As the nonlinear terms vp, u q are monotone
and unbounded for nonnegative values of u and v, no travelling wave can be expected
that connects zero to a positive constant state. Thus our FTW will be unbounded,
a fact already observed in nonlinear heat conduction problems in the scalar case
(cf. [M], [HV]). We first obtain a necessary and sufficient condition for FTW’s to exist
in terms of p and q, namely, Theorem 1 below.

THEOREM 1. There exist finite travelling wave solutions of (1.1) if and only if
(1.3) pq < 1.

Moreover, if (1.3) holds, for any real c there exists an FTW moving with speed c, and
the corresponding wave profiles o and are unique up to translations in space and time.

We will assume henceforth that (1.3) holds, and proceed to derive the asymptotic
wave profiles near the front (which we may assume to be located at : ct-x 0) as
well as for large values of :. To this end, we recall some notation. We say that f()
and g(sc) are equivalent as - o (finite or infinite), and write f() g() as - o, if
lim_.o (f()/g())= 1. We then have Theorem 2.

THEOREM 2. Assume that pq<l and for any real c, let (q, b) be the FTW
propagating with speed c obtained in Theorem 1. Then the following hold.

(i) For any real c, we have

1.4) o () A and o() B as 0/, where

2(1 +p) 2(l+q)
1 -pq 1 -pq

a’-Pq=(((-l))Pa(a-1))- B aq(/3(fl 1)) -
(ii) If c < O, then

1.5) q() C and () D as c, where

l+p l+q
1 -pq 1 -pq

C1-pq ((--c)l+pP) -1, D= Cq((-c)6) -.
(iii) If c > O, the asymptotics.for -> o depend on the values ofp and q as follows:

(1.6a) Ifp < 1, q < 1 then q (s’) M e, 4,(sc) N ec, where

Mll_pq
1 M

(c2(1-q))pc2(1-p)’ N=c(1-q)’
(1.6b) Ifp<l,q=l then q(,)Mze, qt()N2ec, where

=--1 s e(p- ds, N =.MM-P
cp+ c’

(1.6c) Ifp<l,q>l thenq()M3eCe,$(sC)N3eqe where

M_pq 1 M
(c2(q 1)q)pc2(1 -pq)’ N3= c2(q 1)q"
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The casesp > 1, q < 1 andp > 1, q 1 are obtained by changing the coefficients in (1.6b, c)
in an obvious way.

Let us remark briefly on the estimates above. First, when we look for solutions
of the form (1.2), (1.1) is reduced to an ordinary differential equation (ODE) system
in the variable ct-x, namely,

When c 0 (i.e., in the case of stationary waves), (1.7) has an explicit solution given
by

(1.8) () A, (:)= B:, a,/3, A, B, as in (1.4).

Therefore (1.4) shows that, regardless of the wave-speed c, the first-order asymptotics
of FTW’s near :=0 is precisely that of the stationary solutions (1.8). As for the
behaviour when - o, consider beginning with the case c < 0 and try formally the
asymptotic expansion

q(:)=C:V+ ..., O()=D:+ ...,
Substituting this into (1.7) yields

CT( T 1)-2 cCTV-1 + Dpp +.. ",
(1.9)

D8(8- 1):-2= cD3sC-’ + cqvq+
so that, neglecting the terms on the left of (1.9) and matching those on the right, we
obtain the values listed in (1.5). We call the wave profiles thus determined to be of an
absorptive nature, since constants C, D, 3, y in (1.5) are those corresponding to the
explicit FTW solution of the simplified absorbing system obtained from (1.1) by
dropping the terms Uxx, Vxx there.

When c > 0 we expect the leading behaviour at infinity to be influenced indeed
by the heatlike part of (1.1). For instance, if p < 1 and q > 1, trying in (1.7) (:) Pe
and (:) Q e leads to

(1.10a) Ptx e"= cPtz e’+ QP ePV-I
(1.10b) Qu e" cQv e" + Pq e"q q-

Considering then the three terms in (1.10b) as of the same order yields u =/xq, whereas
matching the first two in (1.10a) gives us/x c. We then obtain u cq, c and the
third term in (1.10a) is of lower order as. These are the wave behaviours stated
in (1.6c), except for the coefficients P, Q, which remain to be obtained. A similar
analysis can be performed for the remaining cases, always yielding the exponential-like
estimates for and ff listed in (1.6). Because of the influence of the parabolic part of
(1.1), we call these behaviours of diffusive type, in contrast wih those obtained in (1.4),
(1.5).

As to the precedents of this paper, we should first mention the work [RK], where
the authors considered the general scalar equation

(1.11) ut=a(u’n)xx-buPq-k(un)x a,m,n,b,p,k>O

and used formal perturbation theory (as in the remarks just made above), to describe
all the possible asymptotic behaviours of waves occurring in (1.11) in terms of the
different parameters therein. See also [PP], where the onset of FTW for another kind
of degenerate diffusion equation is analyzed in a similar way. Later, in [HV], a rigorous
justification of the results conjectured in IRK] was provided for the case k 0; negative
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values of m and p were also allowed. The methods employed involve phase space and
comparison arguments. We have resorted to different techniques here, since the natural
phase space associated with (1.7) is four-dimensional, and therefore rather unwieldy.
Basically, existence is obtained by a fixed-point argument in whose formulation the
asymptotic behaviours predicted by perturbation theory play a crucial role (cf. 3).
As to uniqueness, it follows from a general ODE argument as explained in 2 below.

From the results in [RK] and [HV] it follows, in particular, that for the equation

(1.12) u,=a(u)x-bup, a,b>O, m,p> -I

only three asymptotic behaviours of FTW’s are possible, there named as absorptive,
diffusive, and stationary. These are illustrated by explicit solutions easily obtained by
dropping, respectively, the second, third, and first terms in (1.12) (cf. [HV, 2]). In
particular, for the semilinear equation

(1.13) ut- Ux) + up 0,

FTW’s u(x, t)=(ct-x) exist for positive values of p if and only if p< 1. Their
(2/1--p)behaviour is stationary (9(:) A1 near the front := ct-x =0, and absorptive

(()A2(l/l-p) or diffusive ((:)A3ect) as :-oo, according, respectively, to
whether c <0 or c > 0. Here A1 and A2, are positive constants, A2 depends on c but
A1 does not, and their explicit values are determined, for instance, by trying a formal
perturbation expansion. On the other hand,

1 )
(l/l-p)

A3= cZ(l_p)

as can be seen by repeating the arguments in 4 below. The reader will notice the
analogy between these results and the discussion following Theorems 1 and 2 above,
although several diffusive behaviours are possible for (1.1) depending on the values
of p and q.

Higher-order wave asymptotics can also be obtained from our techniques. As an
example, we derive a two-term expansion for FTW’s near the fronts.

THEOREM 3. Letpq < 1, andforanyrealcletuc(x, t) p(ct-x), vc(x, t) d/(ct-x)
be the solution obtained in Theorems 1 and 2. Then, for ct-x positive and close enough
to zero,

(1.14) uc(x, t)’A(ct-x)+Al(Ct-X)+l+

(1.15) Vc(X, t)- B(ct-x) + Bl(ct-x)+1+"

where A, B, a, fl are as in Theorem 2 and

(1.16)
cA(p(a -1)+ fl + l)

A1 (a + 1)(fl+ 1)-pq(/3-1)(a- 1)’

(1.17) B1 cBfl q- qAq-lA1
fl(fl+l)

Note that the wave-speed c, which is not reflected in the first-order approximation
near the front, does appear when second-order terms are considered.

We conclude this Introduction with the plan of the paper. Some preliminaries, as
well as uniqueness and nonexistence results, are gathered in 2. Section 3 is devoted
to existence and asymptotics of cooling waves (c < 0) under the necessary condition
pq < 1. Section 4 covers the case c > 0.
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2. Preliminaries. Nonexistence when pq>=l. Uniqueness. A finite travelling wave to
(1.1) can be described as a nontrivial, nonnegative solution to the ODE system

,p, q C[0, ),
(2.1) o"(:) co’(:) + (:) p for :> 0,

q"(:) cq’() + o (:) q for :> 0

together with conditions

(2.2) o() o’(:) q(sc) q’(:) 0 for so-< 0.

If such a solution exists, the following representation formulas hold"

(2.3a) q() (s)p ds,
c

(2.3b) q(:) o(s) q ds,

(2.3c) q’(sc) ecCe-)o(s) p ds,

(2.3d) ’() eC(e-q(s) q ds.

Indeed, (2.3c, d) can be obtained just by differentiating in the first two equations above.
Now, substituting (2.3b) into (2.3a), we get

e(--__ 1 e(-- 1 q(s) q ds dr.(2.4) q (:)
c c

Therefore, finding FTW’s amounts to obtaining nontrivial solutions to the integral
equation (2.4).

We now state a nonexistence result.
LEMMA 2.1. There are no FTW’s when pq >- 1.

Proof. Let us show that 0(s) q(sc) 0 ifpq 1. Ifp -> 1, and q => 1, the conclusion
follows at once from standard uniqueness results. As to the general case, we will argue
by contradiction. By (2.3c, d) both o and q are monotone nondecreasing, and once
they are different from zero they always stay positive. Without loss of generality, we
may then assume o(:) > 0, q(:) > 0 for :> 0. Then from (2.4) we deduce

(2.5) () -<_

where

Io (e(e-’) )[fro!(-*)-1) ds]F(sC)=
-1 e(’ P

c c
dt

so that, in particular, F(sc) 0 as sc + 0. Now the contradiction follows, since by (2.5),
(0() 1-pq should go to zero as s-0, which is impossible.

Uniqueness up to phase shift is contained in the following lemma.
LEMMA 2.2. Suppose that (p, ) and (o2, P2) are nontrivial solutions of (2.1),

(2.2). Then for some real q we have ()= p(-rl) and 2(:)= $1(:-
Proof. The argument involves two steps.
(i) Any pair of different nontrivial solutions (p, $1) and (q2, 2) is ordered, i.e.,

l(SC) < p2(:) and $1(sc) < $2(sc) or (sc)> P2(:) and $1(sc)> $2(sc) for :>0.
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Actually, it suffices to show the result for (1 and 2, since the corresponding
statement for @1, 2 then follows from (2.3b). To begin with, if supp q c supp q2 and
supp ql # supp 2, (2.3a, b) yield ql(:)> q2(sc) for all so>0. Therefore we have only
to deal with the case

1(0) 2(0), 1(:) > 0, 02(: > 0 for all s> 0.

We then argue by contradiction as follows. Assume that there exists so > 0 such that
o(so)--p(so). Then there exists r/> 0 such that, for any s =< so,

where

p,.,(s) {0 if --< r/,

o,(:- n)
Note that for arbitrary 0, (,(),,()) is a solution of (2.1) provided

((), ()) is also. Now we set o=inf{>0: .,()() for o}. If o>0,
there exists o such that

,,o() ().
In this case we define

g, inf{ : .o() ()}"
Clearly, o> 0. We would then have

(2.6) ,o() < 2()if0<<,
(2.7) ,o(,) ()
but in view of (2.3c) and (2.6), 1,,o(1)< 2(), so that (2.7) cannot hold. Thus
o 0 and 1() 2() for all o. Interchanging the roles of and 2 we deduce
() 2() and the proof of (i) is complete.

(ii) Now let (, ) and (2, 2) be two nontrivial solutions of (2.1), (2.2).
Without loss of generality, we may assume ()> 2() for > 0. Since 0, there
exists > 0 such that ,()< 2() for >0. Now set

o=inf{" ,() < 2() for >0}.
If o=0, () () so that we may assume o>0. Then ,()< 2()< ,()
for any 6, e such that 0< e < o< 6 and > 0, and this implies that ()= ,,o()-
The corresponding result for ffl, now follows from (2.3b).

3. Proofs of Theorems 1 and 2. The case c< 0. From now on we assume pq < 1
and look for a nontrivial solution to the integral equation for obtained in 2, namely,

(3.) ()=
c c

(s) s .
To this end a fixed-point argument will be employed. We begin with the case c < 0,
an assumption to be retained throughout this section.

Let us consider a function h()e [0, m) (0,) such that h()> 0 for > 0
and

2(1+p)
with a

1 -pq
l+p

(3.2) h ()
with fl 1 pq

if so>-2.
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Then (3.1) will be solved if we can find a function q()= h()f() such that f(s) > 0
for :> 0, f C)-[0, oo), and f is a fixed point for the operator

1 t ec(e-t)-I ec(t-s)-I
(h(s)f(s)) q ds dt(3.3) Tf)() h() c c

in the Banach space

(3.4) E ((C[0, ]; R), 1])
defined as the space of continuous functions in the Alexandroff compactified set [0, ]
corresponding to the semiaxis [0, ), endowed with the supremum norm. We now
have Lemma 3.1.

LEMMA 3.1. T maps E into E. In particular, for any function f E,

f(O) pq
(3.) (Tf)(O) - withM=((l+aq)(2+aq))ea(a-1),

M

(3.6) (Tf)() -’f() witn N (-c)(1 +q)
N

where f(oo) limx_oof x and a, fl are as in (3.2).
Proof. It suffices to show (3.5), (3.6). When so> 0 is close to zero, we have

ec(-t)- 1
(:-t) for 0-<_ <- :,

C

f(s) f(o)

so that for s 0 (cf. (.2), (.))

(rf( (-t (-ssof(o) s

=-f(O)P((l+q)(2+q)) -p (--)P(q+ de

=f(0)m((1 + q)(2q))-(( 1)) -.
This gives (3.5). As for (3.6), we remark that since c < 0, we have, for fixed o> 1 and

>> o,

(Tf)() - e 1 e 1 sqf(s) q ds
C C

whence comes the result.
LEMMA 3.2. T is continuous, and transforms bounded sets of E into bounded sets

of E. In particular, there holds

(3.7) Tfll <-- f TI where I() 1 for any O.

The proof of this result is straightforward.
We want to show next that T transforms bounded sets into bounded and equicon-

tinuous sets, when restricted to a suitable domain K c E, which consists of those
functions f e E such that

(3.8a) f() 0 for any [0, );
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(3.8b)

(3.8c)

Ilfll klf(O), Ilfll k:f(oo), where

k, max ((MII rI I1) ’/’-"", 1), k2- max ((NllrIIIoo) 1/’-’, 1),

M and N being the constants in (3.5), (3.6), and I being the constant
function in (3.7);
For any e > 0 we have

(1-e)f(O)<--f(x)<--(l+e)f(O) if x<6(e),

(1-e)f(oo)<-f(x)<=(l+e)f(oo) ifx> N(e)

where

6(e)=sup(x: (1-e)l-pq<-- (TI)(x) --< (1 + e) 1-p’)
TI)(O)

N(e)=inf (x: (l-e) 1-pq<
(TI)(x)

<_(l +e)_pq).
TI)(oo)

We have thus defined a cone (i.e., a closed, convex set K in the Banach space E such
that (i) Af K for any A >_-0 iff K, and (ii) for any f E, fa 0, at least one of the
functions f, (-f) does not lie in K). This set is nonempty, since both the trivial function
and I(x) in (3.7) are in K. We now have Lemma 3.3.

LEMMA 3.3. T(K) c K.
Proof. Let f K. It is clear that (Tf)() >-_ 0 for any : [0, oo). Furthermore, by

(3.5) and (3.8b)

rfll--< Ilfll21l TIII <- kW(0)"" TIIIo ktqMII TIl]o( Tf)(O)

so that we have Tfllo <-- kl(Tf)(0) as soon as we impose

k, - (MII TIIlo) li’-’<.

Actually equality would suffice for our purposes at this point; however, the fact that
kl --> 1 will play a role in a later result. Similarly, we see that

Now take x < 6(e) with 6(e) given in (3.8c) and use this last property applied to

f to get

so that by (3.5)

Tf)() <=f(o)Pq(1 + e)Pq( TI)()

(Tf)() <- M(1 + e)Pq( TI)()( Tf)(O)

(1 + e)Pq(TI)()(( TI)(O))-I(Tf)(O)

and since (TI)()((T1)(O))-l(l+e) 1-pq in the interval under consideration, the
conclusion follows. The corresponding estimate at infinity is arrived at
analogously, l]

LEMMA 3.4. T transforms bounded sets in K into bounded and equicontinuous sets
in K.

Proof. The first statement in the lemma has already been listed in Lemma 3.2. On
the other hand, proving equicontinuity away from : =0 and +o is immediate:
actually, it is not necessary to restrict T to the cone K at this stage. As for the cases
: 0, +o, they follow at once from (3.8c) since TK K. [q
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Let us summarize. So far, we have shown that T given in (3.3) is a bounded,
completely continuous operator that maps the cone K defined in (3.8) into itself. By
the classical Schauder Theorem (cf, for instance, [K]), T has at least a fixed point
f(s). This is not enough, however, since f(:) may vanish identically. Our next step is
then Lemma 3.5.

LEMMA 3.5. T has a nontrivial fixed point in K.
Proof. For n 1, 2,... we define

where I(x) is given in (3.7). Now, since k -> 1 and k-> 1, the function f+ In belongs
to K provided that fe K, and it is easy to see that for any fixed n, Tn is a nonnegative,
bounded, and completely continuous operator from K into K. Furthermore, since

TIIIo>- min TI(O), Tl()) min (-, -) =- ao> O,

we have

(3.9)
n

Then a variant of Schauder’s theorem (cf. [K, p. 242]) states that for any ro> 0, there
exist An > 0 and gn K such that

(3.10) Tngn=Angn,

(3.11)

Write/n (An) -1. It then follows from (3.9) that

gn() InTng,,()= InT g,,(,)+- >- la,nT

gn(sr) =/nTngn (st) I,,T(g,,(sr)+f-) >-lnT(gn())

(3.12)

((I))) ’+Pq-pq)T2.T .T . n I().

Iterating (3.12), we deduce that for any m 1, 2,...
_pq(m+l) Tm+lg.() > (.+""++""’) n I()

so that

(3.13) ro [g, (Pq+’"+Pq)’")n-Pq"+’] T+II].
On the other hand, by (3.5)

TIII T(T)II T(TI(O)) T()
Thus for any m 1

3.14) r+’Ii[ M+""++"">’") -1.

whence
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Putting together (3.13) and (3.14) we get

(3.15) ro Ilgnll >- (Ml+Pq+’"+(Pq)")-ln-Pq(m+l)([. l+pq+’’’+(pq)m)

We now let mc in (3.15) for fixed n. As pq < 1, this gives

(3.16) ro>_ M(1/(1-pq)))-ltx (1/(1-pq))

The next step consists of passing to the limit in (3.10). By (3.11), the sequence
{g, + I/n}, n 1, 2, is bounded. As T is completely continuous, we have that, up
to a subsequence also labelled with n,

(3.17) T(gn+)g asn

for some g K with 0< Ilgll<. On the other hand, by (3.16) and again up to a
subsequence, we get

(3.18) /xn -/Zo < as n-.
Now from (3.10), (3.17), and (3.18) we conclude that, along a suitable subsequence,

(3.1.9) gn Fog as n o.

Therefore, using (3.17) and (3.19), we get

g= ,-.lim T(g, +) lim,_. T(g,) T(og),

g T(txog)= IzqT(g)

and then the function f-[2,0-(Pq/(1-pq))g is the required fixed point, since it satisfies

f= Tf. I-]

Note that, since Ilfll0, it follows from (3.8c) that f(0) and f(c) are both
positive. In particular, from (3.5), (3.6) we conclude that f(O) 1-pq= M-1, f(oo) 1-pq=
N-1 with M, N as in Lemma 3.1. This gives the asymptotic estimates corresponding
to (1.4), (1.5) of Theorem 2. Those corresponding to follow, for instance, from
(2.3b). ]

4. The case c >. Our next step consists in obtaining the corresponding results
for expanding waves, i.e., for the case c > 0. Since the arguments very much parallel
those in 3, we just stress the new relevant points and sketch the rest of the proof. To
begin with, instead of h() in (3.2) we consider three positive functions z() 2[0, ),
i= 1,2,3 such that z() with a=2(l+p)/(1-pq) if1 and

e if2, i=1,

(4.1) z,()= e if2, i=2,
e if2, i=3.

We now define nonnegative operators T,o acting on E (cf. (3.4)) as follows"

1 ee-’)-I e’-)-1
zT(s)f(s)" ds dt

where i: 1 if p< 1, i:2 ifp 1, and i:3 if p> 1, Then we have Lemma 4,1,
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LEMMA 4.1. T maps E into E for 1, 2, 3. In particular, for any f E,

(4.2)
f(O) pq

(Ti’qf)(O) M
with M given in (3.5) and i= 1, 2, 3,

1
(4.3a) (Tl,qf)(c)=f(c) (c2(l_q))Pc2(l_p) ifq<l,

1 f+ sp ecp-1)s ds ifq 1(4.3b) T,qf)(c) =f(c)P cp+ Jo
1

(4.3c) (T,qf)() f(o)pq

(c2(q_ 1)q)Pc2(l_pq ifq > 1.

Proof. Condition (4.2) has already been obtained in (3.5). As for (4.3), we note
that since

ece-’) 1 eCq, dt=cq(q 1)-c2(q -1) t-
C c2q

we have for >> 0

eCp

(c(1-q))p

P ecp

cp

ecpq(

(cEq(q-1)) p

ifq<l,

if q= 1,

if q> 1,

and then (4.3) follows by elementary calculus.
To conclude the proof of Theorem 2, it suffices to repeat the fixed-point arguments

in 3 with some obvious modifications. In particular, for p < operators Tl,q are to
be considered as acting on the cones gi,q, obtained by replacing (TI) by (T,qI) in
(3.8).

ProofofTheorem 3. It will suffice to obtain (1.14) and (1.16), since the correspond-
ing results for vc(x, t) are similar. To proceed, we recall that in Theorem 2 we have
shown that

(4.5) o(sc)="f(:) for:>0, 0

where

(4.6) f() (Tf)(),

T being the operator defined in (3.3), (3.4). Since f(:) c2, we have that

(4.7) f() =f(0)+f’(0)sc+ O(s) as 0,

whence

(4.8) A, =f’(0)= lim (((Tf)()-A)).#0
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To compute A we expand the quantity in the braces above up to second-order terms
and then pass to the limit. For 0, we compute

Io (eC(t-S)- l) s’f(s)q

(t-s)+(t-s) 2 sqAq 1+ ds

)(t-s)+ c-
2

(t s) 2 s "q (Aq + qAq-A1) ds

At" t+A-’( )( )
+ + qA
(+) -1

where is given in (1.4). It then follows that

o(e(e-’)-l)[o(e(’-)-l)sqf(s)ds]c

Apq Apq+1

((#-1))(-1) (#(-1))(+1)

( )(+1)
+ +

so that, taking into account (1.4), we conclude that for > 0, =0,

1 Ac(p(-l)++l)+pqAl(-l)(-l)
(4.9) ((rf)()-A)

(+1(#+1)

The results follow from (4.8) and (4.9).
We conclude with a few remarks. First we observe that, for the waves (Uc, v)

obtained previously, we have

( -x,,ot (4.10)
,-o+lira/ -c,

which is the equation satisfied at the front of uc. Indeed, a similar result holds for vc.
Note that relation (4.10) can be arrived at in a formal way as follows. For e > 0, write
x(t) to denote the level line u(x(t), t) e. Then differentiating with respect to yields

Ou dx Ou
--0,ox dt Ot

which, if we let e-O, suggest the following equation for the level line Xo(t), where
U(Xo(t), t) O:

dxo Ou/Ot
dt Ou/Ox

where the quantity on the right is computed at the curve Xo(t). This is precisely (4.10)
in the case of waves (u, v).

Next we consider the limit case pq 1. We already know that there are no FTW’s
in this case. However, travelling waves exist, although they are not unique. More
precisely, we have Lemma 4.2.
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LEMMA 4.2. Assume pq 1. Then for any real c there exist 0 > 0, X > max (0, c)
such that, for any P > O,

pq ex
()= Pee’ $() X- c)

is a monoparametric family of solutions to (1.7) satisfying

o(), d/()o aso,

,(), () - o as- -.
Proof. We just try p P e, , Q exe in (1.7). This leads to

PO 0 c) e oe Qp eXpe,
(4.11)

Qx(x c) ex Pq eoq

where we impose

(4.12) 0 XP, X Oq.

Note that this yields no further information on 0 or X, since pq 1. Matching the
corresponding coefficients in (4.11), we get PO(O-c)= QP, Qx(x-c)--eq whence

pq )P P
PO( O c)

x(x-c) (x(x-c))

and using (4.12) we deduce

XP(XP c)(X(X- c)) p 1.

When p=q= 1 this reads X2(X-c)2= 1, which always has a positive solution for

X >= max (0, c). As to the general case, we may assume, for instance, that p > 1, and
then Fp(X)=XP(Xp-c)(x(x-c))p also has a positive root for x->max (0, c). The
corresponding values of 0 are then obtained by (4.12), and for fixed P > 0 the associated
Q= Q(P) is determined from (4.11). [3

As a final remark, we observe that the methods in this paper apply to other types
of semilinear diffusion-absorption systems. For instance, consider the following
example:

Ut Uxx "" uv)P O,

(4.13) vt-vx,+(uv)q=o,

-c<x<, t>0, p, q>0.

Searching for waves uc(x, t)=o(ct-x), vc(x, t)=o(ct-x) in (4.13) we are led to the
ODE system

(4.14)

Now the analogue to (1.3), i.e., the condition for FTW’s to exist, is

p+q<l.

As before, formal perturbation methods suggest the asymptotic behaviour of the waves.
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For instance, in the case c < 0, we have

2(1-q+p)
AI:’

1 -(p+ q)
with o

qg()

lA2a’/2 if : >> 0,

BI
:’ with /3

2(1-p + q)

().
B2t’/2 ifsc>>0

1-(p+q)

where A1, A2, B, B2 are positive constants depending on p and q.
Results corresponding to Theorems 1-3 can now be proved with some minor

modifications. We just mention that, because of the structure of (4.14), it is convenient
to get the fixed-point argument for the variable z(:) (:)@(:), for which the formula
analogous to (2.4) reads

eC(-t)--I
z(t) p dt z(t) q dtz()

c c
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SPATIALLY OSCILLATORY STEADY STATES OF
TUBULAR CHEMICAL REACTORS*

ROGER ALEXANDER,"

Abstract. The equations governing the nonadiabatic tubular chemical reactor have as many low-
conversion steady-state solutions as are wanted, if the coefficient of heat transfer from reactor to cooling
jacket is sufficiently large, and if the activation energy is large. These steady states exhibit no reaction zone:
temperature and reactant concentration do not deviate much from their inlet values. The temperature profiles
are oscillatory in these steady states; the most oscillatory profile can be computed by the method of averaging.

Key words, chemical reactors, multiple steady states, averaging method

AMS(MOS) subject classifications. 80A32, 34B15

1. Introduction. In this paper we show that the axial dispersion model of the
nonadiabatic tubular reactor can have arbitrarily many steady states, provided that
two constants occurring in the governing equations are sufficiently large.

The steady states of the reactor are solutions of a boundary value problem for
the temperature T and reacting species concentration C. In these equations the reactor
length has been normalized to unity. Constants H, M, B, D, , 7 are explained below.
The equations are:

1T"-T’-CI(T-1)+BDCe-’/T=o, 0<x<l,
H

T’-H(T-1):O, x:O,

T’=O, x= 1,
(1.1)

1
C"- C’-De-/rC =0, O<x< 1,

M

C’-M(C-1)=O, x=O,

C’=O, x=l.

Consult [VA] for a detailed derivation, or [A2] for an explanatory sketch; here we
merely indicate the meaning of the parameters:

H, MmP6clet numbers for heat and mass, respectively,
/3mcoefficient of heat transfer between reactor tube and cooling jacket,
Bheat release of chemical reaction,
DDamk/Ahler number,
y--activation energy.
As far as the author knows, no one has proved that (1.1) can have more than

three solutions. However, formal asymptotic methods and numerical bifurcation analy-
sis have made it "well known" that there can be up to seven steady states when the
activation energy is large. This result, and the difficulties the equations pose for a
rigorous analysis, are discussed in the survey [A2].

* Received by the editors June 6, 1988; accepted for publication February 27, 1989. This research was
supported by Air Force Office of Scientific Research grant 84-0252 and Air Force Systems Command grant
88-0031. The United States Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright notation therein.

? Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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Kapila and Poore [KP] have constructed formal asymptotic solutions to (1.1). We
are interested here in one of the types of solution described by them, the "low-
conversion" steady state. Such a solution exhibits no "reaction zone"; instead T and
C remain close to their inlet values throughout the reactor.

In this paper we show that (1.1) can have an arbitrary number of low-conversion
steady-state solutions, provided that the reactor parameters are in a suitable range.
These solutions exhibit temperature profiles in the form of oscillations that grow slowly
in amplitude as the reactor is traversed from inlet to outlet. Note that these solutions
occur in addition to the six other types of steady states, identified by Kapila and Poore,
that may be present.

This paper extends previous work of the author [A1] in two crucial respects. First,
in [A1] multiple solutions are found for an approximating equation--what is called
here the "decoupled equation" for the temperature.

Here we derive the same multiplicity results for the original equation (1.1) as for
the decoupled equation.

The second improvement over [A1 is the use of the method of averaging to obtain
a more precise count of the number of solutions. In the previous paper, a simple
differential inequality is used to give a lower bound on solution multiplicity.

Formally, the limit ),- oo yields the "nonreacting" solution: T- C I everywhere.
We take y finite but large, and use it as a microscope to find "low-conversion"
solutionsmsolutions with T and C near 1 throughout the reactor.

Into (1.1) we substitute

T 1 + y-y, C 1 + ’)I--Iz, D-- T-1A e

to obtain an equivalent boundary problem for (y, z):

1 y,, =0, 0<x< 1,(1.2)
H

-Y-fly+BA(I+y-lz)exp
1 +-ly

(1.2o) y’-Hy=O at x =0,

(1.21) y’=0 atx=l,

(1.3) A exp l+y_ly l+y_ly O<x<l,

(1.3o) z’- Mz 0 at x O,

(1.31) z 0 at x 1.

In (1.3), z is the solution of a linear boundary problem with coefficients depending
on y. On the other hand, we expect z to influence y only weakly, for it appears
multiplied by y-1 in the equation for y, and y is large.

It is worth emphasizing that (1.2)-(1.3) are equivalent to the original system of
(1.1)--they do not represent the first term in an expansion in inverse powers of y.

Replace the coefficient (1 + y-z) in (1.2) by 1 to obtain the "decoupled equation"
for y:

H
-y-y+Bexp l+y_y =0, O<x<l,

(1.4) y’-Hy=O at x =0,

y’-O atx=l.
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In 2 we study this problem. We show that it has many solutions when fl is large and
y-lfl is small. We establish the oscillatory character of those solutions and derive
bounds on them. Phase-plane methods have been used before to investigate multiple
steady states (see [MA]). In 3 we return to the coupled problem, and show that to
each solution 37 of (1.4) corresponds a solution (y, z) of (1.2)-(1.3) with y near 37;
moreover, distinct solutions of (1.4) yield distinct solutions of (1.2)-(1.3). Section 4
summarizes some further points and unanswered questions. Some calculations are
relegated to the Appendices.

2. The decoupled y-equation. Begin by writing (1.4) as a boundary value problem
for a first-order system. Let

Y =Y, Yz--Y’.
This gives

(2.1) Y Y2, y_ H Y2 H- flY1 BA exp
1 + ]/-ly

and the boundary conditions

(2.2) y2(O) Hy(O) O, Yz(1) O.

Let the parameters H, B, A be fixed in what follows. It is shown in Appendix A that
if fl/BA> e and y-lfl is small, then the system of (2.1) has three critical points
el, Y2) (aj, 0), j 0, 1, 2:

BA
’o + 0(#-),

a a, log --+ log log --+ o(1),

BA

aE=-fl eV(1 + O(y2 e-V)).

The critical points (ao, 0) and (o2, 0) are always saddles. We will write c for a1--this
is the pivot of our analysis. Appendix A shows as well that the critical point (a, 0) is
an unstable spiral point provided

a H
,)/_1o)2

> 1 +4fl (a a).
(1 +

This condition holds when /3 -1 and 3,-1/3 are small enough, for any fixed choice of
H, B, and A.

Let us write y(x; r/):= (y,(x; r/), y2(x; r/))r for the solution of the differential
equations (2.1) subject to the initial conditions

YI(O) 7, y2(O) H/.

This y satisfies the first boundary condition of (2.2). It remains to determine r/so that
the second boundary condition of (2.2), y(1; r/)=0, is satisfied. We show that there
are many such r/.

Keeping in mind the geometry of trajectories near the spiral point, use the rule

y:z(x; q)
0(x; r arctan

y(x; *l) a
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to determine depending continuously on both variables x => 0, r/-> 0, understanding
that

_-> &0; n)=>0.

Solutions of the decoupled equation and boundary conditions correspond to values
of r/ for which

(; n) kr, k e Z.

It is easy to see from the vector field that

(2.3) 0(1; 0)> r.

We will establish Lemma 2.1.
LEMMA 2.1. There are numbers l and Ywith a < l < Y= a +log log ,,// BA + o(1)

such that

(1; /)>-7r.

The bulk of this section is devoted to the proof of the next lemma.
LEMMA 2.2. There is a number * with 0 rl* (7 such that

(1; r/*)< -to + O(l), to (fl log) 1/2.

The multiplicity result then follows directly from (2.3) and Lemmata 2.1 and 2.2
by an application of the continuous dependence of solutions on initial conditions and
the Intermediate Value Theorem.

THEOREM. Let N be the greatest integer less than to/Tr. Then for each integer
k 1, O, 1, , N there is a number rl’k satisfying

0< r/, < r/*, (1; r/,)= kTr;

for each integer k 1,-2,...,-N there is a number rl’ satisfying

7" < r/ < , (1; r/)= kTr.

Since to may be made arbitrarily large by making /3 -1 and y-l/3 small, the
decoupled equation (2.1) with boundary conditions (2.2) can have an arbitrary, finite
number of solutions.

This is the argument of [A1], refined so as not to give away half the solutions.
The proof of Lemma 2.1 yields the following corollary.

COROLLARY TO LEMMA 2.1. There is a constant independent of fl, 3’ such that

max ]y,(x; r/)[_-< const Y.
O__<x__<l

O<_--n_--<

This bound will be useful in the construction of solutions of the coupled equations
in 3.

Finally, we note that [A1] works with the simplified nonlinear reaction rate e y

instead of the "exact" form exp[y/(1 +T-y)]. This makes no essential difference
because T is large and the argument y is restricted to the range 0-<_ y-<_ Y.

ProofofLemma 2.1 and its corollary. We will determine Y> a such that the right
branch of the stable manifold of the saddle (ao, 0) crosses the y-axis between (a,.0)
and (Y, 0). Inspection of the vector field and uniqueness of solutions then shows that
y2(x; Y) decreases monotonically to zero and remains negative thereafter. This proves
the result.
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To determine Y, consider the conservative system

(BA(:2.4) y- y, y H/3 y----- exp 1 + ’y-ly

Define the potential V by

-V’(3,)=Hfl y----exp l+y-ly

Consider the Hamiltonian function

K(y y2) --1 2
Y2 + V(yl).

Differentiation along a solution of (2.1) yields

d
dx
K yl Y2)= HY >= O

with the inequality being strict everywhere but on the yl-axis.
The level curve

(2.5) K(y,, Y2)= K(ao, O)

is a saddle-loop for the conservative system (2.4). We have Proposition 2.1.
PROPOSITION 2.1. K is a Lyapunov function for the system (2.1), run backward in

x. Every point inside the saddle-loop (2.5) tends under (2.1) to the spiral (a, O) as x --> -o.
In particular, the right branch of the stable manifold of the saddle (ao, O) spirals into

(a, O) as x --> -o.
Proof [H]. If we call (Y, 0) the vertex of the saddle-loop equation (2.5) for the

conservative system, then the right branch of the stable manifold of the saddle (ao, 0)
first crosses the y axis for negative x at a point between (a, 0) and (Y, 0). The
approximation to Y is computed in Appendix B. There we show that

Y log --+ 2 log log ---- log 2 + o(1)

a + log log x/fl / BA + o(1 ).

If we follow the right branch of the stable manifold of the saddle backward in x
beyond its crossing of the yl-axis we find its first crossing of the line of initial conditions
at a point we will call (, H). Note that < Y.

Proof ofLemma 2.2. To begin, change to local coordinates about the spiral point
(a, 0). Appendix C gives the boundary problem (2.1), (2.2) in terms of new variables
(lgl, /’/2)"

(2.6) (u] [H/2 to ](u,) (01)+ QtoN(Ul)
u ’2] -to H/2 112

H Ha H
(2.7) lg2(0) - ul(0) --w U2(1) ttl(1)’Zw
In these equations the parameters to and Q satisfy

to---x/fl log/3, Q 1

when j--I and y-l are small. The nonlinear function N satisfies N(0)= N’(0)= 0.
What makes this problem interesting is that the coefficient of the nonlinear term

is large while the neighborhood of the origin in which we need a good approximate
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solution is small: we will see that unlimited multiplicity of solutions is tied to to- c,
but to is the coefficient of the nonlinear term of (2.6).

Introduce the polar coordinates

Equation (2.6) becomes

U r cos 0, u2 r sin 0.

H
r’=- r- Qto sin 0 N(r cos 0),

(2.8) 2

0’=-to(l+QcSON(rCSr 0)).
The boundary conditions, expressed in terms of the angle

q tan -1 (H/2to),

are

(2.9)

r(0) H--a csc (0(0) g, 1 +

H
tan 0(1) -tan q, ---.

2to

We seek the initial point of the trajectory that wraps around the spiral point the
maximum number of times, starting from the line of initial conditions (2.9). Change
dependent and independent variables by

d
tox; write "-" for

dt’

R(t)=tol/2r(t/to), O(t)= O(t/to).

This change of variables makes (2.8) into

H
R- Qtol/2 sin (R) N(to-I/ZR cos O),

2to

=-1 _to/ZQ cos (R)
N(to_/2R cos O).

R

Finally, the substitution O(t)--q(t)-t puts the equation into a form suitable for
averaging:

H R-to/2Q sin (q- t)N(to-/2R cos (q- t)),
2to

(2.10)

(o _to/z Q_Q_ cos (q t)N(to-/2R cos (q t)).
R

The boundary conditions are

H
R(0)

1/2
csc (q(0)-

(2.11)

tan (q(to)- to) +tan g,=0.
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For the averaging computation, we expand (2.10) in powers of to--l/2:

(, () r= to-/2f(t, R, )+ to-lg(t, R, )+ to-3/2p(t, R, tO, to-/2).

The analytical forms off, g, p are computed in Appendix D. Each off, g, p is 2r-periodic
in t, and the time-average of f is zero:

f(R, )= f(t, R, q) dt=O.

This fortunate cancellation allows us to compute an approximate solution valid (i.e.,
with error O(to-/2)) for 0 -< t=< to, that is, for the entire interval 0-<x=< 1. This follows
from Theorem 3.9.1 of [SV]. It is shown in Appendix D that the solution of (2.10)
with the initial condition (2.11) is approximated to within an error of O(to -/2) for
0 <_- <- to by the solution of

dR -1H-,o , R(0) R(0),
dt 2

(2.12)
dq5 -to-’E/2, qS(0) (0).
dt

(E is a constant defined by (D4).)
Solve these equations, using the given initial conditions, to find

R(to) eH/2R(O)+ O(to-/2),
(,o) (,o)+ o(,o -’/)

n a2

--csc ((0)- ) + o(,o-/).-q(O)+E(eH l)’l+(H/2to)2 to

Undoing the substitutions then gives, for the solution of (2.8) subject to initial conditions
(2.9),

fix= ell H a
csc (0(0) ) + o(,o-’/),

x/1 + (H/2to) to

(2.13) ,
EH(e -1) a 2

Olx=, 0(0) ,o
)

csc (0(0) ) + o(o-’/).
l + H/2to to

This approximation is valid as long as r(0)= O(to-/2). If we choose 0(0) to
minimize the leading terms in this approximation to 0(1) we find that

gives the approximation

min 0(1) -to + 0 + O(to-/).

For this choice of 0 we have

1/2(0) o\71
so that the approximation is valid.
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This says that the trajectory, which starts on the line of initial conditions with
0(0)= 0min, winds [to/2,r] times clockwise around the spiral point. In the original
coordinate system (Yl, Y2) this corresponds to a point r/* with the property asserted
in the statement of Lemma 2.2.

3. The coupled equations. Now we show that the multiplicity results of 2 hold
for the full system (1.2)-(1.3). To begin, we note that if y is known then z is determined.

LEMMA 3.1. Let y C[0, 1 be given. Then the boundary value problem for z, (1.3),
has a unique solution.

Proof. Write q(x)= ),-1A exp (h(y(x))). The difference of two solutions of (1.3)
satisfies

1
z"-z’-q(x)z=O
M

with the same (homogeneous) boundary conditions. Multiply this equation by -z and
integrate from zero to 1; integrate by parts and use the boundary conditions to get

1 lfo fo’0= [z2(1)+ z2(O)]+ (z’) 2 dx+ qz2 dx.

Since q > 0, this shows that z 0.
For fe C[0, 1] write Ilfll for maxo__<x__<l If(x)l. We next bound Ilzll in terms of

bounds on y.
LEMMA 3.2. Let Y be a positive constant. Then there are positive constants Yo

To(A, Y) and C such thatfor anyy C[0, 1] with 0 <- y(x)<= Yfor O<-_x <- 1, the solution
z of (1.3) is bounded by

Ilzll--< cA e Y

provided Y => To.
Proof The solution z of

1
--z"-z’=f(x), 0<x<l,
M

(3.1) z’(O)-Mz(O)=O,

is

z’() =0

z(x) f() d-eMx e-ef() d.

A short calculation shows that Ilzll [[f[I. The solution z of (1.3) solves (3.1) with

f= h exp [h(y)](1 + y-lz).

If 0_-< y _-< Y then 0_-< h(y)< Y, so that

Ilzll--< A e Y(1 +- Ilzll).
Thus if y-lA e Y< 1, then

Ilzll (1- /-1A eV)-’A e v

and the lemma follows.
Next we use this estimate to show that the solution of (1.3) depends Lipschitz

continuously on the coefficient y, provided 0-< y _-< Y.
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LEMMA 3.3. If Y> O, y Y2 C[0, 1 ], ifz (respectively, z2) is the solution of (1.3)
with y=y (respectively, Y =Y2), if O<--yk(X)<--_ Y, k= 1,2, and if),>= ),o, then

z z=ll -< (1 -IA e Y)-(1 + ),- CA e Y)A e Y Yl

Proof. Subtract the equations for z and z2. Then

1- (Z Z2)’-- (Z Z2)’ h (eh(yt) eh(y2)) + ),-11 eh(y) z eh(y2) z2)

A eh(y) eh(yE)) d ),-l A eh(Y’) eh(Yz))Z1 "l- ),-I A eh(yE)(Z1- Z2)

and Zl- z2 satisfies the boundary conditions. By Lemma 3.2, ]lzll _-< CAe Y. The function
exp [h(y)] is Lipschitz continuous in y for 0_-< y-< Y with Lipschitz constant e Y. By
the proof of Lemma 3.2,

z z=ll --< A e YII Y y2ll + ),-IA e YII el Y21l CA e v "" ),-1 A e Y z z,_ll
and the lemma follows.

Next we estimate a Lipschitz constant for the dependence of the solution y of
(1.2) on z regarded as a coefficient. It is nearly evident from the form of the equations
that if y, Y2 are solutions of (1.2) with coefficients z z and z z2, respectively, and
with the same initial data, then we have an estimate of the form

(3.2) Ily-yll <= const - IIz,- z=ll,
We could next combine this result with Lemma 3.3 to set up a convergent iterative
scheme to solve the coupled boundary value problems (1.2)-(1.3). However, the
constant--obtained in (3.2) from a direct application of the Gronwall inequality to
(1.2)mwould contain a term of the form exp (exp/), and our iteration could be
shown to converge only for enormously large 3/. Therefore we localize (1.2) at the
spiral point (a, 0) and obtain an estimate like (3.2) with a somewhat better constant.

Recall from Appendix C the change of variables localizing (1.4) at the spiral point

y’ H/2 oo v

Apply the same change of variables to (1.2). If (y, y) corresponds to (u, v), k 1, 2,
under this change of variables--here subscripts indicate different solutions rather than
components of a vectorthen u u2 y y and we can estimate u u instead. The
following proposition gives the resulting estimate.

PROPOSITION 3.1. Consider the initial value problems k 1, 2:

1- Y--Y’k--flYk + BA(1 + )’-Zk) exp [h(yk)] =0,

(3.4) yk(O) l,

y(0)

Assume 0, , Zk c e Yfor k 1, 2, and that )" is sufficiently large. Then Yk Y
for k 1, 2 and there is a constant c such that

Y- y=ll--< -Qtoc log/3 exp [Qto en/2c log/3(1 + ),- CA e Y)] z,-

Use the change of variables (3.3) to transform (3.4) to
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with appropriate initial conditions, as in Appendix C. Subtract (3.52) from (3.5) to
obtain for the difference variables (u, v)= (u- u2, vl- rE)"

(3.6)

Now use the variation of parameters formula to get

(x) -Qo em(x-s)W(s) ds,

in which W denotes the expression in curly brackets in (3.6). Now u(x) is just the
first component of the right-hand side, and we get

(3.7) u(x) =-Qto el-l(x-s/2 sin to(x-s)W(s) ds.

Write Nk N(Uk), Fk F(Uk); then

(3.8) W= N- N2+ /-l[z(F F2) + F:(z- z:)].

LEMMA 3.4. There is a constant c such that c log fl is a Lipschitz constant for N
and F and a bound for Ffor u <- Y- t.

This follows from the forms of N and F derived in Appendix C, and from (B2)
for Y. Next, by the bounds on y when y-l= 0 derived in 2, the assumed bounds on

r/ and IlZk[I, k 1, 2, and continuous dependence, it follows that Yk < Y and thus
Uk < Y- or. Insert the Lipschitz conditions for N and F into (3.8) to obtain Lemma 3.5.

LEMMA 3.5. [W(s)[<=c logfl(l+)’-Ch e)lu(s)l+ v-c log/3[Iz-z2ll, and con-
sequently

lu(x)l<-Qa, e"/. clogfl(l+y-CAe Y) lu(s)lds+y-’clogQoe/llzl-z][.

The estimate of Proposition 3.1 now follows by the Gronwall inequality [H].
PROPOSITION 3.2. Let rl be given, 0 < rl < 1. There is a unique , 0 < < CA e

g such
that the solution of the coupled equations (1.2)-(1.3) subject to the initial conditions

(3.9)
y(0)

z(0) sr, z’(0) M’,

satisfies the second boundary condition for z: z’(1)= O.
Proof Construct sequences {Yk}k=o and {Zk}k-_o as follows. Let Zo=0, and let Yo

be the solution of (1.2) with z Zo there, subject to the initial conditions (3.9). Then
for each k 1, 2,. ., let Zk be the (unique) solution of the boundary value problem
(1.3) with y=Yk- there, and Yk the solution of the initial value problem (1.2), (3.9)
with z= Zk. By Lemma 3.2 and Proposition 3.1 we have IIzll <- cA eY, Ilyll < Y, k =>0.
Combine the estimates of Lemma 3.3 and Proposition 3.1 to get the estimate

y/l-yl[ ’-1 C(, H, B, x)ll y-y-lll.

A similar estimate holds for z. Thus if y is sufficiently large, the Yk and Zk converge
uniformly; the limiting pair (y, z) satisfy the differential equations (1.2)-(1.3), the
initial conditions (3.9) for y, and the boundary conditions (1.3o) for z.
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COROLLARY. The coupled boundary valueproblem (1.2)-(1.3) has as many solutions
with 0<-_ y(O)<-_ (I as has the decoupled equation (1.4).

Proof. It is enough to show that (2.3) and the analogues of Lemmata 2.1 and 2.2
continue to hold when y is taken to be the solution of the coupled system. The angle
0 is well defined: the polar radius r is bounded away from zero along solutions of the
decoupled equation that start on the initial conditions. For sufficiently large y this is
still true for the solution of the full equation. Thus 0 is well defined, and the stated
conclusions are valid by continuous dependence.

4. Comments.
(1) The estimate following (3.7) can probably be improved. The integral should

be O(to -1) unless W oscillates with frequency to--but in that case the amplitude of
W should be quite small.

(2) The leading term in the asymptotic expansion of 0, (2.13), is unimodular. If
0 itself were indeed unimodular, then Lemma 2.1 would give an exact count of the
number of solutions. Possibly, this could be answered by computing the solution of
the variational equation by the method of averaging.

(3) The question of the stability of the steady states found here remains open.

Appendix A. Locate and classify critical points of the decoupled y-equation. The
critical points of (2.1) are given by

(A1) Y2 0, yl =-- exp
1 + y-y

Since 3’ is large, we expect the second equation to have two roots near the roots of

BA
y=ey

when this has two roots, namely, when BA//3 < 1/e. In what follows we will choose
successively large 3’ 3’o(/3), with fl / 3’o(0) -’> 0 as/3 --> ; the expression O(f(fl)) will
mean "with a constant independent of y, for all 3’ > yo(/3)." For all results prior to

3, it suffices to take yo(/3)=/3 2.
Iterate (A1) to obtain the first root

BA( BA -2))(A2) ao=--ff 1++ O(fl

Next, take logarithms in (A1)"

Y /3
+logy"(A3)

1 + y-y log
BA

Let G fl/BA. Iterate the last equation, bearing in mind that y is large; conclude
that

log log G (log log fl) 2

(A4) a---a=logG+loglogG+
logG +O\ logfl

This critical point takes a central role in the analysis that follows. We will always call
it simply a.

The third critical point plays no role in this work, for the solutions that interest
us will obey 0<_-y(x)<- Y, with Y a fl-dependent constant slightly larger than a. For
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completeness, we give the third critical point. Rearrange (A3) to get

log y -log
1+ 7-y

-log G +------7-.l+y-y

We seek a root O2 near (Bh/fl) e. Iterating now for log y gives

BA
a2=-fl-e(l+O( e-V)).

Of course this is enormous compared to a.
Let us now classify the critical points. Denote the term in the exponential by

(A5) h(y) Y
1 + T-ly"

Then a short calculation shows that the Jacobian of the system (2.1) at a critical point
is given by

J(a;, O)= Hfl(1-ah’(q)) g

(This calculation uses the fact that (A1) holds for Yl a;.) The determinant is negative,
and we have a saddle, for (ao, 0) and (a2, 0). The determinant is positive at (a, 0)=
(al, 0). At this point the discriminant (Tr J)2-4 det J is negative, and we have an
unstable spiral, when the inequality

H
ah’(a)-l>

holds. Since h’(y)= (1 + T-ly) -, this inequality holds as soon as/3 is large enough
for any fixed H, B, h; recall that a is given by (A4) and 7-1/3 is small.

Appendix B. The conservative system. Consider the potential energy function
V(y, 7-1) defined by

V’(y,T-1)=H BAexp l+T-ly fly

v(0) =0.

For the special case 3,-1= 0 we have explicitly

v(y,0= (e’--y
The saddle-loop for the conservative system (2.4) crosses the yl-axis at the point Y, 0)
defined by

(B1) V(Y, -1)= V(ao, 3,’-1).
We determine Y for -1 0; then the Y for finite differs from this by O(3,-1 log/3).
We have to solve the following equation, from (B1) and the approximation (A2) for ao:

( fl ) H (BA)2
H BA(eY- 1)-- y2 +0(/3-2).
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Thi.s leads to

Y=Ig (Y=+ I +

=log /3+2log Y-log2+O(f1-1)
BA

and the solution is given by

Y log --+ 2 log log --log 2+ o(1)

a + log log --- log 2 + o(1)

=a+loglogx/fl/Ba + o(1).

In addition, we find that the saddle-loop crosses the line of initial conditions at point

K rI, Hrl K ao, O).

The equation for the "large" solution leads to

q + H BA (en-1)--Z rl O fl

or

r/= log (f12/r/2 + 1 + O(fl-1))
log(A "r12 "--l-H/fl+l+O(-l))

and we find that Y+ O(/3-1).
Appendix C. Localization at the spiral point. Translate the origin to the spiral point

in (1.4) by the substitution

Yl W1 -" O Y2 W2

and get

w’2] n{w+O(w + a)-(BX/O) exp [h(a + w)]}

Hfl(1-ah’(a)) H WE

-H exp l+(_w)/(l+_, -h’()w-I

The Jacobian at the spiral point is

J(=
N(-h’( N
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with complex eigenvalues given by

H
--+ ito,
2

toE= Hfl(ah’(a)- 1)-
H2

Perform a linear change of coordinates with the matrix S,

S=
H/2 to

whose columns are the real and imaginary parts of an eigenvector for H/2/ito;
substitute

wl =S
WE U2 (H/2)u + tou2

and obtain the system

Here we set

(C2)

Haft 1
Q:= toE =h’(c)-(1/c)(l+(H/4fl)) l+O(a-),

h’(a)u ]N(u):=exp
l+(y_u)/(l+y_a -h’(a)u-1

is the nonlinearity. Note that when y,/3 are large we have Q---1; note further that
N(O) N’(O) 0.

By following the coordinate changes in the boundary conditions we find in the
new variables the line of initial conditions

H Ha
(ca) u2(O) -w Ul(O) /,to
and the line of final conditions

H
(C4) u2(1)=

z:to u(1).

We can also perform the same change of variables for y in (1.2) with the coefficient
z. We obtain

U2 --to H/2 v2

with N as before and F given by

F(u)=exp 1+(7-u)/(1+7-)

Appendix D. Averaging computations. We begin by expanding the vector field of
(2.10) in powers of to-/. For this we require the Taylor expansion of the nonlinear
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function N defined by (C2). Let

k=h’(a)=(l+y-’a) -2,

the function h being defined by (A5). Then

N(u) N2u2 + N3u3 + O( u4)(D1)

with

k2 k3

N2 o’k, N crk2 + 0-2 k.
2 6

We note that N2 1/2+ O(y-la), N3 -+ O(y-la). This illustrates the earlier remark
that replacing h(y) by y in the exponential throughout makes no essential difference.

Inserting the expansion (D1) for N into (2.10) leads to

-to-1/2QR2N2 cos2 (go t) sin (go t)

(D2)

Define

+to-l(R QR3Na cos3 (go t) sin (go t)) + O(to-3/2),

-to-1/2QRN2 cos go t) to-1QR2N3 cos4 go t) + O(to-3/2).

(R2 )f(t, R, go)= -QN2
cs2 (go t) sin (go- t)
R cos (go-t)

g( t, R, go)=((H/2)R-QR3N3 cs3 (go-t)sin (go-t))-QR2N3 cos4 (go- t)

Then (D2) may be written

(, (0)T= to-1/2f( t, R, go) + to-lg( t, R, go)+ to-3/2p( t, R, go, to-l/2)

with to-3/2p being the remainder in Taylor’s formula. The functions f, g,p are 2r-
periodic in and the average of f vanishes:

1 fof(R’ go) -’r f z, R, go) dr=0.

Define

v t, R, go)= f ’, R, go) d" --f f r, R, go) dr dr,

fl(t, R, go)= D(R,)f(t, R, go)v’(t, R, go)

and letf1 and gO be the respective mean values over a period off and g. By Theorem
3.9.1 of [SV], the solution of (2.10) with initial conditions R(0)= Ro, go(0)= goo is
approximated with an error that is O(to -1/2) for 0=< t-<to by the solution of

d
(g, ) _1

d w (flO(g, ff)+gO(g, )),
(D3)

((0), (0))= (Ro, o).
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We now compute tAl,fl,f 10, and gO:

vl(t, g, ) -QgN

-OnN

-QRN

-QRN

IjR q 7.) (q 7.) Meancos2 sin value

cos3 (o- 7-) Mean valuedr-

3
cos (, 7-) Mean value

sin (0- 7.);+1 sin3 (0 7.)- Mean value
3

R cos (0- t)- R cos3
0- Mean value

1 1
sin (,- t) + sin q+ sin (q- t)- sin 0 Mean value

R
-cos (,p- t)
3

1
sin (p- t) +7 sin3 (p- t)

Next,

fl= D(R,)f V

QEN.R[2R cosE (g, -t)sin (- t) RE[cos ( -t)-3 sinE (p -t) cos (p -t)]’
cos (p- t) -3R cos E (p- t) sin (p- t)

--cos (p t)

1
sin (q- t)+ sin (o- t)

QNR

cosS(o_t) sin(g,_t)+cos(o_t)(l_3sin2(o_t))sin(o_t) sin2 (o_ t)_

R cos (- t)+ 3 cos (- t) sin (- t)- cos (- t) sin4 (- t)

To compute f lo, observe that the first component of fl has mean value zero Hence

f’(R, p)

Next,

g(R’ q

-3 QNaR2/
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So the averaged equations are

dR -1 H
dt

to
2

R, R(O) Ro,

(D4)
dt to-lEft2’ q3(0) qg’

ON 3 +/-+ 0(-’).E 1- -- QN3
24
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INERTIAL MANIFOLDS AND MULTIGRID METHODS*

R. TEMAMf

Abstract. This article presents an analogy existing between the concepts of approximate inertial mani-
folds in dynamical systems theory and multigrid methods in numerical analysis. In view of the large-time
approximation of dissipative evolution equations in a turbulent regime, a new algorithm is proposed and
studied that combines some ideas and concepts of inertial manifolds and multigrid methods. This article

emphasizes theoretical questions. More practical (computational) questions will be investigated elsewhere.

Key words, inertial manifolds, attractors, partial differential equations, approximation, multigrid
methods

AMS(MOS) subject classifications. 35K60, 65N05

Introduction. Two theories have developed in parallel during the last years with
different objectives; namely, the theory of inertial manifolds that has emerged from
the study of dynamical systems and the theory of multigrid methods in numerical anal-
ysis. Although these two theories seem very far apart, our aim here is to show that they
have some underlying ideas in common and to investigate the relation between them.

Multigrid methods concern the numerical solution of partial differential equations
by finite differences or finite elements using two (or more) mesh grids, one finer and
one coarser. The main observation constituting the starting point of the theory is that
a simple iterative method is sufficient to determine the high-frequency components of
the solution, but that further effort is needed to solve the low-frequency components
(see [B], [HI, [Mc], and the references therein).

In dynamical .systems theory the objective is to study the long-term behavior of
the solutions of an evolution equation. When the equation is dissipative all solutions
converge as t-> o to a complicated set M, the global attractor, which may be fractal.
This set embodies the large-time dynamics of the equation, corresponding to all sorts
of regimes, including the turbulent ones. Although this set may be fairly complicated,
in general it has finite dimension. Inertial manifolds are smooth finite-dimensional
manifolds that are invariant by the flow, contain the global attractor, and attract all
the orbits at an exponential rate. All dissipative systems are not known to possess an
inertial manifold, but the related concept of approximate inertial manifolds has been
introduced and applies to a broad class of dissipative systems (see [FST1], IFST2],
[FNST1 ], [FNST2], [CFNT], [MS], IT4], and the references therein). Now, in essence,
inertial and approximate inertial manifolds correspond to an exact (or approximate)
interaction law between small and large wavelengths. When an orbit lies on the inertial
manifold the small wavelengths are, at each instant of time, an explicit function of
the large wavelengths, this correlating function being the equation of the manifold.
And of course, an orbit starting outside the manifold converges to it exponentially
fast, and thus soon, after an initial period, the interaction law between small and large
wavelengths goes into effect.

In previous articles (see [FMT], [T5], [MT1], [MT2], [JRT]), we have shown
how we can construct effective numerical algorithms by using approximate inertial
manifolds, in the context of spectral and finite-element methods. Our object in this

* Received by the editors January 31, 1989; accepted for publication April 6, 1989. This work was

supported in part by National Science Foundation grant DMS-880296.
f Laboratoire d’Analyse Num6rique, Bfitiment 425, Universit6 Paris-Sud, 91405 Orsay, France, and

Institute for Applied Mathematics and Scientific Computing, Indiana University, Bloomington, Indiana
47405.
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article is to present and study similar algorithms in the case of finite differences. Here
we naturally meet the methodology of multigrid methods: the large wavelength com-
ponents ofthe flow are based on the coarse grid, while the small wavelength components
are based on the fine grid. Let us mention, however, that despite this analogy, the
questions that we address here are quite different from those addressed in the multigrid
literature. The multigrid literature emphasizes more the linear part of the equation,
while here we are more interested in the nonlinear terms: following ideas derived from
inertial manifolds and dynamical systems theory, our object here is to describe in an
approximate way the nonlinear interaction of small wavelengths based on the finer
grid and large wavelengths based on the coarser grid.

For the sake of simplicity we will devote this article to some specific situations
and examples, but our results apply to much more general situations. We consider a
class of nonlinear evolution equations for which the linear elliptic part corresponds
to a Dirichlet problem in a square. In 1 we describe our space discretization procedure
based on the use of the incremental unknowns. We are given two grids in the square,
the fine and coarse grids; the discretization is simply the five-point discretization of
the Laplace operator on the fine grid. However, instead of considering the usual nodal
values for the unknown function, we will consider the incremental unknowns on the
fine grid. They consist of the nodal values on the coarse grid and, on the points of the
fine grids not belonging to the coarse one, the unknown is the increment to an interpolate
value of the neighboring coarse points. We are not aware of any explicit use of the
incremental unknowns in numerical analysis. The material presented in 1 is, however,
very simple and necessary for the rest of the article.

In 2 we present, at the level of linear elliptic problems, the appropriate variational
setting for the use of the incremental unknowns. The variational framework for
finite-difference discretization of linear elliptic problems was introduced by C6a [C].
Although the variational framework is very well suited for finite elements, and its use
is routine in this case, it is not indispensable and is less used in the context of finite
differences. We will see that it is very appropriate here, at least for the theoretical part
of the work; we will recall and present the necessary material in 2.

In 3 we present the nonlinear equations that we study. An abstract equation and
three specific equations related to the Navier-Stokes equations and to reaction-diffusion
equations are presented. As previously mentioned, our results apply to general
equations, but we refrain here from considering general equations and concentrate on
the specific examples. In 4 we implement the spatial discretization of the problem
using two different grids and the incremental unknowns, and implement the algorithm
based on inertial manifolds and multigrid methods (the IMG algorithm). The stability,
consistency, and convergence of the algorithm are investigated in 5, which relies
extensively on the use of energy methods. Finally, in 6 we consider a full discretized
version of the IMG algorithm, i.e., one involving space and time discretization. We
consider an explicit time discretization scheme and restrict ourselves to a linearproblem.
Indeed, another advantage of the IMG algorithm appears already, at the level of a
linear evolution equation, in the form of an improved stability condition; namely, the
stability condition is that corresponding to the coarse mesh instead of that correspond-
ing to the fine mesh.

In this article we have emphasized simple equations and theoretical aspects in
connection with dynamical systems. In subsequent works we intend to consider more
general equations; and we intend to describe in more detail and in a more practical

1They appear in a hidden way in the multigrid methods through the restriction and prolongation
operators.
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form the computational aspects of the algorithm. Other related forms of the algorithm
will also be considered; see in particular [TS].

1. Matricial structure of the prolflem. In this section we introduce the incremental
unknowns and show their use in the solution of finite-difference problems. We consider
successively one- and two-dimensional problems.

1.1. The one-tlimeasional case. For the sake of simplicity we start with the model
one-dimensional problem:

(1.1)
d2u
dx2 -f in (0, 1), u(0) u(1)=0.

For N , we consider the fine grid corresponding to the discretization mesh h 1/2N
and the coarse grid corresponding to the, discretization mesh 2h- 1/N. The coarse
gridpoints are the points 2jh, j- 0,..., N (j- 0 and N correspond to the boundary
points); the fine gridpoints are the points jh, j-O,..., 2N (see Fig. 1.1). We write

f =f(jh), uj -u(jh) and, on the fine grid, we write the usual finite difference scheme

1
(1.2) -h-Z(uj/,-2u+u_l)=f, j=I,...,2N-1, Uo=U2=0.

The incremental unknowns consist of the numbers u2, j 1,. , N- 1, corresponding
to the approximate values at the points 2jh, and of the numbers

(1.3) t2+l u2j+1-1/2(u2j+u2+2), j=0, , N- 1,

corresponding to the increments from the average values at the neighbors, at the points
(2j 4-1) h, j 0, , N 1. We easily infer from (1.2) that

h2

(1.4) 2+1- 2
fzj+l, j=0,... N- 1

1 1 1
(1.5) {2u2j -//2j-2 u2j+2}- {/2j-1 4- 2j+l} /2, j 1, , N- 1.

If we take (1.4) into account, (1.5) becomes

1 1 1
(1.6) {2UEj U2j-2 UEj+2} =’f2j +’ {f2-1 +f22+1}, j= 1, , N- 1.

The key point for the nonlinear analysis hereafter is that the incremental values are
small. This is transparent in (1.4), which shows that

(1.7) fi2j+, O(h2).

In matricial form, we write (1.2) as

(1.8) A0 =/,

O x O x O x O x O
0 2 3 4 5 6 7 8 9 10

FIG. 1.1. Coarse gridpoints (0) and fine gridpoints (x, C)) on (0, 1)for N =5.
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where (Ul ," ", U2N-1) t, )-" (fl, ,f2N-1) t, and A (1/h2) T, T being the usual
tridiagonal matrix

2 -1 0

l0 ’
-1 2

We may reorder ,/ into their coarse and fine components"

U=(Uc, U)’, b=(bc, b)’,
Uc (u2 U2N_2)t,

bc (f2, f2s-2)’,

and rewrite (1.8) as

(1.9)

Uf--(//1, u3, U2N-1) t,

by=(f,,f3, f2s-,)’,

AU=b,

this time with

All A12A=
\A21 A22/’

All (2/h2)Is-1, A22 (2/h)Is, where/ is the jth-dimensional unit matrix and
is an (N- 1) x N matrix:

1
AI2= A21=-"- Bs,

1 1

BN--
0

Using the incremental unknowns, we then replace U by /)= (Uc, Ui)’,

(1.10) U=SU,

S=
\-BN Is -B’

We infer from (1.9) that ASU b or

aO=
with S’AS, S’b. Like A, the matrix is symmetric positive definite.

1.2. The two-dimensional case. Although some steps of the procedure will now be
less transparent, we will proceed in exactly the same way for the two-dimensional case.
We consider the Dirichlet problem

(1.12) -Au=f inO, u=0 onOO

in the square (0, 1)2 and its five-point discretization. As above, for N e N, we set
h 1/2N, 2h 1/N and consider the fine grid corresponding to the mesh h, and the
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coarse grid corresponding to the mesh 2h in both directions For i, j 0,..., 2N, we
write fo-f(ih, jh) and uo=u(ih, jh is the approximate value of u(ih, jh). The fine
gridpoints are the points (ih, jh), i-1,..., 2j-1, j-1,..., 2j-1, and the coarse
gridpoints are the points (2ih, 2jh ), 1,. , N- 1, j 1,. , N- 1.

The discrete equations read

(1.13)

1 1

h--" (2ui,j Ui-l,j Ui+l,j) +’hi (2ui,j ui,j- ui,j+l)

1i, j<-2N-1.

Usually we number the unknowns uu in a sequential order, say from left to right and
from top to bottom, and reinterpret (1.13) as a system similar to (1.8). We may also,
as for (1.9), reorder the nodes in a different way, with the coarse gridpoints first2

(numbered from left to right and from top to bottom), then the rest ofthe fine gridpoints
numbered in the same way. We write

U=(U, Uy)’, b=(b, by)’,

and we then have an analogue of (1.9)"

(1.14) AU=b,

with a matrix A that will not be made explicit here.
At this point we introduce the incremental unknowns" they are made first of the

coarse grid nodal values u2i.Ej, i, j 1,. , N- 1. Then, at the noncoarse gridpoints,
the incremental unknowns are defined as follows (see Fig. 1.3):

0 O 0 0 0 0 0
0 x 0 x 0 x 0
0 0 0 0 0 0 0
0 x 0 x 0 x 0
0 0 0 0 0 0 0
0 x 0 x 0 x 0
0 0 0 0 0 0 0

FIG. 1.2. Coarse gridpoints (x) and fine gridpoints (x, (C)) on the square (0, 1) for N =4.

x x x
0 x 0 x 0
x x x

(fl) (f21 (f3)

FIG. 1.3. Noncoarse gridpoints of type (fl), (f2), or (f3).

See points x in Fig. 1.2.
See points (C) in Fig. 1.2. In fact, a more subtle numbering of the noncoarse gridpoints (x) is desirable;

this question will be addressed elsewhere.
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--Fine gridpoints of type (fl), those at the middle oftwo vertical coarse gridpoints.
The incremental unknown is then

t/

(1.15)
UEi+,Ej UEi+l,j-( 2i, + u2i+2.),

i=0,’’’, N-l, j= 1,’’’, N-1.

reFine gridpoints of type (f2), those at the middle of two horizontal coarse
gridpoints. The. incremental unknown at such a point reads

(1.16)
t2,,2+ UEi,Ej+ 1/2( U2 i,2j "" UEi,2j+2),

i= 1,’’’ N-l, j=0,... N-1.

reFine gridpoints of type (f3), the rest of the noncoarse gridpoints. They are at
the center of a square of edge 2h, the vertices of which are coarse gridpoints (or
boundary points). In this case we introduce the incremental unknown

U2i+l,2j+1 U2i+l,2j+ --(UEi,2j "- U2i,2j+2 "" U2i+2,2j -" UEi+E,2j+2)
(1.17)

i,j=O,. .,N-1.

Note that in (1.15)-(1.17), u =0 if a or fl =0 or 2N; of course the corresponding
unknowns disappear then.

Let UI denote the incremental unknowns defined by (1.15)-(1.17) and let U=
(U, U) be the new unknowns. We have

(1.18) U=SO,
where the matrix S, as well as its inverse, is easily derived from (1.15)-(1.17). Then
(1.14) yields

(1.19) =g
with , StAS and/ Stb.

The explicit form of . is less transparent here than in dimension 1. It is also less
transparent that the incremental values Uy are small as in (1.4); however, this will be
proved in 2 by using the variational approach.

2. Variational framework. The variational formulation of (1.11) is well known.
We introduce the Sobolev space V H(fl) endowed with its scalar product

a(u, v)= ((u, v))= grad u.grad v dx

and we look for u V such that

(2.1) a(u, v)=(f v) Vv V,

where (f, v) is the LE(lq)-scalar product of f and v"

(f, vl= Infvdx.
We denote by I1"11 and l" the V and L2 norms corresponding to the scalar products
(( .,. )), .,. ), respectively.

We now recall briefly the variational framework corresponding to the finite-
difference scheme (1.12) (see [C]). For the mesh h 1/2N, we introduce the space
Vh, which consists of step functions Uh, Vh,’’’, that are constants on the squares
centered at (ih, (i + 1) h) x (jh, (j + 1) h), i, j 0,. ., 2N 1 of edge h and that vanish
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if orj 0 or 2N 1. The space Vh is spanned by the basis functions WhM M (ih, jh),
i, j 1,. , 2N 2, which are equal to 1 in the square [ ih, (i + 1) h) x [jh, (j + 1) h) and
which vanish outside this square. Thus

(2.2) un(x) Y un(M)Whlvt(X), x f;

Ih is the set of points (ih, jh), i, j 1,..., 2N-2, and we denote by fh the set of
points (ij, jh), j 0,. -, 2N.

We introduce the finite-difference operators V lh, V2n"
1

V,no(x) =7- (x + he,)- o(x) ),

el (1, 0), e2--(0, 1) and we endow Vh with the scalar product
2

((Uh, Vh))h 2 (VihUh, Vihl)h),
i=1

where (.,.) is as before the scalar product in L2(I)). We set ][’llh {((’," ))h} 1/2 and
observe that I]’]lh and 1"1 are Hilbert norms on Vh. The discrete analogue of (2.1) is
the following variational problem:

(2.3) Find Uh Vh such that ((Uh, l)h))h "-( Vh) for all Vh Vh,

Setting Uh(M) Uij for M (ih, jh) h, it can easily be shown that (2.3) is equivalent
to the system of equations (1.12) with the only difference that here fj is an average
value of f:

1 r(+l)hfU+l)h f(x) dx.(2.4) fij -’ dih djh

Now there is no objection to considering the mesh 2h 1 /N and the corresponding
space V2h spanned by the basis functions W2h,, M 2h, where Wh, and l:h are
defined exactly as before. We are not interested here in the analogue of (2.3) in V:h.
Rather we are interested in an appropriate rewriting of (2.3). We observe that V:h c Vh
and write

(2.5) Vh Vn Wn,
where Wh is the space spanned by the functions WhM, M lh\lzh. We thus obtain a
basis of Vh consisting of the w2h.4, M 12, and the wh, M 1\l2h. The previously
used basis of Vh or Vzh is called the natural basis, while this basis of Vh induced by
that of V2h will be called the induced basis.

We now write the decomposition of an element uh Vh corresponding to (2.5):
(2.6) Uh

and try to identify Yh and Zh, on a square [2ih, 2(i+l)h[x[2jh, 2(j+l)h[ of vertex

M1 (2 ih, 2jh), as in Fig. 2.1.

Mx AO M4x

A20 A30 A40

Mx A10 M2x

x 0 x
3 4

o o o
2

x O x

(a) (b)

FIG. 2.1. Subdivision of a coarse grid square into four fine grid squares.
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We have

Hence

(.7)

is equal on this square to

3

W2h,M WhM -{-

_
WhAi

i=1

uh Z uh M whsa
ME-

uh M1 whsa, + uh (Ai) WhAi Uh M, w2hs4, + Y. uh (Ai) uh M, )) WhA
i=1 i=1

We conclude that Yh is the coarse grid component

(2.8) yh . uh(M)W2h,
M2h

and

zh Y. {(uh(M + he,)- uh(M))Wh,M+hel

(2.9) + (uh(M + he2)- uh(M))Wh.M+he2
+(Uh(M + he1 + he2)-Uh(M))wh M+he+he2}"

The components of Zh in the basis of Wh described before are thus the incremental
quantities of the form

(2.10) uh(A,)- uh(M,), uh(A2)- uh(M,), uh(A3)- uh(M,).

We will then call zh the incremental component of uh and Yh its coarse grid component.
Let us observe that

(2.11) Zh(M)=O VMC2h VZhWh

Remark 2.1. These incremental values of Uh are not those used in 1. A different
basis of Vh leading to cumbersome computations must be used to recover the incre-
mental unknowns mentioned in 1. For the sake of simplicity we will pursue the
analysis with incremental values (2.10) and decompositions (2.5)-(2.6), (2.8)-(2.9).
However, for all practical purposes, we advocate the use of the incremental unknowns
of 1, which are much more convenient in effective computations.

We now return to the approximate problem, namely (2.3). Using the decomposition
(2.5), (2.6) we write Uh Yh + Zh and observe that (2.3) is equivalent to

(2.12)
((Yh + zh, fh))h (f ) Vfh V2h,

((Yh + zh, h))h (f h) VYh Wh.
Of course, replacing vh by uh in (2.3) we obtain the usual a priori estimates:

(2.13 u Z ( u).

Thanks to the discrete Poincar6 inequality (see [C] or IT2]),

(2.14) lull c111 u I1,
where c is independent of h, we find

(2.15)
Ilu IIZ Ifl lull Cllfl Ilu II,
u I1 Cllfl.
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We can also obtain (2.13) by replacing )Th by Yh in the first equation of (2.12) and h
by Zh in the second equation of (2.12), and adding the resulting relations.

Our aim is now to show that (2.15) in fact yields two separate a priori estimates
for Yh and Zh.

Let us admit temporarily the following lemmas, which will be proved below.
LEMMA 2.1 (Strong Cauchy-Schwarz inequality). We have the enhanced Cauchy-

Schwarz inequality:

(2.16) [((Yh, z))l-Ilyllllll Vyh V2h, VZh Wh.

(2.17)

LEMMA 2.2.

yh 2h 211yh E2h Vyh V2h
LEPTA 2.3 (Strong Poincar6 inequality in W). We have the following strong

Poincar. inequality for functions in Wh"

(2.18) IZh[ <-- hllz I1
If we admit these lemmas, then

(2.19)

and (2.15) yields

(2.20)

VZh Wh

-Ilyll + IIz I1 + 2((yh, Zh))h

>- [lYh + z Yh I1 Z I1

1

=8 (lly I1 + IIz I1)

Finally, using (2.18) and (2.20),

(2.21)

We have thus proved the following analogue of (1.7).
PROPOSITION 2.1. The incremental component Zh of Uh is small in the LE-norm

(2.22) Izhl4hclfl.
We conclude this section by proving Lemmas 2.1-2.3.
Proof of Lemma 2.1. We must show that

(2.23) V hYhV hZh dx <-_ "- v hYh
z dx IV hZh 2 dx

where Vh--(71h, 72h). It suffices to show (2.23) with f replaced by a typical coarse
grid square as in Fig. 2.1; (2.22) would then follow by summation for the different
’s and utilization of the Schwarz inequality in the integrals.

For the sake of simplicity in the notation we set Yh (Mi)-- mi and Zh (Ai)= p, and
recall that Zh(M)=O for all (see (2.11)). The function Yh is constant on the square

of Fig. 2.1(a) and its value is ml. The function Zh is constant on each of the four



INERTIAL MANIFOLDS AND MULTIGRID METHODS 163

subsquares 1,’", 4 numbered as shown in Fig. 2.1(b); on 1, zh =0, on :,
zh Pl, on 3, zh =P2, and on 4, Zh P3.

Now the computation is straightforward:

1
On 1, hYh =0, hZh = (Pl, P2),

1 1
--On, VhYh = (mE-- m, 0), VhZh = (--Pl, Pa--P),

1 1
--On 3, VhYh = (0, m3-ml), VhZh = (Pa--P2,--P2),

1 1
--On 4, VhYh = (m- m, m m), VhZh = (P4--P3, Ps--P3).

Then

(2.24) IVhYh[ dx=2{(m-m)+(m3-ml)2},

(2.25) f IVzI= dx=2(p+p)+(p3-Pl)=+(p3-p=)+(p4-P3)=+(ps-p3)2,

hYhhZh dx

-p(m2- ml) -p2(m3- ml)+ (m2- ml)(P4- P3) + (m3- ml)(P5- P3)

(m- ml)(P4-P3 -Pl) + (m3 m)(p5-P3 -P2)

{2(m-m)2+2(m3-ml)}/2 (p4-P3-Pl)+(ps-p3-p)

IVhYhl 2 dx (P4-P3 + (Ps-P3)2+P+P
< VhYh dx iV hZh dx

2

ProofofLemma 2.2. We use the same notation as in Lemma 2.1 and observe that

V2hYh is constant in and equal to (1/2h)(mE-m, m3-ml). Hence

lV2hyhl 2 dx=(m2- m)2+(m3- m),
and it suces to compare this to (2.24).

Proof of Lemma 2.3. Using the notation of Lemma 2.1, it suces to prove that

(. (z. x h I.1 x.

The right-hand side of this inequality is given by (2.25) and the left-hand side is equal
to

h(p+p+p) h{2p+ 2p+ (P3--Pl) + (P3-P)}

Ihz x.
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Remark 2.2. Although here we emphasize the case f (0, 1)2, let us observe that
the framework and results extend to the case where f is any bounded domain of RE.
In this case the mesh h can be any vector (hi, h2) of RE, hi > 0, and we consider the
mesh h consisting of the points jh=(jlh,jEh2), ji7/. We denote by orb(M) the
rectangle centered at M of edges h, hE, and

trlh(M) trh(M) U O’h(M d- he) U O’h(M d- h_e2).

Then

fih= {M e h, o’S(M) c },
Oh {M , o’h(M) c f},

and for M fh, Whl is the characteristic function of h(M). We define Vh as the
space spanned by the wh, M h, and Vh Vh is defined in the same way for
2h (2h, 2h). The finite difference operators Vh are defined by

1
Vih(X =((X + h,ei)- (x)).

We still have (2.5) with Wh defined exactly as above. All the results extend without
any modification. Lemmas 2.1 and 2.2 are still valid, and in Lemma 2.3 we replace
(2.18) by

(2.27)
[Zhl Nmax (hi, h2)llz, I1

(h + h)/=llzhllh.
and (2.22) is modified accordingly:

(2.28) Izl 2 max (h, h2)cifl.
3. A class of nonlinear evolution equations. Let H be a Hilbe space endowed

with the scalar product (.,.) and the norm I" I. We consider an evolution equation of
the form

du
(3.1) +Au+R(u)=O

dt

with

(3.2) R(u) n(u)+ C(u)+y
The unknown function u is a map from + (or some interval of) into H. The operator
A is linear self-adjoint unbounded in H with domain D(A). We assume that A is
positive closed and that A- is compact. The powers A of A for S are defined
and map D(A) into H, and D(A) is a Hilbe space for the norm IA. I- We set
V= D(A/) and we denote by I1"11 A/=" the norm on V; > 0 is given.

The nonlinear term R(u) satisfies (3.2), where B(u) B(u, u); B( .,. is a bilinear
continuous operator from V x V into V’; C is a linear operator from V into H and
f H. We denote by b the trilinear continuous form on V given by

b(u, v, w)= (B(u, v), w) Vu, v, w V,

and we assume that

(3.3) b(u, v, v)=0 Vu, v V,

(3.4) Ib(u, v. w)l c=lul/=llull/=llvll Iwl/=llwll/= u, o, w V,
(3.5) Iful cllull u V.
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where c2, c3 like the quantities ci appearing subsequently are positive constants. In
addition, we require that B maps V x D(A) into H and

(3.6) IB(u, v)l <= c4lull/2]lull’/21[vll’/21avll/2 Wu, v D(a),

(3.7) [B(u, v)l<=clul’/ZlAul’/Zllvll Vu, vO(a).

Finally, we require uA + C to be positive, i.e., there exists a > 0 such that

(3.8) ((vA+f)u,u)_->llull = u v.
Under the hypotheses above, we infer from classical results that the initial value

problem consisting of (3.1) and

(3.9) u(0) Uo

has a unique solution u u(t) defined for all > 0 and such that

(3.10) u c(g+; n)f-lL2(O, T; V) VT>0.

Moreover, if Uo V, then

(3.11) ue c(R+; V)f)L2(O, T; D(A)) T>0.

Remark 3.1. As usual, we can rewrite (3.1), (3.2) in a weak (variational) form
that will be appropriate for the treatment below, namely,

d
(3.12) d--(u, v)+a(u, v)+b(u, u, v)+(Cu, v) (f, v) /v V,

where

(3.13) a(u, v)= (Au, v).

We may assume for simplicity that

(3.14) a(u, v)= v((u, v)), v > O,

but this is not essential.
The abstract equation considered here includes, in particular, several dissipative

evolution equations and the two-dimensional Navier-Stokes equations; however, we
do not want to consider such a complicated equation here, and we will now give some
simpler equations satisfying these hypotheses.

Example 1. Let f be an open-bounded set in R2 with boundary 01. We consider
the evolution problem (of Burgers type):

Ou Ou Ou Ou
Au + a+a2d- U--f, X , > 0,(3.15)

Ot OX OX2 OX

(3.16) u =0 onOl’,

(3.17) u(x, O) Uo(X), x f.

Here a, a2 are given in L(f) andf L2(f). We take H L2(f), V= Hol(f), A =-A
with Dirichlet boundary conditions:

Ov Ou Ou
B(u, v) u, Cu a+a2.

OX OX OX2

It is easy to check that all the hypotheses are satisfied.
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Example 2. This is an example of an integral Burgers type equation. Everything
else being unchanged, we now consider

B(u, v)= (/ct u() d) OxlOv"
All the hypotheses above are satisfied.

Example 3. This last example is a system close to the Navier-Stokes equations
but without the pressure term and the incompressibility condition; and the nonlinear
(inertial) term is modified as in IT1 ]. Let [l be an open-bounded set of with boundary
012. The function u (Ul,//2) maps 12 x (0, T) into R2 and satisfies

0__u_ 1
(3.18) t,Au+(u.V)u+(divu)u=f, x12, t>0,

Ot

(3.19) u-0 on012,

(3.20) u(x,O)=uo(x).

We take H= L2(12), V= H()2, D(A)= {H(12)ffl HZ(fl)}2, A -,A, C=0, and

B(u, v)= (u. V)v +1/2(div u)v.

All the hypotheses are satisfied.

4. Spatial discretization. The IMG algorithm. In this section we present the IMG
algorithm, which combines the ideas and concepts on inertial manifolds and those on
multigrid methods. We start by describing the spatial discretization of (3.1) (or (3.12))
in a way suitable for our purpose. We then give an estimate on the incremental
component of the solution, which is a partial justification for the IMG algorithm.
Finally, we describe the IMG algorithm itself.

4.1. Spatial discretization. For the spatial discretization of (3.1), (3.12), we are
traditionally given a family of finite-dimensional spaces Vh H endowed with a Hilbert
scalar product and norm ((.,.))h, I]" h. The parameter h is a discretization parameter.
For Galerkin methods, and particularly for finite-element methods, Vh V and it is
required that [2 h Vh is dense in V. For finite differences, as shown in 2, the space Vh
is not a subspace of V and the hypotheses are slightly more involved; they will not
be recalled here (see, however, 5).

For the spatial discretization of (3.12), we then consider a function Uh from
into Vh, which satisfies

d
(4.1) -(Uh, Vh)+ah(Uh, Vh)+bh(Uh, Uh, Vh)+(ChUh, Vh)=(f Vh) VVh. Vh,

where a, v, and Ch are appropriate approximations of a, v, and C. Of course, the
second step in the numerical approximation of (3.1), (3.12) is the time discretization
of (4.1), but we emphasize the spatial discretization here.

4.2. Incremental unknowns. As in 2, we now consider two values of the discretiz-
ation parameter, h and 2h, and the corresponding approximating spaces Vh and Vzh.
It is assumed that V2h Vh and, more precisely, we write as in (3.5)

(4.2) Vh Vzh O) Wh
Any Uh Vh is decomposed into

(4.3) uh
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where Yh is called the coarse grid component of Uh and Zh is called the incremental
component of Uh. We assume the following properties, which have been proved in 2
when V H(I) and f (0, 1)2:

(4.4) I((Yh, Zh))hl <- (1 )llyllllzll Vyh E V2h VZh Wh,

where 0 < (5 < 1 is independent of h, and

(4.5) &(h)lzl<- Ilzhll Vz W,

where S(h)oo as h0.
We now use the decomposition (4.3) of Uh and it is straightforward that (4.1) is

equivalent to the following system for Yh,- (Yh + Zh), h + ah (Yh + Zh, fh)

(4.6) + bh (Yh -k Zh, Yh -f" Zh, h "+" Ch (Yh 4r Zh ), )Th (f)h

(4.7) - (Yh + Zh), h + ah (Yh + Zh, h)

+ bh (Yh + Zh, Yh + Zh, h + Ch (Yh + Zh), h (f, h

This is just a rewriting ofthe natural spatial discretization scheme (4.1) correspond-
ing to Vh. However, as a partial justification for the IMG algorithm described below,
we want to show now that the incremental component Zh is small for h small.

4.3. Estimate on the incremental component. To derive a priori estimates we must
assume that ah, bh, C satisfy some hypotheses similar to those on a, b, C (see
(3.3)-(3.8)). We assume here that

bh Uh, Vh, Vh 0 VUh, vh E Vh,(4.8)

Ibh(Uh, Vh, wh)l <---- C61UhI’/)-IluhlI/Ilvhll IWI’/=II WII /=
(4.9)

(4.10)

(4.11)

Vlh, 13h, Wh E Vh,

(4.12)

where C6--C9 and a are independent of h(a >0).
As usual, a priori estimates on Uh are obtained by replacing Vh by Uh(=Uh(t)) in

(4.1). It is equivalent to replacing h by yh(=yh(t)) in (4.6) and h by Zh(--zh(t)) in
(4.7) and adding the equations that we obtain. Thanks to (4.8) we find

1 d
122 at u + ah (Uh, Uh) + (ChUb, Uh) (f, Uh).
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Using (4.11) and (4.12), we can then write

1 d

2 dt

(4.13)

(4.14)

The last inequality yields a uniform estimate of Uh in g(R+; H)"

Ol__ C8C9 2(4.15) lUh(t)l=<--__lUh(O)l exp
c9 /--lfl Vt>0.

Returning to (4.13) we find, for any T> 0

1 fr 1 c92(4.16) - Jo IlUhl]2 dt<-lUh(O)12+--lfl2<Ta, a21 K1.

Separate estimates can be obtained for Yh and Zh by using (4.4). Indeed,

I1Uh 2 [[Yh + Zh 2n
(4.17) IIY,, , + z,, , + 2((yh, Zh)),,

_-> 28 (11 Yh % / z ),

and hence

(4.18) - (llyll+ IIzll)dt<=K---2.
Then, using (4.5), we obtain that Zh is small in the following sense (at least)"

1 j.r K1Izl= dt<---(S,(h))-2(4.19)
T o

We can derive further a priori estimates on Zh, but they involve more complicated
computations and will not be given here.

4.4. The IMG algorithm. The algorithm that we now present stems from the the
theory of dynamical systems, the idea being to approximate the universal attractor
describing the long-term behavior of the solutions of (3.1), (3.2). A partial justification
of this algorithm lies in the fact that some of the terms involving Zh in (4.6), (4.7) are
small and thus can be neglected. We refer the reader to [FMT] and [T5], [T6] for
further justification.

The algorithm that we consider is the following: Uh Yh + Zh is an approximation
of u different from that above and, in particular, Yh, Zh are no longer the same as in
(4.6), (4.7).
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We look for Uh Yh -t- Zh, satisfying

(4.20)

(4.21)

(4.22)

dt h + ah (Yh + Zh, h) + bh (Yh, Yh, h)

+ bh (Yh, Zh, ;h + bh (Zh, Yh, h + Ch (Yh + Zh), h (f, h lh V2h,

ah (Yh + Zh, Y-h + bh (Yh, Yh, h + Ch (Yh + Zh ), Y-h f Y-h) IY-h Wh,

(yh(O), fib) (Uo, fih) Ifh
Theoretical questions including the existence of Yh, gh will be studied in 5. For

the moment we conclude this section with some general comments.
We rewrite (4.21) in the form

ah Zh, h + ChZh, h --ah (Yh, h bh (Yh, Yh, -h
(4.23)

--(ChYh, Y-h)+(f, Y’h) VY-h Wh.

It then follows from the Lax-Milgram Theorem and hypothesis (4.11) that, at each
instant of time, Zh Zh (t) is uniquely determined as a function of Yh Yh (t) and of the
other data:

(4.24) Zh t) fh (Yh t) ).

By inserting this expression of Zh in (4.20), we find the following equation for Yh’.

(4.25) \ at’ h -It" ah (Yh + h (Yh), fih + bh (Yh, Yh, Y’h + bh (Yh, dh (Yh), Y’h

+bh(h(Yh),Yh, fih)+(Ch(Yh +dPh(Yh)), fih)=(f.h) Vfih V2h.

We observe that, setting h 0 in (4.25), (4.22), we recover exactly the approximation
based on V2h. Hence (4.25) gives a V2h approximation of Yh, perturbed by some "small
terms" Zh =fh(Yh). The solution Uh of the IMG algorithm lies on the manifold h of
Vh of equation

(4.26) Zh diI h (Yh ).

The dimension of this manifold is that of V2h. Note that, with a usual V2h discretization
(Zh =0), the solution Uh Yh would lie in V2h; and with a Vh-discretization as in (4.1)
(or (4.6), (4.7)), the solution Uh could be a priori anywhere in Vh. Here the solution
lies on the manifold h of Vh whose dimension is that of V2h. As in IT5] for the case
of spectral methods, it is expected that the IMG algorithm provides a Vh-accuracy,
with a V2h-complexity of computation.

Remark 4.1. Although we restricted ourselves to two discretization meshes h and
2h, we could as well consider two discretization meshes h and dh, d e N fixed (= 2, 3,
4,... ). All the developments above would be still valid without any modification; we
only need to extend (4.4), (4.15) (i.e., Lemmas 2.1 and 2.3) to this case.

5. Convergence of the algorithm. Our aim is now to prove the convergence of the
algorithm presented in 4. We do not make any attempt at generality and, strictly
speaking, the convergence result hereafter applies to the three examples described in

3. However, the methodology is general, and with appropriate hypotheses--including
in particular the so-called consistency hypotheses that specify how ah, bh, Ch, Oh
approximate a, b, C, V---the result applies to the general equation (3.1), (3.12) and
to even more general situations.
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THEOREM 5.1. The hypotheses are those above, Uo is given in H, and u u( t) is the
solution of (3.1), (3.9). For every fixed h, the solution Uh Yh + Zh of (4.20)-(4.22) exists
and is uniquely definedfor all > O. When h O, Uh converges to u in thefollowing sense:

(5.1) yhuinLP(O, T; H) stronglyforallT>Oandallp, l<-p<o,VhUh-Vu
in L2(l) x (0, T)) strongly, for all T> O.

(5.2) Zh-O in LP(O, T; H) stronglyfor all T>O and allp, l <--p<c, VhZh-O
in L2(fl x (0, T)) strongly, for all T> O.

(5.3) Yh - U and Zh - 0 in L(R+ H) weak-star.

The proof of Theorem 5.1 is given below. It comprises several steps, the first ones
being devoted to the derivation of a priori estimates.

5.1. A priori estimates I. We sta by deriving a priori estimates for Yh and Zh.
They are similar to those derived in (4.18), (4.19) for the usual discretization procedure.

The system of equations (4.20)-(4.22) is equivalent to (4.25) and (4.22), the
expression of h being given by (4.24). Since h is a simple (quadratic) function, the
existence of Yh (and thus Zh) on some inteal of time [0, T) follows readily from
classical theorems on differential equations. The fact that Yh and Zh are defined for all
> 0 (i.e., Th +) will follow from the a priori estimates below.

We replace by y (=yh(t)) in (4.20) and h by Zh (=Zh(t)) in (4.21) and we
add the equations that we obtain. We find

1 d
2(5.4)

2 dt lYh + ah (Yh + Zh, Yh + Zh + Ch (Yh + Zh ), Yh + Zh ( Yh + Zh ).

We have used (4.8) and its consequence

(5.5) bh h h Oh) bh h Oh, h Vh h Oh Vh
Thanks to (4.11) we then have

1 d
2 dt lYh 12 + IlYh + Zh % ( Yh + Zh)

If] lYh + Zhl (by the Schwarz inequality and (4.12))

c91fl IlYh + Zh lib
1 C-- IlYh + z +Ifl=2 2a

d cg
(5.6) d lyI= + llYh + zhll Ifl =.
Using (4.4) as in (4.17) and again using (4.11), we obtain

d
i= (llYhll+llzhll) < C ifl=(5.7) d lYh + 2al

d
12 2a c(5.8) d lYh + C lyh]2 ifl=.

We infer from (5.8) and from Gronwall’s Lemma the following estimate on Yh"

(5.9) [yh(t)[2lyh(O)[2 exp +2ai lf12"
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This shows that Yh remains bounded, and Yh is defined for all > 0 (i.e., Th +).
Furthermore, since by (4.22)

(5.10) lyh(0)] <- luol,
we have a time-uniform estimate for Yh that is independent of h:

(5.11) Yh remains in a bounded set of L(R/ H) as h -->0.

As we have already mentioned, (4.23) and (4.24) imply that Zh tOO is defined for all
> 0. By integration of (5.7) between zero and T (T> 0 fixed), we then deduce that

1 [" 1
i c(]]ynll,/llzhl],) dt<--lyh(O) + ]f]2.(5.12)

T., o 2a6T 2al6T
This implies that

(5.13) For every T>0 fixed, the norms of Yh and Zh in L2(0, T; Vh) remain
bounded as h --> 0.

By use of (4.5) this yields

(5.14) For every T>0 fixed, the norm of {S(h)}Zh in L2(0, T; H) remains
bounded as h --> 0.

Remark 5.1. We note that due to the term 1/T in front of the integral in the
left-hand side of (5.12), this inequality yields slightly more than (5.13). More generally,
we can integrate (5.7) between and t+ T (t, T>0 fixed); using (5.9) and (5.10) we
then find

1 c
2,,--- [yh(t)12+2 Ifl2

1 ft+T (lly / z ,) ds <-
Tao

(5.15) --<lyh(0)lzexp + + Ifl=,-2,r c9 4ar 2
< ( 4- (llyll,/llzll) ds=2----luol/\/2,jlfl=.

This estimate independent of h is valid for all > 0, T> 0. Of course (5.15) also implies
an analogue of (5.14).

Remark 5.2. We recall that in the case where Vh is the discrete analogue of H(fl)
as in 2, i.e., for the five-point discretization of the Laplace operator, then

l’IlYhll----- IVhYhl dx,

IlYh(t)llh dt- IVhYh(X, t)l = dx dt.

Therefore (5.13) is an estimate in L2(II x (0, T)), independent of h, for the discrete
analogue of the gradient of Yh and Zh.

5.2. A priori estimates II. The following a priori estimates give some improvements
that are not essential but are useful. We first restrict ourselves to the framework of 2
(i.e., to Examples 1-3 of 3). Since Vh is finite-dimensional, the norms of Vh are
equivalent; thus (2.14) (or (4.12)) can be supplemented by another inequality:

(5.16) Iluhllh S=(h)luh[ VUh Vh,
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where S2(h) oo as h-> 0. In the situation of 2 the computation of S2(h) is easy and
we find

(5.17) S2(h)
h

Now we set h Zh (--Zh(t)) in (4.23) and (4.8)-(4.11)"

ah Zh Zh / ChZh, Zh ah (Yh Zh bh (Yh, Yh, Zh ChYh, Zh + f, Zh ),

(C7/ C8Sl(h)- / c61Yhl)llYhllhllZhllh / S(h)-lfl Ilzhllh (because of (4.5)).

Again using (4.5) and (5.16), we find

1
Izl--< (S(h))-(c7 + c8S(h)- + c61yhl)Ily II./ (S(h))-31fl

O

<
1 S2(h) 1- S(h)

(c7+ c8S(h)- + c6lyl)lyl+--(S(h))-2lfl

Owing to the expression of Sl(h) in (2.18) (S(h) h-) and to the expression of S2(h)
in (5.17), we have

S(h
<_ 2x/.(5.18)

S,(h)

Finally, thanks to (5.11), we conclude that

(5.19) zh remains in a bounded set of L(+ H) as H- 0.

5.3. Passage to the limit. The passage to the limit h 0 relies on fairly standard
methods. We will only sketch this step of the proof; the reader is referred to IT2] for
the details in related situations.

Thanks to (5.11), (5.13), Remark 5.2, (5.14), and (5.19), there exists a subsequence
(still denoted h) and there exists u"

(5.20) uL(+;H)fqL2(0, T; V) VT>0,

such that for h- 0

(5.21)
Yh u in L(+; H) weak-star,

hYh " U in L2(y x (0, T)) weakly ’T> 0,

Zh 0 in L(R/; H) weak-star,
(5.22)

VhZh-->OinL2(-x(O, T))weakly ’T>0.

We infer from (5.14) and (5.19) that

(5.23) Zh->OinLP(O, T; H) strongly /l_-<p<oo, /T>0.

Also, by using a compactness argument recalled below, we can improve (5.21) and
show that

(5.24) yh-->uinLP(O, T; H) strongly /1-<_p<oo, /T>0 ash->0.

Using the convergences (5.21)-(5.24) we can then pass to the limit in (4.20)-(4.22),
following classical methods. At the limit we find that u is solution of (3.12) (or (3.1))
and (3.9). Since the solution to this problem is unique, we see by a contradiction
argument that the convergences (5.21)-(5.24) hold for the whole sequence h.
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Finally, for the strong convergence of the derivatives we consider the restriction
operators rh (see [C], IT2]) that map V into Vh and such that

rhu U in L2(0, T; H) strongly,
(5.25)

VhrhU --> V u in L2(0, T; H) strongly.

We then consider the following expression, where Uh Yh +
1

i IoXh =- lYh (T) u( T) +

(ah(uh--rhu, Uh--rhU)+(Ch(Uh--rhU, (Ch(Uh--rhu), Uh--rhU)Uh--rhU)) dt.

We have Xh Xh +X+X"

x ly, rl + {a (u,. u + (c,.

it is clear that, for h 0,

X X =1 oluol=+ ( u) dt;

x =-(y(r. u(rl- {a,(u. r,ul+(cu, rut ;

as h 0, X converges to

X -2X,
Thanks to (5.25), when h 0, X converges to -X=X.

Finally Xh converges to zero and thanks to (4.11) we conclude that

We denote by fib(t) and ff(t) the components of (rhu)(t) on Vh and Wh. Using again
(4.4) as in (4.17), we find

dt0

’ I1-11 d0 as h0.
o

The conclusion follows then from the easy to prove fact that the incremental component
of rhu converges to zero as h 0.
The proof of Theorem 5.1 is complete after we prove (5.24).



174 R. TEMAM

5.4. Compactness. The strong convergence result in (5.24) is shown by using a
compactness theorem. The most appropriate here is that in [T3]. To apply this compact-
ness result, we observe (see, for instance, IT2]) that the set

(5.26) { H,
is relatively compact in H L2(f). Furthermore we must estimate, for r > 0 fixed,

(5.27) lyh( + r) yh( t)l at.

By integration of (4.20) we find4

(yh(t+r)--yh(t),fh)+ah Uh(S) dS, fh + Ch Uh(S dS, fh

+ Bh(Yh(S))+ Bh(Yh(S), Zh($))+ nh(Zh(S), yh(S)) ds, h

f(s) ds, h

We then set h =yh(t+ r)--yh(t) and integrate the resulting equation with respect to
t. This gives

lyh(t+ r)--yh(t)l 2 dt
j=l

with

I, ah Uh(S ds, yh(t + r)-- yh(t) dt

=rl/2c7 Ilu.(s)ll ds IlYh(t+r)--yh(t)llhdt
0

cr/2,
where here and below c is independent of r and h;

I= C u(s) ds, y(t+r)-yh(t) dt

c8r/= Ilu()ll ds lYh(t+r)--yh(t)l dt
0

Ct
1/2

h Bh(Yh(S)) dS, yh(t+r)--yh(t) dt

C6 lyh(s)l llyh(s)llh dS IlYh(t+ r)--Yh(t)llh dt (from (4.9)and (5.5))

(I0F )1/2c6rl/=IYhI(U+;H) liyh(s)[l Ms Ilyh(t+r)--yh(t)llhdt

cr/.

4 Bh((Oh) Bh(tPh, 0h), where Bh(’,’) is the bilinear mapping from Vh X V into Vh defined by
(Bh (Oh, h), Oh) bh(Oh, Oh, Oh), for all qh, h, Oh Vh.
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The two other terms involving Bh and denoted/4, 15 are estimated similarly. Finally,

16 f(s) dS, yh(t+r)--yh(t) dt

<--r1/2 If(s)l2 ds lyh(t+r)--yh(t)lhdt

<= cr/2.

In conclusion (5.27) is bounded by cr1/2 and tends to zero as r- 0, uniformly with
respect to h. As is shown in IT3] this, together with (5.26), ensures (5.24).

Remark 5.3. The extension of Theorem 5.1 to more general examples than those
of 3 necessitate the following hypotheses"

(i) S2(h)/S(h) is bounded by a constant independent of h (see (5.16) and (5.18)).
(ii) The consistency hypotheses specifying how ah, bh, Ch, and Vh approximate

a, b, C, and V.
(iii) The definition of a restriction operator rh mapping V into Vh and such that

(5.25) holds.
For example, in the case of the Dirichlet problem in a bounded domain ll of R2

with meshes hi, h2 different in both directions, as in Remark 2.1, then

S(h) 2c {max (h, h2)}-(see Remark 2.1); an easy computation shows that

S2(h) v h--S+
Hence (i) is satisfied if h/h2 remains bounded from above and below.

6. Improved stability. One of the advantages produced by the IMG algorithm is
an improved stability condition when discretizations in space and time are both
performed and an explicit time-discretization scheme is used. Since this improvement
is already transparent in the linear case we will restrict ourselves to the linear case
and replace b, C, bh, Ch by 0. Without any loss of generality we can also set f=O;
finally for simplicity we take

(6.1)
a(u,v)=v((u,v)), v>0,

ah(uh, Vh)= V((Uh, Vh))h.

After discretization in time by an explicit scheme the IMG algorithm (4.20)-(4.22)
now leads to the construction of two sequences of elements of Vh"

Y’ V2h, n >=O,

Zh . Wh, FifO,

Uh Yh + Zh - Vh, n >-- O.

These elements are defined recursively. We first define y by setting as in (4.22)"

(6.2) (y, 37h) (Uo, 37h) Vf V2h.
When y, is known, n-> O, we define z and y,+l as follows"

(6.3)
k
(Y,+--Yh,.h)+ ah(y, + Z, fib)=0 Vfh e V2h,

(6.4) ah(y’+Z,, h)=0 Vh 6 Wh.
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Here T> 0 is fixed, M is given and k TM is the time discretization mesh. We
rewrite (6.4) as

(6.5) ah(z,, h)=--ah(y,, Y’h) VY.h Wh
and we infer easily the existence and uniqueness of z, Wh satisfying (4.3)-(4.4) from
the Lax-Milgram Theorem. Once z (and y,) are known, (6.3) readily determines
y,+l V2h. The construction can then continue.

The stability condition arises when we try to determine a priori estimates on the
sequences y, z,. For the a priori estimates we replace )Th by y, in (6.3) and h by z,
in (6.4). We have

Thus,

(6.6)

(6.7)

lyT,+11- IyT,l- lyT,+ yT,12 + 2ku((u, Y))h --0,

((u, z)) =0,

and by adding (6.6) to 2k times (6.7) we find

(6.8) lyT,+’lz- lyT, + 2kullu’jl2h ly+’- yl.
To estimate the right-hand side of (6.8) we replace h by k(y+l-y) in (6.3) and we
obtain

lYh --Y -ku((uh --Y))h

kllullhllY+’ Yllh.
Now we can use the analogue of (5.16) in V2h"

I111 S=(2h)lhl h V=h,

and this leads to

(6.9)
lY+-Y[ k’S(2h)llUllhlYT’+’--YT’l’
lye,+1 y,l2 _<-- kvS2(2h))=ll uZ .

We compare (6.8) and (6.9) and write:

(6.10) ly+l=-IYZl=+2k(1-1/2k(Sz(2h))=)llullh <-O Vn>-_O.

We can deduce the desired a priori estimates from (7.10) provided k, h satisfy the
stability condition

(6.11) kv(Sz(2h))2 < 1,

or more precisely

(6.12) ku(SE(Zh))2 1 O,

for some 0, 0< 0 < 1. If we replace $2(2h) by its expression from (5.17), (6.11) becomes

ku
(6.13) h< 1.

If instead of (6.2)-(6.4) we consider the traditional explicit finite-difference scheme in
Vh, we obtain the stability condition

ku(S(h))2 < 1,



INERTIAL MANIFOLDS AND MULTIGRID METHODS 177

k, 1

h-- < -’4
In conclusion, the IMG algorithm allows a time-stepfour times larger than the usual

explicit finite-difference scheme and yields a similar result with essentailly four times
fewer computations. Of course the IMG algorithm as depicted in (6.3), (6.4) is not
fully explicit since the determination of z, from (6.5) is implicit. However, we must
remember that the z, are small increments and therefore their determination can be
made in a very rudimentary way.

A more complete analysis of the time-discretized version of the IMG algorithm
in the context of nonlinear equations will be performed elsewhere, but we thought
that it would be useful to indicate here another partial justification of the IMG
algorithm.

[B]

[CFNT]

[FMT]

[FNST1]

[FNST2]

[FST1]

[FST2]

[H]

[JRT]

[Mc]

[MS]

[MT1]

[MT2]
IT1]

[T2]
IT3]

IT4]

IT5]

REFERENCES

A. BRANDT, Multigrid methods, in Proc. International Congress of Mathematicians, Berkeley,
CA, 1986.

J. CA, Approximation variationnelle des problmes aux limites, Ann. Inst. Fourier (Grenoble),
14 (1964), pp. 345-444.

P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, AND R. TEMAM, Integral Manifolds and Inertial

Manifolds for Dissipative Partial Differential Equations, Appl. Math. Sci. 70, Springer-
Verlag, Berlin, New York, 1988.

C. FOIAS, O. MANLEY, AND R. TEMAM, Modeling of the interaction ofsmall and large eddies
in two-dimensional turbulent flows, Math. Model. Numer. Anal., 22 (1988), pp. 93-114.

C. FOlAS, B. NICOLAENKO, G. SELL, AND R. TEMAM, Varidtds inertielles pour l’dquation de
Kuramoto-Sivashinski, C.R. Acad. Sci. Paris S6r. I, 301 (1985), pp. 286-288.
, Inertial manifoldsfor the Kuramoto-Sivashinsky equation and an estimate oftheir lowest

dimension, J. Math. Pures Appl., 67 (1988), pp. 197-226.
C. FOIAS, G. SELL, AND R. TEMAM, Varitds inertielles des equations diffdrentielles dissipatives,

C.R. Acad. Sci. Paris S6r I, 301 (1985), pp. 139-142.
, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73

(1988), pp. 309-353.
W. HACKBUSCH, Multigrid Methods and Applications, Springer-Verlag, Berlin, New York,

1985.
F. JAUBERTEAU, C. ROSIER, AND R. TEMAM, The nonlinear Galerkin method in computational

fluid dynamics, Appl. Numer. Math., to appear.
S. F. MCCORMICK, Multigrid Methods, Society for Industrial and Applied Mathematics,

Philadelphia, 1987.
J. MALLET-PARET AND G. SELL, Inertial manifolds for reaction diffusion equations in higher

space dimensions, J. Amer. Math. Soc., (1988), pp. 805-866.
M. MARION AND R. TEMAM, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26 (1989);

pp. 1140-1158.
, Nonlinear Galerkin methods: the finite element case, to appear.
R. TEMAM, Sur l’approximation des dquations de Navier-Stokes, C.R. Acad. Sci. Paris S6r. A,

262 (1966), pp. 219-221.
,Navier-Stokes Equations, Third edition, North-Holland, Amsterdam, New York, 1984.
, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional

Conference Series in Applied Mathematics, Society for Industrial and Applied Mathe-
matics, Philadelphia, 1983.

Infinite Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci.
68, Springer-Verlag, Berlin, New York, 1988.

Dynamical systems, turbulence and the numerical solution ofthe Navier-Stokes equations,
in Proc. Eleventh International Conference on Numerical Methods in Fluid Dynamics,
D. L. Dwoyer and R. Voigt, eds., Lecture Notes in Physics, Springer-Verlag, Berlin, New
York, 1989.



178 R. TEMAM

[T6]

IT7]

IT8]

R. TEMAN, Varid.t.s inertielles approximatives pour les d.quations de Navier-Stokes bidimen-
sionnelles, C.R. Acad. Sci. Paris S6r. II, 306 (1988), pp. 399-402.

Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci.
Univ. Tokyo Sect. IA Math., to appear.

Approximation of attractors and application to scientific computing, Internat. J. Numer.
Methods Engrg., to appear.



SIAM J. MATH. ANAL.
Vol. 21, No. 1, pp. 179-204, January 1990

(C) 1990 Society for Industrial and Applied Mathematics
010

THE BIFURCATION OF HOMOCLINIC AND PERIODIC ORBITS
FROM TWO HETEROCLINIC ORBITS*

S.-N. CHOWS’, B. DENG$, AND D. TERMAN

Abstract. Conditions are found for a unique homoclinic or periodic orbit to bifurcate from a hetero-
clinic loop for autonomous ordinary differential equations. This leads to a codimension 2 unfolding of a
heteroclinic loop. This approach, based on an idea developed by il’nikov, reduces the problem to the study
of bifurcation equations. The result is applied to various types of traveling wave solutions of the FitzHugh-
Nagumo equations with a cubic nonlinear term.

Key words, heteroclinic orbit, homoclinic orbit, periodic orbit, il’nikov solution, exponential expansion,
strong A-lemma, Lyapunov-Schmidt reduction, bifurcation equation
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1. Introduction. This paper is concerned with the creation of homoclinic and
periodic orbits from a pair of heteroclinic orbits of differential equations of the form

(1.1) ) =f(x, c), xe, c elI2.

We assume that a, b e are hyperbolic equilibria of (1.1) for all a. By a heteroclinic
solution from a to b we mean a solution F(t) of (1.1) that satisfies

lim F(t)=a and lim F(t)=b.
t--> t--+o

A homoclinic solution to a is a solution of (1.1) that satisfies

lim F(t) a.

In this paper we demonstrate that a bifurcation of homoclinic solutions must take
place at a value ao for which there exists a pair of heteroclinic solutions from a to b
and from b to a, if ceain generic conditions are satisfied. Moreover, if we assume
that in a parameter space there are two curves c and c, that cross transversely at

ao and correspond to a b and b a heteroclinic solutions, respectively, then we
show that there are two curves c and c in parameter space emanating from ao that
correspond to homoclinic solutions. The curve c will be tangent to c at ao, and c
will be tangent to c at ao. We also consider the existence of periodic solutions of
(1.1). We prove that the curves c and c form the boundary of a sector A; a periodic
solution of (1.1) exists for precisely those values of a in A.

The motivation of this work comes from the study of reaction-diusion equations.
These are equations of the form

(1.2) Ut=DU+F(U,A)
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where U e R, D is a nonnegative diagonal matrix, and h e R is a parameter. A traveling
wave solution of (1.2) is a solution of the form U(x, t)= V(z), z= x+ Or. That is, it
corresponds to solutions that appear to be traveling with constant shape and velocity.
We are interested in traveling wave solutions of (1.2) that connect two rest points of
(1.2). Assume that A, BN satisfies F(A, A)= F(B, h)= for all h. Here, is the
origin in v. We consider traveling wave solutions of (1.2) that satisfy

lim V(z)=A and lim V(z)=B.

Note that a traveling wave solution satisfies the following system of ordinary
differential equations:

DV"-OV’+F(V,A)=O.

If we let V’= W, then this is equivalent to the first-order system

(1.3) V’= W, DW’= OW-F(V, A)

together with the boundary conditions

lim (V(z), W(z)) (A, ) and lim (V(z), W(z)) (B, 7).

Hence, the problem of proving the existence of a traveling wave solution of (1.2)
reduces to finding a heteroclinic solution of (1.3). Note that the speed 0 is a parameter
in (1.3). Hence, (1.3) depends on two parameters and is a special case of (1.1).

Many systems possess a variety of traveling wave solutions. A given system may
have, for a given value of parameters, traveling fronts, pulses, multiple pulses, and
periodic solutions. If a given system does have many traveling wave solutions, then
the existence of some of them (the traveling fronts, perhaps) may be easy to prove,
while the existence of others (pulses, perhaps) may be more difficult to prove. Our
results demonstrate that the more complicated waves can arise as bifurcations of the
simpler waves. In 6 we present an example to illustrate this point.

The proofs of our results are based on an idea of il’nikov [8], [11], [12]. It begins
with a Poincar6 return map on certain proper cross sections of the heteroclinic orbits.
With il’nikov’s change of variables for these Poincar6 maps, the problem reduces to
a two-parameter family of transcendental equations. The uniqueness of homoclinic
and periodic orbits follows from an Implicit Function Theorem argument. The existence
of homoclinic and periodic orbits is derived from certain bifurcation equations that
arise from the transcendental equations.

A precise statement of our results is given in 2. In 3 we define Poincar6 maps
on certain proper cross sections and explain the idea of il’nikov’s change of variables
for these Poincar6 maps. In 4 we prove the uniqueness of the homoclinic and periodic
orbits. In 5 we derive the bifurcation equations for the existence of the homoclinic
and periodic orbits, and then prove the main results. In 6 we show how our results
apply to the FitzHugh-Nagumo equations.

We point out that we can weaken considerably the generic hypothesis of the results
presented in this paper and still conclude that there exists a bifurcation of homoclinic
orbits. In [3] we prove such a result. This result is described at the end of 2. Of
course, under the weaker hypotheses we cannot expect to obtain the detailed description
of the nature of the bifurcating orbits obtained in this paper.

2. Statement of the main result. In this section we will first introduce the main
hypotheses (H1)-(H8), and then state our main theorem. We also state our main
theorem in [3] for comparison.
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Consider a system of ordinary differential equations with parameter a

(2.1) =F(z,a)

where z=(z1),... zd))d and a=(al,a2)2. We assume that (2.1) has two
distinct hyperbolic equilibria a and a2 for all a. We also assume that when a (0, 0),
(2.1) has a heteroclinic orbit F2 from al to a and another heteroclinic orbit F2 from
a2 to a1.

Let C C(a)= DF(a, a), i= 1, 2, where D is the differentiation operator with
respect to z. Let G h(a) be the spectrum of C, i.e.,

(2.2) o’i() ---{A EC[A is an eigenvalue of Ci}.

Let G- o--(a) and cry- cr-(a) be defined as follows"

(2.3) tr;(a) ch N {A ClRe h >0}

(2.4) r7(a) h {h c C IRe X < 0}.

It is clear from the hyperbolicity of equilibria ai, 1, 2 and the existence ofheteroclinic
orbits F12 and F21 that for a (0, 0),

(.5)

and

(2.6)

Let i (a) with

(2.7)

Then (2.4) and (2.5) imply

o’, o’- U o’7.

tzi (a) min Re h.

/zi is a simple real eigenvalue for C for i= 1, 2 and

(2.9) /z< min Reh, i=1,2,

(H2) /zi < max Re A, 1, 2.

For many problems of homoclinic bifurcations, hypotheses (H1) and (H2) play
a crucial role in determining the bifurcation structure. For example, it is well known
that if the first eigenvalue of r+ is a pair of complex eigenvalues rather than a simple
real one as in (H1), then the system has an invariant set carrying the Bernoulli shift
(see il’nikov [18]). Also, if the largest eigenvalue of r- is real and simple and if its
absolute value is equal to the first eigenvalue of cr/ (this will violate (H2)), then in
any small neighborhood of the homoclinic orbit the periodic orbits are no longer
unique for small a =0. Furthermore, double-periodic and double-homoclinic orbits
may occur in the latter case (see Yanagida [16] and Chow, Deng, and Fiedler [17]).
However, as we will show, if (H1) and (H2) are satisfied in addition to other hypotheses,
then the bifurcations of homoclinic and periodic orbits from the heteroclinic loop
F12 U r21 are unique.

(H1)

First, we consider two conditions on the eigenvalues that are not required in [3].

(2.8) /xi > O.
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Let mi > 0 and ni > 0 be the dimensions of the stable and unstable manifolds of
a, respectively. As in [3], we assume the following hypothesis.

(H3) m m2 m and n n2 n.

Because of (H3) it is well known (see Hale and Lin [6] and Palmer [9]) that the
continuation of heteroclinic orbits F12(F21 occurs generically in a codimension-1
submanifold in the space of vector fields. This implies that (H4)-(H6) are all generic.

(H4) F12 and 1721 are in general position:

codim span { TpW TpW} 1, p

codim span { TpW TpWI} 1, p F21,

where W’ and W denote the stable and unstable manifolds of a for i- 1, 2
at a (0, 0), and TpW denotes the tangent space of a given manifold W at
basepoint p.

We also assume that there are two smooth curves intersecting transversally in the
parameter spaces that correspond to the smooth branches of heteroclinic orbits from
al to a2 and from a2 to al, respectively. Thus, up to a change of coordinates in
parameter space, we assume the following hypothesis.

(HS) Equation (2.1) has a smooth branch of heteroclinic orbits F from al to a
with (al, 0)R2 and Fo-F12. Equation (2.1) has a smooth branch of hetero-
clinic orbit F from a2 to a with (0, O2) RE and Fo F.

The next hypothesis (H6) is related to the transverse crossing of the stable and
unstable manifolds as parameters vary. To be more precise, let W(a) and W’(a)
denote the stable and unstable manifolds of a, 1, 2 for (2.1) at a. Clearly, W(0, 0)
W and W’(0, 0)= W’, where W and W’ are as in (H4). Let E1 be an arbitrary and
small (d- 1)-dimensional cross section such that E intersects F2 at exactly one point,
and E is transverse to the flow of (2.1) for a (0, 0). Let M’ M’(a) andM M(a)
be connected components of W’(a) f’l E1 and W(a) f-I E, respectively, satisfying that
M’ and M vary continuously with a near a- 0 and

(2.10) M’(0) fq M(0) F12 fq El.
Let dl dl(al, a2) be the distance between M’ and M defined by

(2.11) d(al, a2)=inflzl-z21 with zl M’ and z2 M.
Similarly, we can choose a proper cross section E2 transverse to F21 and their distance
d2 d2(1, c2). It is easy to see that hypothesis (HS) implies

(2.12) d(al, 0) 0.

Similarly, we have

(2.13) d2(0, a2)=0.

We assume hypothesis (H6).

(H6) W’ and W, and W and W intersect transversally in the following sense"

dl(0, ce2) dE(tXl, 0)
lim 0 and lim 0.
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Note that (H6) implies dl(0, a2) has the same order as [a2[. This is certainly a
generic assumption. The conditions here appear weaker than the usual conditions on
the transverse crossing of stable and unstable manifolds. In 5 we will see that together
with the other hypotheses, (H6) does imply the transverse crossing in the usual sense.
Indeed, the Melnikov functions in R2 are precisely the distances dl and d2. Also, from
(2.11) we know that dl depends on the choice of cross section El. However, it is not
difficult to see that because the map induced by the flow of (2.1) from one cross section
to another is a diffeomorphism, assumption (H6) is actually independent of the choice
of cross sections.

It is clear that hypotheses (H4)-(H6) are concerned with the global structure of
the stable and unstable manifolds. The following two hypotheses, (H7) and (H8),
however, are concerned with both the global and local structure of the unstable
manifolds near the equilibria. It is shown in Deng [5] that they are generic assumptions.

(H7) 1-’12 is tangent to an eigenvector of C1(0) for the eigenvalue/xl(0) as -;
121 is tangent to an eigenvector of C2(0) for the eigenvalue/z2(0) as -.

Hypothesis (H8) is concerned with the inclination behavior of the global unstable
manifold of one equilibrium near the other equilibrium. This has to do with the local
strong unstable manifold W of ai that is (n- 1)-dimensional and is tangent at ai to
the linear subspace spanned by the eigenvectors of C corresponding to the eigenvalues
A tr- {/zi). To be more precise, let (x, y) be local coordinates of points in a sufficiently
small neighborhood U of a such that x 0 and y 0 correspond to the subspaces
spanned by eigenvectors of A cr and A try-, respectively. In particular, choose the
yl)-axis as the direction of an eigenvector for the principal eigenvalue tz of Ci. Then
W’" can be expressed as the graph of a smooth function h of the variable
(y2),..., y,)) that parameterizes the strong unstable eigenvector subspace of eigeno
values A tr {/z}.

DEFINITION. An (n-1)-dimensional smooth manifold D"-1 having nonempty
intersection with the stable manifold W. satisfies the strong inclination property if for
every e > 0 there is a T(e)> 0 such that for every _-> T(e) the connected component
of the image D’-1 in U under the time mapping of the solutions with initial data
from D"-1 can be expressed as the graph of a smooth function h, of the same argument

as h satisfying [[h,-h I1 ’ < where I1" II ’ denotes the usual C norm.
It is shown in Deng [5] that this strong inclination property holds true for a

generic family of such D"-. The corresponding result is referred to as the strong
h-lemma for D"-1 in [5]. Now, let M]’(0) and M(0) be as in (2.10) and (H6). They
are (n- 1)-dimensional and intersect W(0) and W(0) at a single point, respectively.
We assume hypothesis (H8).

(H8) M’(0) and M(0) satisfy the strong inclination property (cf. Fig. 2.1).

Note that by Deng [5], (H7) is equivalent to F12fq W]’"= 3 and F21 fq W"=.
Also, due to the group property of the flow, it is not difficult to see that (H8) is
independent of the choice of the cross section E and E2 in the definitions of M]’ and
M. Together with (H4), hypothesis (H8) will enable us to choose a one-dimensional
subspace complementary to the (d 2)-dimensional subspace of
span { Tp W(O), TpM(O)} in TpE Rd-1 at p W(0) fq M’(0) FiE f’l 5;1. We will see
that if 51 is sufficiently close to the equilibrium a2, then this complementary subspace
can be chosen approximately to be the eigenvector subspace of the principal positive
eigenvalue/z2(0) for C2(0) provided (H8) is satisfied. All this will be done in 4 and
5. As shown by the following main result, a system satisfying the eigenvalue conditions
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2
FIG. 2.1

(H1)-(H3) as well as the strong inclination properties (H7) and (H8) is analogous to
the classical system considered by il’nikov in [12] which has a homoclinic orbit and
satisfies conditions (HI), (H2), (H7), and (H8).

THEOREM 2.1. Suppose F is C k with k >= 4 and (H1)-(H8) are satisfied. Then there
exists a small neighborhood N c Ra of 1-’12 U 121 [_J {al, a2}, a small neighborhood V R2

of a (0, 0), and a nonsingular change ofparameters e c(a), e E c(V), such that
the following holds true.

(a) There exist smooth functions e= kl(e2) defined for e2>0, (el, eE) E, and

e2 kE(el) defined for el>0, (e, e2)6 E such that if

and

c { e E el kl(e2), e2 > 0}

2 {e E e2-- k2(e,), ,
then, for i= 1, 2, (2.1) has a homoclinic orbit 3/ N to ai with parameter a if and only
if e c(ce) ci. Moreover, for each a with c(a) ci, y is unique in N. Furthermore,

(2.14)

(2.15)

(2.16)

(b) Let

(2.17)

(el, 0)’- C((Ol, 0)) and (0, e2)-- C((0, O2)),
lim k,(e2) lim k2(81) 0,
e2->0 el->0

dkl dk2
lim (e2) lim (el) 0.
-.o de2 e,-.o de1

A { e (el, 82) E either el > 0 or 82 > O,

81> k,(e2) ife2>O, and 82> k2(el) if el> 0}.

Then, (2.1) has a periodic orbit y c N at parameter a if and only if c(a) A. Finally,
for each parameter a with e( a A, y is the unique periodic orbit in N.

Figure 2.2 is the bifurcation diagram for Theorem 2.1.
As we mentioned in the Introduction, we can weaken the hypotheses of Theorem

2.1 and still prove the existence of bifurcating homoclinic orbits. In [3] we prove the
following result.

THEOREM 2.2. Suppose F is C2 and hypotheses (H3)-(H6) are satisfied. Then there
is a continuous map K:(0, 1]--> R2 such that for each s (0, 1], (2.1) has a homoclinic
orbit to a for a K(s). If Sl s2, then the corresponding connections are not the same.
Moreover, lims_.o r(s)- (0, 0). Finally, the same conclusion applies to a2.
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CI

Fz /

ala2
F2 ala2

ala2
FIG. 2.2

Remark 2.3. The eigenvalue conditions (H1) and (H2) and the strong inclination
properties (H7) and (H8) are required for the implicit function principle argument in
this paper, which results in the uniqueness of the homoclinic and periodic orbits
bifurcating from the loop F12 t_J F21. These conditions are not required in Theorem 2.2.
Theorem 2.2 asserts the bifurcation of homoclinic orbits must take place even though
uniqueness is not claimed. The importance of Theorem 2.2 as well as its topological
approach presented in [3] is to help us understand better the structure of vector fields
near a codimension-2 bifurcation point at which a heteroclinic loop 1-’121,.J 121 takes
place. It tells us that this bifurcation point is precisely located at the intersection of
the closures of two codimension-1 bifurcation branches on which the homoclinic
bifurcations take place. Similar topological structures near a vector field that represents
higher than codimension-2 bifurcation points at which a heteroclinic loop takes place
should also be expected. As suggested by Theorem 2.2, this has to do with a further
relaxation on the condition of equal dimensionality dim W=dim W=m and
dim W’ dim W n required by both Theorems 2.1 and 2.2. Also note that the vector
fields in Theorem 2.2 are assumed to be only C2.

3. Poinear6 malS and il’nikov’s change of variables. A natural approach to this
bifurcation problem is through the study of Poincar6 maps for the loop F12 t.J F21CI
{al, a2}. To do this we need a result by Deng [5].

THEOREM 3.1. Suppose that the system of ordinary differential equations with
parameter a,

(3.1)
=A(a)x+f(x,y,t), xR’, yRn, t2
f B(a)y+ g(x, y, a),

satisfies the following hypotheses:
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(H9)

(H10)

The matrixfunctionsA A(a R"", B B(a "" and the vectorfunctions
f f(x, y, a ), g g(x, y, a are Ck with k >-_ 3,

f(0, y, c)=0, g(x, O, a)=0,

Df(O, O, a)=0, Dg(0, 0, a)=0

where D is the differentiation operator with respect to z (x, y),

(H 11 B has the following form"

(3.2) B [/x(a)0 Bl(O

and satisfies
(3.3) 0< tz(a) < min Re A,

X cr(Bl(a))--{(o)}

(3.4) 0</x(a)<- min ReA.
A o’(A(a))

Then there exist suJficiently small constants go > 0 and ao such that for every s _->0,
IXol--< o, lyl <- o, and I’1--< o, (3.1) has a unique solution x( t) x( t; s, Xo, yl a ),
y (t) y t; s, Xo, y, a satisfying

(3.5) x(O) Xo, y(s) y,

(3.6) Ix(t)l2o, ly(t)l=<2o, 0 t to

where to > s is some constant depending on 3, s, Xo, and Yl. Furthermore, as functions of
t, s, Xo, y and a the solution (x, y) (t; s, Xo, yl, a) is C k and Ck+ in t. Also, there exist
constants Ko >= 1 and > O, which depend only on tx (a) and A (t), and a Ck-2 function
p q(Xo, Yl or) n such that

k-1

(3.7) , ID’x(s; s, Xo, y, a)l <- Ko e-x()s
j=0

(3.8)
k-2

Y ID’(e"()Sy(O; S, xo,y,, a)-p(xo, y,, a))l<=Koe
j=0

where Dj is the differentiation operator oforderj in (s, Xo, Yl, a). Moreover, thefunction
p satisfies

(3.9) Dp(0, 0, a)=

0 0 1 0 O]
0 0 0 0 0,[
0 0 0 0 0Jnxd

where D is the first-order differentiation operator in (Xo, y). Finally, the local strong
unstable manifoM Wo% can be expressed as follows"
(3.10) {(0, y)I ()(0, y, a)=0, Jyl_-< 8o}= Wo%
where p (p(1) p(,))

Remark 3.2. (a) Note that if s=0, then x( t) x( t; O, xo, y,a), y(t)=
y(t; 0, Xo, Yl, a) is the unique solution of the initial value problem x(0) Xo, y(0) yo
with Yo Yl for (3.1). This kind of boundary value problem was first introduced by
il’nikov 11] for the study of the structure of flows near a homoclinic orbit.
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(b) We will not need the exponential estimates (3.7) and (3.8) in Theorem 3.1 in
this section. However, they are useful in later sections. In particular, the estimate (3.8)
is extremely important and is equivalent to writing y(0; S, xo, yl, a)=
p(Xo, Yl, a) e-E()S 4- R(s, Xo, Yl, a) with a Ck-z function R all of whose derivatives
up to order k-2 are exponentially bounded by Ko e-(’()+). This decomposition of
y(0) is referred to as an exponential expansion in [5].

(c) The properties (3.9) and (3.10) on the coefficient function o for the exponential
expansion will be used later to construct a one-dimensional subspace complementary
to the span{ Tp W_(0), TpM(O)} in Tp, d-1 at p W_(0) M’(0) F12 E1 men-
tioned earlier when (HS) on the strong inclination property for M’(0) was introduced.

To apply Theorem 3.1, we first observe that by a smooth change of variables in
a small neighborhood Ui of ai, (2.1) is C k conjugate in Ui to equations in the following
form:

(3.11)
2=Ai(a)x+f(x,y,a),

x6lRm, yel", Ol[]2..= B,(a)y+ g,(x, y, a),

Here Ai, B,f, g and Ck-l, and f and gi satisfy (H10) for i- 1,2. Furthermore, (H1)
and (H2) imply that Ai and B satisfy (H11). Thus, Theorem 3.1 is applicable to (3.11)
for 1 and 2. It is not difficult to see that we may choose a single 6o from Theorem
3.1 such that the conclusions hold true for (3.11) for i--1 and 2. We will use this
to define several cross sections to the loop F1Ei,.J 1211,.J {al, a2} and to the maps along
them.

Since the discussion in the following few paragraphs applies to both al and a2,

we will treat only a and, therefore, suppress all the subscripts of a. Also, we will
suppress the parameter a if doing so does not cause confusion.

First, we specify some notation used in this paper. Let p Wo fq {F12 Fl} and
q a Woc CI (F12 U F2I}. Write

(3.12) P (Xo, 0), q (0, 371).

By (H7), we may choose 371 (yl),..., 37,)) to satisfy

(3.13) 371) 6o
For simplicity, we assume that

(3.14) (o1 6o
where o ((o1, (o"). We remark that (3.14) will not be used in any proof and
therefore is not essential. Let 6o > 61 > 0 and 6o > 6> 0 be arbitrary small constants, and

(3.15) E(61) {(x, y)lx(1)= 60, x -go[ < 61, ly[ < 61},

(3.16) E"(62) {(x, y) [y(1) 60, Ixl < z, ]Y-.o] < 62}.

Note that for sufficiently small 62, (H1) implies that E" =u(62) is transverse to the
flow of (2.1). For simplicity, we assume, without loss of generality, that ES= E(61) is
also transverse to the flow of (3.1) for small 61. Again, we emphasize that the forms
(3.14) and (3.15) are merely for simplicity in our discussion and will not be used in
our proof. Let z(t)= z(t; Zo) denote the solution of (3.11) with initial data z(0)= Zo,
and let z (x, y).

Next, we define a local map near the equilibrium by the flow. Define

(3.17) r {(Xo, yo) ; ls S(Xo, Yo) such that z(t;

for O<=t<s and z(s; Zo)E", where Zo=(Xo, Yo)}.
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It is not difficult to see that since E and E are transverse to the flow of (3.11), 81
and 82 can be chosen so small that the function s:o-S , which represents the first
time needed for the trajectory starting from r to reach Eu, is well defined and
continuously differentiable. Define

(3.18) r:crE

(Xo, Yo) z(s; Zo) with s S(Xo, Yo) and Zo (Xo, Yo)-
Obviously, 7r is a ditfeomorphism onto its image. Let

(3.19) r 7r(r
(see Fig. 3.1).

Applying the same arguments (3.12), (3.15)-(3.19) to (3.11) for i= 1 and 2, we
obtain the following points, maps, etc." Pi, qi, 8, 82, E., ET, r,, r, and r r tri,

i= 1,2.

Next, we define a global map near FI2 by following the flow. Since ql and. p2 are
on Fl, there exists a unique tl > 0 such that z(t; ql) for 0_<- < tl and z(q; q) P2.
Hence, by the Implicit Function Theorem, for every (Xo, Yo) E’ sufficiently close to
ql, there exists a unique time t t2(Xo, Yo) > 0, such that z(t; Zo) E for all 0 <_- < rE,
Zo (Xo, Yo), and z(t; Zo) E, that is, the first time for the trajectory to hit E. It is
easy to see that we can choose 8: sufficiently small so that tE(Xo, Yo) is smoothly
defined for all (Xo, yo) E’ and remains close to the constant h. Define

(3.20) 7/-12

_
--9, E2

(Xo, Yo) z(t2, Zo) with t2 t2(Xo, Yo) and Zo (Xo, Yo).
Obviously, zr2 is a ditteomorphism. Similarly, for a sufficiently small 822, we can define

Note that if

(3.21) 7r12(o-[) c o’
then, a Poincar6 return map 7r ,’g/’21. q’/’12.7/’12. ,Wl" 0"-.9, E is well defined. Since we
can always expect that (3.21) holds true for certain subset t’ c cry’, a map

(3.22) 7r r2 7r2" 7r2" 7r cr E
is always well defined 7rll is called a Poincar6 map. Similarly, we may obtain the
other Poincar6 map 7r22 (cf. Fig. 3.1).
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Now, the following discussion is devoted to the relation between the periodic
points of 7r1 and the reduced equivalent equations. Naturally, a periodic orbit near

F12 LJ F2 corresponds to a periodic point of either 7r1 or 7r22. Intuitively, the structure
of t is more complicated than that of o-. Thus, instead of studying the fixed points
of the Poincar6 map rl on t, we consider the following equations"

(3.23) 7r2" 7rl(z)= z:z,
Z E O" Z2 ( 0"2

"if2, 7r2(z2)= Zl,

It is obvious that the existence of fixed points for 7ra is equivalent to the existence of
solutions z and z_ to (3.23). However, when we examine (3.17) and (3.18) for -(equivalently, 7r2), we find several difficulties. First, since p Fz is on the local stable
manifold of a, by (3.17) p must not be in 0-. Second, due to the hyperbolicity of
the equilibrium a, the time s Sl(X0, Yo) needed for a point on the orbit to travel
from 0- to 0-’ approaches infinity as (Xo, yo)P2. Moreover, the definitions for r
and 7r2 reveal few properties with which we can analyze (3.23). Usually, if we can find
a local change of variables near each al and a_ such that under the new variables the
nonlinear equation (3.1) becomes a system of linear equations in U and U2 then these
problems will be dramatically simplified. This so-called C-linearization approach is
indeed quite common in literature. Our hypotheses (H1) and (H2) on the eigenvalues
are not sufficient to obtain such a C-linearization in general. The approach to overcome
these difficulties is through a change of variables only on 0- and o-. This idea is due
to il’nikov.

Let A be a (d-1)-dimensional open set. Let p" A 1--)’ 0" be a diffeomorphism
onto its image. Then p is called a change of variables in 0-. Let pa 7r p.A 0-’.
Similarly, we may have a change of variables /92, in 0-. The purpose of such changes
of variables is to make the local maps p and/922 tractable. Before we introduce the
il’nikov changes of variables, we note the following simple facts.

It is easy to see that to find solutions z and z2 to (3.23) it suffices to find solutions
to the following equations"

(3.24) 7r2" Pll(I) --/92(2),
’1 G A1, ’2 G A2.-,. p_()= p,(’,),

However, the existence of solutions to (3.24) is only a sufficient condition for the
existence of solutions to (3.23). But we will see that by restricting periodic orbits of
(2.1) to a sufficiently small neighborhood N of F12LJF21LJ {ai, a}, we can guarantee
that the condition for the existence of solutions to (3.24) in some subsets a c A and
Ac A2 is both sufficient and necessary for the existence of certain types of periodic
orbits in N. This is to be explained as follows.

In this paper, a small neighborhood N of I12 I,.J I:zl LJ {al, a2} satisfies

(3.25) N I’q L E, i= 1, 2

where L {(x, y) Uilx(1)= 30, Ixl--< lyl--< ,o}. Let

(3.26) =NOE, i= 1,2,

(3.27) .,s ^s0-i-’-i’O’i, i= 1,2.

Let 7 be a periodic (homoclinic) orbit in N; then 7 is called a K-periodic (homoclinic)
orbit if the number of points in the set y CI &(y fq cl ) is exactly K. Certainly, for a
K-periodic (homoclinic) orbit y in N the number of points in y tq t(y CI cl ) is also
equal to K. Moreover, if N is so small that

(3.28) 0-i C pi(Ai), 1, 2,
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then there exists a K-periodic orbit 3’ in N, say K 1, if and only if (3.24) has solutions

1 A1 and ’2 A2 where

(3.29) p-’( ô-), i=1,2.

We will put these observations into a lemma. Before doing so, we note that all definitions
for maps and sets as above extend immediately to the perturbed system of (2.1) with
a small parameter a. Thus, from now on we allow the arguments of 7rl, 7r2, 7r12, P2,

pl, p22, etc. to include the parameter a. But we write tr instead of try(a), and so on.
LEMMA 3.3. Let tri, try, 7ri, i= 1, 2 be defined as in (3.17)-(3.19). Let 37"12 7/’21 be

defined as in (3.20). Let pi, i= 1,2 be a smooth map satisfying that for every a,
pi(’, a): Ai(a)tri(a) is a diffeomorphism onto its images. Let

(3.30) p,(., a)= Tr(p,(., a), a)’A,(ct)cr(a), i=1,2.

Then the following statements hold true"

(a) For each small a there exist a small neighborhood N of F12 U F21U {al, 32} and
a K-periodic orbit y in N if and only if the equations

,(p,,(?), ,), )= p(’), ,),
(3.31) ,(p(, ), )= p,(+’, ),

j=0, 1,2,... (mod K)

have a solution

(3.32) srJ) e z,(a), i= 1,2, j=0, 1, 2, (mod K)

where ,, i= 1, 2, are as in (3.29).
(b) For each small ct there exists a small neighborhood N of F2U Fzl U {al, a2}

and a K-homoclinic orbit y to a in N if and only if
"n’,2((O, y), a)= p:z(), a),

,(p(), ))= p,(?+’), ),
(3.33)

7r,=(p,l(’]+’), a), a)= p2(’(+’), a), j=0, 1, 2,’.. (mod K-I),

,(p_(-’, ), )= (x, o),

have a solution with

(O,x)e,l(a), (O, y)e,(a),
(3.34)

’l)e,(a), i=1,2, j=0,1,2,...(modK-1)

where ,(ct) E [q N and ,(a) Z f’l N.
Remark 3.4. (a) A statement similar to (b) of Lemma 3.3 holds true for homoclinic

orbits to a2. (b) An immediate consequence of this lemma is that to find periodic or
homoclinic orbits near F we can first solve (3.31) and (3.33) without the constraints
(3.32) and (3.34) associated with the small neighborhood N and then construct a
neighborhood N independent of a such that (3.32) or (3.34) holds true.

We now introduce the changes of variables/t91 and p=. Let So> 0 be a constant.
Let A Ai(so), i= 1, 2, be defined by

(3.35) Ai(So)={Rd-l[=(S, Xo, yl),S>So, (Xo, 0) , (0, yl) 6 ’}.

Let (x, y)(t) (x, y)(t; s, Xo, y, a) be the solution of (3.11) satisfying (3.5). Define for
every small a and 1, 2,

(3.36) p,(., a)’A,E with (S, Xo, Yl)(x,y)(O).

We have the following lemma.
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LEMMA 3.5. There exists sufficiently large So > 0 such thatfor all So > So, pi, defined
by (3.36), defines a change of variables in o’Si. Moreover, the corresponding local map
p,, defined by (3.30), is given by

(3.37) 0,,( Ol)’mi-’)O" with (S, xo, y,)(x, y)(s)

where 1, 2.

Proof. It is obvious from Lemma 3.1 that p is ditierentiable. The exponential
estimates in (3.7) and (3.8) imply that we can choose a sufficiently large So> 0 such
that ly(0)l < (1 and Ix(s)l < (12 for all s > So_-> So and (s, Xo, Yl) Ai. Since both
(x,y)(0)E and (x,y)(s)E are on the same orbit of (2.1), it follows from the
definitions (3.17) and (3.18) for 7ri, that (x,y)(0)tr,s.(a) and r,(x(0),y(0), ()=
(x, y)(s) try(a). This, together with (3.30) implies (3.37).

To show that p(., a) is a ditteomorphism, recall the smooth scalar function s in
the definitions (3.17) and (3.18) for the local map 7ri. Note that

" pi(Ai, Ot --> A

(Xo, yo) -> (s, Xo, y(s; 0, Xo, Yo, a)) with s S(Xo, Yo),

is actually the inverse for p(., c). Since t5 is also differentiable, p(., a) must be a
local ditieomorphism. [3

4. Uniqueness of homoclinic and periodic orbits. According to Lemma 3.3 and (b)
of Remark 3.4, it suffices to consider (3.31) and (3.33) in the new variables in A and

A2 introduced by (3.35) and (3.36). In this section, we will use these equations and
prove the uniqueness of periodic and homoclinic orbits near F12 [-J F21LI {al, a2} (Propo-
sition 4.1). To do so, we first rewrite the coordinates for , ’ and A in some
equivalent forms. Throughout this section, 1 or 2.

x(1) go there exists an obvious correspondenceSince for all (x,y)Ei,
(x, y) _> (r, y) with

(4.1) (X(2) __Xio-(2), x(m)__ 2r)) m--1

where Pi--(:io, 0) is as in (3.12). Note that (, y) G[d-1 and

(4.2) {(, Y) ld-111sCl < til, lyl < ,,}.

Similarly, let

(4.3) r/= (y(2) 371) y(,) y,-,)) R,-

where q (0, 37il) is as in (3.12). Then, (3.16) can be expressed as

(4.4) E’ {(x, n)   - llxl < Inl <
(cf. Fig. 3.1).

Under the new variables (:, y) and (x, r/) for E and E’, respectively, 7r2" E’ -> E
can be expressed as

(4.5)
y=Q(x,n,a),

where 7/’12 (P1, Q1) is a diffeomorphism. Similarly, we have
In view of these changes of variables, the following correspondence is also a valid

change of variables for both A1 and A2:
(4.6) (s,x, y)(% , n)
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where (s,x,y)Ai is as in (3.35), x and :, and y and rt are related through (4.1) and
(4.3), respectively, and

(4.7) "r= e-(’).

Hence, (3.35) for A can be expressed as

(4.8) A, {(r, :, n) a-’10<< o, I:1 < ,1, Inl < ,2}

where

(4.9) -o=e-’()S.

Note that Ai depends on the parameter a, which is suppressed for simplicity of notation.
In the new variables for A, let

X(7", , 1, a)= x(s’, s, Xo, Yl, oz),

Y(’, ,/x, a) y(0; s, Xo, Yl, a ),

(4.10)

(4.11)

and

(4.12) ff(, ’r/, c)= q:’(Xo, Yl, a)

where the solution (x, y)(t) (x, y)(t; s, Xo, yl, a) and the function o are as in Theorem
3.1, and (r, sc, /) and (s, Xo, y) are related by (4.6) and (4.7). It is not difficult to see
that from (3.7), (3.5), (4.7), (4.10)-(4.12) there exists a smooth function R R(r, sc, r/, a)
such that

(4.13)

(4.14)

=o("),

Y= "r(, n, a)+ R(’, , 7, a),

1

(4.15) 0(:, r/, a) 6o
0

+ O(ll+lnl)o

and

(4.16) O---DR 0(’").
O"

Here, the differentiation operator D involves derivatives only with respect to sc, r/and
a, j =< k-3, and the constant u satisfies

(4.17) 0< u<mln/x(a)- 1, j, I1<< 1
()

where A is as in (3.6) and is as in (3.8). To avoid confusion, we write Xi, Y, @i,
and R to denote the functions in (4.10), (4.11), (4.12), and (4.14), respectively, from
A

An important observation from (4.13)-(4.16) is that the functions X and Y can
be C extended to r -< 0. For simplicity, let X and Y denote such extensions in the
extended region:

(4.!8) z, {(’,
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Obviously,

(4.19)

Note that both Ai and Ai depend on a. But, for the simplicity of notation, it is suppressed
from the arguments.

Now, let us consider (3.31) and (3.33) for the periodic and homoclinic orbits near
F2 J F21. Let K _-> 1, and " E (A x A2) : with

K -1 K --1(4.20) ’= (r, sc, r/, r2, so2, /,..., r-’, sc -, r/, r2 s2-’, r/2-).

Let

(4.21)

where

X= X(r, , rt, a) and Y= Y(’r, , q, a)

(4.22) (r{,sC{,r/{)eA,, i=1,2, j=0,1,2,..’.

Then, it is not difficult to see that in the new variables r, , and , equation (3.31) for
periodic orbits is equivalent to

(4.23) (sr, a)=O
where

[- YI+ QI(X] rI] e.
(4.24) d(,oz)’--i_{+l+p2(xJ,nj2, o

,j=0, 1,2, (mod K).

\__ yj+l + Q2(X, n, 0)

In particular, the estimates (4.13) and (4.16), (4.21), and (4.24) imply that (3.33) for
the K-homoclinic orbits to a is actually equivalent to (4.23) with e(zx2)
satisfying

(4.25) r=0, (0, s, r/)z,, (r, , r/2)A2

and

(4.26) (r{, i= 1,2, j=I,2,...,K-1.

This shows that we only need to treat (4.23) uniformly in the extended domain (,1 x ,2)
for both the homoclinic and periodic orbits. Moreover, due to the following results
(Theorem 4.2) on the uniqueness of periodic and homoclinic orbits in a small neighbor-
hood N, we will see that we actually only have to consider (4.23) with K 1. In this
case, the correspondence between a solution (r, 1, ’11, "/’2, 2, T2) of =0 and an
orbit are as follows:

(a) r r2=0 corresponds to the heteroclinic loop from al to a2 and from a2
to a,

(b) rl--0 and %> 0 corresponds to a homoclinic orbit from al to al,
(c) r > 0 and rE 0 corresponds to a homoclinic orbit from a2 to a2,

(d) % > 0 and ,/’2 0 corresponds to a periodic orbit.
In this section we will show that --0 always has a unique solution for small a

in the extended domain by Implicit Function Theorem arguments. However, it is
obvious to see that the existence of solutions to -0 does not always imply the
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constraints 7" 0 and 7"2 -> 0 as required. Therefore, to get 7"1 0 and 7"2 0 for certain
parameters, we need to derive some bifurcation equations from (4.23). This is to be
done in the next section. We now have our results (Proposition 4.1 and Theorem 4.2)
on the uniqueness of homoclinic and periodic orbits near F12 Il [’21 {al, a2}.

PROPOSITION 4.1. Suppose (2.1) satisfies (H1)-(H3) and (4.23) satisfies thefollow-
ing conditions in the extended domain (zl x z2)K.

(4.27)

(4.28)

(4.29)

If *=(7"*l * * 7"*2, ’2, r/*)6 A, xA2 is a solution to (4.23), with K= 1,
then (’*, ., r*) (g’l x 2)K is also a solution to (4.23) with K > 1.

For every small c, with K 1, (4.29) has a unique solution *.
For every small and every K > 1, the solution of (4.23) in (,1 x g,2) is unique.

Then, for every small ce there exists at most one periodic or homoclinic orbit near

F12f’lF21 {al, a}, but not both. Moreover, only simple (K 1) periodic or homoclinic
orbits can exist.

Proof Suppose there exist two orbits 3"1 and 3’2, each of which is a periodic or
homoclinic orbit. Then, there exist K1 -> 1 and K2 -> 1 such that (4.23) has a solution
’1" for K1 and r* for K with Srl* satisfying either (4.22), or (4.25) and (4.26). Let

’* Zl x z2 be the solution to (4.23) with K 1 guaranteed by the hypothesis (4.28).
Then, hypotheses (4.27) and (4.29) imply

(4.30) sr* (’*, ", ’*) (/1 X 2) Ki, i= 1, 2.

This implies that ’* must satisfy either (4.22), or (4.25) and (4.26). That is, there exists
a simple periodic or homoclinic orbit near l"ll,.Jl-’211,.J{al, a2}. Furthermore, (4.30)
forces K1, K2-- 1, and ’* rz* ’*. This completes the proof. D

Finally, we have Theorem 4.2.
THEOREM 4.2. Suppose that hypotheses (H1)-(H4), (H7), and (H8) are satisfied.

Then there exists a neighborhood N of FI U F21 t.J {al, a2} and a neighborhood 0 ifa 0
such that for all small a, there exists at most one homoclinic or periodic orbit in N, but
not both. Moreover, only simple K 1) homoclinic or periodic orbits can exist.

Proof Note that (4.27)-(4.29) and Remark 3.4(b) of Lemma 3.3 imply the existence
of such a neighborhood N. Hence, to prove the theorem it suffices to verify (4.27)-(4.29).

Condition (4.27) simply follows the definition (4.24) for . To verify (4.28) and
(4.29), we apply the Implicit Function Theorem to (4.23).

Let K 1. Then " (7.1, s, r/, 7", :, 20)2(d-l). The existence of I’12 and I’21
when a 0 implies that

(4.31) (0, 0) 0.

Since is C 1, a simple calculation together with the eigenvalue conditions (H1) and
(H2) implies

0 0 OPlo/Orl 0 --Im_ 0 "l
0 0 OQIo/Orl --q20 0 0

0 --Im-1 0 0 0 OP2o/Or
,,o 0 0 0 0 OQolOn.I

where aP,o/an aP,/an (o, o, o), aQ,o/ar/= aQ,/orl (o, o, o), q,o q, (o, o, o), and i=
1, 2. This matrix becomes diagonal through permutation, making the first two column
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blocks into the last two column blocks. Then, it is easy to have

(4.32) det (o, 0) (-)" det ’o det t.--n ’
We will show that (4.32) does not vanish.

Observe that the column vectors of the (d- 1)x (d- 2) matrix

[ OPo/Ort -I,,,_](4.33) M kOQlo/on 0

span the subspace

(4.34) span { TpW, TpW’} TpE
where p=F12cE, is as in (3.12). This is because TpW=R’x{O} and TpW’
Im (DyTrl2(0, 0))xspan {TpF2}. Since W and W’ are in general position (see (H5))
and X is transverse to F2, we have

(4.35) rank M1 d 2.

Moreover, if 8o is as in Theorem 3.1, then, by (3.10) and (4.15) and the strong inclination
property (H8), the vector (0, q2o) (0, q2(0, 0, 0)) Rd- is complementary to the inter-
section of span { TpW, TpW’} with TpX. This implies

2o (a-1)(a-1)

and thus,

(4.37) det M1,
I/t2o

(-1 det --, 2o # O.

Similarly, we can show that

(4.38) det[OQ2 10]Or/

We now conclude from (4.32) that

(4.39) det -- (0, 0) 0.

It follows from the Implicit Function Theorem that there exist neighborhoods O of
=0e2 and V of a =(0,0) in , and a C function ’* ’*(c), ae V, with
’*(a) O for all c e V and

(4.40) st* (0) =0
such that ’* is the unique solution to (4.23). Note that by the Implicit Function
Theorem, we also have that

(4.41) det-0--(’,a)#0, ’O, a V.

This proves (4.28).
Next, we verify (4.29). Let K > 1 and consider (4.23) in (1 x)K. The same

reasoning as for (4.31) yields

(4.42) (0, 0) 0.
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Also, since is C, simple calculation yields

0 0 0 -I 0

0 0 0 0

0 0

0 0
(4.43) det (0, O)

-I 0

0 0

0
0

0 -I 0

* 0 0

0 0 *
0 0 *

0 -I 0

* 0 0

where all nonspecified entries are zero. Similarly, by permutation we obtain a diagonal
matrix such that every block of the form

in the diagonal is one of the following:

OP,o/O 0 -I,._,] i,j l, 2, -j.
OQ,olOn -g,o o

By direct computation

(4.44) det (0, 0) (- det k’o det k’o 0

because of (4.37) and (4.38). Moreover, it is not hard to see that (4.41) implies

(4.45) det(, )=0, e O, e

Hence, by the Implicit Function Theorem, equation (4.23) with K > 1 has a unique
solution * *() for every e V, * is C, and *() e O for all e M This proves
(4.29).. Bffrefi efis rf f Tere .1. From Theorem 4.2 it follows
that a homoclinic or periodic orbit must satisfy

(5. .(,=0, e,x, e
with (, 1, , r, , ), e N, e N-, e N-, and

]--Y+Ol(Xl,l,)I

Here, X= X(r, , , ), = Y(, , )e, and (P, Q) are as in 4. Recall, from
the discussion given before Proposition 4.1, that the existence of homoclinic and
periodic solutions is equivalent to the existence of solutions e x of (5.1) satisfying

(5.3) 0, r0, +r0.
Also, a solution of (5.1) with r r 0 corresponds to the existence of a heteroclinic
loop. Hence, the modified condition of (5.3)"

(5.4) r0 and 0



THE BIFURCATION FROM TWO HETEROCLINIC ORBITS 197

for solutions r of (5.1) is equivalent to the existence of a homoclinic, periodic, or
heteroclinic loop near F12 U F21U {al, a2}. From Theorem 4.2 it follows that any solution
to (5.1) for a V must be ’* ’*(a)= (z*, s*, r/*, z2*, s2", r/2*) O, where O, V, and

’* are as in (4.40). Therefore, we need to verify that there exists a subset A c V such
that

(5.5) ’* f if and only if a ,
where

(5.6) O fq {r Zl x z21 " (Zl, ’1, r/l, z_, 2, r/2), rl >_- 0, z2 >_- 0}.

This will be true if the mapping h" a(7"*(a), 7"’2(a))2 is a ditteomorphism near
a 0. Indeed, this is what we will prove in this section.

It is difficult to prove the nonsingularity of the mapping h by directly working
with z*, z2* and (5.1). Instead, we solve (5.1) in a way different from 4 so that the
correspondence between rl*, z* and a can be easily determined through some bifurca-
tion equations. To do so, we need the following notation. For y (y(l),...,
let

(5.7) )3 (y2,..., y,))
For z (x, y) ,-1 x ", let

(5.8)

Let

(5.10) = :.
We first solve the equation

(5.11) 1(’, c) 0

where 1 is as in (5.9). The existence of I12 and I21 at a =0 implies

(5.12) (I)1(0,0)=0.

Also, by (H5), the existence of the heteroclinic orbit F,, for a =(al, 0) implies that
(5.11) always has solutions r/1 and :2 for ’1 z2=0 and a (c1,0). That is,

(5.13) QI(0, r/l, (c1,0))=0 for some I,1<< 1.

Also, let (1)1 be given by (5.8). Then, from (5.12), we have that

(5.14) (I)1(0,0)=0.

In addition, similarly to the computation for (4.32), it is easy to see that

(0, 0)-- [ OPlo/c3, -Im-1] M1(5.15)
o(r/1, s2) LOQlo/ar/ 0

where M1, OPlo/Orl, and OQlo/orl are as in (4.33). Thus, (4.35) implies

(5.16) rank (0, 0) d 2.
a(, =)

(-+Pi(Xi, r/,,a)) i,j=l 2, ij(5.9) ’-- Yj -1- Qi Xi, rh o

where X and Y/are as in (5.2). Then, for (I) defined by (5.2), we have
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Moreover, it is not difficult to see from (HS) of the strong inclination property and
(5.15) that

(5.17) rank (0, 0) d -2.
(, )

Hence, by (5.14), (5.17), and the Implicit Function Theorem, there exist C functions
a=a(z, a)’- and b=b(z, a)’-, defined for zgd, a 2 with [z[<< 1, [a[<< 1,
such that

(5.18) ,(’, a)=0, Il<< 1, lal<( 1,

if and only if .(X, a), where

(5.19) , (zt, t, , z2, 2, 2) with a(x, a) and 2= b(x, a),

and

x (z, , z, ).

Moreover, the Implicit Function Theorem implies that

(5.20) a(0, 0) 0 and b(0, 0) 0.

Now, by substituting = .(X, a) into the remaining equation, the full system of
equation (5.11) is equivalent to the equation

(5.21a) (.(X, a), a)=0.

Next, we will derive an equation equivalent to (5.21a). To do so, we first note
some properties for the solution of (5.18). It is easy to see from (5.9) and (5.18) that
when z r 0, the solutions a(x, a)[,=:=o and 2 b(x, a)l==o do not depend
on and . Thus

(5.21b) a a(x, a)[==o and b b(x,

are functions of the variable a alone. This observation is very impoant. Obviously,
we also have

(5.22) a- a O([zl+[z2[) and b-

Moreover, when Zl r2=0, (5.18) implies

(5.23)
Q ,==o

0

where P P(0, a, a) and Q Q(0, a, a). In particular,

(5.4 =0, 1 1.

Let OP,/O =OP/O (0, a, a), oQ/o =oQ/o (0, a, a) and

(5.25) M ko/on o
Then, by continuous dependence on , by (5.15), and by (5.16), we have

(5.26) rankM d- 2.

In paicular, by (5.17), we have

0Q
(5.27) rank n- 1.
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Now, by (5.18), (5.24), and (5.25), a simple computation yields

(5.28) det M,(,, o)-M a-a =(-1)’- det
oQI ?,,(.,, a).

b LoJ
Hence, (5.27) and (5.28) imply that the full system of equation (5.21b) is equivalent
to the following equation:

(5.29) det [Ml’a(*’ )-Ml(a-a)]
where a a(x, ), b b(x, a), if*= ff.(X, a), and a are as in (5.19) and (5.21a).

To simplify (5.29) fuher, we expand (P1, Q1) at (x, ) (0, a) and at (, )
(b, 0), respectively. Thus, by (5.22) we obtain

+ o(1,1= + =1=),(5.30)
O,(x,, a, ) O,.

+
a(x, ) a-a.

where . (b., 0). Also, from (5.31), (4.14), and (4.16) we have

(5.32) Y=(z=. b, =. )= =.==+ o(1=11==1 + I=.1 ’+" +1=1 ’+")
where > 0 is as in (4.16). Now, substituting (5.30) with X X(z, , a, ) and (5.32)
into (5.29), from (4.15) we obtain

@2
r2 +det Mla QI

(5.33)
+ O11 *1 + I*,1 +" + I*1 +") 0.

Note that by the continuous dependence on a and (4.36),

(5.34) det[M,,( 0)]#0, 11<<1.2
Hence, (5.33) can be fuaher simplified to

2 c2(, =)+ 0(1211=1 + 1+ +1=1+)(5.35)

where

(5.36) c2(a,,a2)=det MI, q, det M,,
q2

PROPOSITION 5.1. In addition to (H1)-(H4), (H7), and (H8) as in Theorem 4.2,
suppose (H5) and (H6) are also satisfied. Then for sufficiently small

(5.37) c2(a, 0)=0

and

Oc.__.Z(5.38) o (0, 0) 0

where c2 is given by (5.36).
Proof If ’ =’z 0, then

(5.39) -+ P.(0. ..))P’(C’ ")1’=’:= Q.(0. ,7.-)
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Moreover, (5.11) and (5.35) are equivalent. Thus, (5.13) and (5.35) imply (5.37). To
prove (5.38), we first conclude from (5.22) that

(5.40) det M,
0

=( 1)"-det

Since (0, a)e W(), (0, a, )=(PI, Q)e W(). Hence, (5.24) and (2.11)
with M(a)= {12(0, , )111<< 1}c E2 and M(a)= {(x, o)llxl << 1}c 2, imply that

(1)[(.41) 0,) inf I(,Q)-glQ,.

Moreover, by (HS)

(.4) 0 < (0, a) fo a 0.

This and (5.1) imply ) at (0, ) with0 being nonzero. Suppose,
for a (0, a), a> 0. Then, we conclude from the transverse crossing hypothesis (H6)
and (5.41) that

d(0, a) Q(’)
(5.43) 0 < lira lira , a (0, a).

a2o0 2 a20 2

Since (5.37), (5.40), and (5.27) also imply ()=0 when a (0, a2), it follows that

la la(5.44) lim a (0, a).
a20 2 2 a=0

Now, it is easy to see that (5.38) follows from the quotient rule of differentiation,
(5.40), (5.43), and (5.44).

Now, from Proposition 5.1 and (5.35) we have the following lemma.
LEMMA 5.2. Suppose hypotheses (H1)-(H8) are satisfied. en there exist a C

function c2 c(al, a2) satisfying (5.37) and a C function r2 r(l, 1, , 2, a)
satisfying

(5.45) Ir] o(]nl Il + ],l ’+

with >0 such that (5.11) has a solution =(, , ,,, ) with (( 1 and
1 if and only if

(5.46) = c(,, )+ r(,, ,, , n, ).

Note that by applying Lemma 5.2 to equation (, a)=0, there also exist C
functions c c(a, a2) and r r(2, , , , a) such that equation O2(, a) =0 is
equivalent to

(5.47) , c,(,, )+ r,(, , ,, n,, ).

In pagicular, bythe proof ofTheorem 4.2, if *(a) (, ,,,, )(a) solves
(5.1), it must also satisfy (5.46) and (5.47) by Lemma 5.2. That is,

(5.4s) = c,(,, )+ r,(, 7, ,,)
c(,, )+ r(, ,, , ).

These equations are considered as bifurcation equations for (5.1). Now, we can easily
derive the following from (5.48).

Proof of eorem 2.1. Without loss of generality, let V c 2 be the same as in
Theorem 4.2. Since [*(a)[ O(a), (5.45) and (5.48) imply that

(5.49) = c,(,, )+ o(l’+), c(,, )+ o([’+).
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In addition, (5.37) and (5.38) imply that the change of parameters

(5.50) c()= (c(, ), c(, ))

is nonsingular in V and satisfies (2.14) of Therorem 2.1. This and (5.49) imply that

(5.51)
0(Zl*,’*) [1 01]0(e, e) =o 0

That is the map h’s---> (-*, -*), which is a local diffeomorphism. Thus in (5.5) and
(5.6) is now given as h-({’* >_- 0, r*_->0}). In particular, the boundary h-({’*=0,

’* > 0}) of

_
corresponds to a unique homoclinic orbit to a and is given as follows:

0- ,/ o(ll 1+

by (5.49). It is obvious that this boundary curve, corresponding to in our theorem,
and (2.15) and (2.16) follow immediately. The interior of A yields (2.17). This completes
the proof. [

6. Application. Consider the FitzHugh-Nagumo equations

(6.1) u,=Uxx+f(u)-w, wt=e(u-yw).

We refer the readers to [4], [7], [10], and [13] for more details on these equations. In
(6.1) e and 3’ are positive constants with 0 < e << 1. For f(u), we take

f(u)=u(1-u)(u-a), 0<a<1/2.
A traveling wave solution of (6.1) is a bounded, nonconstant solution of the form

(6.2) (u(x, t), w(x, t)) (U(z), W(z)), z x + Or, 0 constant.

By substituting (6.2) into (6.1), (U, W) satisfies the following system of ordinary
differential equations:

(6.3) U’= V, V’= OV-f(U) + W, W’= e(U- yW)/O.

If 3’ is large enough, then there exist three rest points as shown in Fig. 6.1.
In what follows we let o- (g, g’) be the point of intersection shown in Fig. 6.1,

and g’ g’l, 0, g’) the corresponding rest point of (6.3). We take ff (0, 0, 0) as another
rest point.

By a pulse we mean a solution Fc Fc(z) of (6.3) that satisfies

lim F(z) .
W W

U=7W U="YW

W=-f(U) W=-f(U)

U U

Small ?, Large
FIG. 6.1
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By an g-pulse F we mean a solution that satisfies

lim F(z)= .
By a front wave FF we mean a solution that satisfies

lim FF(z)= and lim FF(Z)=.

By a back wave FB we mean a solution that satisfies

lim FB (z) and lim Fa (z) .
Throughout this discussion we assume that 0 < e << 1. The relevant parameters are

then 3’ and the wave speed 0. It has been shown (see [1], [10]) that there exist constants
0 < 3’1 < 3’2 < 3’3 such that we have the following:

(1) If 3’1 < 3" and 0 < e << 1, then a front wave FF exists for some 0, say 0(3’).
(2) If 3"1 < 3’ < 3’3 and 0 < e << 1, then a back wave Fn exists for some 0, say 0n(3’).
(3) In the limit e 0, the graphs of these differentiable functions 0(3’) and 0n(3’)

are approximately shown in Fig. 6.2.

0 0B()

*, OF(’)/)

1 2 3
FIG. 6.2

These two curves cross precisely at 3’ 3’2, in the limit e - 0. For e small, but not
zero, the curves 0B(3’) and 0F(3") have the same qualitative features as shown in Fig.
6.2. For 3’ close to 3"1, 0a(3’)> OF(3’), while for 3’ close to 3’3, 0(3")< OF()’). Hence
there must exist/z* (3’*(e), 0*(e)) where the two curves cross.

It is not difficult to show that when 0< e << 1, the linearizations of (5.3) at and
g’ have two negative eigenvalues and one positive eigenvalue. One of the negative
eigenvalues is zero in the limit e- 0 while the other two stay uniformly away from
zero as e - 0. Thus, (H1)-(H3) are satisfied only for the time-reverse system of (6.3).
Hypothesis (H4) follows easily from (1)-(3) above. Hypothesis (HS) is always true
for systems in 3. As mentioned earlier (H6)-(HS) are generic (see Fig. 6.3). We can
verify these conditions do hold for (6.3) using the singular perturbation description
of the wave (see [1] and [10]). Thus, Theorem 2.1 is applicable for the time-reverse
system of (6.3).

Let 0 and 0 denote the pulse and e-pulse curves in parameter space. Then, by
Theorem 2.1 there are four possibilities for the location of the sector A that corresponds
to the periodic orbits. However, A is determined by the following results taken from
[1] and [10] together with the relative positions of OF, 0, 0, and 0 of Theorem 2.1"

(1) The front speed exceeds the pulse speed for the same 3’;

(2) When both a front and back exist, a pulse exists only if the back speed exceeds
the front speed. The corresponding statements also hold for e-pulses (see Fig. 6.4).
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Ws

FIG. 6.3

W=f(U)

U

0 0B())

o ,"

FG. 6.4

The important consequence of this result is that for 3’ near y2 there exist infinitely
many periodic waves traveling at speeds always exceeded by the pulse speed. This
result is also contained in [1].
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LIPSCHITZ CONTINUOUS METRIC SELECTIONS IN Co(T) *
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Abstract. This paper gives an intrinsic characterization of those finite-dimensional subspaces G of
Co(T) whose metric projections Pc have Lipschitz continuous selections. It is also proved that Pc has a
Lipschitz continuous selection if and only if Pc is Lipschitz continuous.
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1. Introduction. The problems concerning the existence of various continuous
metric selections have received much attention in recent years. The existence of
continuous metric selections is essential for finding stable algorithms to compute best
approximations (cf. [24], [30]-[32]). Also, the existence of Lipschitz continuous metric
selections and continuous metric selections will help us to determine the proximinality
of certain tensor product subspaces in multivariate approximation (cf. 18] and "Sitting
Duck Theorem" in [5], 19]). For finite-dimensional subspaces G of Co(T), the behavior
of the metric projections Pc has been deeply investigated (cf. [8] and [23] for surveys).
Niirnberger, Sommer, and Li (cf. [15], [17], [23], [8]) found several intrinsic charac-
terizations of the existence of continuous selections for Pc. It was proved in [12] and
[14], by Fischer and Li independently, that the almost lower semicontinuity of Pc is
equivalent to the existence of a continuous selection for Pc. In 16], Li gives an intrinsic
characterization of the lower semicontinuity of Pc. In [20], Lin generalizes a result
by Deutsch [7] and establishes an intrinsic characterization of the existence of linear
selections for Pc. Thus, as far as the various continuities of Pc are concerned, there
is still one interesting question remaining" What are intrinsic characterizations of those
G whose metric projections Pc have Lipschitz continuous selections (or whose Pc are
Lipschitz continuous) ?

In this paper, we will give the question above a complete answer. Before we go
into detail, we introduce some notation.

Let T be a locally compact Hausdorff space and let Co(T) be the Banach space
of real-valued continuous functions f on T that vanish at infinity, i.e., for any e > 0,
the set {t T: If(t)l > e} is compact. The norm off Co(T) is defined as follows:

liT sup {If(t)l: T}.

For G c Co(T), the metric projection from Co(T) to G is defined as

P(f)={g G: IIf-gll =d(f, )},

where

d(f, G)=inf {llf -P[l: p G}.

Recall [13] that Pc is called Hausdorff strongly unique at fe Co(T) if there is a
constant A (f) > 0 such that

IIf- gll -> d(f, G)+A(f). d(g, Pc;(f)), g G.

* Received by the editors October 14, 1987" accepted for publication (in revised form) October 24, 1988.
? Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
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Pc is said to be uniform Hausdorff strongly unique if there is a constant h > 0 such that

IIf-gll>_-d(f,G)+X.d(g,P(f)), fCo(T), gG.

Remember that Pc is called Lipschitz continuous if there is a constant h > 0 such that

H(P(f),P(h))<-,X. llf-hJl, f,hCo(T),

where

H(P(f), P(h)) max {sup {d(g, Pc(f)): g Pc(h)},

sup {d(p, Pc(h)): pc Pc(f)}}.

We say that Pc has a Lipschitz continuous selection ifthere exists a Lipschitz continuous
mapping Q from C0(T) to G such that Q(f) Pc(f) for each f Co(T).

Now we can state our main results.
TIqEOREM 1.1. Suppose that G is a finite-dimensional subspace of Co(T). Then the

following are mutually equivalent:
(i) Pc is uniform Hausdorff strongly unique;
(ii) Pc is Lipschitz continuous;
(iii) Pc has a Lipschitz continuous selection;
(iv) T\Z(g) is compact for every g G, where Z(g)= {t T: g(t)= 0}.
COROLLARY 1.2. Suppose Co Co(U) and G is a finite-dimensional subspace of Co.

Then the following are mutually equivalent:
(1) Pc is uniformly Hausdorff strongly unique;
(2) Pc is Lipschitz continuous;
(3) Pc has a Lipschitz continuous selection;
(4) There is n >= 1 such that g i) O, >- n, g G.
Remark 1.3. Cline [6] knew that, for a compact T with finite points and a Haar

subspace G of C(T), Pc is Lipschitz continuous (cf. also [1]). Cline [6] also proved
that for a compact T with infinite points and a Haar subspace G of C(T), Pc is
Lipschitz continuous only if dim G 1. The converse was proved by Berdyshev [2]
(cf. also [28]). Respess and Cheney [28] extended Cline’s result and proved that Pc
has a Lipschitz continuous selection only if dim G 1, provided that G has Haar
property at a neighborhood of a cluster point of T. We can easily derive these results
by using Theorem 1.1. When T is compact, Berdyshev [2] also has some characteriz-
ations of Pc being Lipschitz continuous.

Remark 1.4. In general, there are one-dimensional subspaces of Co(T) for which
the metric projections Pc have no continuous selections [3]. But for any finite-
dimensional subspace G of Co, Pc is lower semicontinuous (lsc) (cf. [4] or [16]).
However, Corollary 1.2 implies that, in general, the lower semicontinuity of Pc is not
equivalent to the Lipschitz continuity of Pc. Also, Corollary 1.2 implies that there is
a one-dimensional subspace G of Co such that Pc is lsc but Pc has no Lipschitz
continuous selection. It is interesting to note that metric projections in L(T, ) have
quite different features. Contrary to the phenomena mentioned above, for any one-
dimensional subspace (3 of L( T,/z), Pc is lsc if and only if Pc is Lipschitz continuous
and Pc has a continuous selection if and only if Pc has a Lipschitz continuous selection
[9].

Remark 1.5. The idea of Hausdorff strong uniqueness is introduced in [13] to
characterize the lower semicontinuity of Pc and is a natural generalization of the
strong uniqueness ofbest approximations in Co(T) introduced by Newman and Shapiro
[21]. However, it is interesting to note that the uniform Hausdortt strong uniqueness
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may also be considered as a natural generalization of the 11/2-ball property introduced
by Yost [33], since G has the 11/2-ball property if and only if [11]

IIf-gll--d(f, G)+d(g, Pc(f)) foranyfCo(T), gG.

Some results in [33] have been generalized by Park [25] to the case that Pc is uniform
Hausdorff strongly unique. Also, Park [25], [26] gives an example of a one-dimensional
subspace G of C[a, b] such that Pc is uniform Hausdorff strongly unique but G does
not have the 11/2-ball property.

Remark 1.6. That (i) implies (ii) in Theorem 1.1 is the special case of Park’s
results [25] or [26]. By using the Steiner point, we can show that if Pc is Lipschitz
continuous, then Pc has a Lipschitz continuous selection (cf. [10], [27]). Thus (ii)
implies (iii).

Since a subset A of is compact if and only if A is a finite subset of, Corollary
1.2 follows immediately from Theorem 1.1. By Remark 1.6, we need to show only that
(iii) implies (ii), which in turn implies (i). In 2 we give some properties of extremal
signatures of G that will play an important role in this paper. In 3 we show that (iii)
implies (iv). In 4 we study the structure of G that satisfies (iv). In 5 we prove that
(iv) implies (i).

2. Extremal signatures. A signature tr on T is a mapping from T to {-1, 0, 1}
such that { T: tr(t) 0} =: supp tr is a nonempty finite set. Extremal signatures were
introduced by Rivlin and Shapiro [29] to characterize elements in Pc(f). For an
equivalent definition of extremal signatures see [17], [29].

DEFINITION 2.1. An extremal signature o- of G is a signature on T such that if
g G satisfies tr( t)g( t) >- O, for tsupp tr, then supp trc Z(g). A primitive extremal
signature tr of G is an extremal signature of G such that

dim Glsuppo- dim G[supprr\{t card (supp o-) 1 for supp o-.

Now we list some properties of extremal signatures of G that will be used in this
paper.

LEMMA 2.2 (Rivlin and Shapiro [29]). Suppose f Co(T)\G and g G. Then
g Pc(f) if and only if there is a primitive extremal signature tr of G such that

f(t)-g(t)=cr(t)l}f-gll for tsuppo’.

LEMMA 2.3. Suppose that tr is an extremal signature ofG. Then Pclsup(O’[suppr) {0}
and there is a constant h (tr)> 0 such that

max {r(t)g(t)" tsupp o’}=>h(o’) max {[g(t)l" tsupp o’} for g G.

LEMMA 2.4. Suppose B T. Then card (B)> dim G[B if and only if there is an
extremal signature o" with supp tr B, where card B) denotes the cardinal number of
the set B.

LEMMA 2.5. If trl is an extremal signature of G and tr2 is an extremal signature of
G(supp trl):= {g G: supp O" Z(g)}, then

tr(t)
h(t)’

[.o’2(t),
supp oh,

T\supp Crl,

is an extremal signature of G.
Lemmas 2.3-2.5 are results in 2 of [17]. By Lemmas 2.4 and 2.5 we can establish

the following auxiliary lemma, which will be used in the proof that (iii) implies (iv)
in Theorem 1.1.
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LEMMA 2.6. Suppose B c T and card (B)> dim Gin. Then there is an extremal
signature r of G such that supp o, B and

dim G(supp r)[n card (B\Z(G(supp r))),

where G(supp r) {g G" supp r c Z(g)}.
Proof. We prove this lemma by induction on dim G. Assume that Lemma 2.6 is

true if dimG<=s, where s>-0. Now suppose dimG=s+l. If dim Gin=
card (B\Z(G)), then there is toe BfqZ(G), since dim Gin <card (B). Obviously,

1, to,
o’(t)

0, T\(to}

is an extremal signature of G and

dim G(supp or)In dim G(to)l dim Gin
=card (B\Z(G))=card (B\Z(G(supp o’))),

since G(supp or)= G. Thus, without loss of generality, we may assume

(2.1) dim Gin card (B\Z(G)).

Since dim Gin=dim Gln\z)_-< card (B\Z(G)), (2.1) implies

(2.2) dim GIn\zG < card (B\Z(B)).

By Lemma 2.4, there is an extremal signature rl of G with supp o’1 B\Z(G). Set
G* G(supp r). Then dim G* -< dim G- 1 =< s. Since dim G*I -<- dim Gin < card (B),
by the inductive hypothesis, there is an extremal signature r2 of G* such that

supp o’2 B, dim G*(supp r2)ln =card (B\Z(G*(supp cry))).

Define

trl(t), c supp t7"1,
O’( t)

r2(t), c T\supp rl.

By Lemma 2.5, r is an extremal signature of G. Since

supp r supp r U supp r2,

we obtain that

(2.3) supp tr B,

dim G(supp tr)[n dim G*(supp trE)[n
(2.4)

=card (B\Z(G*(supp tr2))) card (B\Z(G(supp or))).

Formulae (2.3) and (2.4) show that tr is the required extremal signature of G.

3. Proof of (iii) implying (iv). Suppose that Pc has a Lipschitz continuous selection
Q. If (iv) in Theorem 1.1 fails to be true, then there is g* G such that supp (g*)=
T\Z(g*) is not compact. Set

Tk {t T" 0 < Ig*(t)l < 1/k}, k >- 1.

If for some k, Tk is a finite set, then

(3.1) supp (g*)- {t T: [g*(t)l_-> e},

where

(3.2) e min {Ig*(t)l" Tk} > O.
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Formulae (3.1) and (3.2) imply that supp (g*) is compact. This contradicts our assump-
tion that supp (g*) is not compact. Thus, for each k >_-1, Tk is an infinite set. Since
Tk D Tk+I, k >-1, we have

<_-dimG} <dimG<+, k >1,0 =< dim G[ Tk+, Tk

i.e., (dim GIT)k=I is a bounded decreasing sequence. So, there is r->0 such that

(3.3) lim dim GIT r.
kooo

Since dim GIT are integers, (3.3) implies that there is N > 0 such that

(3.4) dim GIT dim GIT r, k >- N.

It follows from (3.4) that

dim G(Tk) dim G dim OlT
(3.5)

dim G dim GI TN dim G(TN), k >_- N,

where G(Tk) {g G: Tk c Z(g)}. By (3.5) and G(Tk) G(TN) for k -> N, we obtain

(3.6) G( Tk) G( T), k >- N.

For each k ->_ N, since Tk is an infinite set, by Lemma 2.6 there is an extremal signature
O"k of G such that

(3.7) supp O"k C Tk,

(3.8) card Tk\Z Gk <- dim Gk <- dim G < +c,

where

(3.9) Gk {g G" supp Crk c Z(g)}.

It follows from (3.7) and (3.9) that

(3.10) GkDG(T), k>=N.

Set

(3.11) ek min {[g*(t)[" Tk\Z(G)}.

By (3.8), ek > 0. By (3.11) and the definition of Tk, we obtain

T,f-I(Tk\Z(Gk))=, n>l/ek, n>=k,

i.e.,

(3.12) T,, Z(Gk), n > 1/ek, n >= k.

Formula (3.12) implies

(3.13) G(Tn)=Gk, n>l/ek, n>-_k.

It follows from (3.6), (3.10), and (3.13) that

(3.14) Gk G( T), k >- N.

Since supp Crk is a finite set and Tk is open, there are open sets Wk and Vk such that

supp crk Vk Vk Wk Wk Tk, Wk is compact,
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where A denotes the closure of set A. Now, by using Tietze’s extension theorem, we
can construct fk, hk Co(T) such that

fk(t)=trk(t), supp trk,

f(t) =0, T\ Vk;

hk( t) g*( t), Vk,

IIhll =max {Ig*(t)l" t

hk(t) =0,

Let 0< a < min {1/2,1/211g*ll}, Then

1 max {IA(t)l" supp

max {IA(t) + ,h(t)

--< IIA / Othk g*ll

-_<max {max {IA(t)l"
_-<max {1, (llhll / Ilg*ll)}

<=max{1, a(1/k+llg*ll)}<=l, k>=N,

i.e.,

(3.15) IIA /h g*ll- 1.

By (3.15) and the construction of fk, hk, we get

A(t) (t) (t)llAII for e supp Ok,

fk(t)+ahk(t)--ag*(t)=rk(t)=trk(t)llfk--ahk--ag*ll for tesupp trk.

If g e Pc(fk), then

I(t)-g(t)l=lA(t)-g(t)l<-IIAIl=l for tesupptrk.

By Lemma 2.3, glsuvv, e Plo...(rls.pp) and g(t) =0 for esupp trk, i.e.,

(3.16) P(fk) c Gk, k >= N.
Similarly, we can obtain

(3.17) P(fk + ahk) ag* P(fk + ahk ag*) Gk, k >= N.
Thus, by (3.14), for the Lipschitz continuous selection Q of Pc, we have

Q(fk) 6 G(Tu), k >_- N,

Q(A + ah,) ag* G(Tu), k -> N.

So, for k _-> N,

c. max {Ig*(t)l" t T} max {IQ(A, t)-Q(A+ah, t)l" t Tu}

(3.18) <--II Q(A)- Q(fk + Othk)[I A. Ilfk --fk ,h

--A, , IIhll <A" a/k,
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where A > 0 is the constant in the definition of Lipschitz continuity of Q. It follows
from (3.18) that

0<max {]g*(t)l: t Tc}<A/k, k>- N,

which is impossible. The contradiction shows that (iii) implies (iv) in Theorem 1.1.

4. An equivalent form of (iv). We first assume that G satisfies (iv) in Theorem 1.1.
Set

supp (G) { T: g(t) # 0 for some g G}.

We define a relation on supp (G) as follows:

x---y iff dim G[x.r 1,

where x, y supp (G). Then it is easy to check that "---" is an equivalence relation on
supp (G). Let

= {[x]: x e supp (G)},

where [x] denotes the equivalence class of x.
LEMMA 4.1. supp G) is compact and open.
Proof. Suppose G span {g}. Then

supp (G)= J supp
i=l

where supp (g)= {t e T: g(t) 0}. By the continuity of g, supp (g) is open; by (iv)
and supp (g)= T\Z(g), supp (g) is compact. Thus, supp (G) is open and compact.

LEMMA 4.2. Ix] is open and compact for each x supp (G).
Proof. Let {g} c G such that

span {g,}={ge G: g(x) =0}=: G(x).

Since y e Z(G(x)) f’l supp (G) if and only if y e supp (G) and dim Glx.y 1, where
Z(G(x)) T\supp (G(x)), we obtain

(4.1) [x] supp (G) Z(a(x)).

Since Z(G(x))= {t T: g(t)=0 for all g e G(x)} is closed, [x] is a closed subset of
the compact set supp (G). So, Ix] is compact. On the other hand, by (iv), Z(gi)=
T\supp (gi) is open for each 1 <= =< s, so Z(G(x)) Z(span {gi}) f’l =1Z(g) is open.
By Lemma 4.1 and (4.1), we have that Ix] is open. Thus, [x] is open and compact.

LEMMA 4.3. is a finite set.

Proof Assume the contrary, i.e., is an infinite set. Then there are {Xk}C
supp (G) such that

(4.2) [x,]#[xj], i#j, i,j>-l.

By Lemma 4.1, supp (G) is compact. Let x*e supp (G) be a cluster point of {Xk}.
Since, by Lemma 4.2, [x*] is open, we obtain that [x*] f’l {Xk} is an infinite set. Let
# j, x, xj e [x*]. Then

[x,]=[x*]=[x],
which contradicts (4.2). So, is finite.
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THEOREM 4.4. Suppose that G is a finite-dimensional subspace of Co(T). Then the
following are equivalent:

(a) T\Z(g) is compact for every g (3;
(b) There are open and compact subsets {Ai}’ such that

(4.3) J A, supp (G),
i=1

and for 1 <- i, j <- n,

(4.4) dim GIA, uAj 1 only if i=j.

Proof. Part (a) implies (b). By Lemma 4.3, there are {x}’ supp (G) such that

(4.5) [x,]#[xj], ij, 1_<-i, j<-n,

(4.6) ( [x,] LI Ix] supp (G).
i=1 supp(G)

But dim GIt,,aUtxjl 1 implies [x] [xj]. So, by (4.5), we get

(4.7) dim GIt,utx., 1 iff i=j.

From (4.1) we obtain

(4.8) G(x) {g G: gltx 0} =: G([x]), x supp (G).

Hence, by (4.8) we get

1 =dim GI =dim G-dim G(x)=dim G-dim G([x])=dim Gltx,
(4.9)

x supp (G).

It follows that

(4.10) dim G[tx, 1, 1 -<_ <_- n.

Now, (4.6), (4.7), (4.10), and Lemma 4.2 ensure that (b) holds for Ai [x], 1 <-i<_-n.

Part (b) implies (a). By (4.4), we know that for any g G, Z(g)fq A f implies
A Z(g). Thus, for any g G, there is a subset J of {i}’ such that T\Z(g)=t.J A
is compact.

5. Proof of (iv) implying (i). To prove that (iv) implies (i), we need several lemmas.
LEMMA 5.1. For any B T, there is a constant h. (B)> 0 such that

d(g, G(n))<--x(n)llgll, g G,

where Ilgll -sup {Ig(t)]" t n}.
Proof. Let {g} G be such that GI span {gla} and {gl} is linearly indepen-

dent. Let

G* span {gi}.
Then it is not difficult to check that I1" and d (., G(B)) are two norms on G*. Since
any two norms on a finite-dimensional space are equivalent, there is a constant A (B) > 0
such that

(5.1) d(g*, 6(n)) <- x(n)llg*ll, g* G*.

Now let g G. Since G*la Gla, there is g* G* such that

(5.2) gl-g*l,
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(5.3) g-g*G(B).

By (5.1)-(5.3 we get

d(g,G(B))=d(g*,G(B))<-_A(B)IIg*IIa=A(B).IIglIB, gG.

LEMMA 5.2. Suppose f Co(T), T= Bl t.J BE, B1 c Z(G), and G* GIB2. If there
is a positive constant a such that

(5.4) Ilf-gll>=d(fl, G*)+al d(g[n2, P.(fln)), g G,

then for every g G,

(5.5) Ilf -gll >-_ d(f, G)+(-) d(g, P(f)).

Proof. Suppose g G and

(5.6) IIf-gll- d(f, G)/.
If I <= O, g P(f) and (5.5) is trivial. So we may assume/_, > 0. Let g* G such that
g*l,_ P*(fl) and

(5.7) d(gla, P*(flo))- IIg-g*ll.
For 0 < A -< 1, we claim

< G*(5.8) IIf-g*+X(g*-g)ll,,-d(fl,,,*)+X’(d(f,)-d(fl, )+).

In fact, if (5.8) fails to be true, then there is ta B such that

G*(5.9) If(ta) g*(tx)+A(g*(tx) g(ta))l> d(f[a, )+A.

where

G** d(f, G)-d(fl, )+z>0.

Since If(t)-g*(t)l<-d(fla, G*)<d(fl,, G*)+A. z*, by (5.9), we obtain

(5.10) [f(tx)-g*(tx)+A(g*(t,)-g(ta))l= ex(f(ta)-g*(ta))+A[g*(ta)-g(ta)[,

where ea =sign (g*(ta)-g(ta)). Thus, by (5.9) and (5.10), we have

IIf-gll_-> (f(t)-g(t))

e(f(t)-g*(t))+lg*(t)-g(t)l

1
> e(f(t)-g*(t))+- d(fl,,, G*)+Al*-ea(f(tx)-g*(ta))

1- e. (f(t.)-g*(t,))+- d(fl G*)+

>___ 1- IIf-g*lla+-d(fl, a*)+*

1- d(fl, a*)/-- d(fl, )/

=a(f. al+.
which contradicts (5.6). The contradiction shows that our claim (5.8) is true.
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Set A*= 1-/z//z*. Then, by (5.8), we get

IIf-g*+a*(g*-g)ll<-d(fla=, O*)+a*- *
G* *=d(fl=, )+tz -tz=d(f, G),

g* + )t *(g g*) Pc(f).

So,

(5.11) d (g, Pc(f)) <- IIg g*- ;t *(g- g*)ll (1- x*)llg-g*ll.

We discuss two cases.
Case (a). d(gl, P.(fla)) >- 2(l*-z)/,.
By the hypothesis, we have

IIf-gll--> d(fl, G*)+ O d(glB2, Pm*(fl=))
O

>-d(fls= G*)+/x*-/z+--. d(gls P*(fln=))(5.2)

d(f, G)+S d(gl, P.(fI)).

Since T B1U B2, B1 c Z(G), and G* GI, it is easy to verify that

(5.13) P.(f[) P(f)[,
(5.14) d(gl=, P(f)ls=)= d(g, Pc(f)).

It follows from (5.12)-(5.14) that

t

IIf -gll>-d(f, G)+. d(g, P(f)).

Case (b). d(gl=, Pz.(fls=))<2(tz*-tz)/a.
By (5.7) and T\B2 c B1 c Z(G), we have

(5.15) d(gls=, P*(fIs=))= IIg-g*ll=-IIg-g*ll.
It follows from (5.15), (5.11), and the hypothesis that

d (g, P(f <- (1- z *) llg- g*ll

d(gl, P*(fl)) tz/tz*
(5.16)

<_-2 (*-) /(* ,,)

=< 2/z/a
By (5.6) and (5.16), we obtain

O

IIf-gll>-_d( G)+-. d(g, P(f)).

Thus, we have proved that (5.5) holds for any g G.
LEMMA 5.3. Supposef Co(T), T B O B2, and G* G(BI)IB2. If there are posi-

tive constants Oil, ot2 such that

(5.17) IIf-gll>-_d(f, G)+al d(gln, P(f)l,), ge G,
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(5.18)
G*IIf-g-g*[l>-d(f-gl, )+o. d(g*l,P.(f-gl)),

g Pc(f),

then

(5.19) IIf-gll>-d(f, G)+aa’d(g, Pc(f)), gG,

g* G*,

where ot3=min{a2/4, al.a2/[2.A(B1).(a2+2)]} and A(B1) is any constant that
satisfies

d(g, G(B1))<=A(B1) Ilgll,, g G.

Proof. Suppose g G. Let gl E Pc(f) such that

(5.20) Ilg-glll, d(glB,, Pc(f)lB).

By Lemma 5.1, there is a positive constant A (B) such that

(5.21) d(p, G(B))<=A(B)IIPlI,, p G.

By (5.20) and (5.21), there is g2 G(B) such that

(5.22) IIg-g-g=ll d(g-g, (n))<-A(n)llg-gll,- X(B1)d(gl,, P(f)l,).
Now we discuss two cases.

Case (a). d(gl,, P(f)l,)<=a2 d(g, P(f))/[2. A(B). (a2+2)].

By (5.18) and Lemma 5.2, we get

O2(5.23) IIf-g-gll>-d(f-g, G(B1)) +-- d(g2, PcB)(f-g)).

Since gl Pc(f), we have

(5.24) d(f-g, G(B))= d(f, G),

(5.25) Pcs,)(f g,) c Pc(f- gl) Pc(f)- gl.

It follows from (5.23)-(5.25) that

o2IIf -gl-g211 >- d(f, G)+- d(g2, Pc(f)-g)

(5.26)
t2d(f, G)+- d(gl + g2, Pc(f)).

Since d(g, Pc(f))>= d(g + g2, Pc(f))-IIg-g-g[[, (5.22) and (5.26) imply

f- g >- f- g g2 g g g:

(5.27)
>- d(X a)+ d(g, P(f))- 1 + IIg-g-gll

Now it follows from (5.27) and the hypothesis that

2(5.28) IIf-glled(X G)+ d(g, P(f)).

Case (b). d(g]n,, P(f)l,) > a2" d(g, P(f))/[2. A(B). (a2+2)].
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By (5.17) and the hypothesis, we obtain

IIf-gll >-- d(f, a)/ , d(gl,, P(f)ln,)
(5.29)

>=d(f, G)+a,a. d(g, P(f))/[2. A(B,). (a+2)].

Thus, for a3 min {a/4, a,. a/[2. A(B,). (a+ 2)]}, by (5.28)and (5.29), (5.19)
holds.

From now on, we will always assume that G satisfies (iv) in Theorem 1.1. By
Theorem 4.4, there are open and compact subsets {A}’ such that

(5.30) J A, supp (G),
i=1

and for 1 _-< i, j _-< n,

(5.3)

For convenience, denote

(5.32)

dim GIA,uAj 1 iff i=j.

A(I)= U A,, Ic{1,2,...,n}.
iI

To give a lower-bounded estimation of Hausdorff strongly unique constants, we
need some structural constants of G. By (5.31), there are gi G such that

(5.33) GIA, span {gi[A,}, 1 --< --__< n.

Since g(t)# 0 for Ai and A is compact, we obtain

(5.34) a=: [[g[[A,/min{Igi(t)[" ta}<oo, l<-i<-n.

Define

(5.35) 1 _-< a max {a," 1 <- <= n} < oe.

For any g e G, if glA, O, then glai higilai with A # 0. So,

(5.36) []glla,/min {[g(t)[" a} ai--< a, g G with [[g[[A, # O.

Set

3-= {I c {i}’. dim Gla(x) dim GIA(X\tj)=card (I)- 1 for j I}.

For I 3-, it is easy to check that I1" I1(, and II" II(,\, J , are norms on G[A(,.
Since any two norms on G[a(t) are equivalent, there is a constant fl(I)>0 such that

(5.37) Ilglla(,\)>--_Cl(I).llglla(,), geG, jele3-.

Define

(5.38) 1 >-/3 min {/3 (I)" I e 3-} > 0,

since 3- is a finite set. By Lemma 5.1, for # I c { i} ’, there are constants 3/(I) such that

(5.39) d(g, G(A(I)))<-- y(I)llglla(,), g G, I {i}7.

Define

(5.40) 1 -<_ y=max {y(I)" I c {i}’} < oo.

The constants a,/3, 3’ are essential in estimating the lower bound of Hausdorff strongly
unique constants of Pa.
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LEMMA 5.4. For any primitive extremal signature o- ofG and any real number A >- O,
we have

(5.41) IIx-gllsu--> IIxllsu+ (/)llgll,, g G.

Proof. Since fl/a-< 1, (5.41) is trivial if A 0. So, we may assume

A>0.

r* supp o’= {6}". By Definition 2.1 and Lemma 2.3, weSet G* Glsupptr, O’[suppcr
obtain that

(5.42) Po.(Ao-*) APo.(r*)= {0},

(5.43) dim G* =dim G[{,,}. dim GI,,;\,} m, 0=<j=< m.

It is trivial that

(5.44) Ix*(t)l Ilx*l[, supp o’-- {t,}.

So, it follows from (5.42)-(5.44) and Theorem 1.3 of [22] that

(5.45) IIx*- g*ll->-IIx*ll / " IIg*ll, g* G*,

where

(5.46) r/= min {1/llp,*l[" 0<- i-<_ m}

and p* are the unique functions in G* such that

(5.47) p*(tj)=sign(ho’*(tj))=cr*(tj), O<-_i, j<=m, j#i.

Choose Pi G such that

(5.48) p,[suppo.=p*i 0<= i<= m.

Let { k: 0 =< <_- m} c { 1,- , n} such that

(5.49) t Ak,, 0 <-- <= m.
By (5.31), (5.43), and (5.49), we obtain

(5.50) dim GIU;"=oAk, dim GIu’LoAk,\A m, O<=j <-- m.

By (5.47), (5.48), and (5.36), we can derive that

<’lp,(t)l-’lp*(b)l-, 0<i, j<m, i#j.(5.51 IIp, ll%=
Now we discuss two cases.

Case (a). m 1.
By (5.50) and (5.31), Ao= Ak,. So, it follows from (5.51) that

P* p, ,o.,,-<- I1Pi ak Ol, O, 1.

Sot
(5.52)

Case (b). m > 1.

r/=>min {1/llp,*ll" i=0, 1}_-> 1/a.

By (5.50) and m > 1, we obtain that for I {kv 0 <-- i<= m},
dim G[A(I dim G[A(I\{j}) card (I) 1 m,

i.e., I 3-. It follows from (5.51) that

(5.53) p,l[ (,\,)-<_ , O<-i<=m.
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By (5.53), (5.37), and (5.38), we get

IIp, ll,,) IIP, llA,\,<,t)/i <li,

Thus,

O<__i<=m.

r/_-> min { 1 /II p,* I1" 0 _-< -< m) min { 1 /II P, supp o-" 0 __--< -< m)
(5.54)

_-> min {l/llP, lla(,)" 0 <- <--_ m} >= ilia.
Since /3--<_ 1, (5.52) and (5.54) imply

(5.55)

So, by (5.45) and (5.55), we obtain that for any g e G,

I1<,- g supp -II <,* glsuppll
-> IIA*II / ," Ilglsuppll--> I1*11 / (/)llglsuppll
IIllsupp.+(/)" Ilgllsupp.

This shows that (5.41) holds.

5.1. Proof that (iv) implies (i) in Theorem 1.1. We prove that (iv) implies (i) by
induction on dim G. The conclusion is trivial if dim G 0. Assume that for any subspace
M with dim M <- s, if M satisfies (iv), then P4 is uniform Hausdortt strongly unique.
Now suppose that G satisfies (iv) and dim G s + 1.

Let T* supp (G), G* G[.. Set

GI G*(A(I))I.r.\A(,), # I c:. {i}’;.

Since G1 G* and T* is compact, we obtain that G satisfies (iv) and dim G-<
dim G*-1-<dim G-1 s. By the inductive hypothesis, Pc, is uniform Hausdorff
strongly unique, i.e., there is a positive constant r/(I)> 0 such that

IIh-Pll>-d(h,O,)+q(I).d(p,P,(h)), heC(T*\A(I)), peG,.

Since {i}’ has only finitely many different subsets, we have

r/=: min {r/(I)" # I c {i}’} >0.

Obviously, for any nonempty set I c { i}’,

(5.56) IIh-Pll>-d(h, GI)+’O" d(p, Pa,(h)), pe G,, he C(T*\A(I)).
Now we claim

(5.57)

where

IIf-gll>>.d(f, G)+,,x. d(g, Pc(f)), ge G, fe Co(T),

A min {n/8,/. n/[ ,. 4(r/+ 2)]}.
First assume f* =fir* e C(T*)\ G*. By Lemma 2.2, there are g* e Pa.(f*) and a

primitive extremal signature r of G* such that

(5.58) f*(t)-g*(t)=cr(t)l[f*-g*[l=(t)d(f* G*), e supp o’.

By Lemma 5.4, (5.58) implies that

II/* p --> II/* p supp

(5.59)
IIf* g* -(p g*) supp<,

lid(f*, a*)o-(p-g*)llupp<,.
>-lid(f*, G*)olls,.,,,,:,<,.-i-(131o,.)llp-g*llsu,,,,o., p G*.
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Let J { i" supp o- f) Ai }. Then for any p c G*,
IIPIIA<J) =max {llplla," c I}

(5.60) <= max {a. p aiCIsuppo" C I}
<-- " p su.

It follows from (5.59) and (5.60) that

(5.61) IIf*-Pll>=d(f*, G*)+(/a2) IIP--g*IIA(J, pc G*.
Formula (5.61) implies that P*(f*)l,J (g*l,J}. Thus, (5.61) is equivalent to

(5.62) IIf*-pll>-_d(f*, G*)+(/3/c) d(p[,j, P.(f*)lJ), p G*.
By (5.39) and (5.40),
(5.63) d(p, G*(A(J)))<= y. liPlI, pc G*.
It follows from (5.56) that

IIh -Pll--> d(hlT-*\aJ, Gj)+ rl d(plT-.\Aj, Pcj (h)),
(5.64)

h c Co(T*), p c Gj.

By (5.62)-(5.64) and Lemma 5.3, we get

(5.65) IIf*-gll>-d(f*, G*)+;t*d(g, P.(f*)), g G*,
where

A* min {,//4,/3. r//[c 2. ,. 2(7 + 2)]}.
If f*c G*, then (5.65) is trivial. So (5.65) holds for any fc Co(T). It follows from
(5.65) and Lemma 5.2 that

,,f-pl, >-d(f, G)+(A-) .d(p, Pc(f)), pc G.

Thus, we have proved (5.57), since A A*/2. So, Pc is uniform Hausdortt strongly
unique, i.e., (iv) implies (i) in Theorem 1.1.
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JUSTIFICATION OF MATCHING WITH THE TRANSITION EXPANSION OF
VAN DER POL’S EQUATION*

A. D. MAcGILLIVRAY’[-

Abstract. The analysis of the relaxation oscillations of Van der Pol’s equation presents an especially
challenging test of the formal techniques of the method of matched asymptotic expansions for solving
singular perturbation problems. The formal analysis is described in Kevorkian and Cole’s monograph [J.
Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics", Springer-Verlag, Berlin, New
York, 1981], which explains why the inner and outer expansions must necessarily be supplemented by a
third "transition" expansion in order to obtain a uniformly valid approximation beyond O(1) on a complete
half-period. Kevorkian and Cole carry out the construction and delicate matching of several terms in the
expansions. The present paper mathematically justifies their formal results to O(e/3), and is the first such
proof for any transition expansion. Partly for this reason, but also because the idea underlying the proof
has been and will be applied to other singular perturbation problems, this paper is intended to be a

contribution to the study of asymptotic methods rather than merely to the theory of Van der Pol’s equation.

Key words, singular perturbation, rigorous matching, Van der Pol, matched asymptotic expansions
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1. Introduction. This paper presents a mathematical justification of terms in the
transition asymptotic expansion of relaxation oscillations of Van der Pol’s equation,
written as

d2y dye--+ (1- y2) -+y O.

It also justifies matching these terms with the leading terms in the inner and outer
asymptotic expansions. The construction of these terms and their formal (i.e., non-
rigorous) matching is explained in complete detail in Kevorkian and Cole’s well-known
monograph [4].

Van der Pol’s equation is, of course, a canonical example that has long been used
in texts, exposition, and research. As an example illustrating the method of matched
asymptotic expansions in solving singular perturbation problems, it provides an
especially stringent test of that method because three principal asymptotic expansions
are required, and the formal matching among them is an extremely delicate matter. It
is not surprising that the mathematical justification also presents some challenges. Our
analysis is believed to be the only justification of validity and matching of a transition
asymptotic expansion for any nontrivial problem (and not merely the Van der Pol
problem).

The present work extends the work of MacGillivray [8], [9], which presents a
complete mathematical justification of the formal result by demonstrating that the
leading terms of the inner and outer expansions, as constructed by Kevorkian and
Cole [4], give O(1) approximations to the solution, as e tends to zero, on explicit
domains of uniform validity that overlap. The extension by the present analysis justifies
the assertion that the first two terms of the transition expansion and the leading terms
of the inner and outer expansions give O(e 1/3) approximations to the solution, as
e--> 0, on explicit domains of validity that overlap; see Fig. 1.

The question of how to organize this paper was difficult. I wanted to describe
certain aspects of what Littlewood called the "dramatic fine structure of solutions"

* Received by the editors July 20, 1987; accepted for publication (in revised form) February 8, 1989.
t Department of Mathematics, State University of New York, Buffalo, New York 14214-3093.
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FG. 1.

[7, p. 13], but sometimes detailed computations can get out of hand. (Littlewood
describes his last paper on Van der Pol’s equation as "The Monster" [7, p. 16]).
However, the proofs include enough guideposts to enable the interested or skeptical
reader to fill in some or all of the desired details. I hope I have achieved a balance
between brevity and verbosity, but in any case, detailed proofs are available upon
request from the author (MacGillivray [10], [11]).

The organization of the paper is as follows: Propositions 1-11 are presented in
3, and lead to Theorem A, which is the first of four main theorems. Theorem A

asserts that the first two terms of the transition expansion approximate the solution to
O(E 1/3) on an explicit domain of uniform validity. In 4, the analysis begins with an
application of Kaplun’s Extension Theorem and, after five more propositions, con-
cludes with Theorem B, which asserts an explicit domain of validity for the inner
expansion to O(81/3). The three propositions in 5 lead to Theorem C, which gives
an explicit domain of uniform validity of the outer expansion as an O(81/3) approxima-
tion. In 6, Theorem D collects these results together, completing the mathematical
justification of the method of matched asymptotic expansions for this problem. It is
worth mentioning that an interesting feature in the proofs is the recurring pairwise
interaction between the expansions that is undoubtedly related in some way to the
formal matching procedures.

The analysis of this and the two previous papers enables us to examine some
formal techniques of asymptotic analysis from a different vantage point and thereby
possibly enhance the understanding not only of how certain techniques work, but also
why they work. This view has been highlighted by recent work on "fingering problems."
Langer [6], for example, discusses one of these problems for which a straightforward
perturbation analysis led to seemingly reasonable results. These were accepted as
correct for many years, but Langer shows them to be incorrect. See also the review
paper by Saffman [14].

For the sake of completeness, we give a short list of works devoted specifically
to the analysis of Van der Pol’s equation: Cartwright [1], Dorodnicyn [2], Haag [3],
Pontryagin, Mishchenko, and coworkers; see 12], Stoker 15]. A recent paper by Storti
and Rand [16] applies much of the formal analysis (including the transition expansion)
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of Kevorkian and Cole to strongly coupled relaxation oscillators. Finally, we mention
the book by O’Malley [13] and the review paper by Lagerstrom and Casten [5] to
supplement Kevorkian and Cole’s book [4] as references on singular perturbation
problems and asymptotic expansions.

2. Notation and other preliminaries. In the next section we present the analysis
that leads to Theorem A, which proves that the first two terms ofthe transition expansion
constructed by Kevorkian and Cole [4] approximate the exact solution uniformly on
an explicit interval as e->0. We will use many results from Kevorkian and Cole’s
formal analysis as well as from MacGillivray [8], [9]. We assume the reader is familiar
with the method of matched asymptotic expansions as developed in [4].

Recall Van der Pol’s equation in the form

d2Y 2) dy+y=O"(1) e-+ (1 -y "dt
We impose the same initial conditions as in [4]:

(3)

where

y(a) =0,

y’() <0

(4)
18

with ’o 2.3381 being the absolute value of the first zero of the Airy function. The
stretched inner variable t* and transition variable " are defined by the following
expressions [4]"

(5) et* t- tS,

ellog el(6)
6

The relationships among t, t*, and /’ are shown schematically in Fig. 1.
We introduce the function R(/’; e), and recall from [8], [9], the functions r(t*; e)

and h(t; e), all defined as corrections to terms in the asymptotic expansions constructed
formally in [4]. They are

(7) y( t; e) go(t*) + r(t*; e ),

(8) y(t; e)= Uo(t)+h(t; e), t<=O,

(9) y(t; e)= 1 + el/afl(’) q- E1/aR(’ E), ’< t*o.
go(t*) is defined in [4, form. 2.6.23), corrected:

1 1 1
(10) -In (1-go) In (go+2) t*,

3 (i-go) 3

and r(t*; e) satisfies (MacGillivray [8])

d2r ( dgo dr
(11)

dt*- -dt*] (2go+ r)r+(1-go-2rgo- r2)-- ey.

Uo(t) is defined in [4, form. (2.6.10)]"

(12) log Uo-(U- 1)/2= t, t_<0,
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and h(t; e) satisfies (MacGillivray [9])

d2h dh/ (1 + uoy)h
(13) e--= (1 _y2)

dt (u- 1)
eUo(1 + u)
(Uo_ 1)

Kevorkian and Cole construct fl(?) using the Airy function. The reader is referred
to their book for details, including their sketch of the graph of fl [4, Fig. 2.6.4]. Our
Fig. 2 shows a careful plot of -fl(’). R( ’; e) satisfies

(14)

dR dfl 1/3--R+f-R-

{(fl + R)+(fl + R)2
dR dfl}-q- (fl -I- R)2-It is proved in MacGillivray [9] that

(15) y(t) Uo+O(1) as e-->0,

uniformly on any interval of the form

(16) [- T/2 +/z,(e) + 8, -/z2(e) + a]

where

(17) e<</z<< 1, i= 1,2

FIG. 2.
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and where T T(e), the period of oscillation, is calculated to be

(18) T=3-2 log 2+o(1) as e--> 0

in agreement with the well-known classical result.
MacGillivray [8] has proved that

(19) y(t) go(t*) + O( e 1/3) as e-0

uniformly on the interval

(20) t* E [--e-’/3/2, e-2/3].
Stated otherwise, there exists a constant K such that for all sufficiently small e

and all t* satisfying (20),

(21) lY(t*) go(t*)l < KF. 1/3.

(22)

Because y(t; e) is an odd periodic function, we have the further result

y(t) -go(t* + T/2e)+ O(e ’/3)
uniformly on the interval

-T e -1/3 -T 3]- e--2/(23) t* E
2e 2 2e

The interval e [- T/2 + 6, 6 ], is contained in the union of the three intervals (16),
(20), (23) if e is sufficiently small. Thus formulas (15), (19), and (22) together provide
a complete O(1) description of y(t; e) over a complete half-period, and hence for all
by odd periodic extension.

3. Analysis of the transition asymptotic expansion. The idea behind the following
analysis is to construct regions in the (y, t) plane that are "forbidden" to the solution.
Consequently, the proofs often proceed by setting up contradiction arguments. These
proofs have a strong geometric appeal, and so the reader may find Fig. 2 a useful
guide. Notice the short line segments that appear in the crosshatched regions. The
location of the tail of a line segment represents the point (?, R(?)) and the sign of the
slope of the line segment corresponds to the sign of R’(?). Beside each line segment
is the number of the proposition that proves the corresponding R(?) and R’(?) is
forbidden if e is sufficiently small.

PROPOSITION 1. Choose cr (0, ]. Then A > 0 can be chosen to satisfy thefollowing:
(i) A < 1/2,
(ii) (l+a)/(?-?o)<f(?)<(-a)/(?-?o)foralI ?[?o-a, ?o],
(iii) -(1 + a)/(’- ’o)2<f(’) <-(1- a)/(’- ’o)2 for all [?o-/X, ?o),
(iv) l/A> K, where K is defined in (21).
Proof Inequalities (ii), (iii) follow from [4, forms. (2.6.58); (2.6.59), corrected].
PROPOSITION 2. Let A be as in Proposition 1. Then, for all sufficiently small e, the

following properties hold:
(i) R( ?o- A/2) > -fl( ?o- A/2) K’ for some constant K ’,
(ii) R ’o A) < -f ?o A) (strict inequality),
(iii) R(?o- el/6)= o(e-1/6),
(iv) R(o-el/3llog 1)-o as -0,
(v) R()+fl()>-19e-/3/(2Ollog el) for ? [?o-A, ?o- el/3llog el].
Proof Using (5), (6), (19), and (20), we can readily show

(24) y(t; e)= go((?-?)e-I/3-IIg9e......[)+ 0(/1/3)
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uniformly for ’ [’o- A, ?o). From [4, form. (2.6.24)],

1 log (-t*)
(25) go(t*)=14

t* (3t.2)
+’’" as t* -> -c,

so that (24) can be rewritten as

1+o(1)
(26) y(t; e)= 1 +

(?__ ?O)E_I/3 Ilog el
9

+ O(e’/).

Thus,

(27) el/3(fl(?) + R([)) e’/3(1 + o(1))
1- el/3llog e

9( ’- o)

+ o(el/3).

(28)

Recalling the definition of K in (21), we easily show that

4

4
(29) -S<f( o- A)+ R( ?o- A) < 0,

and (i) and (ii) follow immediately, with K’=4/A.
To prove (iii), simply substitute ’ ’o-e /6 into (26) and use the following result

from [4]"

(30) f(,)=1_?o(’-?o)+O((, o)2 as ’--> t’o.(’- ?o) 3

Part (iv) is proved in a similar fashion. The proof of (v) also depends on (21)
and (30) and is the result of a straightforward computation.

PROPOSITION 3. For all sufficiently small e, the amplitude y(t) is positive on the
interval ’ ’o- e-2/3/2, ’o) and, in addition, R( o- e-2/3/2) is positive.

Proof. y(t) is positive between its zeros at 6-T/2 and t=& Writing this
interval in terms of using (6), a short computation shows the interval ?
’o-e-2/3/2, ’o) lies within it, provided e is sufficiently small. This verifies the first

part of the proposition.
To prove the second part, first note that the point ?= ?o-e-2/3/2 corresponds to

t=-1/2+o(1), which is well within the domain of uniform validity of Uo(t); see (15)
and (16). Thus it follows that

(31) 1+ 81/3 f to- 2
+R to

From [4, form. (2.6.50)],

fl( t’o--
(32)

/3)_._ (E---/3__ ,O).Jr_.
=E

2+o(1
as eO.
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Thus

(33) R 0 /3_1/3 1 1
+Uo -1

42+o(1)
It is a trivial matter to estimate Uo(-1/2) numerically from (12)"

(34) Uo(-1/2) 1.7333"...

Substituting (34) into (33) leads immediately to the verification of the second part of
the proposition.

PROPOSITION 4. Let A be chosen as in Proposition 1, and K’ as in Proposition 2.
Then for all sufficiently small e,

(35) R( ?) >-_ -fl( ?) K for ?E [ o- e-2/3, o-]
Proof. It is easy to show, using part (i) of Proposition 2, and Proposition 3, that,

if e is sufficiently small, R(?) exceeds -fl(?)-K’ when ’= ’o-A/2 and when ’=
t’o-e-2/3/2. Making the tentative assumption that the conclusion of the proposition
is false implies the existence of ’1, ’2, we have

’0
e-2/3 A
-< t’l < ’2 < to2 -(

such that

R(71) +fl(71) R(72) +f(72) -K’,

R(?)+f(?)<-K’ for ’E(?, 72).

This leads immediately to a ’3 ’1, ’2), where y lies between zero and unity and where
y’ is zero. Such a point lies on a phase plane trajectory that spirals toward the origin
as ? -, and is therefore not on the limit cycle. This contradiction completes the proof.

PROPOSITION 5. Let 1<< (e)<< e-2/3/2, let A>0 be given, and let A be as in
Proposition 1. en,for all suciently small e, there exists no 1 o , o A] for which
R(?1) -A, R(?,) -fl(l), and R’(?1) 0.

Proo Assume tentatively that such a t exists, and note that for any ?
[?o- , ?-A/2] for which R(?)-A, R( ?) -fl( ?), and R’(?)0, Proposition 4 and
(14) imply

(36) d?22Akd?]-e (f,+R)2__ +0(-1/2)

for all sufficiently small e.

From the text above equation (2.6.50) in [4], we find f(?)= (-?)+... as ?-.
Since If;I is an increasing function, it follows directly that

e (1+o(1)) for ?[?o-, ?o).

Thus

(37) <--2A (l+o(1))_el/3(fl+R)2
dR

d?2
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assuming the conditions above (36) hold. It is easy now to use a continuation argument
to verify that on the interval (71, ’o-A/2) we have

R’(/’)<O, R(’)<-A, R(’)<-fl(’).

On the interval ’o-A, ’o-Z/2], R(?) is bounded. Thus, if e is sufficiently small,
the two terms containing R’(?) in (14) combine to give a negative contribution. The
remaining terms in the braces being bounded yields

(38)
d2R
d?2

-< -2lf(?o- A)I + (1)

on the interval ’o-A, ?o-A/2]. Two integrations yield

(39) R’(?) < -2Xlf;(’o- A)I (1 + o(1)) (’- ?o+ A),

(40) R() <-A -2;tlfi(?o-A)I. (1 + o(1))

on (?o-A, /’o- A/2].
Let

(41)

Then (39), (40) give

r
\ 32/[f([-A)l"

(42) R (o--) <

(43) R’(’o-) <

Now as long as

(?- ?o+a)

(44) R(’) < ?-?o’

(45) R’(?) _-< ,_ ,o)2

remain valid to the right of ?= ’o-6,/2, both (fl + R) and R’ will remain negative.
Then estimate (v) in Proposition 2, together with properties (ii), (iii) in Proposition
1, leads, after a straightforward computation, to the conclusion that as long as (44)
and (45) remain valid to the right of ?o-A/2, ?< ’o,

d2R [ 2 ](46) d?2
-< (- .o) {(2-2c + ). (1 + o(1))}+ o(1),

which is negative if e is sufficiently small. Furthermore, the quantity within the braces
exceeds unity if e is sufficiently small, and an obvious continuation argument leads
to the conclusion that (44), (45) remain valid on ?o-A/2, ’o-el/3llog eli. This contra-
dicts (iv) of Proposition 2, if e is sufficiently small, completing the proof.

COROLLARY. The conclusion of Proposition 5 remains true if (l( e) is replaced by
(e)+l.
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PROPOSITION 6. Ife is sufficiently small, R(?) cannot have a minimum in the region
bounded by

-fl(’)<-R(’)-<-h and t’O--e-2/3<= ?<=

Proof. If we assume tentatively the existence of such a minimum at 71, then at
we show easily that

(47)
d2R (dfl 1/3

d,2 <---2R
\ d?]-e [(f,+R)+(fl+R)f,(’[1) f(’[1)l.

From what precedes equation (2.6.50) in [4], we find

(48) fl(r)=x/-’)+’’" and f(’)=
-1

+...

as ?-oo. Then there exists a -7 such that for ?-< ’o-7,
(49) f(’)<(l+a)x/(-’) and f(’)>-(l+a)[2x/-2-’)].

Two easy computations (one if 71 < ’o- 7, and the other if 71 e ’o- -7, ?o- A]) yield
R"(’l) < 0 if e is sufficiently small, a contradiction.

PROPOSITION 7. Let 1, A, and A be as in Proposition 5. Then, for all sufficiently
small e, there exists no ?1 ?0--, ?0--A] for which

(50) -fl(’l)-<_g(’l)<-A and R’( ?I) <-_ O.

Proof. Assume tentatively such a 1 exists. An obvious continuation argument
leads to the conclusion that as long as R(’)->-fl(?) to the right of 1, R’() will be
negative and lie below -A. Clearly (see Fig. 2) this cannot persist indefinitely, and the
graph of R(’) must enter the region R <_--fl(?), R_-<-A, o- <---<-’o-A with a
nonpositive slope. Proposition 5 then yields the desired contradiction.

COROLLARY. The conclusion ofProposition 7 remains true if is replaced by + 1.
PROPOSITION 8. Let , A, and A be as in Proposition 5 Then, if e is sufficiently

small, there exists no [ o- , o- A] for which

(51) g’(’)>0 and R(’E)-<_-A.

Proof. Assume tentatively such a ’2 exists. It follows from the corollary to Proposi-
tion 5 and the proof of Proposition 6 that

(52) g’(?o-)>0 and g(?o-)_-<-A.

There are two cases, depending on whether R(?o-) ->-fl(’o-) or not. If
R(’o-) >---fl(’o-), then, as ? decreases, R(’) cannot drop below -fl(’) on the
interval [’o--1, ’o-] and still be on the limit cycle (recall R(?o-e-2/3/2) is
positive) and so

(53) R(’o- } 1) >- -fl(’o- 1).

The same conclusion holds if the other alternative, R o- r) < -fl ?o- ), is assumed.
To show this, note that R’( ?o- ) < -f( o- ) if e is sufficiently small, since otherwise
we would not be on the limit cycle. Then as long as

(54) g(?)<--fl(?) and g’(?)<-_-f(?)

to the left of ’o-, we show with the help of Proposition 4 that

(55)
d2R (dfl
d?2 <--2fl \ d’] + O(e 1/3),
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and estimates (48) then give

(56) <d2R { -. 1. (1 + o(1))} + O(e{24 + o(a))} 1/3).

Thus if e is sufficiently small,

(57)
d2R 1

d2-- 3

as long as (54) holds to the left of o-. This implies

(58) R’(’o- 1)> -f(’o- 1)

if e is sufficiently small, which in turn implies (53) (for otherwise the trajectory is not
the limit cycle). At this stage it has been established that for e sufficiently small,

(59a) -f(?o- 1) -< R(?o- 1) <-a,
(59b) R’(’o-- 1) > 0.

Now, to be on the limit cycle trajectory, R (’) >- -fl (’) for all " ’o e-2/3/2, ’o 1 ].
However, from the proof of Proposition 6, R’(’) remains positive to the left of ’o- 1
at least until ’o-e--/3/2 is reached, forcing R(o-e-2/3/2)<-A. This contradicts
Proposition 3.

So far it has been shown that if e is sufficiently small, no part of the graph of
R(’) can appear in the region R =< -A, ’o =< ’=< ’o- A. The next three propositions
explore the region R => A.

PROPOSITION 9. Let A, A be as in Proposition 5, and let , ( e satisfy A << ff << e -/3.
Then, for all sufficiently small e, there exists no ’1 [’o-if, ?o-A] for which

(60) R(?,)>-_h and R’(?,)<=O.

Proof Assume tentatively that such a ’ exists, and note that wherever R’ is
nonpositive, (14) gives

(61) d?2>-_ -- -2R\d?/-e (f,+R).

The idea of the proof is to show R’ is negative for all ’< ’1 this would contradict the
fact that y is periodic. We begin by showing d2R/d?2 is positive on the interval
[?o-2ff, ’1). Since the first term on the right of (61) has factor dR/d?, we need only
show that the second factor dominates the third. Specifically, we can easily show that
at any ’ in the interval ’o-2if, ’1) at which R(’) >=

1 (df,(62) le’/3(f + R)I <7 2R\ d?]

for all sufficiently small e. Having shown this dominance, an obvious continuation
argument leads to the conclusion that for all sufficiently small e,

dR
(63) d--<0 and R(’)>A on[’o-2,’).

If e sufficiently small,

3
(64) fl(’)+R(’)>0 and f’(’)_-< 8"-----4([o[)

n[’-2ff’’-7]
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SO that

(65) d,’-’ > (’o- ,)-1/2, ?e [’o-27, ?o- 7],

and an integration gives

(66) R’(o-2)N-()(1-) (2)/.

Thus the first term in (61) dominates the third term when ?= ?o-2. Again an easy
continuation argument can be applied to the left of ?o- 2ff to conclude R’(?) is negative
for all ?< 71, which implies the contradiction mentioned near the beginning ofthe proof.

PROPOSITION 10. Let (e) again satisfy << if<< e -1/3 with A, h as in Proposition
5. If there is a ? ?o- if, ?o- a] for which R() h and R’( ?) > 0, then, provided is
suciently small, R (?) > h and R’( ?) > 0 for all ? ?1, o) o , o). In addition there
exists h’ which depends on h and A but is independent of suciently small e such that

oo Assume such a exists. From Proposition 9 we conclude immediately that
R(o-) > I and R’(o-) > 0. To prove these inequalities on o-, o) note that
from (ii) of Proposition 2, R’(o-)<-fl(O-). From this it follows that

(68) R()<-f() and R’()<-f() on[o-, o),

for otherwise the trajectory is not the limit cycle. The information above used in (14)
leads directly to

from which the conclusion R()> I, R’()>0 on (, o) follows immediately. To
complete the proof simply integrate (69) from o- to o-/2. The result is

The next proposition proves that 1 as described in Proposition 10 cannot exist.
Pooso 11. Let be as in Proposition 10, and let and be as in Proposition

5. Let ’ be defined by (70). en, for all suciently small e, there is no e [ o- , o-]
for which R() e and R’( ) > 0.

Proo Assume tentatively that such a 1 exists. From Proposition 10,

(71) R(o-)> and R’(ro-)>1’
for all suciently small e. From (71) there exists o, independent of e, such that

(73)
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for all sufficiently small e. Now multiply (69) by Ko"

.[. )d?--> -2(KoR)
\ d?/’ to-, ?o

and add it to the equation satisfied by fl [4, p. 75]. The result is the inequality

(75) > -2(KoR +f,) 1, ’ ’o--, ’o
Inequalities (72) and (73) imply that at 7o-///2, d2(oR +fl)/d? is positive and that
d(oR+fl)/d? is positive on some interval to the right of ?o-A/2, so oR+fl is
increasing, f, on the other hand, is negative and decreasing. A continuation argument
then yields

(76) oR(?) +fl(?) > 0

In particular,

for all ’e t’o--, ?o

e-’/6(1 + o(1))
(77)

K0

where (30) has been used. But (77) contradicts (iii) of Proposition 2, so 71 cannot exist
if e is sufficiently small.

The first main result can now be proved.
THEOREM A. Let A be any positive number and let ,(e) satisfy

(78)
Then

y(t) 1 + el/3fl(?)+ o(e 1/3)(79)
uniformly for
(80) ? [’o- , ’o- a].

Proof Let A be any positive number, and note that, with no loss of generality,
we can assume A satisfies the conditions in Proposition 1. Note also that 7<< 8-1/3<<
8
-2/3 and so can replace . From Propositions 5, 7-9, and 11

(81) [R(g)I<,X for ’e[’o-, ?o-A]
for all sufficiently small e. That is,

(82) R(?) o(1) for

and from (9) the result follows.

4. Inner expansion analysis. We begin with a summary of results proved in [8]
concerning the leading term of the inner asymptotic expansion. Recall r(t*) is defined
in (7).

PROPOSITION 12.
(a) [y(t; e)l < 3 if e <,
(b) dr/dt*(O)<O,
(c) r( t*) >= 0 for t* [-e-/3/2, 0],
(d) y( t; e go(t*) + O(e 1/3),

uniformly for t* [-e-/3/2, +e-2/3].
The next proposition extends the domain of uniform validity of the transition

expansion declared in Theorem A, and is an immediate consequence of Kaplun’s
Extension Theorem [4], [5].
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PROPOSITION 13. Let = ,(e) be as in Theorem A. Then there exists 7x= 7x(e) such
that - O+ as e - 0 and such that

(83) y(t; e)= 1 + e 1/3fa(’) + o(e 1/3)
uniformly for "{ [’o-if, ’o-z]. Furthermore, without loss of generality, we can assume

(84)
el/311g el

7X2 - 0 as e - O.

PROPOSITION 14.

dr
(85) dt----(O) o(el/3).

Proof. Tentatively assume y is a positive constant and that there are arbitrarily
small e-values for which

dr 1/3(86)
dt*

<-ye

throughout the proof assume e is chosen from this set. It is easily shown that for e

sufficiently small,
1/3

(87) r’(-1)<
4
/3ye

(88) r(-l)>.
2

If e is sufficiently small, --e2/3>-yea/3 and for such e denote by t* the first
t*-value to the left of-1, where dr has increased to -e2/3. Kevorkian and Cole
establish asymptotic properties for go(t*) which imply the existence of constants Ca,
C2, C3 such that if t*=< -1,

(89) go(t*) => C,,

-C2(90) gD(t*) < t,---T-

2C3(91) 1 (go(t*))2<
(-t*)"

These and (a) of Proposition 12 used in (11) give

/(92) +\(-t*)"--3e, t*e[tl*,-1],

and at t* it is necessary that the left side of (92) be nonpositive. Hence, after multiplying
the right side of (92) by (t*)2, there results a quadratic in t*, and t* must be at least
as negative as the negative root of the quadratic. Assuming 3’ is small enough to ensure

(93)
3 )tC1 C2

elementary computations yield

(94) (-3 _C1_C2 y] 1/3t* <
8C3 ]e-
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Relating t*-values and ’-values with (5) and (6), it is readily seen that ?o-Z lies
to the right of tl* if e is sufficiently small, and hence at the t*-value corresponding to
o-X, dr/dt* is more negative than --e2/3 and r is at least as positive as y81/3/2. Now
use the asymptotic behavior of go(t*) as recorded by Kevorkian and Cole [4, form.
(2.6.24)]--see (25), and evaluate go at the t* corresponding to ?o-:

(95)
9A

1 + 1 + O
e/3{log e{

9A

+ O {log ’-el/3z(1 + 0(1))’}[ e-/3(1 + o(1)]2

With (84), this leads to

(96)

1/3e /3)+ r(’= ’o- z)Y( ?= ’o- z) 1 ---+ o(81

1/3 1/3e ye 1/3> 1---+ +o(e ).
A 2

On the other hand, from Proposition 13 and (30),

(97)
y(?= "{o- ) l + e/3fl( ?o- g,) + o( e /3

1/3
8 1/3)1---+ o(8

Comparing (96) and (97) yields the needed contradiction and the proposition is proved.
PROPOSrrON 15. Let t’ denote the t*-value corresponding to ?= ?o-TX. Then

(98) r(t*)-- o(81/3)

uniformly for t* t], 01.
Proof. The proof is similar to that of Proposition 14. Thus, let y denote a positive

constant and assume tentatively the existence of t* [ t, 0], where r(t*) >- y81/3. Then
the Mean Value Theorem produces a t* (t], 0), where r’(t*) is at least as negative
as (y81/3)/(2t]), and hence (recall t]=--8-1/3Z(1 + O(1))) for all sufficiently small 8,

(99) r’(t*,)<--82/3,

and of course

(100) r’( t*) > "y8’13/2.

The remainder of the proof is essentially like that of Proposition 14.
COROLLARY. Let 7" o(8-1/3). Then

(101) y go(t*)+ 0(81/3)

uniformly for t* I-r/*, 0].
Proof In the proof of Proposition 15, replace by max {8 /3rt*, z}.
We now turn our attention to the behavior of r(t*) to the right of t* 0. The goal

is to sharpen the estimate of Proposition 6 in [8].
PROPOSITION 16. Let 1 << r/<< 8 -2/3. Then both r( t*) and r’( t*) are o(8113) uniformly

for t*
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.Proof. As in [8], begin with the identities

fo*(- ey-[2go+r]r(-u)}d,,dr dr (dgo r2 dr
(102)

dt*
(1-g2o)r --g(O)+ \ d,

r(t*)=(-t,(O))(exp f*(1-g) ds) I* {exp [- ff (1-g) ds]} d’

(103)

At t* 0, both r and r’ are o(e/), and this estimate ceainly cannot be destroyed
on any finite interval due to the presence of products of r and r’ in the integrands.
Choose the finite interval to be [0, 4]. So,

(104) r(t*) o(e 1/3),

(105) r’(t*) o(el/3),

uniformly on [0, 4].
To continue these estimates to the right of t*= 4, multiply (11) by dr/dr*"

dr*
-3 +

If the expression in the square braces were absent from (106), then Idr/dt*l would
decay exponentially fast and the o(e/3) estimate for r(4), r’(4) would persist for all
t* > 4. The task is thus to control the term in the square braces, at least until t* reaches. To this end, let k denote any positive constant and choose e small enough to ensure
neither 1(4)1 nor Ir’(4)l exceeds ke//2. Then, for as long as

(108) [r’(t*)l ke 1/3

hold to the right of t*= 4, simple computations yield

, 09,

(To arrive at (109), use (a) and (d) of Proposition 12, together with the facts that
is within .001 of-2 and g(t*) has magnitude smaller than .001 for t*N 4.) Thus the
weak inequalities (107), (108) imply the strict inequality (109), so it is now only
necessary to exclude the possibility that equality in (107) occurs at some t*-value in
[4, ]. Assume tentatively that r(*) reaches 2ke/ for the first time at t*= t, and
denote by t the last t*-value previous to t that r 0, or t 4, whichever is greater.
(The case r(t)=-2ke/ is considered below.)

Observe that on any subinterval of t, ] where r’(*) happens to be as large as
5e/3, it is easily shown that if e is suciently small, the expression in the braces in
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(106) is negative, and from this it follows immediately that if dr/dt* ever exceeds 5e/3
on [tl*, t*] it must do so at t*. Now integrate the inequality, obtained from (106),

(110)
dt*

< -3

for as long as dr/dr*>= 5e/3 on It1*, t*]. The trivial computation yields

r(*) <_- r(t*) + r’(t*) 1 -exp
2

(111)
3 ke /3

<
2

Obviously, once dr/dt* has dropped to 5e/3, it can never again equal 5e/3, and
so any further increase in r on the interval Its*, t*] is limited to 5e/3. (t*-t*), and
this cannot exceed 5e/3 r/. Consequently,

3ke /3 5e
r(t*) <_--+-- r/

2 3
(112)

< 2ke /3

if e is sufficiently small. This contradicts the definition of t2*.
It is even easier to prove that r(t*)>-2ke 1/3 for t* [4, r/] since if r, r’ are both

nonpositive, all the terms in the braces of (106) are nonpositive.
It has now been shown that for arbitrary positive k, (107), (108) are valid for all

t*e[4, 7], provided e is sufficiently small. Combining this with the result on the
interval [0, 4] completes the proof.

From the corollary to Proposition 15 and from Proposition 16 we have the following
theorem.

THEOREM B. Let 0<< r/*<< e -1/3 and 0<< r/<< E -2/3. Then

(113) Y go(t*) + o(e 1/3)
uniformly for -rl* <= t* <= q.

5. Outer expansion analysis. In this section we prove that the leading term of the
outer asymptotic expansion, Uo(t), gives an O(E 1/3) approximation to y on an explicit
domain of uniform validity.

PROPOSITION 17. Let e 2/3<< 2 el/3" Then

(114) y(t r/E) UO(6 r/E) + o(e 1/3),

(115) h(t)<-_o(e /3) uniformlyon +, -rl

Proof. If e is sufficiently small, - r/ is in the domain of uniform validity of the
transition expansion; see Theorem A, (4), and (6). An elementary computation involv-
ing the asymptotic behavior off (see (32)) gives

(116) y(t r/) 1 + e/3(e-/3 r/2 ’o) /2 + o(el/3).
On the other hand, the asymptotic behavior of Uo described by Kevorkian and

Cole’s equation [4, eq. (2.6.15)] yields

(117) y(t r/) 1 + e l/3(E-2/3n2-- ?0) 1/2 -" O(I 1/3) " h(-r/+ t).

Combining (116) and (117) yields (114).
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To show h is bounded above by 0(81/3) uniformly on [-T/2+6,--2%-6], note
y(-T/2+6)=O and Uo(-T/2+6)>O, so h(T/2+6) is negative. It is now easy to
show that the assumptions that h(6- r/2) is nonnegative and that h exceeds h(6- rt2)
anywhere on the interval lead to a contradiction. If h(6- 2) is negative, a similar
argument shows h(t) is negative on [-T/2+ 6, 6- r/2]. This completes the proof.

The next two propositions give a proof of a classical result. The method of proof
in Proposition 19 is used in Proposition 20.

PROPOSITION 18.

(118) T >- (3-2 log 2)+ o(e1/3).
Proof. Only those small e-values for which T/2 > -+ log 2 need be considered.

Let Ate satisfy

(119) Ilog el Ate<< -2/3<-- e

From Theorem B and the antiperiodic behavior of the oscillations, and equation
(2.6.72) of [4], there follows

y + 6 + Ate -go + o(e’/3)
(120)

and thus

--2%-O(61/3),

(121) h + 6 + Ate 2 + o(e 1/3) UO %" 6 + Ate

Noting that u6 is increasing on the interval between -+log 2 and -T/2%" 6 + Ate,
that u(--+ log 2) -], and that Uo(-+ log 2) 2, we can easily show with the Mean
Value Theorem that

(-__) 1/3 2[(_2T ) ( 3
(122) h +6+At >o(e )+ +6+At ----+log2
Now use (115) to complete the proof.

PROPOSITION 19.

(123) T _<- (3 2 log 2) + o(e’/3).
Proof Assume tentatively that there is a positive constant , and a set E(y) of

e-values which contains arbitrarily small values of e for which
1/3-T 3

<--+log2-(124)
2 2 2

Let

-T
(125) t =+6+At.

2

Then from (121),

(126)

If e is sufficiently small,

(127)

h(t) 2 + o(e’/3)_ Uo(t).

1/33 7ye
t <-+log 2- 1--’-
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and since Uo(-+ log 2)= 2, (127) and (126) imply the existence of a positive constant
k that is independent of e for all sufficiently small e, such that

(128) h(t)<=-kel/3;
that is, h is negative and bounded away from zero by O(el/3). The method of proof
proceeds by showing that h continues to be negative and bounded away from zero to
the right of t, even penetrating the region of uniform validity of the transition
expansion. But estimates from the latter prevent h from being negative and bounded
away from zero by o(el/3), thus proving the proposition.

To prove that (128) implies that h continues to be negative and bounded away
from zero by O(el/3), it is necessary to use technical details that are straightforward
computations, and only a proof outline will be given. Begin with the differential
equation for h written in the form

d2h () dh+(1)(l+uoy)hdt2
(y2 1) e (u- 1)

(129)

(1) (l +uoy)h{ uo(l +u)2e)+
(Uo-1) 1+ (u-l)2h

and note first that Proposition 16, together with the exponential decay of g, implies
h’(t) is bounded above by O(e-2/3). Thus, if h’(t) > e 1/3, we use the first term on the
right side of (129) (which is approximately -3h’/e) to show h’(t) drops to e 1/3 SO fast
that h is still negative and bounded away from zero by O(el/3). Further, the t-value
where h’ reaches e 1/3 is, like t, on the left of and bounded away from -+log 2 by
O(1/3).

Now continue, and with the help of the second term on the right side of (129),
show that h’ drops to zero and becomes negative in a time interval of O(e). Thus, if
h’ was not negative at t, it becomes so at a t-value that is, like t itself, on the left of
and bounded away from -+log2 by o(el/3). And clearly h is still negative and
bounded away from zero by O(el/3). Obviously,. h’(t) remains negative as long as the
term in the braces of (129) remains positive, so the last step is to follow the sign of
the term in the braces.

Note that Uo(t) decreases to Uo(0)= 1, as increases. This leads to the conclusion
that the term in the braces remains positive as long as

5
(130)

(Uo_ 1)lhl
1.

It turns out that the estimates above lead to the conclusion

(131) h(t)<-
_kel/3

at least until (130) fails. It has been shown [9, eq. 50] that t>-(Uo-1)2 when

-+ log 2-< < O. It follows that (130) remains valid at least until

(132) t=
--20e2/3

if e is sufficiently small, and so the tentative assumption implies (131) holds for

[ --20e2/31(133) t t,----
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However, consider the t-value corresponding to ?= ?o-7, where ff is defined in
Theorem A. That is, e2/3(’o- if)-e[log el/6. It is easily verified from (79) that

(134) y(?=?o-)=l+e1/3(-?o+)1/-+o(e1/3),

and from (6), (8), and the small-t behavior of Uo that

(135) y(t= e2/3(’o-7)-ellg6 e) =1 + el/3(-?o+/)1/2

-- O(/31/3)
__
h ( ’o- 7 ______).ellg6e

Thus

h (e2/3( ’o- if)-ellog6 el) o(/1/3),

contradicting (131), since e2/3(?o-7)- ellog el/6 is obviously in the interval (133)
when e is sufficiently small.

THEOREM C. Let 171(e), 172(e) satisfy

(136)

Then

(137)

uniformly for

ellog el----< 171 << 81/3 and E2/3<< 172<< 81/3.

y(t; e)=Uo(t)+o(e 1/3)

and so

h +6+171 o(el/3).

Next let k denote any positive constant and assume tentatively that h falls below
-ke 1/3 on the interval (138). Because of (139) and (114) there must be a t-value
between -T/2+ 6 + 171 and 6-172, where h is less than -ke 1/3 and where h’ vanishes.
The continuation argument of Proposition 19 is now applied and the same contradiction
reached; the theorem is proved.

6. Summary. There remains the pleasant and easy task of collecting together the
results of Theorems A-C, to confirm that together the explicit domains of validity of

(138) tE ---+6+171,6-172
Proof. From Proposition 16, 6+ 171 is in the domain where r(t*)- o(e 1/3) and

where go(t*)= 2 + o(e 1/3). Using the antiperiodic behavior of y gives

(139) Y + + n 2 + o(e /3).

Using T 3 2 log 2 + o(e /3) gives

(140) y + 6 + 1 2 + o(e 1/3) + h
2
+ + 1
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the terms of the inner, outer, and transition expansions studied above indeed overlap
in such a way as to cover the half period e [- T/2 + 8, ]. All domains are expressed
in terms of the outer variable t, and are shown schematically in Fig. 1.

THEOREM D. Let X be as defined in Proposition 13, and let q, q, r12, ,, and* satisfy

(a) ellog el(( 1 (( e (( e 1/3,
(b) e2/3<< 2<< e2/3+ ellog el/9<< e /3,
(c) eS/3[log el<< e2/3+ ellog el/9<< e*<< e/3.

en, uniformly and within an o( e /3) error, y is approximated by thefollowing expressions"

(141) -go t*+ forte +’ 2

(143) l+e/3f() for[--eellgel/,--eellOgel/3]9 9

(144) go(t*) forte[-en*, ].

Proo If satisfies (a) and if * satisfies (c), then (141) and (144) follow
immediately from Theorem B; of course, a translation, based on the antiperiodicity
of y, is needed for (141). If , satisfy (a) and (b), then (142) follows from Theorem
C. Finally, if satisfies (b) then (143) follows from Theorem A. Obviously the intervals
in (141) through (144) overlap and their union is [-T/2+, ].
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UNIFORM ASYMPTOTIC EXPANSIONS OF A CLASS OF INTEGRALS IN
TERMS OF MODIFIED BESSEL FUNCTIONS, WITH APPLICATION TO

CONFLUENT HYPERGEOMETRIC FUNCTIONS*

N. M. TEMME

Abstract. The integral

F(z, c): x- e /f(t) at

is considered for large values of the real parameter z; a and A are uniformity parameters in [0, ee). The
asymptotic expansion is given in terms of the modified Bessel function Kx (2v/-). The asymptotic nature
of the expansion is discussed and error bounds are constructed for the remainders in the expansions. An
example is given for confluent hypergeometric or Whittaker functions. In this example the integrals are
transformed to standard forms and the mappings are investigated.

Key words, uniform asymptotic expansions of integrals, modified Bessel function, confluent hyper-
geometric function, Whittaker function, construction of error bounds, transformation to standard form
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1. Introduction. We consider integrals of the form

(1.1) Fa(z, )-- x-1 e-Zt-/f(t) at,

which reduces to a modified Bessel function in the case that f is a constant. We have

2(a/z)/2K;, (2x/-d) -1 e-zt-"/’ at.

The integral in (1.1) is considered with a, A >-0 and large positive values of z. We aim
to derive asymptotic expansions for Fx (z, a) that hold uniformly with respect to both
a and A in the interval [0, oe). To handle the transition of the case a 0 to c > 0, the
modified Bessel function (1.2) is needed. Observe that when a 0 the essential singular-
ity in the integrand of (1.1) disappears and that (1.1) becomes a more familiar Laplace
integral, which can be expanded by using Watson’s lemma.

First we consider fixed values of A. To describe the asymptotic features we introduce
the positive number/3 defined by

(1.3) fl v/-/ z.

The saddle points of exp (-zt +a t) are located at +/3. When/3 is bounded away
from zero, we can use the familiar Laplace method, since at the point =/3 the integrand
has the form of a Gaussian function. When, however, a - 0, that is,/3 - 0, the internal
saddle point coalesces with the point =0, where the argument of the exponential
function has a pole. In addition, there is an algebraic singularity (if A 1), but the
influence of the essential singularity due to the pole is more significant. Observe that
in the limit a 0, as mentioned earlier, the pole disappears; also, both saddle points
coalesce with the pole. These asymptotic features are typical for certain integrals
defining Bessel functions. For this reason the modified Bessel function in (1.2) serves
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as a basic approximant in the uniform asymptotic expansions in this paper. In 4 we
show how an integral with the same phenomena can be transformed into the standard
form (1.1).

The integral in (1.1) is the simplest case with the asymptotic features described
above, especially when the parameters are in the indicated intervals. We apply the
results to a confluent hypergeometric function. By allowing different intervals of
integration, say a contour in the complex plane, we can also consider negative values
of a. Then the ordinary Bessel function J(z) shows up. This case is more difficult,
but the applications are very interesting in the theory of special functions.

Consider as an analogue of (1.1) a loop integral in the form

1 I+)t--le+/f(t)dt._(1.4) Ga(z, a) 27r----z
This notation means that the contour ofintegration starts from -, arg -Tr, describes
a circle counterclockwise around the origin, and returns to -m, arg + 7r. The integral
(1.4) has the modified Bessel function I(2) as approximant. When f= 1 we have

(1.5) G,x z, a z/ a "x 2 I, 2v/-d-

When a is negative this function is an ordinary J-Bessel function. In [2] and [6]
integrals of the type (1.4) are treated and the method is used for obtaining a uniform
expansion of Laguerre polynomials. We plan to return to this problem in a future paper.

The starting point (1.1) is of interest since it has a real interval of integration.
Thus the transformation to the standard form (1.1) involves a real mapping. This makes
the first steps ofthe analysis rather simple, since we do not need to trace the transformed
contour in the complex plane. For studying the asymptotic nature of the expansion,
we use complex variables, however.

The plan of the paper is as follows. In 2 we construct a series expansion based
on an integration by parts procedure, and we give estimates for the remainder in the
expansion. In 3 we consider an expansion that is based on expandingf at the internal
saddle point. In 4 we give an application to confluent hypergeometric functions. In
5 the parameter h is considered as a second uniformity parameter in [0, c), and

again we apply the methods on a confluent hypergeometric function. Especially, we
pay attention to the mappings needed for a transformation to the standard form.

Terminology. We call a parameterfixed when it does not depend on the parameters
z, a, h. Rz x, z =y are the real and imaginary part of z x + iy.

2. An integration by parts procedure. The procedure of this section takes into
account both saddle points +/3 of the exponential function (where/3 is given in (1.3)),
although -/3 lies outside the interval of integration. For this reason we assume that f
is also defined at negative values of its argument, and that f is sufficiently smooth for
the operations to be used here. Further conditions on f will be given later.

2.1. Construction of the formal series. The first step is the representation

(2.1) f(t) ao + bo( fl + f12/ t)g( t),

where ao, bo follow from substitution of +ft. We have

1
ao f( ), bo [f(fl) -f(-fl)].

Inserting (2.1) into (1.1) we obtain

F,(z, a)= aoAx(z, )+ boBa(z, )+ F(’)(z, a),
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where Aa, Ba are combinations of the modified Bessel functions introduced in (1.2).
It is straightforward to verify that

(2.2) Aa(z,,8)=2,SaKa(2,Sz), Ba(z,,8)=2,sa+[Ka+,(2Sz)-Ka(2,Sz)].
An integration by parts gives

tAg(t) d exp(-z(t+/t))
Z do

llo a-1 exp (-z( + 2/ t))fl( t) dt
Z

with

fl(t)=t1-a
d
-t tag( t)] hg(t) + tg’( t).

We see that zF)(z, a) is of the same form as Fa (z, ce). The above procedure can now
be applied to zF)(z, a), and we obtain for (1.1) the formal expansion

(2.3) Fa(z,a)’Aa(z,8) , asz-S+Ba(z,,8) Z bsz-s asz-+oo,
=0 =0

where we define inductively fo =f, go g and for s 1, 2,.

(2.4)
-ttt[tags_,(t)]=as+bs(t-[3)+ t- gs(t),

1
as =fs(/3), bs 7-2 [fs(/3) -f(-/3)].

Remark 2.1. As mentioned earlier, for this procedure we need function values of
f and derivatives at negative values, although the integral (1.1) is defined only for
t-values in [0, oo). When we consider analytic functions f, as we do later, we assume
that f is analytic in a domain f/in the complex plane that contains the real line. When,
however, f is supposed to belong to ck[o, o0), we assume in the above procedure that
f has been smoothly continued on (-m, 0].

2.2. The remainder of the expansion. We introduce a remainder for the expansion
in (2.3) by writing

(2.5)
n--1 n--1

Fa(z,a)=Aa(z,,8) 2 asz-’+Ba(z,,8) 2 bsz-’+z-"R,,
s=0 s=0

where n 0, 1, . When n 0 the sums are empty and Ro Fa (z, a). The integration
by parts procedure yields for R, the representation

io ((2.6) R, - exp -z f,(t) dr,

where f, is defined by (2.4).
When a bound for ]f,(t)[ is available, say,

(2.7) IL(t)I<-M,, t->0, n--0, 1,..

then a bound for R, reads

(2.8) IR,[ <- M,Aa (z, ).
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Since fn depends on /3, the quantity Mn may also depend on /3. It follows that for
bounded values of/3, say /3 [0,/3o], /30 fixed and finite, the estimate (2.8) of the
remainder R, shows the asymptotic nature of the expansion (2.5), provided that (2.7)
is satisfied.

We must point out that, in general, it is rather difficult to find realistic numbers
Mn in order to obtain sharp estimates in (2.8). Also, the estimate in (2.7) is rather
global, since it takes into account values of f, in the complete interval [0, oo).

A sharper and more realistic bound for Rn may be obtained as follows. Let

(2.9) w(t)=exp{tr(t+fl2/t-2fl)}, t>0, tr_->0.

Observe that w(fl) 1 and that when o- > 0

lim w(t) lim w(t) +oo.
tO

We assume that we can assign quantities tr, and M,, which may depend on/3 and
which satisfy

(2.10) tr, -> 0, Mn >- 1 + e,, e, fixed and positive,

such that for all > 0 we have

(2.11) If, (t)l--< M,,lf, ()lw. (t).

Then instead of (2.8) we obtain

(2.12) IR.I<=MIT.()I(z,), z>.,

where

(2.13) a(z,/3)= Aa(z-tr,, ) e-2,,.

When f, (/3)= 0 a slight modification is needed. The idea about this approach is that
in (2.11) function values outside a neighborhood of =/3 may be estimated very
roughly, and that the integral, which results after inserting the right-hand side of (2.11)
into (2.6), can be written in terms of one of the approximants in front of the series in
(2.5).

A possible approach to computing M, and tr, of (2.11) is to start with trial values
of Mn satisfying (2.10). Then we compute

tr, sup f,(t), /3 fixed in [0, oo),
t0

where

fn(t) In If.(t)/[M.f.()]l
t+fl2/t_2fl

t#fl, f,(fl)#O.

Observe that the function defined in (2.13) satisfies

Aa(z,)/Aa(z, fl)-l+o(1) as z-> oo,

uniformly with respect to/3 [0, oo). This follows from (2.2) and well-known asymptotic
relations for the Bessel function.

3. Expansion at the internal saddle point. In the expansion (2.3) we have used
function values of f at the negative saddle point -/3. These values appear in the
coefficients as, bs of the expansion. The form of the expansion is very attractive, since
only two special functions arise, and also since the parameters /3 and z are nicely
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separated in both series. Although the expansion (2.3) has a canonical form, there
remains the drawback that the function f must be defined at (-c, 0] in order to obtain
for/3 a uniformity domain [0, ). For example, it is not possible to obtain such a
uniformity domain when f(t)- 1/(t + 1). In this section we only expand the function

f at the internal saddle point, and we formulate further conditions on f in order to
obtain an optimal domain for/3.

3.1. The functions Q(’) and 0(’). We expand f in the form

(3.1) f(t) as(fl)(t fl)s, as =f(s)(fl------z.
s=O

Substituting (3.1) in (1.1), we obtain after interchanging the order of summation and
integration the formal result

(3.2) Fx(z, a).-.z- Y. as(fl)Qs()z-s, asz-->oo,
s=O

where

(3.3) Qs() a+s ta-l(t 1) e-(t+l/t) dt,

(3.10) F(z, a)= z- X a(t)O()z + E.(z, ,)z-"
s=O

(3.4) " flz.
The functions Qs(’) can be expressed in terms of the modified Bessel functions defined
in (1.2). It is easily verified that

On the other hand, integrating by parts in (3.3), we obtain the recursion relation

(3.6) Qs+z=(s+A+l-2)Qs+l+(2s+A+l)Qs+sZQs_,, s=0,1,2,....

For proving the asymptotic properties of (3.2) it is useful to introduce the functions

(3.7) (s (’)-- srx+s tX-ll II e-(t+l/t) dt.

By applying Laplace’s method it is found that for large positive values of "
(3.8) Os()’x+(s-1)/Ze-2F(s+!)2

s=O, 1 2,....

Furthermore, we have when z is fixed

lim 0s(’) F(A 4- s).
fl-O

3.2. Error bounds and interpretation of the expansion. We introduce a remainder
in the expansion (3.2) by writing

(3.9) f(t)= as(fl)(t-fl)s+g,(t, fl)(t-fl) ", n-0,1,2,....
s----O

Then we obtain for (3.2)
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where

(3.11) E,(z, a)= za+" ta-’(t-)nRn(t, ) exp -z t..+ dt.

Let f be analytic in a connected domain fl of the complex plane; fl may depend
on fl, and we assume that the radius of convergence Ro of the expansion (3.1) satisfies
the condition

(3.12) Ro >- p( l + fl K, fl >- O (p, K fixed, p > O, K >= 1/2).

This condition says that the distance between the singularities off and the point -/3
should be of order (flK), uniformly with respect to /3 [0, c). When r <1/2 the
singularities off are too close to the saddle point. Furthermore, we assume that f has
the following growth condition in fl: there is a real fixed number p such that

(3.13) sup (1
t

is bounded for/3 e [0, oo).
The coefficients as(/3) of (3.1) can be written as

1 I f(t)
dt,(3.14) as(fl) 27r--- cr (t fl)s+l

where Cr is a circle with centre fl and radius r(1 +/3); r may depend on/3, but should
be uniformly bounded away from zero and small enough to keep Cr inside f/. Using
(3.14) we obtain the following form of Cauchy’s inequality

(3.15) las( )1 <= r-Mr( )(1 + fl )-,

where

(3.16) Mr(/3) sup If(t)l.
t C

In the next theorem we introduce an asymptotic sequence {b}, which is constructed
on the basis of the estimates in (3.7) and (3.15). For the concept of asymptotic scale
and (generalized) asymptotic expansion we refer to [4, p. 25].

THEOREM 3.1. Let flz, r, >-1/2, and let

(3.17) b (z,/3) Mr(fl)(1 + fl)-s"(1 + ,)A+(s-1)/2 e-z-, s =0, 1, 2,

Then { bs} is an asymptotic scale as z o, uniformly with respect to fl [0, o).
Proof.

(3.18) 6+l-(l+fl)-Kx/sr+lz-< ifz >1
6 =42

Now we write the expansion (3.2) in the notation

(3.19) zaFa(z, a)’-- Y a(/3)Q(r)z-; {bs} as zoo,
s=0

and we have the following theorem.
THEOREM 3.2. The expansion (3.19) is a uniform asymptotic expansion as z-->o,

uniformly with respect to
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Proof According to the definition ofgeneralized (uniform) asymptotic expansions,
we have to prove

(3.20) z-"E,,(z, )= (Y(ck,,), n =0, 1, 2, ,
as z--> c, uniformly with respect to/3 [0, ). The interval of integration in (3.11) is
split up as follows

(3.21) [0, cx3) A_ I1 t_, t+] I..J A+,

where

(3.22) A_=[0, t_], A+=[t+,), t+=fl+rl(l+fl) K, 0<rl<r, rfixed,

with r as in (3.14). When t_ happens to be negative, we replace it by 0. For t_, t/]
we can write

1 f f(z)
(3.23) R,,(t, fl)= 2r---- ,cr (7"- t)(z-fl)"

dr,

with Cr as in (3.14). If r Cr, we have Ir tl--> (r- r)( 1 +/3 )K. Thus we obtain as in (3.15)

Mr()(l+)
(3.24) IR,(t,/3)1 <= r"-l(r-r)

Hence za times the integral over t_, t/] in (3.11) gives a contribution which is bounded

ta-lt /31" exp -z dt
(3.25) r’-(r-r) t_

=M,.(8)(l+8)-"z-"O,,()’(1) as z-> oo,

uniformly with respect to/3 [0, ). Using (3.7), (3.8), and (3.17), we conclude that

(3.26) z-"E,,(z,a)=I_+I++e3(rk,,) as z--> oo,

uniformly with respect to/3 [0, ), where I+ are the contributions to (3.11) from A+.
For A+ we write

rt--1

(t-fl)"R,(t, fl)=f(t)- E a()(t-fl),
s=O

and the proof is finished when we have shown that

(3.27) zX I. t’x-1 e-Z(t+2/t) g(t) dt (b,) as z->o,

uniformly with respect to/3 [0, ), where g(t) is If(t)[ or [a(t -/3)1(0 _-< s =< n 1).
In fact, it is possible to prove that

(3.28) I+--0; {b} as z-->c,

uniformly with respect to/3 [0, oo). That is, I+ are asymptotically equal to zero with
respect to the scale {b}. The proof of (3.28) is similar to that given for another type
of integral in [5, Lemma 3.3] and will not be repeated here.

The above theorem gives only an order estimate in terms of bn for the remainder
defined in (3.11) and gives an interpretation of the asymptotic nature of the expansions
(3.2) and (3.19). To obtain a numerical upper bound for E,(z, A) we proceed as in

by
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the previous section. Since f(t) satisfies the growth condition (3.13), it is possible to
find numbers Mn, trn satisfying (2.10), such that

(3.29) IRn(t,)l<=M,[an(fl)lw,,(t), 0< t<c.

Using this in (3.11), we obtain the bound

(3.30) IE.(z,)l<-_M.la.()l e-2,O,(-rn) z>r,.

When an (/3) happens to vanish as a function of/3 [0, ), this approach needs a slight
modification.

4. Application to confluent hypergeometric functions. We start with the confluent
hypergeometric function defined by

(4.1) r(a)U(a,b,x)= Ua-(1-b’u)b-a- e-du.

We consider a as the large parameter and x as a uniformity parameter in [0, oe); b is
a fixed real parameter. We take b_-< 1; the relation

U(a, b, x) xl-bU(a + 1 b, 2- b, x)

can be used when b > 1.

4.1. Transformation to the standard form. First we give a simple intermediate
transformation. The function [u/(u+ 1)] assumes its maximal value (on [0, c)) at
u . This function controls the asymptotic behaviour of the integrand and, hence,
we transform it to an exponential function by writing u/(u + 1)= exp (-w). Then (4.1)
becomes

x ](w) aw,(4.2) F(a)U(a, l-A,x)= wa-lexp -aw
eW_l

where

We transform (4.2) into (1.1) with the help of the transformation

/3 2(4.4) w+ -t+--+A,
eW-1

where u x/a and /3, A are to be determined. We compute them on the following
condition on the mapping: the critical points of the w-function in (4.4) must correspond
with the critical points of the t-function. Critical points are +Wo, +to, where

u+ Wo)(4.5) to =/3, Wo=COsh-(l+u/2)=ln 1+ Wo=x/u2+4u.
2

It follows that

u+ Wo) 1___u Wo+sinhwo_lln 1+ + Wo(4.6) A=
2’ /3=

2 -2 2

From the simple differential equation

d/3 1
x/( + 4)/u

d 4
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and a Taylor expansion of the right-hand side, it follows that/32 of (4.4) is an analytic
function of v, at least in the disc Ivl < 4. Conversely, v is an analytic function of/32
in some neighborhood of the origin. These domains can be extended to domains
containing [0, o).

With these values of A,/3 the mapping w-> is regular at w--+ Wo and at w 0.
In fact it is regular in R and as a conformal mapping in a large domain II of the
complex plane. We have the correspondences

(4.7) t(+c) d:, t(+Wo) :t:fl, t(0)-0.

More details on the mapping are given in the next subsection.
Using transformation (4.4) in (4.2), we arrive at the standard form

(4.8) Fx(z, a) r(a) e-X/2U(a, b,x)= -1 e-Z’-/f(t) dr,

with z a, a z/3 2, h 1- b,/3 defined in (4.6) with v x/a, and

(4.9) f(t)=(1-z-w)x-ldw dw (eW- 1) 2 t2--fl 2

dt’ dt (eW-1)2-ve
The function t(w) defined in (4.4) is an odd function of w. This easily follows from
rewriting (4.4) in the form

(4.10)
1 /, 2-v+w+=t+
2 eW-1

After these preparations the expansion of (3.2) can be constructed. The expansion
holds uniformly with respect to/3 [0, c); that is, uniformly with respect to x 6 [0, ).

The asymptotic nature of the expansion follows from combining (3.20) and (3.17).
For this particular case we can derive an upper bound for Mr(B) of (3.16). The t-values
on the circle are written as =/3 + x//3 + 1, with 1’1 =r, r fixed. When /3 and v are
large, we derive from (4.6)/3 v4+ In x/+ (1). So, for large values of/3, we obtain
(using (4.10)) t+flE/t-v/2 w+ v/(eW-1)=ln v+ ’2+(1). That is, w---ln v. Then
it follows from (4.9) that f( t) 6(fl/2-x ), t Cr. Consequently, we can find a fixed
number K, such that

(4.11) M(fl)<-K(fl+l)/2- fl [0, c).

To conclude this subsection, we give the first coefficient ao(fl) of (3.2). A few
calculations based on (4.9) and l’H6pital’s rule yield

dw
x/2 tanh (wo/Z)/fl.

dt t=+t3

So we obtain

(4.12) ao(/) x/2 tanh (Wo/2)/(1-e-W)
-1

4.2. Analytical properties of the mapping (4.4). We now consider the mapping
(4.4) in more detail. We restrict w to the strip

(4.13) H={wlwl,w[-m r]},

and we prove the following.
THEOREM 4.1. Let fl be the image ofH under the mapping w-> defined in (4.4).

Let v [0, ) and let A, fl be defined by (4.6). Then t(w, fl) is analytic in H.
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In the following proof we show that t(w, ) and w(t,/3) are analytic in a fixed
neighborhood of (0, 0). Accordingly, we concentrate on small (complex) values of the
parameters. For remaining values the proof is much easier. For instance, when/3 is
bounded away from zero, the critical points +/3 and the pole at 0 ofthe right-hand
side of (4.4) are well separated. The preparations for applying the Implicit Function
Theorem mentioned below are more straightforward then.

Proof. From (4.6) it follows that

Wo =/311+ o(1)], =/3211+o(1)] as/3 0.

Recall that t(w) is an odd function of w (see (4.10)). We introduce a function y y(w, fl)
by writing

(4.14) t= w [-o+ (W- w)y].
This matches the points w 0<:> =0 and also the critical points w= +/-Wo<:> :t:fl; y
is an even function of w and should vanish with/3. Substituting (4.14) in (4.10), we obtain

’t (w)- b(wo)
W W2- Wo

2
Wo

Y- w2(w2- wZ)2y2= O,

where b(w) w/(exp w- 1)- 1 + w/2. We expand

6(w)-6(Wo)
w2 w =2 b(w w)-1,

Wo

Since b(w) is analytic if wl < 27r, the series converges if/3 and w are small. Finally,
we obtain the equation F(y, w,/3) 0, where F is given by

ufl b(w Wo)-2+ uy b(w2 W)s-l+ 1 2fl w2y2.
W0 s=2 s=l

The series represents analytic functions of w, w0. When/3 is small, Wo is an analytic
function of/3 (see (4.6)). Hence, F is analytic in a fixed neighborhood of (0, 0, 0),
F(0, 0, 0) 0, and Fy(O,O, 0)=-1. After these preparations we can use an Implicit
Function Theorem (see, for instance, [1, p. 36]) and solve for y(w,/3); it is analytic
in a fixed neighborhood of (0, 0). By using (4.14) it follows that the same holds for

w, fl ). I’]

The first terms in the expansion

t(w, Cl(fl )w + c3(fl )w3+’’"

easily follow from (4.10). We have

[2
lC  +T-c:IT

Cl(t C3(i)

THEOREM 4.2. The mapping (4.4) is univalent in H.
Proof First we show that the mapping is univalent on

L+={w=u+iv[u6, v 7r},
which is the upper part of the boundary OH of H. We write r e. The image of +
in the t-plane is defined by the equations

(4.15) -=rsinO 1- (u)=q(O),
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where

W(u) v/2+u- v/(e + 1), (0) r cos 0 (
The first equation in (4.15) defines a curve given by

7r +x/7r2+4fl 2 sin2 0
r(O)

2sin 0
0< 0<Tr.

It follows that r> 7r/sin 0. Furthermore, we have

,I,(-) () -oo, ,I,(+) (0)

The function (u) is one-to-one on . The same is true for (0) on (0, 7r), but the
proof requires a little extra work. We have, using the first equation in (4.15),

dr r cos 0(r2 f12)
dO sin 0(r2 + f12)

(4.16)
dr}(O) sin O(rE+fl2) rE +d----d----

which shows that (0) is one-to-one on (0, 7r). We infer that for each value u we
can find one and only one value 06(0, 7r), such that W(u)=(0), and, hence, one
and only one value r(O). Since t(w) is an odd function of w (see (4.10)), the mapping
w--t is one-to-one on OH. Whenwwe have w t. Hence the mapping t(w)
is also one-to-one as w , w H. We now consider a large closed rectangle ABCD
of which upper side AB and lower side CD are finite pas of OH, and BC and AD
are far away to the right and to the left, respectively. From the above arguments it is
not difficult to conclude that the mapping is univalent on BC, AD, and on the whole
Jordan curve ABCDA, provided that the veical sides are far away. Then we use a
well-known result of complex function theory, which says that consequently the
mapping is also univalent in the interior of rectangle ABCD, since it is analytic there.
See [3, Vol. II, p. 118]. We can take the finite rectangle as large as we please. Thus
the result also holds for H.

For the uniform expansion of (4.8) we take fl as the image of the strip H under
the mapping w t. From f(t) defined in (4.9) it follows that (3.13) is bounded in
if p= 1-A and that M(fl) of (3.16) is well defined. There remains to show that the
radius of convergence Ro of the series in (3.1) satisfies (3.12). It appears that we must
take r . In fact, we show that contains a disc around fl with radius pfl + 1 (p
fixed), for all fl 0. The points of intersection of the circle with radius r around the
point with the curve defined by the first equation of (4.15) are governed by the
equations (we write + it)

(--B)2+*2 r2, 7 1 2+

When we require that the circle is tangent at the curve we have the extra condition

-fl 2(r-)

* 2+27(-- )2"

It follows that
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This equation is obtained by equating dz/do" of both equations and eliminating 7"2+ 0-2

by using the second one. For large values of/3 the solution ofthese three equations reads

7"= r+ a,-[ 1 + o(1)], o.=/3 + bx/-[1 + o(1)], r: c/[1 + o(1)],

with a b //2, c x/-.
This shows that fl is large enough to apply Theorem 3.2. From a further analysis

it follows that the value u 1/2 is best possible in this case. Apart from the real critical
points +w0 given in (4.5), which are regular points for the mapping, we have other
ones located at +/-Wo + 27rni, n 1, 2,. .. For large values of/3 those are mapped at
a distance 6(x/) from the critical point t--/3.

Remark 4.1. The behaviour off(t) of (4.9) in the left half-plane ,tt <0 is quite
different from that in > 0, except when h 1. Consequently, the approach of 2 is
less attractive. See also Remark 2.1.

Remark 4.2. When b -1/2, (4.1) is a parabolic cylinder function, and the functions
Q(’) defined in (3.3), (3.5) are elementary functions (h =1/2). Then (3.2) gives an
expansion of the parabolic cylinder function D(z), as ,-oo, which is uniformly
valid with respect to z

5. A second uniformity parameter. In this section we consider (1.1) with h as a
second uniformity parameter in [0, oo). Thus we take further advantage of the fact that
the modified Bessel function is a function of two variables. In this case it is convenient
to put the reciprocal gamma function in front of the integral. So, now we write

1 -1 e-Z’-’/tf(t) dt.(5.1) F(z, a) r(A)
In [5] we considered (5.1) with t 0, again with z --> and A as a uniformity parameter
in [0, ). In [6] we applied the present method for a loop integral (without proofs)
to the case of Laguerre polynomials.

We write A =/z. The critical points of the integrand are now defined as the points
where the derivative of + tim/t-I In vanishes. This gives the real critical points

(5.2) t+/-
Ix +/- T

T= /’/ 2 + 4fl22

Observe that also in this case one of the real saddle points is outside the interval of
integration, and that the "phase function" that is used to compute the critical points
has a logarithmic singularity at 0. The two critical points coincide with this singular-
ity when fl and/x both vanish. At the same moment, however, the logarithmic singularity
disappears.

First we construct an expansion by using the integration by parts procedure of
2. The modification of (2.1) is

(5.3) f( t) Co + do(t- t+) + Ix fiE/t)h(t).
Using this in (5.1) we obtain, after repeating the procedure,

n--1 n--1

(5.4) Fx(z, a)= C(z, fl, Ix) Y csz + D(z, fl, tx) Y dsz + z-"R,.
s=O s=O

The functions in front of the series are again combinations of Bessel functions as in
(2.2). We have

2/ 2
C(z,,lZ)=rih)K(2z), O(z,,l)=r(,)[lK+l(2z)-t+K(2z)].
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The coefficients cs, ds follow from the recursion relation

fo(t)=f(t), f(t)=t-th_l(t)=c+<(t-t+)+ t-Ix- h(t),

f(t/)-f(t_)
cs =f(t+), d

t+-t_

The remainder R, in (5.4) can be written in the form

1 tx_R F(1)
e (t) dr.

A bound can be constructed by using constants , M, satisfying (2.10), and using a
function

w(t)=exp o- t+-----Ix In

such that, as in (2.11), for all > 0

Then we obtain

where

t- t+---++ Ix In t+

IL(t)l MlL(t/)lw.(t).

IRI MIL(t+)I (z,/, ), z> crn,

C z, , Ix C z cr,, , Ix exp -or, t+ +--++ Ix ln t+

When f, (t+)= 0, a slight modification is needed. An optimal value of r, follows from
the method described in 2.2.

The analogue of the expansion of 3 is obtained by substituting
,,-1 f(s)(t+)

(5.5) f(t) E c(fl, Ix)(t- t+) + R(t,/3, Ix)(t- t+)", c,

So we obtain

]F(z,a)=z- c(#,)Pz-+.(z,,X)z
Ls=O

(5.6)

where

IoE,(z, a,A)=z+" tx-l(t-t+)"R,(t,,Ix)exp -z dr,

t-l(t-t+)exp -z dtPs F(A)

r() =o

A recursion relation for P follows from the above integral representation.

t-lt- t+ exp -z dte r(a)
(5.7)

F(A)
exp - 1+ 2t F ash
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where r/= zt+. Since z is the large parameter, r/is large if at least one of the uniformity
parameters/3,/x is bounded away from zero.

The coefficients cs and the remainder R, can be written as

1 Ic f(r) 1 I f(-)
cs(fl, tx)= 27r--- (r- t+)

dz, R,(t, fl, tz)=2 c (z- t)(z- t+)
dz,

where C is a circle around t+ with radius r(1 + t+), r , r > 0. We accept that f
depends on both uniformity parameters fl, , and we assume that the domain of
analyticity is large enough to contain such a circle for all fl, 0.

As in 3 we have the following theorems. The quantity M(fl, ) is defined as in
(3.16); we also assume that (3.13) is bounded for all fl, [0, ).

THEOREM 5.1. Let zt+, , and let for s 1, 2,

(5.8) X= F(h)z (l+t+)
exp -r/ 1+

2t2+ -j
Then {h%} is an asymptotic scale as z - o, uniformly with respect to fl, tx [0, ).

THEOREM 5.2. The expansion

(5.9) z’F,(z, a) -, cs(, P’)Pz-S; {X} asz-eo,
s=O

is a uniform asymptotic expansion as z c, uniformly with respect to fl, tx [0, o).
A bound for the remainder E of (5.6) can be constructed by combining the

methods used for (3.30) and the above estimate for the remainder of (5.4).

5.1. Application to a confluent hypergeometric function. Our starting point is (cf.
(4.2))

(5.10)

r(a)
r()

U(a,l-h,x)

F(A)
exp -z -/x In (1-e-W)+w+

ew- 1 -e-w’

with z a,/x A/z, v x/z. The real critical points of the "phase function" are

(5.11) w+/-=ln( l+/+v+2 W), W__x/(/+v)2W4v.

The transformation to the standard form (5.1) reads

(5.12) -txln(eW-1)+(tx+l)w+ -t+-txlnt+A;
eW-1

A,/3 are determined by substituting w+/- and t+/-, where t+/- are the critical points defined
in (5.2). We have the correspondences

t(+/-c3) +cx3, t(w+/-)=t+/-, t(0) 0.

Observe that the introduction of a second parameter (here in the form of/z) does not
require a third constant in the equation (5.12). It has the same number of constants
as (4.4). In fact, in order to obtain a regular mapping w t, the constants multiplying
the log-functions in the left- and right-hand side of (5.12) must be the same. We assume
that the log-functions take their principal branches.
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Elimination of A from the two equations (5.12) (with w= w+, t= t+) gives a
relation for the unknown parameter/3 in terms of Ix, v"

2+IX+ v+ W W+IX+v T+IX(5.13) (/x + 1) In -IX In t- W=2T-IX ln.
2+ix+v- W W-IX- v T-Ix

By considering IX e [0, oo) as a fixed parameter, we obtain a more transparent relation
for B(v) in the form of a differential equation:

(5 14)
dfl(v) flW
d----2vT’ /3(0) =0.

The value of A follows from (5.12) by substituting w= w+, t+. We have

A=(ix + l )w+_ix lnix + v+ W_ix + v- W_ T.
IX+ T 2

Using (5.13), we can eliminate W/2-T and we obtain

(5.15) A= (ix+l)ln(ix+l)+ixln---ix-v.v
The transformation (5.12) is discussed in the next subsection. By using it in (5.10)

we obtain the standard form (5.1):

eZAF a.______) 1 ta_ e_ZtF(z, ,)
F(a)

U(a, 1-a,x)=,F(X, -/’f(t) dr,

where z= a, a zfl2; /32 follows from (5.13) with Ix A/z, v= x/z. Furthermore,

dw eW(ew-l) t2-ixt-2

(5.16) f(t)
1-e dt (eW-1)2-(ix+v)(eW-1)-v"

The first coefficient of (5.9) equals f(t+). A few computations give

Co(, Ix)= eW+/2x/ TI W.
The function f satisfies f(t)-- as + +c, whereas f is exponentially small at -o.
This time we can also derive an expansion based on (5.4).

5.2. Analytical properties of the mapping (5.12). The mapping w-+ defined in
(5.12) is one-to-one on the strip H given in (4.13). First we prove this property for
the boundary. The proof is similar to that for Theorem 4.2. The equations for the image
of the upper part of OH are given by (cf. (4.15))

7r r sin 0 1 -Ix0, qt(u) =(0),

where

(u)=-A+(Ix+l)u-
e,+l

dP(O)=rcosO 1+ -Ix In r.

0< 0< r.

The function (u) is one-to-one on R. When we compute dd(O)/dO, we find the same
expression as in (4.16). As in Theorem 4.2, we conclude that the mapping is univalent
on the boundary for all/3, Ix [0, c).

It follows that the image is given by

r(O)=IxO+ r +/(IX0 + "rr)2 + 4fl 2 sin2 0

2 sin 0
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It remains to show that the mapping is analytic inside H. The interesting question
is: Is t(w) analytic at =0, w+/-, uniformly with respect to the parameters 9, /x?
Especially interesting are small values of the parameters, since then the critical points
coalesce with the pole and log-singularity at w =0. When one of the parameters is
bounded away from the origin, the critical points w+ are well separated. In that case
the problem is simpler. Here we prove that t(w, 9, tx) is analytic for complex values
of the three arguments in a fixed neighborhood of (0, 0, 0). The proof follows the idea
of {}4.2.

First we have the following theorem.
THEOREM 5.1. f12=/32(9, /Z) defined by (5.13) is an analytic function of 9,

Proof. As remarked earlier, we concentrate on small values of the parameters. For
/z =0 the relation between 9 and /3 is given in (4.6), and we have mentioned there
that /32(v, 0) is analytic in the domain of interest. On the other hand, we have the
expansion

2(9,1dL)"Cl(lJ)9"ll-C2(lUb)92"+’C3(lUb)93V’" as 9->0.

The coefficients cs are analytic functions of/x. The first few easily follow from (5.13)"

1 1
C(/Z) e(t+)’n (+1)/- 1 q-/z ---/L2 -" ra(3) as

c, (tz)[/z + 2 2c (/.t)] 1
C(/z)= -e(/z) as --->0.

/.t 12

Next we observe that the quantity T of (5.2) is singular at fl=-tz2/4 and that W of
(5.11) has singular points at v= 90, 9= 91, where

(5.17) Vo -(/x + 2) + 2//x + 1, vl -(tz + 2) 2v//z + 1.

It is obvious that the singularities at -2/4, 9o must correspond. That is, a necessary
condition for/32 to be regular for small values of Itz is/32(Vo,/) =-/z2/4. Note that
9o"-"--/z2/4 as /z-+0 and that (5.13) is satisfied when we substitute T W=0.

We "remove" the singularity at v Vo from (5.13), and we introduce a function
X X(q,/x) by writing

T+/x W-/z-v_l+v/X(5.18)
T-/z W+/z + 9-1-/’ q= 9- Vo.

In other words,

x/X lXW- v + tz T
(5.19) WT- tx(t, + 9)’

T W+ 9 + lz ),ff X / D,

D 9+ la, +x/XW.
Now we can rewrite (5.13) in the form K + L+M =0, with

K=(W-2T)D= W(9 -/.e) +fX(92+ 49 -/x-),

2+/x+ v+ W 1 +x/Z
L=D(tz+l)ln2+p,+v_W D(/x + 1) In

1 _x/-4Z,

T+ tx W- tx v 1 +x/-4X
M D/x In D/z In

T-/x W+/x+ 9 1-x/X’
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where

v/u- ul x/q + Uo- ul

2+x+ u q+2+,a + uo

We expand K+L+M in powers of q. A first observation is that F(q, X,/.):=
(K + L+ M)// is a function of q, X,/x, the factor being completely removed. We
expand F in powers of q. We have

F( q, X, tz Fo + F, q + F2q2 +

where Fs(X, tx) do not explicitly depend on q (or u). We compute

Fo= (o-)4o ,-2(o+)x+24Uo- u, (Uo+)( + 1)
2+/x+ Uo

+ 2/Z(Uo+/z)X.

It appears that Fo(X, Ix) =- 0, and that, hence, we can continue with the equation
G(q, X,/x) := F/q F1 + F2q + 0. We claim that the equation G(q, X,/) 0 can
be solved for X X(q,/x), and that X is analytic for small values of both arguments.
By calculating some limits, it follows from (5.18) or (5.19) that X(0, 0)=-1/2. This is
used to show that G(0,-1/2, 0)= FI(0, 0)=0. In order to apply an Implicit Function
Theorem (see [1, p. 36]), we need to show that G is analytic in a neighborhood of
(0, -1/2, 0) and that G(0, -1/2, 0) 0, Gx(O, -1/2, 0) 0. It is straightforward to verify that
G(q, X, Ix) is analytic in a neighborhood of (0,-1/2, 0). Furthermore, Gx(0,-1/2, 0)=
OF/OX =4 at (X,/x) (-1/2, 0). We have shown that we can solve the equation G=0
and that the solution X(q, Ix) is analytic in a fixed neighborhood of (0, 0).

It remains to show that f12 is analytic. We consider T of (5.2) given in the middle
of (5.19). We are done when we have shown that tx/D is bounded away from zero
when/x is small, since then we can divide the denominator of T by/x. From the above
result it follows that we can expand

X(q, z) Xo(q) + X,(q)lz +’’’,

where the coefficients X are analytic functions of q. From the first equation of (5.19)
we compute Xo=-l/x/u u =-1/x/u+4. Hence

D + tx + u Uo)V/u ly X0 21- (Jtl ([.$

as/x 0. It now follows that T2 is an analytic function of q,/x in a fixed neighborhood
of (0, 0), and, consequently, that f12 is analytic. This proves the theorem. [3

Remark 5.1. It is possible to base a proof on the differential equation (5.14). The
condition/3(0)-0 is not enough to prove the theorem, since the ratio fl/u (at u-0)
turns out to be undefined. Requiring that this ratio equals c(/x) is sufficient, however.

In Theorem 4.1 we expanded the functions of (4.10) at the critical points +Wo,
and in (4.14) we used a representation of in which y can be viewed as a part of the
complete expansion. In fact, (4.14) is a change of variables. In the present case we
expand at the critical points w+/-, and the expansions have the form

(5.20) if(w) E [ak + Wbk]Vk,
k=O

v= V(w) (w- w_)(w- w/).

When is sufficiently smooth, the coefficients ak, bk are uniquely defined. The first
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few are given by

O_w+- q+w_ q+- q_
ao bo

W+- W_ W+- W_

bowo ’+w_ ’_w+ d/’+ + d/’__ 2bo
al (w+ w_)2 b,

(w+ w_)2

where Wo w++ w_, and + O(w+), etc. For analytic functions the coefficients can
be represented as Cauchy-type integrals. We have

I (W-Wo)V-k-’(w)d/(w)dw bk=
1 I v-k-’(w)d/(w)dw,(5.21) a=27r--- c 27r--- c

where C is a contour around the two critical points; must be analytic inside C and
continuous on C. This can be verified by substituting a new variable w v+ wo/2.
Then we have

q(w) f v + . cV + v 2 bV, c a+-By separating odd and even parts (with respect to v), and representing c, b as Cauchy
integrals in the V-plane, we arrive at (5.21). (Note that a circle around the origin in
the w-plane is traversed twice in the V-plane.) For MacLaurin series the domain of
convergence is a disc. For expansions as in (5.20) the domain of convergence is defined
by V(w)l <[V(w,)[, where w, is a singularity of 0; this domain is bounded by a
Cassini’s oval with foci at w+. See also [7, Exercise 24, p. 149].

The parameter of (5.12) is represented in the form

(5.22) t= w[B+ Cw+ V(w)y],

where B, C do not depend on w, and we require that the points {w_, 0, w/} correspond
with {t_, 0, t/}. This gives for B, C the values

w2+t_- w2_t+ t+w_- t_w+
(5.23) B C

w+w_(w+-w_)’ w_w+(w+-w_)"

The critical points w+/-, t+ are not analytic for small values of the parameters. However,
we have the following lemma.

LEMMA 5.1. B, C, w+w_, Wo w+ + w_ are analytic functions of Ix, v in a fixed
neighborhood of (0, 0). Moreover, B 1 + o (1), C o(1) near (0, 0).

Proof We use the notation of Theorem 5.1. We have Wo= In (1 +/z) and the
product w+w_ is an even function of W. So the singularity in W x//u- u is removed
when we expand w+w_ in powers of W. Using (5.2), we can write

(5.24) 2C= /x [1_ TIn (1 +/z)//x].
W+W_ [..JW+W_

We introduce a parameter r/by writing

fl-= [E +(u- Vo)r/],
2

E= /z =-v--21"
4Vo 4

Then we have T=2.,/-x/E + vr/; r/= r/(v,/x) is analytic in a neighborhood of (0, 0).
Next we use w+- w_ -In [(1 +,Z)/(1 -,/Z)]. Since the factor can be removed,
we infer that the fraction T! (w+ w_) is regular. It is easily verified that the expression
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between square brackets in (5.24) vanishes when ,0 and that w+w_=-,F, where
F F( ,, IX) is analytic at (0, 0), with F 1 + ( , + IX), as ,, IX 0. This proves that C
is analytic at (0, 0); the factor IX in the first fraction of (5.24) takes care of the vanishing
of C at (0, 0). A more detailed analysis shows that C--- -ix/24, Ix 0, , 0. The proof
for B now follows from the representation B+woC=(t/-t_)/(w/-w_)=
T/ w+ w_). At u O this expression reduces to ix/ln (ix + l l + (ix ), as ix O.

COROeeARY 5.1. Let b of (5.20) be analytic in a domain containing the points w.
Then the coefficients ak, bk are analytic functions of the parameters Ix, u.

Proof This follows from the fact that sum and product of w+/- occur in V(w) and
that the Cauchy-type integrals in (5.21) are analytic functions of w/+w_ and
w+w_.

After these preparations we are ready to consider the following theorem.
TIaEOREM 5.2. The function t(w, v, Ix) defined by (5.12), with defined in (5.13),

is analytic in a fixed neighborhood of (0, O, 0).
Proof We write (5.12) in the form

(5.25) F(t, w, IX, )= tH(w)-S(t)=O,

where

eW-1 ,
(5.26) H(w)=-ixln+(ix+l)w- eW 1

A, S(t)=t2+fl- Ixt ln
W W

Using (5.22) we can consider F as a function of w, with two known parameters Ix, ,,
and one unknown parameter y. We expand F as in (5.20)"

(5.27) F Uk + WVk Vk (w),
k=0

where the coefficients /.gk, Ok do not depend on w and t; they do depend on y, however.
The first coefficients are

Uo -C2b2a C2a2- aBE- 2aBCb +foB + goaC fie
/ Ixa Cco / Bdo+ Cbdo),

Vo -2aBC C:Zb bB +foC + goB 2Cab 2b2BC + gobC
+ tx Cado+ Bco + Cbco + bBdo+ Cbdo),

Ul -B- C2b2- 2aBy 2Cbay 2C2a +foY +fiB 2BCb + goC + glaC
+ Ix (aBdl + Cbadl + Cacl + Cco + Bdo+ Cbdo+ aydo),

Vl -2bBy 2Cby 2BC 2Cay 2C2b + goY +flC + glB + glbC

+ Ix(bBd! + Cbdl + Bc + Cadl + Cbc + Cdo+yco+ bydo),

u: -ay2 + gC +fB +fly 2By + g2aC C-2Cby

+ Ix(Cac2+ aBd2+ Bd + Cc + ydo+ Cbd + Cbad+ ayda),

v2 gbC by + glY 2Cy + g2B +f2C
+ Ix(Chad2 + bydl + Cbc2+ Cad2+ Bc+ bBd:+ycl + Cdl),

where a, b are defined by w2=a+bw+ V(w), i.e., a=-w/w_, b=w/+w_ and the
coefficients ck, dk, fk, gk OCCUr in the expansions

wH(w) =fo+ gow +f V+ gwV+fV + g2wV2-k-

In- Co + dow + c V+ dl wV-+- C2 V2 4r dwV+ .
W
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The coefficients Uo, Vo vanish identically. This can be verified by straightforward
manipulations. It also follows from the observation that the representation (5.22) can
be viewed as a truncated expansion for t, in which the first coefficients B, C are defined
properly. If more coefficients D, E, had been included in y (and defined properly),
more and more coefficients Uk, Vk would vanish identically. When using (5.22), only
a few coefficients will vanish. Although ul, vl contain the parameter y (also via cl,

d), these coefficients vanish too. Again, this can be verified by straightforward manipu-
lations.

It follows that we can proceed with the equation G 0, where

F( t, w,
G= G(y, w, tz, v)= V2(w

The coefficient u2 contains a term -2By, with B given in (5.23). From Lemma 5.1, it
follows that B is bounded away from zero when the parameters /z, v are small. The
remaining contributions to u2 containing the parameter y tend to zero as/x, v 0. All
coefficients Uk, Vk are analytic functions of /x, v, and the convergent infinite series
(including coefficients v2 and higher) represents a function of y, w,/x, v that is analytic
in a neighborhood of (0, 0, 0, 0). Consequently, since 0(3(0, O, O, O)/Oy =-2, we can
solve for y and this solution is an analytic function of w,/x, v in a fixed neighborhood
of (0, 0, 0). The same holds for given in (5.22).

Remark 5.3. A simpler version (/x =0) of the above theorem is considered in
Theorem 4.1. Another simpler version (v=0) is given by [5, Thm. 2.1].

We still have to show that 12 (the image of strip H of (4.13) under the mapping
w--t defined in (5.12)) is large enough to contain a disc around t/ with radius
p(1 + t+) K, K -> 1/2, t9 fixed. It is not difficult to verify that when/3 >/x the proof runs as
in 4.2. If/z is much larger than/3, the situation improves, and we can take K 1.

We conclude by computing a bound for the quantity Mr(fl,/z) used in (5.8), and
defined as in (3.16). The t-values on the circle Cr are written as t/ + rx/t+ + 1, with

I1 =r, r fixed. We assume that at least one of the parameters v,/z is large. We have

3 /3
t+-/x In t--t++ -/x In t++ +t(t ).

t+ t+(/x + T)

We denote the factor multiplying r by q. Observe that, roughly speaking, q belongs
to the interval [1/2, 1]. Using this in (5.12), we obtain

qr txlneW-1 [ 1 1 ]+(tx + l)(w- w+)+ v
eW+-I eW-1 eW+-i

Denoting the right-hand side by q,(w), we see that q,(w+) q,’(w+) =0. A few computa-
tions give

2(+ w)
4,"(w+) 1 4

(v+/x + w)2=
1 + o(1).

To solve the equation q(w)- q.2 we expand q(w+ + v)= 1/2v2q/’(w+)+ We can take
the fixed number r as small as we please. Then the solution of the above equation
reads w w+ + ’x/. Using this in (5.16), we infer that f(t) 4x/+/’, under the
condition that Cr and that at least one of the parameters ,/x is large. Consequently,
we can find a fixed number K, such that

Mr(fl, Ix) <-- Ks + t+/r, v, [0, ).
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AN ASYMPTOTIC PROBLEM IN DERANGEMENT THEORY*

J. GILLIS, MOURAD E. H. ISMAIL, AND T. OFFER’

Abstract. N elements, divided into sets of respective cardinalities {nt, n:,. , na}, k sets of each size,
where N k ’-7=1 ni, are given. The probability is considered that a random permutation of the N elements
is a derangement, i.e., that it leaves none of the elements in the set to which it belonged initially. In particular,
an asymptotic estimate of this probability as k-> is obtained.

It is known that the number of possible derangements can be represented by an integral involving
products of Laguerre polynomials. The probability is obtained by asymptotic evaluation of a more general
integral, involving the generalized Laguerre polynomials L’)(x), of which the integral required here is a

special case.

Key words, derangement, Laguerre polynomials, asymptotic

AMS(MOS) subject classifications, primary 05A05; secondary 26C05

1. Introduction. Given finite sets, of respective cardinalities {nl, n2,’" ", na}, k
sets of each size, we consider permutations of the entire set of k i=1 ni elements. A
permutation will be called a derangement if none of the elements is left in the set to
which it initially belonged. Our main purpose is to estimate asymptotically, as k--> ,
the probability that a random permutation of the elements is a derangement.

Let Dk(nl, n2," , na) denote the total number of possible derangements and let
Pk(n,’’’, n,,) denote the probability of a permutation being a derangement. It is
clear that

Now it is known ([1, p. 135], [2, p. 4]) that

(1.2) D(nl, n,)= I-[ {(-1)’’ni !} L,(x) e dx
i=1 i=1

where L(x) denotes the Laguerre polynomial

m---0
---,

Since neither D(nl,... ha) nor P(n,..., n) have closed-form expressions,
integral representations such as (1.2) are useful for several reasons. First, we can use
(1.2) and the recurrence relations for Laguerre polynomials to derive recurrence
relations for D(nl,. , n). For a number of such recurrence relations, some of which
seem difficult to prove from direct combinatorial considerations, see [2, p. 142]. Second,
an integral representation such as (1.2) proves the positivity of the linearization of
products of {(-1)L(x)}, and hence the existence of a discrete convolution structure
associated with {(-1)’L, (x)}. Third, as we will see in this paper, (1.2) can be used to
estimate the size of the D’s or P’s for large k. We write

(1.4) st: r/i (r: l, 2, ),
i=1

* Received by the editors November 2, 1987; accepted for publication (in revised form) March 7, 1989.
t Weizmann Institute of Science, Rehovot, Israel.
t University of South Florida, Tampa, Florida 33620. This author’s research was sponsored by the

National Science Foundation.
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and so

(1.5) Pk(n,’’’, n.) (--1) ks’ n, {(Slk)!}- L.,(x) e dx.
i=1 i=1

We will show that, as k c,
/ \f S1(2S3-- $2)-- S

\ s,/t 2s31k
It follows, in particular, that in the special case a- 1,

(1.7) lim Pk(nl)= e-",
kc

a result previously obtained by Askey, Ismail, and Rashed [1, p. 5], though the method
of proof there does not seem to extend to the case a > 1.

The limiting relation (1.7) is interesting because it shows that Pk(nl)"-(Pk(1)) n,
i.e., the probability of having a derangement of type n, hi,"" ", n (k times), k-,
is asymptotically equal to that of having nl independent copies of the classical
derangement problem with k- c. Now (1.6), which we will prove, is more interesting
because it shows that

{Pk(rtl, n2,"" ", ha)}s’’" I-I {Pk(ni)} n’
i=1

a surprising result with an obvious combinatorial interpretation.
Equation (1.6) will follow from the asymptotic estimation, as k -, of the integral

in (1.2). However, we will begin by examining a more general integral, namely,

(1.8) I(a) (-1)"’L(g)(x) x e dx
i=1

where the L() are generalized Laguerre polynomials defined (for a >-1) by

(1.9) L)(x)

It is not known whether the integrals I(a) of (1.8) are nonnegative for a >-1.
When a 0 the nonnegativity of I(a) follows from the combinatorial interpretation
of [2]. The nonnegativity of I(a) for ce # 0 is difficult to prove because each Laguerre
polynomial L(x) in the integrand has n simple zeros in the range of integration. It
will be shown that, for large k,

(1.10) exp -ks1 -$2"+" os1 1 + O(k-2)
Sl k

I(a)=(27r)’/(ks,) k’++’/ n,
i=1

where

In particular,

(1.11)

h ((1 + 12a + 18aZ)s 12sis3 +6s2 +6(a + 1)s,s2}/12s3.

I(0) (27r)’/(kSl) k’+/ n,
i=1

exp -kSl

1 s,(2s3-s2)-s }1
12kSl 2ks3 +O(k-2)
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NOW

Pk(n, ha)= n, {(ks)!}-I(O) (by (1.5))
i=1

(27r)l/2(ks)ks*/2{(ks1)

{ ls’(2s3-s))-s22(1.12)
1

lZksl 2ks3 +O(k-2)

while, by Stirling’s Formula,

(1.13) (ks,)!=(27r)l/Z(ks) ks’+/2 exp(-ks) l+12ksl+O(k-2)

Estimate (1.6) now follows immediately from (1.12) and (1.13). It remains to establish
(1.10).

2. Proof of (1.10). We will use the Laplace approach (cf. [4, p. 81]), writing

(2.1) I(c) ex) dx

where

(2.2) f(x) k 2. In {(-1) ,L,, (.)}+ a In x-x.
i=1

It will turn out that interest centres entirely on large values of x, where 1 "’L., (x) >0,-"
and we may therefore ignore questions about logarithms of negative quantities.

2.1. Maximum of the integral. Let Q(x)= Hi=I {(-1)"’L(.)(x)} Then

f(x) k In Q(x) + a In x x

and so the extremals of f(x) are to be sought among the roots of the equation

(2.3) (x- a)Q(x) kxO’(x).

This is a polynomial equation of degree Sl 4-1. It is clear that, for large k, there will
be a root close to x 0, and Sl- 1 roots close to those of Q’(x), all bounded indepen-
dently of k. On the other hand, if

Q(x)=aox,+axq-l+

then (2.3) becomes

kx(saaox,-l + )= (x- a)(aox, + al Xsl-l’Jl- ),

aox+ -{(ks d- ol)ao-- al}x + 0

so that the sum of all (s + 1) roots is ks + a- a/ao. It follows that the remaining
root will be

(2.4) Xo ks + 0(1).
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For large k this will clearly be the largest root and it is easily verified that f(x) will
attain its global maximum there. It remains to estimate Xo more precisely.

For any fixed a >-1, write

v.(x) #’(x)/#(x);

then (2.3) becomes

(2.6) k v,,(x)= 1 __a.
i=1 X

But y= L(,,’)(x) satisfies the differential equation ([3, p. 781])

(2.7) xy"+(c + 1 -x)y’+ ny=O

and hence v, satisfies
2(2.8) x(v’ +v,)+(a+l-x)v,+n=O.

However, Lfl)(x) is a polynomial of degree n, and so v, must be of the form

-+0
X

for large x. We deduce, by successive approximation in (2.8), that

n n(n+a) n(n+a)(2n+a-1)
___].. X- X3 -- O(x--4),(2.9) v,(x)
x

It follows that

(2.10) V(x) , v,.(x) Sl s2+asl c__...
X2 + -- O(x-4)

i=1 X -where

(2.11) C= 2S +(3a- 1)S2+ a(c 1)Sl.

Equation (2.6) now becomes

S2 -- OS C )(2.12) 1-C=x k + X2 ---’
Starting from (2.4) we obtain, by successive approximation in (2.12),

S2-t- 2aS(2.13) Xo ks+++O(k-2

s ks3
where

(2.14) 8--2S1S3--$29.--S1S2--0(0+ 1)Sl2.

2.2. Taylor expansion of f(x) about x Xo. Since

(2.15) f’(x):kV(x)+--1
X

it follows that, for r >= 2,

(2.16) f(r)(xo)-- kV(r-1)(Xo)+(-1)r-l(r 1) axff r.
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Substituting in (2.16) from (2.10) and (2.13) we get, after some manipulation,

f(x) =f(xo) A(x Xo)2 + B(x Xo) C(x Xo)4"

where

l
f"(Xo)=

1 { a }A:- 1-ks---+,C_4+ O(k-3)
ks1

l
f’"(Xo)

1 ( 2a 3t }(2.18) B =-6" 3k2s 1-+kSl k2s’+ O(k-3)

1 1 { 3a 6t k_3}C=-f(i)(Xo)=4k3s31 1-ks---l+kas---l+O( ).

2.3. Estimation of e). By (2.2),

()(2.19) ef) Xo e- (-1) ,L, (Xo)
i=1

We write

(2.20)
X

(-1)’L(.()(x)=.. G.(x)

where

_n(n+ n(n-1)(n+a)(n+a-1) +O(x_3)G,(x) 1 a) +
X 2X2

so that

(2.21) In G,,(Xo)
Xo

and hence

XO I’1
i=1 i=1

e’xp/- +$2 (S

X0

ef() x e-x (-1)"L,,(x)
i=1

=X0 i
i=l

k(s:+as)
exp -Xo

Xo

n(n+a)(2n+a-1)
2x , -" 0(X’3),

2s3 + (3a 1)s2+ a(a 1)s,

k[2s3 + (3a 1)S2 q- C(ce 1)Sl]

Substituting from (2.13) we get, after some manipulation,

i=1 S1

g 6S1S --4S 3(a + 1)s1s2 O (50 q- 3)s2
where

+ O(x },

2ks3
I- O(k-2)
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But

and so

(2.24)

whence

(2.25)

where

(2.26)

Xo ks1 { 1 + s2+2asl
ks2 + k2S-l

q- O(k-3)

2t-(SE+2aSl)2

+- -t- O(k-3)2k2s41

+-lS31+ O(k

p =4SlS3-3s-2(a + 1)SlS2-2t(a + 1)Sl,
From (2.23) and (2.27) we get

(2.28) ef(x)-- (kSl) ks’+a rli
i=1

where

(2.29)

exp -ks1
S1 2ks3

t- O(k-2)

q 2sis3-s-(a + 1)sis2-a(3a + 1)s2.

2.4. Estimation of o eStX)_Z(Xo)dx. It follows from (2.17) that the integral can be
estimated by

e-Au2+Bu3-Cu4 du e-Au2+Bu3-Cu4 du
(2.30) xo

=X-Y (say).

We begin by estimating Y:

0 < Y e-Au2+au3-cu dtl

(2.3 1 < e-A du

e-Au2 du.

But for large k, Xo> kSl, by (2.13), and hence

0 < Y < e-A du
ks

(2.32) A-/2 Erfc (ksiA’/2)
(2ks)/2 Erfc (x/ks/2)

---2r -1/2 exp (-kSl/2)

since A, B, C, are all positive

by (2.18)

(cf. [3, p. 298].
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To estimate X we write v2= Au2- Bu + Ctt4 leading to

(2.33) u av + I)2 + 310

where

(2.34) a =A-1/2, 31= A-7/2(5B2 4AC ).

We then get

(2.35) I_ e-O2(c + 331v2 +. dv

v(a + 331/2)

_1 A_7/2(16A3 + 15B2 12AC).
16

Substituting again from (2.18), we obtain

+ O(k-2)(2.36) exp {f(x)-f(xo)} dx x/2rrksi 1 +
12kSl

2.5. Proof of (1.10) and (1.6). It follows from (2.1) that

I(a) es eSX-So dx

(ksl) ks,+ ni
i=1

exp { ks
S2 -I- OS q }s, 2ks - O(k-2)

x/2rrksi-{ 1 + 1 + 6a }12ks
+ O(k-2) by (2.28) and (2.36)

(27r)112(ks,) s’+’+’/2 ni
i=1

exp {_kSl s2 + tsl

S1

12ks3 + O(k-2)

{(27r)’/2(ksl) s’+’+’/2 n,
i=1

exp { ksl }{ hs2 + as,
1 + + O(k-2)

S1 "
i.e., (1.10).

Equation (1.6) now follows as shown in 1, (1.12), and (1.13).
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3. Some numerical results. Table 1 may give some idea as to the accuracy of
approximation (1.6) for even quite small values of k. All results are correct to the
fourth decimal place.

TABLE

Direct evaluation Asymptotic
(n,. , ha) k by (1.5) approximation

2 4 0.1179 0.1184
2 6 0.1243 0.1241
3 5 0.0398 0.0398
1,2 3 0.1703 0.1726

1, 2, 3 2 0.0779 0.0799
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THETA FUNCTION GENERALIZATIONS OF SOME CONSTANT TERM
IDENTITIES IN THE THEORY OF RANDOM MATRICES*

P. J. FORRESTERf

Abstract. The probability distribution for the location of the eigenvalues in Dyson’s unitary random
matrix ensembles is generalized to involve theta functions. At three special values of a parameter, correspond-
ing to Dyson’s orthogonal, unitary, and symplectic ensembles, the normalization constant of the probability
distribution is calculated. The results can be viewed as giving the constant term in the Laurent expansion

N (l_Wk/Wl)F/2(q2Wk/Wl. q2) for F= 1, 2, and 4.of the multivariable function 1-I t=

Key words, random matrix ensembles, constant term identities, q-series

(1.1)

where
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1. Introduction and summary. The probability distribution for N points on a line

Prvr(Xl, x2," ", xu) dXl dxz" dXN

(1.2) PNr Clv { 1-I
l<--j<k<= N

IO,(r(x-x)/L, q)l} r

is a natural generalization of a distribution first studied by Dyson [5]. In (1.2)

(1.3)

OI(Z q)=-i Y’, (_l)nq(n+a/2)2 e2i(n+l/2)

=2q 1/4 sin z 1-I (1--q2n e2iZ)(1--q2n e-Ziz)(1--q2n)
n=l

and CNr denotes the normalization constant. Dyson’s probability distribution is
reclaimed in the q-0 limit of (1.2), this representing the eigenvalue distribution
function of three ensembles of unitary random matrices (with rx/L identified as the
phase 0) at the special couplings F 1, 2, and 4. These three ensembles are directly
related to the three classical groups: orthogonal, unitary, and symplectic [6].

For general q < 1, (1.2) has three further physical interpretations. First, PNr
represents (up to a constant) the Boltzmann factor of the classical one-component
plasma with the logarithmic potential, interacting on a line with doubly periodic
boundary conditions. To see this, we observe that the function

e2Vri( mx/ L+ ny/ W)1
2(1.4) .x,Y.-ZTrL ,..,=- (rn/L)Z+(n/W)2

(m,n) (0,0)

satisfies the two-dimensional Poisson equation

(1.5) V2(x, y)=-27r6(x)

and is periodic in x and y (periods L and W), respectively. It has been shown by
Glasser [9] that (1.4) can be summed to give

TrY2 ( ( ) e-W/L)(1.6) (x,y)-
(LW)

log 01 7r + +const.

* Received by the editors July 25, 1988; accepted for publication (in revised form) March 1, 1989.
? Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia.
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Thus with

(1.7) q e-.w/L, F e2/kBT, and y fixed

where e denotes the magnitude ofthe charges, the plasma interpretation of (1.2) follows
immediately

The second physical interpretation of (1.2) is as the ground state wavefunction
of a quantum many-body problem. This observation is due to Sutherland [14] who
showed that Put satisfies the Schr6dinger equation

N OPNF(1.8) PE (x)- V-Eo

where

(1.9)

In (1.9)

Z (r’N(4)(x-x)+ 4)’(x, xj)) 2F(F- 1)b’(Xk x./))
l<--j<kN

+ F2N(N-1)(N 2)q/ L.

(1.10) 4)(x)

and

(1.11) n

"rrO crx/ L, q)
LOl( Trx/ L, q)

L o"(o)
6 0(0)

In the large L (thermodynamic) limit, the potential V can be written as two parts" the
one-dimensional Coulomb potential (with periodic boundary conditions, period L)

(1 12) Vo(x)
4N

\-Lw2lXl+L2W2}
and a short-range potential

LW coth + 2r(r- 1) 1
W2 sinh2 (x/W)"

(Note that our rW is denoted r in [14].)
The third physical interpretation of (1.2) follows from the observation that when

multiplied by a suitable function of the nome q, Pul satisfies the N-dimensional heat
equation (see (2.18) below). Further, suppose q e -4’’’2Dt/L2, D denoting the diffusion
constant. Then the function gN (q)q in (2.18) represents the probability that N walkers
undergoing Brownian motion, initially equally spaced on a circle of circumference
length L, arrive at the points xl," ", xu in time without their paths intersecting one
another. Walkers whose paths cannot intersect have been termed vicious in [7].

In this paper we address the problem of evaluating the normalization Cur in
(1.2), which is given by the N-dimensional integration

(1.14) CNI dxt H [01(Tr(xk-xs)/L; q)]
1=1 l<=j<k<--N

An interesting alternative representation can be obtained by using the product form
of 01 given in (1.3), and noting

(1.15) 12sin (a-b)12=(1-e"-’))(1-e-2’"-’)).
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The integrand now consists of simple factors that can all be expanded in a multivariable
Laurent series in terms of the e2=%/Lj 1,..., N. Clearly, the only term that would
give a nonzero contribution to the integral is the constant term (CT), which is indepen-
dent of all the e2=% L (but of course still dependent on q). Writing

(1.16)

we thus have

(1.17)

where

Wj e2 "rrixT L

Crvr LN (q2; q2)FN(N-1)/2 qrV(rv--1)/8Krvr

(1.18) Krvr =CT 1-I 1- q2 wk; q
k,l= Wl
kl

the symbol CT denoting the constant term in the Laurent expansion (q is regarded as
a constant). In (1.17) and (1.18) we have introduced the notation

(1.19) (z; q)= 1-I (1-zq").
n=O

The Laurent expansion in (1.18) is to be constructed by applying the binomial theorem
to each individual factor. In general, this will give a formal series, since convergence
will only occur when ]Wkl 1, k 1, 2,’’’, N. The cases F 2rn, rn a positive integer,
are the only exceptions; the Laurent expansion is then convergent for all Wk O.

If q=0, the right-hand side of (1.18) reduces to

(.0 c II -k,l=l
kl

which was first considered by Dyson [5]. On the basis of three exact evaluations (F 1,
2, and 4), (1.20) was conjectured to equal

(1.21)
(FN/2)!
(r/2)!"

This was subsequently proved by Wilson [17].
Although the identity equating (1.20) and (1.21) has been extensively generalized

in a number of directions ([ 1]-[4], 12]; 10] gives a comprehensive account of pre-1984
literature), none of these works give the value of (1.18). Below we will provide two
new constant term identities that give the evaluation of (1.18) for F 1, 2 and 4.

We find

1 -1/ qESnZ+4nj
N! 7rN-1)/2 I-I N odd,

j=l n=- Nn+j
(1.22) Krvl (q2; q2)-1) 1 /2 q2Nn2+4j-1/2)

7r/2 I-I S even,
j=l,=- Nn+j-1/2

Nt (q4U; q4U)
(1.23) K2 (q2; q2)2-) (q4; q4)

(1.24) K4= (q; 2 2nN+j+
j=0 n=-m
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The remainder of the paper consists of three parts. First, we study an identity due to
Sutherland 15], which is extended to calculate a previously unspecified proportionality
constant. Second, we apply generalizations of integration techniques used in the theory
of random matrices [13] to deduce the identity (3.17) from which (1.22) and (1.24)
follow. Third, an identity of Macdonald 11] for the root system An is used to derive
(1.23).

2. Some determinant identities. The following result has been derived (but not
formally proved) by Sutherland [15].

TIJEOREM 2.1. Let N be odd and fN(q) be some yet-to-be-determined function of
the home q. With the notation

(2.1) II(xI XN q)= H Ol("t’t’(Xl Xk)’ q)
l<=k.<l<=N

we have

(2.2) fN(q)O(x,...,x; q)= dydet[O3(r(x+y-l/N); q/)],=,...,.

The O function is defined by (1.3) while

(2.3) 03(z. q)= qn2 e2iZ.

(This is the notation of Whittaker and Watson 16].)
Proof Both the left-hand side (LHS) and right-hand side (RHS) of (2.2) are

antisymmetric functions of xl,’’’,xu that vanish whenever Xk=Xk,, k,k’=
1, 2,’’’, N (k k’). It thus suffices to check that both sides of (2.2) are the same
function of xl with x2, , xu regarded as fixed. We do this by studying the periodicity
properties of each side.

From the definitions (1.3) and (2.2), and noting N is odd, it is immediately obvious
that both the LHS and RHS are periodic under the translation xl - xl + 1. Now write
q e=i’, where Im (-) > 0, and consider the periodicity of both sides under the mapping
X X -" "/’. Since

(2.4) 01(r(x + ’); q) _q-1 e-2rix 01(x; q)

the LHS remains the same apart from a factor

N

(2.5) q-(N-1) e-=,x,u-) H e2=’’.
/=2

After deleting the minus sign prefactor, (2.4) holds with 01 replaced by 03. Thus, after
replacing xl by xl + r, the /th term of the first row of the determinant in (2.2) can be
written

(2.6) q-(N-1)z/N e-2i(x+v-t/N)(-)O3(r(x,+y+’/N-l/N),ql/ ).

On the other hand, according to (2.4), the/th term of the jth row (j 2,. , N)
can be written as follows:

(2.7) ql/n eZ=i(%+y-i/n)O3(r(xj + y+ ./N- l/ N), ql/N).

If in the first row we note that ezln-)/n e-2iUN a common factor of e-a=l/n can
be removed from the /th column (the product from 1,..., N of such a factor
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equals 1). Furthermore, removing obvious common factors from each row of the
determinant, the RHS becomes

(2.8)
dy det 03(Tr(xj + y + ’/N I/N); q 1/N)]j,I=I,...,N.

The integral is in fact the same as the RHS of (2.2) since the line integral along the
path 3’ + Im (r)/N, 0-< 3’ <- 1, is the same as that along the unit interval 0 _<- 3’-< 1, by
Cauchy’s theorem and the periodicity of the integral. Comparing (2.5) and (2.8), we
see that the periodicity factors under the transformation xl -xl + r of the LHS and
RHS are the same.

Finally, consider the ratio RHS/LHS. From the above results, this is a doubly
periodic function with periods 7r and ’. Furthermore, since the zeros of both the LHS
and RHS are simple and occur at xl x2,"" ", xN (mod 7r and mod ’), we have that
RHS/LHS is a doubly periodic entire function, and thus by Liouville’s theorem is a
constant. Hence we have the result (2.2). [3

The corresponding result for N even (which is not given in [13]) is Theorem 2.2.
THEOREM 2.2. Let gN(q) be some yet to be determinedfunction ofq. Thenfor N even

(2.9) gN(q)(Xl, ,xu q)= d3" det 01 7r xj+3"- q1IN

where d/ is as defined in (2.1).
The proof is very similar to that above, so it will not be given here.

2.1. Calculating the proportionality constants. Let us now take up the problem of
calculating fs(q) and gN(q) in (2.2) and (2.9). We have Theorem 2.3.

THEOREM 2.3. The proportionality constants in (2.2) and (2.9) are given by

(2.10) fN(q) gu(q)= NI’C/2q-(N-1)(N-2)/:4(q2" q:)(U-1)U-2)/:

Proof. We will make use of an identity of Macdonald 11 (see also Andrews 1 ])
that states

(2.11) CT 1-[ wj. q q, q
<=<k<-U wj (q; q)oo

The product on the LHS of (2.11 is simply related to (2.1). Using 1.3) and the notation
(1.16), we see

w., q q, q iN(-)/q-(r-/a(q2;
<=j k N Wj

(2.12)

H e-+ (Xl," ", x q).
k=l

To proceed further we must specify the parity of N. Let us suppose N is even.
Our strategy is to substitute for q according to (2.9) and integrate from zero to 1 for
each Xk, k 1,’’’, N (which is equivalent to calculating the constant term). Since
the constant term of the LHS is given by (2.11), the only unknown will be gc(q),
which will thus be specified.
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Note that by expanding the determinant in (2.9) row-by-row according to the
series definition of 01, and using the definition of a determinant as a sum over
permutations, we have

dXk e "n’i(N-2k+’l)xk 0(X1, ", XN q)
k=l

gl(q)(-i)N , 2 (-1)’q
nN=--oO j=l

(.13)

2 e(P) d exp(2i(-P(j)/g)(n+l/2))
P= j=

dx exp (2ix(n + N/2+ 1 -j))

In the integral over xj the only nonzero term is when

(2.14) n=j-l-N/2, j= l, 2, ,N

and so the RHS of (2.13) becomes

N! N

g-Nl(q)q(N2--1)/12 e(P) l-I exp (-27riP(j)(j-(N+ 1)/2)/N).
P=I j=l

The sum over permutations in (2.15) is by definition equal to

(2.16) det[exp(-2rik(j-(N+l)/2)/N)],=l,...,N.

Multiplying this determinant by its complex conjugate gives NN, so up to a phase of
unit modulus, (2.16) is equal to NN/2. To determine the phase, we note from van der
Monde’s determinant expansion that (2.16) is equal to

(2.17) II (eri(yi-y) e-(Y-Y)), Y --,
which says immediately that the phase of (2.16) is (- i) N(N--1)/2 and so comparison of
(2.11) and (2.15) gives the evaluation of gN(q) in (2.10). An analogous argument,
using (2.2) instead of (2.9), gives the same result for f(q).

As an aside, we note a different proof of the following remarkable result due to
Sutherland 15].

THEOREM 2.4. With q= e and g(q)d/ given by (2.10) and (2.1),

(2.18)
02

E O(Xj)2
(gN(q)d/)=4riNO---(gN(q)d/)

j-= 0’1"

and similarly for fN (q) d/. That is, the functions gN (q) b and fs (q) d satisfy the N-
dimensional heat equation.

Proof We simply note that the RHS of the identity (2.9) obeys (2.18). The partial
derivatives can be performed row-by-row in the determinant, and the identity follows
immediately from the fact that a single 01 function satisfies the one-dimensional heat
equation, so that

02 a
(2.19) O(Xj)2

0l( 7"g(Xj Xk) q)= 47ri--07" Ol( 7l’(Xj Xk); q)"
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Remark Sutherland [15] has provided a different derivation of (2.18) based on
the Schr/Sdinger equation (1.8). This approach can also be used to specify the propor-
tionality constants gN(q) and fN(q), but this was not carried through in [15].

2.2. A confluent form of the determinant identities. Consider the identity (2.9). Let
N N1 +2N_, where N1 is even. Write xv,+2p- =yp, p 1, 2,..., N2 and take the
limit x+2p- yp. By first dividing both sides by

N

(2.20) II
p=l

and subtracting the (N + 2p 1)th row of the determinant from the (N1 + 2p)th row,
we obtain

(2.21)
gn,+2n2(q)(O(O, q))rvb(x ,’. ", xn,, Yl ,’" ", Yn2; q)

OI(Tr(x+T-I/(NI+2N2)); q1/(N’+2N2)) 1J d O(’tr(y, + y- I/(N + 2N)); ql/(,+2))
O(’n’(y, + y- l/(N1 + 2N2)); ql/,,+2u)) =.’".u,

1,... ,N
I=I,...,NI+2N

In (2.21) we have introduced the notation

b(x, , x,,y," ,y; q)
N N(2.22)

l-I Ol(Tr(Xk--X); q) I-I [I O((y--Xk); q)
l<--j<k<--Nt j=l k=l

1-I O41(’a’(Yk--Yj); q)
<=j<k<=N2

and the first entry in the determinant holds true for the first N rows (j 1,. ., N),
while the rows N + 23 1 are given by the second term, and the rows N1 + 23 by the
third term.

3. The constant term identities. We are now in a position to evaluate the following
multidimensional integrals (or equivalently, calculate the following constant term
identities)"

Io’ )I =-- dxj dyk Ib(Xl,’" ", xN,, Yl,’" ", YN; q)l
j=l k=l

(3.1)
qN(N-I)/8+NN2/2+N2(NE-1)/2(q2. q2) N(NI-1)/2+2NtN2+2Nz(NE-1)XNt,N2

where

(3.2)

and

(Xu.u CT 1
Wk Wk Wkq2 1-- 1--, ..,2

k, =1 Wl =1 =1
kl

(q2 __.zWk, q2)(q2 --;Wk
za q2)2

a,a#O= ( 1- Z)2( q2 --;__OZa a2)i
(3.3)

I=--- dxj IO(Xl,’’’, xN)l 9-

j=l

qS(-l)/4(q2; q)(-KN_
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where, from the notation (1.18),

(3.4) KN2 CT I-I 1 --;
k,l= WI

_2
k#!

In (3.1) and (3.3), b and are given by (2.22) and (2.1), respectively.

3.1. Further identities for and . To evaluate (3.1) and (3.3) we must further
transform the identities (2.9) and (2.21). The key step (again due to Sutherland [15])
is to expand the determinants row-by-row using (1.3) to obtain a formula analogous
to (2.13).

In (2.9) we multiply the resulting expression by

i-N(IV-)/2N-/2 det [e:’’il(k-1/2)/N]l=,2,...,
k=-N/2,...,N/2-1

According to the discussion between (2.15) and (2.18), (3.5) is equal to unity. The
multiplication gives

(3.6)

glv(q)b(Xl ,’’’, xn q)
N2--1)/12N(N-1)/2N-N/2q(

dy det[e’%(+/O3(rN(x+y)+rr(k+1/2), qN)]=,,,...,
k=-N/2,...,N/2-1

The kth and k’th (k # k’) member ofeach rowj are now orthogonal on the interval [0, 1].
The procedure of multiplying by a determinant of the form (3.3) (this time of

dimension N1 + 2N2), allows the following result to be deduced from (2.21)"

(3.7)

gN,+2N2(q)(O](O, q))2b(Xl,..., xN,, y,,..., YN2; q)

i-N,/2(N + 2N2)-(N,+2N2)/2q[(N,+2N2)]2-]/12

e2Z,i(k+/2)O3(,tT.(Nl+2N2)(xj+T)_FTrT.(k_l_1/2).q(N,+2N2)) 1dydet e’%(+/O3((N+2N)(y+y)+w.(k+l/2);
e2riyj(k+l/2)O(qT(N1 + 2N2)(ya + T)+ rrr(k + 1/2)" q(N’+2N2)) j= 1,.-.,N

1,.-.,N
k=N2-N,/2,...

N2+N/2--1

Here we have adopted the same convention of ordering the rows in the determinant
as in (2.21).

3.2. Evaluation of 11. To perform the integration in (3.1) we use an extension of
the method of integration over alternate variables 13] used to compute 11 in the q 0
limit by Forrester in [8].

The integrand in (3.1) is symmetric in Xl,’" ", xu so the ordering

(3.8) 0<X1 <X2 <" "<XN < 1

can be made provided we multiply by N !. For the integrand we substitute the identity
(3.7). From the structure of the determinant in (3.7), the integration over xl from zero
to x2 can be performed by integrating each term ir the first row. Next integrate over
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X from x2 to X4 by integrating every term in the third row. Since

IX4 I0 I0(3.9) dx dx dx

we see that by adding the first row to the third, the integration can be taken from zero
to x4. Proceeding in this fashion until Xl, x3, , XNl-1 have been integrated over gives
for the kth entry of the (2j- 1)th row (j 1, 2,. , N1/2)

(3.10) dxe2=’x(k+l/2)03 ’n’(Nl+2N2)(x+3,)+’tr’r k+ ;q(tv,+-u2)

dO

The integrand is now symmetric in x2, x4, xu, so the ordering implicit in (3.8)
can be removed, provided we divide by (N1/2)!. Next we write the determinant as a
sum over permutations, and write each of the 0-functions in series form. Ordering the
permutations P(2/) > P(21-1), 1, 2, , N1/2 + N2 gives the expression

11 2-N*/+S:-N/U(N + 2N)-(N*+2N)/2q[(N*+2N)2-1]/12

g,+(q)(ol(o,q)) E E E (P)
n= nN+2N2=-- P(21)> P(21-1)

= (g+2N)ne(+P(2k)+ (NI+2N)ne(_I+P(2k-1)+
(3.

N
((Nl+2N)(n(-nm-l)+P(2k)-P(2k-1))

j=l

N/2+N
N+2N)(n()+n(-))+2n(-ll(dy q( P(21_l)W1/2)W2.p(21)(P(21)+l/2)

!=1

&exp(2i(x+)[(N+2N)(n(,_+n()+P(21)+P(21-1)+l]

where for each 1, 2, , N +2N
(3.) P(1)e{-N/-N,-N/-N+,. .,N/+N-}.

From the integration over x in (3.11) and the allowed values of P(l) in (3.12),
we see immediately that the only nonzero terms in (3.11) occur when, for each
l= 1,2,..., N/2 + N,
(3.13 n(_ n(,

(3.14) P(2/) Q(1), P(21-1) -Q(l)- 1

where

(3.15) Q(l) {0, 1,..., N1/2+NE- 1}.
Since the index on the sum over the n’s is arbitrary, we are free to relabel and write
rip(j) "-tlj in all cases. Furthermore, all permutations given by (3.14) have even parity.
Hence (3.11) reduces to

I1-- ,Ir-N1/2(N q-2N2)-(N,+2N2)/2q((N,+2N2)2-1)/12gl+2N2(q)(O(O, q))-N2
(N1/2_+N2)! NI/2 Nl+2N2)n2+4(Q(k)+l/2)n

(3.16)
o=1 k=l =-o(Sl+2N2)n+Q(k)+

I-[ (N1 + 2N2)m + O +j "q- q2(N’+2N2)m2+4(Q(N/2+j)+l/2)m.
j=l m=-oo
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We observe that the sum over permutations can be formed by the multiplication into
series of a product expansion of a polynomial. Substituting (3.16) into (3.1) and using
(2.10) and the product expansion of 0(0, q), we have thus derived the following result.

THEOREM 3.1. Let N1 be even, and XN1,N2 be given by (3.2). Then

XN,N2=Tr-NI/2(qg-;q2)N-4N2+I(NI-+N:!)/[(-) ’N2! ]
(3.17)

Nt/2+N2-1 }coefficient ofN/ in the expansion of H (A(k; q)+ B(k; q))
k=0

where

(3.18)

and

A(k; q)= E (Nl+2N2)n+k+ q2(N’+2N2)n2+4(k+l/2)n

(3.19)
q2(N+2N2)n2+4(k+l/2)n

The results (1.22) (N even) and (1.24) follow immediately from (3.17) by choosing
N2 0 and N1 0, respectively. The result (1.22) for N odd can be derived from the
analogue of (3.17) with N odd (the necessary identity is the same as (3.17)-(3.19),
except that the quantity N/2 in (3.17) is replaced by (N1-1)/2, and in (3.18) and
(3.19), (k+1/2) is replaced by k).

3.3. Evaluation of I2. The constant term KN2 in (3.3) can be most expediently
evaluated by use of the identity

<=j k <= N Wj Wk
(3.20)

where

(3.21)

1 N! N

E E e(P) H qNm+(N+l-2P(l))m’wINm’+l-P(l)
(q; q2) N-1 Ymj

P

Y{m,} (ml,’’’,mN)" m=O,mZeachj=l,...,N
j=l

This identity is due to Macdonald 11 and relates to the root system AN. In the present
context (for N even), (3.20) follows immediately from (3.6). To see this, rewrite the
LHS of (3.6) using the product expansion of the 01 function (3.1), and rewrite the
RHS by expanding the determinant row-by-row using the series expansion (2.3) and
integrating over y.

From (3.3) and (3.20) we see

(3.22)

1 N! N! N

KN2--(q2., q2)2N-2 E e(P)e(Q) H W?(ml-nl)-(P(i)-Q(l))

Y{mj} Y{,,j} P=I O----’l 1=1

N

H qN(m2t+n21)+(N+l-P(1))ml+(N+l-Q(l))nl"
/=1

Since

(3.23)

the only constant terms in (3.22) occur when

(3.24) P(I) Q(l) and ml nl,

P(/), Q(1) {1, 2,..., N}

I=I,...,N.
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All permutations P then give the same contribution, so we can choose P(I) provided
we multiply by N!. Hence

N! N

KNa Z I-I q2Nm21+2(N+l-l)m,(q2; q2)2N-2 Y{mj} I=1
(3.25)

IV! Io---(q2; q2)2N-2 dtx k=lI-I 03(vra+’rr’r(N+l-2k); q2N).

The second line of (3.25) follows from the first by using the series expansion (2.3).
From the product expansion of 03 we have

(q4. q4
(3.26) l-I 03(Tra+’n’7"(N+l-2k)" q2)= 03(’n’a" q2).

=, (q4; q4)

Thus the integration over a can be done at once to yield the desired result (1.23).

Acknowledgment. I thank the referee for pointing out that (3.20) can be found in
[11].
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THE BOUNDARY LAYER FOR THE
REISSNER-MINDLIN PLATE MODEL*

DOUGLAS N. ARNOLD AND RICHARD S. FALK$

Abstract. The structure of the solution of the Reissner-Mindlin plate equations is investigated,
emphasizing its dependence on the plate thickness. For the transverse displacement, rotation, and
shear stress, asymptotic expansions in powers of the plate thickness are developed. These expansions
are uniform up to the boundary for the transverse displacement, but for the other variables there is a
boundary layer. Rigorous error bounds are given for the errors in the expansions in Sobolev norms.
As applications, new regularity results for the solutions and new estimates for the difference between
the Reissner-Mindlin solution and the solution to the biharmonic equation are derived. Boundary
conditions for a clamped edge are considered for most of the paper, and the very similar case of a hard
simply-supported plate is discussed briefly at the end. Other boundary conditions will be treated in
a forthcoming paper.

Key words. Reissner, Mindlin, plate, boundary layer

AMS(MOS) subject classifications. 73K10, 35B25

1. Introduction. The Reissner-Mindlin model describes the deformation of a
plate subject to a transverse loading in terms of the transverse displacement of the
midplane and the rotation of fibers normal to the midplane [9], [10]. This linear
model, as well as its generalization to shells, is frequently used for plates and shells
of small to moderate thickness. Specifically, let denote the region in 2 occupied
by the midsection of the plate and w and b the transverse displacement of and the
rotation of the fibers normal to , respectively. The Reissner-Mindlin model for the
bending of a clamped isotropic elastic plate in equilibrium determines w and b as the
solution of the partial differential equations

-div C (b) A-2(gradw b) 0,
_A-2 div(grad w ) g,

in 2 and the boundary conditions

on 0. Here g3 is the transverse load force density per unit area, is the plate
thickness, ,k Ek/2(1 + ) with E the Young’s modulus, the Poisson ratio, and k
the shear correction factor, $(b) is the symmetric part of the gradient of b, and the
fourth-order tensor C is defined by

CT D [(1 u)T + u tr(T)2"],
E

12(1- v2)
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for any 2 2 matrix T (: denotes the 2 2 identity matrix). Note that the load
has been scaled so that the solution tends to a nonzero limit as tends to zero. The
Dirichlet boundary conditions (1.3) model a plate which experiences no displacement
along its lateral edge. This is commonly referred to as a clamped edge (which is the
terminology we adopt here), although the terms welded or built-in are perhaps more
descriptive.

The Reissner-Mindlin model is an alternative to the biharmonic model for plate
bending. The biharmonic model gives the transverse displacement as the solution to
the boundary value problem

(1.4) DA2w0 g in

With our scaling of the load function, the solution w0 is independent of the plate
thickness. By contrast, the solution of the Reissner-Mindlin model depends in a
complex way on the plate thickness. It is the purpose of this paper to investigate the
structure of solution in its dependence on t.

We shall develop asymptotic expansions with respect to for w and b (as well as
other quantities associated with the solution such as the shear stress). The expansions
are of the following forms

Here the functions w and b, the interior expansion functions, are independent of
t. The functions i are boundary correctors. They depend on t only through the
quantity plY, where p is the distance of a point of f from the boundary. More
specifically,

o)

where 0 is a coordinate which roughly gives arclength along the boundary (see 2),
and the function i(},0) has the form of a polynomial with respect to 1 times
exp(-v//). Thus i represents a boundary layer function, which essentially lives
in a strip of width t around the boundary. Finally, X is a cutoff function which is
independent of and identically equal to unity in a neighborhood of

In 3 and 6 we construct all terms of these expansions. Here we summarize
the results for the principal terms. The function w0 is the solution to the biharmonic
problem above, w2 solves

D A2
(M2 6k(1 v)

A g in , Cd2 0, C(M20n 6k(1 v) 0n A wo on 0,

and W3 solves

CtM3 -1 02

DA2w3=0 inf/, w3=0, o---n-= 123v(1-t)Os---Aw on

1In order not to introduce unnecessary distractions, in this introduction we use a slightly differ-
ent notation than in the following sections. The wi and bi of this section are A-i/2 times the corre-

sponding quantities used in the remaining sections, and i-2(/, 8) here is A-i/2 times i-2(v/, 8)
used later.
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For the expansion of , we have b0 grad w0, b2 grad, where

and

oA2=0 inf,, = 1
Aw0, --=0 on OFt,

6k(1 v) On

0(/, 0)
exp(-Vri-) O A w0(0,

6k(1 u) Os

where s s(0) is the unit tangent vector to OFt.
We prove a priori estimates for all terms of the expansions in 4, and establish

error bounds for the remainders in 5. With these results, we may easily investigate
the regularity of solutions of the Reissner-Mindlin system and their limit as { --. 0.
Supposing that g is sufficiently smooth, we have the following estimates, in which the
constant C depends on g, Ft, and the elastic constants, but is independent of {. Here
I1" IIs and I" is denote the norms in the Sobolev spaces HS(gt) and HS(O) (see 2).

The transverse displacement w is regular uniformly in , but the regularity of the
rotation b is limited by the boundary layer:

Thus all derivatives of w remain bounded uniformly in L2 as --, 0, while for b, the
second derivatives remain bounded in L2, but higher derivatives will in general blow
upast ---, 0.

The quantity := A{-2(gradw- ), which is related to the shear stress, is often
of interest. From the above expansions we get

A-i gradw2 2 Xo -[" t(gradw3 3 Xi) +""

so it has a stronger boundary layer. Indeed, is not uniformly bounded in Hs for
1.

I111 _< cmin(’l/2-s), 8 C a.
Of course, the boundary layer does not limit the regularity of or at a positive

distance from O nor does it affect the smoothness of their restrictions to 0. Thus

for any compact subdomain fc of .
In the limit as f 0, each of the variables w, , and tends in L to the leading

terms of its asymptotic expansions. The number of derivatives which converge and
the rate of convergence may be determined by examining the first neglected interior
and boundary terms of the expansions. We get, for each s N, that

I1 - o11 cmin(2’5/2-s),
lie A(gradw2 2)lls cmin(l/2’l/2-s)"

Note that for and , the rate of convergence depends on the Sobolev norm under
consideration. For each of the variables, taking more terms from the expansions
increases the rates of convergence. For example,

[I --0 221s C3, [- 0 2(2 + O)[s cmin(3’7/2-s).



284 DOUGLAS N. ARNOLD AND RICHARD S. FALK

Taking sufficiently many terms in the expansions gives approximations of any de-
sired algebraic order of convergence in in any desired Sobolev space (provided g is
sufficiently regular).

It is also possible to use the asymptotic expansion to derive estimates in function
spaces other than Hs. Thus for example, we show at the end of 5 that

II, llw < c-min(0’2-s)

and, in particular, that JJ]Jw is uniformly bounded. Note that this is a better
estimate than we would get applying the Sobolev Embedding Theorem directly to the
estimates for in Hs. It is also easy to show that

but does not in general converge in L(t).
The Reissner-Mindlin model is discussed in many places (under various names),

although not very much attention has been devoted to the boundary layer behavior.
The existence of a boundary layer is noted in [6, Chaps. 8.9-8.10] and [11, Chap. 3.5].
Assiff and Yen [2] also note the existence of a boundary layer, and use separation of
variable techniques to compute the exact solution to the equations on a circular plate
with a special load. This calculation exhibits the boundary layer, and may be taken
as an example of our theory. Hggblad and Bathe recently studied the boundary
layer in more general situations via formal techniques and numerical experiments in
[7]. They also consider the effect of corners, which is not treated here. In [6],
[11], and [7], the authors emphasize a reformulation of the Reissner-Mindlin system
consisting of a biharmonic.equation for w (with different right-hand side than (1.4)),
and a singularly perturbed Laplacian for rot b. These equations are coupled through
somewhat complicated boundary conditions, however, and we have preferred not to
use them. As far as we know, the explicit form of the asymptotic expansions and error
bounds for them are new.

2. Notation and preliminaries. The letter C denotes a generic constant, not
necessarily the same in each occurrence. We assume that gt is a smooth, bounded, and
simply-connected domain in 2. The L2() and L2(0) inner products are denoted by
(.,.) and/’,"/respectively. We shall use the usual L2-based Sobolev spaces
and Hs(Ot), s e R, with norms denoted by I1" IIs and I" Is. The reader is referred to
[8] for precise definitions of these spaces and their properties, of which we recall only
a few here. For s _> 0, H-s may be identified with the dual of/:/s, the closure ofC
in Hs. If s _> 0, n _> _> 0 are real numbers, then the interpolation inequality

n

holds. If g E L2(t) and A-1

Laplacian is equal to g, then
g denotes the unique function in H2() N/:/l(gt) whose

C- ll glls+2 Ilglls CII glls+2, s>_O,

where the constant C may depend on s and , but not on g. In other words, g H

II A- glls+2 defines an equivalent norm on HS(gt) for s >_ 0. This is also true for
s -1, but slightly different negative norms are needed to extend this shift theorem
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to other negative values. We define IIIglll A-x gll+2 for g e L2(gt) and all real s.
Then II1" Ills is equivalent to the ordinary Sobolev norm I1" IIs for s k 0 and s -1.
For s -2, II1" Ills is equivalent to the norm in the dual space of H2(gt) f/2/1 (gt). The
norm II1" III can be identified for other values of s as well, but this is not necessary for
our purposes. From (2.1) we have

valid for all real s _> -2, n _> _> 0. We shall make frequent use of this fact to bound
nsums of the form ,i=o tilllgllls+i by a multiple of the sum of the first and last terms.

We also require the quotient space Hs(Ft)/R. An element p E HS(Ft)/R is a coset
consisting of all functions in HS(t) differing from a fixed function by a constant. The
quotient norm is given by

[[p[[/ min [[q[[.
qp

In fact, I[P[Is/ [[Pol[s where Po is the unique function in the coset p having mean
value zero.

We use boldface type to denote 2-vector-valued functions, operators whose values
are vector-valued functions, and spaces of vector-valued functions. Script type is used
in a similar way for 2 x 2-matrix objects. Thus, for example, dive E L2(t) for

Hl(gt), while divT L2(t) for 7" 7-/(gt). Finally, we use various standard
differential operators:

Or/Ox)gradr= Or/Oy dive= Ox Oy

div (tlt21 t12) (Otll/OX-l-O$12/Oy)t.2 Ot.l/Ox + Ot/Oy

)curlp Op/Ox rot 01 0b2
Oy Ox

Note that these differential operators annihilate constants, and consequently induce
operators on the quotient space HS(gt)/R for each s. We denote the induced operator
in the same way as the original. Thus, for example, if p H(gt)/N, curlp denotes
the element of/2 obtained by applying the curl to any element in the coset p.

In our analysis, we rely on an equivalent formulation of the Reissner-Mindlin
plate equations, suggested by Brezzi and Fortin [3]. This formulation is derived by
using the Helmholtz theorem to decompose the scaled transverse shear stress vector:

(2.2) "= A[ -2 (grad w ) gradr + curlp,

Setting t2 2/A, one finds

(2.4)
(2.5)
(2.6)

-Ar=g,
div C g(b) curlp grad r,

rot b + t2 Ap 0,
Aw -divb- t2 At,
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with the boundary conditions

Op
(2.7) r 0, b 0, 0-- 0, w 0.

Note that r satisfies a Dirichlet problem for Poisson’s equation, which decouples from
the other three equations. Once r has been determined, b and p may be computed
from (2.4) and (2.5) and their boundary conditions, and then w is determined by
a second Dirichlet problem for Poisson’s equation. Thus all the difficulties of the
problem have been concentrated in the system (2.4)-(2.5) for b and p. When t 0,
this system of partial differential equations is very similar to the Stokes equations. For
positive t, these two equations represent a singularly perturbed Stokes-like system.

It is easy to check that this reformulation is equivalent to the usual Reissner-
Mindlin formulation (cf. [3] or [1]). That is, if (w, () 6 Hl(t) x HI() solves (1.1)-
(1.3) and (r,p) e [-II(Ft) HI(Ft)/R are defined (uniquely) by (2.2), then (2.3)-(2.7)
are satisfied, and, conversely, if (w, qb, p,r) e H(gt) H() Hl(gt)/R H()
solves (2.3)-(2.7) then (1.1)-(1.3) hold.

To describe the boundary layer for the Reissner-Mindlin plate, we shall employ
the standard technique of making a change of variable in a neighborhood of the bound-
ary. Let (X(O), Y(O)), 0 e [0, L), be a parametrization of OFt by arclength, and let 0
be a normal tubular neighborhood of OFt in Ft. Then, for each point z (x, y) E gt0
there is a unique nearest point zo E 0g/. Let 0 denote the arclength parameter, with
counterclockwise orientation, corresponding to z0 and p Iz- zol the distance from
the point z to the boundary. Since gt0 is a tubular neighborhood of OFt, the corre-
spondence (x, y) - (p, 0) is a diffeomorphism between gt0 and (0, P0) x /L for some
P0 > 0. Explicitly, x X(O) pY’(O), y Y(O) + pX’(O). A simple computation
shows that the Jacobian of the transformation from (x, y) coordinates to (p, 0) coor-
dinates on t0 is given by 1 (O)p, where denotes the curvature of 0t. With these
definitions, the unit outward normal and counterclockwise unit tangent vectors are
given by

n grad p curl 0, s grad 0 curl p on 0t.

We use tildes to denote the corresponding change of variables for functions, i.e.,

0) :=

We shall also use the stretched variable pit. Circumflexes denote the correspond-
ing change of variables

](, O) := ](p, O) f(, ).

3. An asymptotic expansion of the solution. We now turn to the construc-
tion of an asymptotic expansion with respect to the scaled thickness t /v of the
solution of the Reissner-Mindlin clamped plate model using the formulation given in
(2.3)-(2.7). Clearly r does not depend on t, so we begin, in this section, with the
expansion of b and p. In 6 we consider the expansion of w and the shear stress.

Our immediate goal is to develop approximations of b and p by sums of the form
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where :(p) is a smooth cutoff function which is identically one for 0 g p < po/3
and which is identically zero for p > 2p0/3. (The power of t multiplying the second
sum in each expansion was chosen in anticipation of the results that follow.) In this
section we shall calculate formally in order to motivate appropriate definitions of the
interior expansion functions b and p, and the boundary correctors and/5i. In the
next section we derive some estimates for these functions, and in 5 we give rigorous
bounds for the errors in the asymptotic expansions.

Now b E H1(2) and p e H(t)/ are uniquely determined by the equations

div C (b) curlp grad r

rot (ib + t2 A p 0 (mod )

b=0, Op =0 on 0.
On

In writing the second equation modulo R we mean that b and p are to be determined
with rot b 4- t2 Ap equal to an unspecified constant function. In fact if we integrate
this equation using the divergence theorem, it follows that if b and p also satisfy the
boundary conditions, then the constant must vanish. Thus, although the equation
modulo R is formally weaker than (2.5), in fact together with the other equation
and the boundary conditions, we have an equivalent problem to (2.4), (2.5), (2.7).
The reason for introducing this complication is that it is more convenient to define
an asymptotic expansion that satisfies the second equation only up to an additive
constant.

Formally, (I,pI) will be determined such that

(3.2)
(3.3)

div C (bI) curlpI grad r

rot (I 4- t;2 A pI 0 (mod R)
I _bn on 0,

in fl,
in ,

and (bB, pB) will be determined such that

(3.4) div C E(bB) curlpB 0 in

(3.5) -rot (B

(3.6) OP OPI
On On

on

Inserting the series expansions for bx, pI, and bB in the first boundary value
problem and equating coefficients of corresponding powers of t, we obtain the boundary
value problems defining the interior expansion functions bi and pi"

gradr fori=0,
(3.7) div C (b) curlp

0 for i > 0,

rot bi
0 (mod R) for 0, 1,

(3.8) -Ap_. (mod R) for > 2,

and the boundary conditions
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0 fori=0,1,
(3.9) bi

-i-2 for _> 2.

In fact, (3.8) can be replaced by the simpler equation

(3.10) rot 0 0 (mod ).

To see this, apply rot to (3.7). Using simple calculus identities, we get that

E
24(1

A rot bi + Api 0.

It then follows from (3.8) that A pi 0 for 0, 1 and, for >_ 2,

E A2pi_2"Ap
24(1 + u)

By induction, A p 0 for all i. We thus use the system (3.7), (3.10), (3.9) to define
the interior expansion functions. This system is essentially the Stokes equations and
admits a unique solution in Hl(gt) n2(gt)/ (see Lemma 4.2 below). Note that
the implied constant in (3.10) is uniquely determined by compatibility between this
equation and the boundary conditions in (3.9). We also remark that the right-hand
side of all three equations vanishes for 1, so bl 0 and pl 0.

To obtain the defining equations for the boundary correctors, we transform the
system (3.4)-(3.6) to p-0 coordinates. The equation for bs and 15s corresponding to
(3.4) is

(3.11) .,40 op2 + A1 oPo0 +A20p "+" A3 002 -- A4 O0 -- 25 dr" 26 O,

where

A -D ( (P:)I: (1-
v)p,py/2

(1 + v)ppy/2
(py)2 + (1 )(p)2/2

20,p, + (1 u)OypyJr1 -D (1 + u)(Oyp, + 0p)/2
(1 + ,)(Oypx + Opy)12
20,p + (1- ,)Op ,]

,A2 -D Pz(1 + r’)pxyl2
(1 + )pxy/2
+ (1

.43 -D ((0)2( 1++(1)00y-u) (0y)2/2/2 (1 + )00/2
(0)2 + (1

A4 -D (0x + (1 ,)Oyy/2
(1 +\

(1 + ,)0y/2
0 + ( )0/2

A5 curl p, A6 curl 0.

Note that
A5 s, A6 n on 0gt.
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In p-O coordinates (3.5) becomes

Op O0+ +A- +, oe + -0] 0,

where
AT=Ap, As=lgradOl2, A9=AO.

In deriving (3.12), we use the facts that grad Pl 1 and grad p. grad 0 0. The
boundary condition (3.6) becomes

(3.13) OB OPl on
Op On

The exact form of the coefficient functions in (3.11) and (3.12) is not essential.
However, the coefficients Jo and 5 have some properties which will prove important.

LEMMA 3.1. The matrix-valued function .4o(p, 0) and the vector-valued function
5(P, ) are independent of p. Moreover for each fixed , o is symmetric negative

definite and 45 is a unit eigenvector of Ao with eigenvalue-D(1-
Proof. That these coefficients are independent of p follows from the observation

that Op/Ox and Op/Oy depend on but not on p. The second sentence is easily verified
using the fact that grad Pl 1. []

The remaining coefficients are in general functions of both p and and to obtain
the boundary layer equations, we expand them in Taylor series about p 0. That is,
we define operators 4 (0) by the formal Taylor series expansions"

.4,(,, )
j! ..., ()

j=O

1, 2, 3, 4,

and define i and ., 7, 8, 9, similarly. Formally inserting these expansions in
(3.11) and at the same time making the change of variable p tt3 gives

(3.14)

Similarly (3.12) becomes:

(3.15)

o [=o (J + 1) O0 -07 + oo
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We now calculate the differential equations determining the boundary correctors
by inserting the series expansions for bB and pB (defined at the beginning of this

section) in (3.14) and (3.15) and equating coefficients of corresponding powers of t.
Neglecting the cutoff function X, we obtain from (3.14) the equations

0o 0PoAo- +a-- =0,

Ao4’ +AoP o,o Oo oPo+ A 0oo +A+ o,
Oh

and, for i 2, 3,...,

+ + A ooo +A o +
Op O0

+ ( + ooo + o +

Introducing he convention i 0, i 0 for < 0, we may write hese three
equations as

o o(3.16) Ao +5N -i(, 0), i e N,

where

,(, 0) + A{ o o0
j=0

o0 + o
Similarly, om (3.15), we obtain

(3.)
o oPi.__ + 0.= ,(,o):=

-=o (-A. o,__oo + oP,__o + oP,__ o,,__

iEN.

Inserting the ymptotic expansions for p and pB in (3.13), changing variables
om p to ), and matching powers, we obtain the boundary conditions

(.lS)
oP,

(o, o) o. (o, o), i e .
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Finally, in order to determine the boundary correctors uniquely, we also impose
the conditions at infinity

(3.19) lim i(, ) 0, lim /5i(, ) 0.

We remark that (3.17) is to be satisfied exactly, rather than up to an additive constant
(as was (3.10)). Similarly, because of the boundary condition at infinity, we have
specified/5i completely, not just up to an additive constant as was the case for p. Once
the boundary correctors k and/k for k < and the interior expansion function p are
known, we may view (3.16)-(3.19) as a boundary value problem in ordinary differential
equations in which the independent variable is , the unknowns are and/5i, and
0 plays the role of a parameter. As we shall see (in Theorem 3.3), this problem has
a unique solution. Therefore we can recursively determine all the interior expansion
functions and boundary correctors as follows. First we determine (b0,p0) by (3.7),
(3.10), and (3.9). Then we determine (0,/0) by (3.16)-(3.19) (the right-hand sides
of (3.16) and (3.17) being zero and the right-hand side of (3.18) being known). Then
(bl,Pl) is uniquely determined by (3.7), (3.10), and (3.9), and so forth. Thus we have
proved the following theorem.

THEOREM 3.2. There exist functions dpi(x, y), pi(x, y) on fl and(, ), ’([, )
on o, E N, unique except that pi is determined only up to an additive constant,
which satisfy the boundary value problems (3.7), (3.10), (3.9) and (3.16)-(3.19).

The Stokes-like boundary value problem (3.7), (3.10), (3.9) is well posed, but,
of course, we cannot in general determine its solution in closed form, even if r were
known in closed form. (However, the regularity of solutions to this problem is well
understood--cf. Lemma 4.2.) The system (3.16)-(3.19) can, in principle, be solved in
closed form. For example, the solution for 0 is

1 Opo Opo
(0, O)e-@(o o)(3.20) Po([, O)

c On
where c [24(1 + ,)/E] 1/2. (We show that this is the only solution in the proof of
Theorem 3.3.)

The following theorem gives the form of the solution for general i. In particular,
it states that i and Pi are polynomials in times the decaying exponential e-@.

THEOREM 3.3. For each N, the system (3.16)-(3.19) has a unique solution
(, P). Moreover there exist smooth functions jkt(O) and aijkt(O) depending only
on i, the domain f, and the plate constants E and t such that

-j 0
O0 On

k=O j=O l=O

;,(z, o) (o,00 On
k=0 j=0/=0

The proof, an exercise in ordinary differential equations based on the form of the
coefficients of (3.16)-(3.17) as given in Lemma 3.1, is given in the Appendix.

This completes the construction of the interior and boundary layer asymptotic
expansions. In the next section we bound the individual terms of the series and
determine how nearly the finite sums satisfy the differential systems which motivated
their definitions. Then, in 5, we prove error bounds for the finite sums of the
expansions.
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4. A priori estimates. We begin this section by deriving a priori bounds on
the boundary correctors using Theorem 3.3.

THEOREM 4.1 (A PRIORI ESTIMATES FOR BOUNDARY CORRECTORS). Let be a
nonnegative integer. There exists a constant C depending only on the domain , the
elastic constants E and u, and s and i, such that

j=o s+i-j

IIll,ao + IIPll,o ctl/2- t
j=0 m=0 m+i-j

Proof. The first estimate follows from Theorem 3.3 by setting 0 and using the
triangle inequality. We now consider the second inequality. To establish the bound
for 4i, we change to (p, 0) coordinates and seek bounds on the integrals

(4.1)

IO-’+k’/OP-mOOkl211 (0)pl dpdO
Jo Jo

Now i is a sum of terms of the form

O<_m<_s, Ogk<_m.

(4.2)
o’

(o, o),a(O) exp(-cp/t)y(p/t)- -n smooth, f polynomial, j <_ i, _< i- j.

The L2(ao) norm of (4.2) is bounded by Ctl/elOp/Onl, since

exp(-cp/t)f(p/t)l 9 dp < t exp(-c,5)f(,5)l : d,5.

Applying os-m+k/OpS-mo0k to (4.2) gives tm-s times a sum of terms of the same
form except that may be as large as i- j + k <_ m + i- j. Thus (4.1) is bounded
by Ct/2 =o lOpj/On]m+i_j. Summing over m 0, 1,.. s gives the desired
bound for i, and that for Pi is proved identically.

We next summarize the basic regularity properties of the Stokes-like system which
defines the interior expansion functions.

LEMMA 4.2. Let s N, f US()1(), g US()/R, and Hs+l/2(O)
be given. Then there exist unique e HS+(O), q e, gs()/R satisfying the partial
differential equations

(4.3)
(4.4)

div C $() curl q grad f,
rot g (mod R),

and the boundary conditions
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Moreover, there exists a constant C depending only on s, E, , and ’l such that

Remarks. 1. The restriction that the forcing function in (4.3) be the gradient of
an/:/1 (2) function is sufficient for our purposes and allows us to avoid some technical
points concerning duals of Sobolev spaces and trace operators with values in negative
order spaces. 2. If we replace div C() with A then the simple change of variables
(1, 2) (2,-1) converts (4.3), (4.4) to a generalized Stokes system, and this
result is well known [5]. Here we give a proof which works for general 5" based on
regularity results for the biharmonic.

Proof. Written in weak form, the boundary value problem is to find
such that on 0 and q E L2()/R satisifying

(C (),()) (q, rot z) -(f, div )
(rot , v) (g, v)

for all D /:/1() and all v L2() of mean value zero. Existence and uniqueness of
a solution in Hi(g/) L2(g/)/R is proved just as for the generalized Stokes equations,
e.g., by applying Brezzi’s theorem [4]. The estimate for s 0 follows from the same
argument. To establish the estimate with s _> 1, we apply the Helmholtz decomposi-
tion to to get gradz / curlb, with z /:/1(), b HI()/. From (4.4) we
get

Ab=g (mode) in,

with boundary conditions Ob/On I.s. Taking the divergence of equation (4.3) gives

-DA2z=Af infl,

with boundary conditions z 0, Oz/On I. n + Ob/Os. Applying regularity results
for the biharmonic problem and the Laplacian, we obtain

Ilbll,+./ C(llgll,/ / /11,+,),
Ilzll+ C(ll ]’11,- / I1,+,/ + IOblOl+/)

C(II.rlI / I1.+, / Ilbll+/)
<_ C(II.rlI, / I1.+, / Ilgll/).

The bound for now follows directly by the triangle inequality and the bound for q
then follows from (4.3). [J

We now use the previous two theorems to obtain estimates for the interior expan-
sion functions.

THEOREM 4.3 (A PRIORI ESTIMATES FOR INTERIOR EXPANSION FUNCTIONS). Let
i and p be the interior expansion functions. Then for all s >_ 0 and d, there
exists a constant C such that

Proof. Since -A r g and r vanishes on 0g/, we have

(4.5) II,’11. _< cIIIglll,-.
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Thus, it suffices to prove that

(4.6)

We prove this first for s E N by induction on i. For 0, we get this immediately
from the defining equations (3.7), (3.10), (3.9), and Lemma 4.2. As already noted
1 pl 0, so (4.6) holds for 1 also. For >_ 2, we apply Lemma 4.2, Theorem 4.1,
and the trace theorem to obtain

i--2

I1,11/ /IIp, ll/ _< Cl-l// < c
j=O s--3/2+i--j

i--2

j=O

Application of the inductive hypothesis completes the proof of (4.6) for integer s. The
proof for noninteger s now follows by a standard interpolation argument. []

COROLLARY 4.4. For s >_ - and N, there exists a constant C such that

/ I1 / IPl < cIIIglll+-,.
8

Proof. As remarked in the previous section, pi is harmonic for all i. Consequently,
the trace inequality

Op Op
-g-d + < CIlll+//

8

holds for all s, so the bounds on pi follow easily from the theorem. The bounds on
and P then follow from Theorem 4.1.

We now combine Theorems 4.1 and 4.3 to obtain an essential result for the deriva-
tion of error bounds for the boundary layer expansion.

THEOREM 4.5 (h PRIORI ESTIMATES FOR BOUNDARY CORRECTORS). Let i, k,
l, n, and s be nonnegative integers and define functions and f on fo by

Op O0, Op O0 P"

Then there exists a constant C depending only on the domain , the elastic constants
E and , and i, k, l, n, and s, such that

Proof. Note that, if in (4.2) we differentiate with respect to t (i.e., differentiate
with respect to p and multiply by t), we obtain something of the same form. The
same is true if we multiply by t. If we differentiate with respect to we obtain a sum

of two terms of the same form, with one higher order of differentiation on Opj/On.
Hence, reasoning just as in the proof of Theorem 4.1, we obtain

Ilfll,o + II.fll.,o <- ct12-
j=0 m=0 m+i+n--j

An application of Corollary 4.4 completes the proof.
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We now consider the partial sums given by

m

i--O
m

Bm(x, y) t2(p)E tii(’ 0),
i=0

m

i--O
m

pB (x, y) t(p)E t’lh’(’
i--O

Note that while i and Pi are only defined on the tubular neighborhood fl0 of 09t,
bm and Pm are defined on all of fl because of the cutoff function X- By construction,
(bm,p/m) and (bSm,pSm) should almost satisfy the boundary value problems (3.1)-(3.3)
and (3.4)-(3.6), respectively. We now make precise to what extent this is true.

For the interior expansion this is easy. The following theorem follows directly
from (3.7), (3.10), (3.9).

THEOREM 4.6 (BOUNDARY VALUE PROBLEM FOR THE INTERIOR EXPANSION).
Let m E N. The finite interior expansion (4lm, pIm) E H1() x U ()/R satisfies the
boundary value problem

div C $(b/m) curlv/m grad r

rot 4)/m + t2 A P/m 0 (mod R)
-#._ on 0.

For the boundary expansion, it follows from (3.18) that the boundary condition

(4.7) On On
on 0

is satisfied exactly, but for the differential equations the situation is more complicated.
Define the residuals/m and Rm by the equations:

div C $(bm) curlpBm Rm in ,
-rotbm+t2Apsm=Rm in.

The following theorem shows that these residuals are indeed of high order with respect
to t.

THEOREM 4.7 (BOUNDARY VALUE PROBLEM FOR THE BOUNDARY LAYER EXPAN-

SION). Let m E N. The finite boundary layer expansion (m,pSm) E HI() x H1(2)
satisfies the boundary value problem (4.7)-(4.9), with the following bounds valid for
the forcing functions Rm, Rm:

Proof. It suffices to prove the theorem with the right-hand sides replaced by

s+l s+l

ctm+3/2-s E tillgllm+l/2+i and Ctm+5/2-s E tillgllm+l/2+i’
i=0 i=0
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respectively. In addition to the portion of the residual due to truncating the series
after finitely many terms, we must consider the contributions from two other sources,
namely the replacement of the coefficients by Taylor polynomial approximations and
the suppression of the cutoff function X. Because of the presence of the cutoff function
X in the definitions of bSm and BPro, it is easy to see that the residuals R and Rm will
vanish for p > p0, i.e., in 2 \ 10. In o, after changing to (t5, ) variables, we have
(cf.

where

O0 + 6 O0

and we have again used the convention that terms with negative indices vanish. Now
for any k >_ -1

A(p, O) j=oE j-T.. A (0) + (p, O)

where

fo Ok+A 0)(1 s)k

A+(p, O) Opt+ (sp,
k!

ds, k>O,

The other coefficients admit similar Taylor expansions (except for Jo and 5 which
are functions of 0 only). Substituting these expansions for k m- and using p
we get

002 O0 O0
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+ A{ ’’--’ + A{ o,__.
00 O0

_[_ ffli-n_i+ OPi--lo0 )

A ooo + A o +A oo
j=O

o0 +p-- o o

similar computation gives m 2(;) +, where

ig. o_ + o_ + .o

__
=o oo - o oo

O0
+t ,00 +,00,

or

where we have used the identity i=o m-i mm j=O F(i, j) -i=o =o F(i-j, j) to obtain
the second equality. Now the term in brackets vanishes by construction (cf. (3.16)).
Thus



298 DOUGLAS N. ARNOLD AND RICHARD S. FALK

and

i=O i=0

It suffices to show that the desired bounds are satisfied by each of the terms Rm, R2m,
Rm, and R2m. The bounds on IIRmlls and IIRmlls, s >_ 0, follow from the expressions
for the residuals just computed and Theorem 4.5.

We next bound IIR2mlls and IIR2mlls, s >_ 0. Using the expressions for i and
given in Theorem 3.3, we can write R2m and R2m as a sum of terms all with a common
factor of e-c. Now, because of the presence of the factors ’ and :" in the definitions
of R2m and R2, each of these terms vanishes for p

_
po/3. On the region where

p > p0/3

(cP)-JtJ .Cjte-*#<Kj -with Kj := maxx>0 xJe- < oc, for any desired power j. Using this result, referring
to the expressions given in Theorem 3.3, and applying Corollary 4.4, it is not difficult
to show that for any j and suitable C

(4.11)

Finally, we establish the first estimate when s -1. First we note that

Substituting this and analogous expressions for ., , , and I in (4.10) we get

11 12 13Rm Rm + Rm + Rm

where

and

(4.12)

/rn /+1 A3+l 02rn--j ,/+10)m--j ,J3+l 02m--j--1
j--O 000 + O -4: 002
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By (3.16)

or

0.+11 --tm+l A0

/
_t.+ tci.0t

Therefore, for any

(4.13)

02&’+ + .h Op’+ )Op2 Op

Applying the Schwarz inequality and Theorem 4.5 gives

(4.14)

or, since was arbitrary,

Similarly,

whence
II;P,,II- < ct’+lllll,+ll.

Finally, applying Theorem 4.5 directly to (4.12) and (4.11), respectively, we get

IIxP,.II-1 4 cIIP,.llo 4 ct’+Slllgll,+l

and

Illll- 4 Illllo 4 ct’+Sl.ll;ll,+l.
Since Rm XR + XR + XR + R2m, the last three equations imply

as desired.
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5. Error estimates. Let

Thus b and pnE denote the errors in the asymptotic expansions up to order roughly
n. Since bl and pl vanish,

0o" 0[ ,-
In this section we derive rigorous error bounds for bnE and pnE. In Theorem 5.1 we
bound the error in H (f) L2 (gt)/R and in Theorem 5.2 we bound the error in higher
order Sobolev norms.

THEOREM 5.1 (ERROR ESTIMATES FOR ( AND p IN ENERGY NORM). There
exists a constant C independent of t such that

II  EIIx + IIp EII0/ +tll gradpxEIIo < ct3/211gll- /2
and for n >_ 2

Proof. It follows easily from (2.4), (2.5), (2.7), Theorem 4.6, and (4.7)-(4.9) that
(bn,pn) satisfy the partial differential equations

(5.1)
(5.2)

div C $(bn) curlpn -Rn-2,
rotb + t2 Ap -R=-2 (mod R),

and the boundary conditions

(5.3) n =0, OPen -tn-
Opn-

tn
Opn

On On On

Writing these equations variationally, we get for all E l/l() and q E L2() with
mean value zero,

(5.4) (C $( sbn ), cq()) (curl EPn,) -(Rn-2, ),
(4)n, curl q) + t2(gradpn, grad q) (Rn-2, q) t+(Opn-t/On + tOps/On, q).

Now let
-E E
Pn Pn meas Pn dx

denote the difference between puB and its mean value. Choosing bn and q pnE
and adding the equations, we obtain

(C$(bn),g(bnE)) + t2(gradPn gradp)
(Rn-2, (nE) -- (nn-2,Pn)-E tn+l (OPn-1 /071 -- tOpn/O, Pn)’-E
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Applying Korn’s inequality and standard estimates, we thus obtain

114,11 + tll u’adpll _< c(11-:11-114,11 + IIR,-llollpllo/.
+ t’+(lOp,-/Onlo + tlOp/Onlo)lPlo).

Now

so the last term in the previous estimate may be bounded by

c+/(IOp-/Olo + lOp,-lOlo)(llpllo/ + 11 gradpEll0)

Now choose E /l(g/) satisfying

rot -E
=P, I111 _< CIIpllo/.

(The existence of follows from Lemma 4.2.) From the first variational equation, we
obtain

(c e(v), e()) + (P_.,)
< cI111(1111 +

and so

Combining all these results and using the arithmetic-geometric mean inequality, we
obtain

II4,11 + IIpllo/ + tll gradpllo
_< c [IIP-II- + IIS-llo + t+t/lOp-/Onlo + t+/lOp/Olo].

Note that if n 1, the right-hand side reduces to Ct3/2[Opo/On[o. The theorem
follows immediately from this estimate, Corollary 4.4, and Theorem 4.7. []

We now turn to the derivation of error estimates in higher norms.
THEOREM 5.2 (ERROR ESTIMATES FOR ( AND p IN HIGHER NORMS). Let s >_ 2

be an integer. Then

and for n >_ 2

Proof. By standard regularity results for the Dirichlet problem for plane elasticity
and (5.1),

(5.5) I111. < cII div Ce()ll- <_ C(ll gradpll,_ + I1-11.-).
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Using regularity for the Neumann problem for the Laplacian and (5.2) and (5.3), we
similarly obtain

IIpEII,/ c

<_ C (t-211 rot bll,_2 + -p tn

Combining these results and using Corollary 4.4 and Theorem 4.7, we get for n >_ 1,
s_>2,

Since xl_l, R-l, and Pl vanish, for n 1 we can simplify this result to

Thus

I1 II. + tllp I1./
C(llpll-l/ + t-ll4,fll- + tllll-),

<
C(llpll-l + t-lllll- + t+31-llgll-al. + t"+lllgll,+-),

n=l,

n>2.

For s 2, the theorem follows from this relation and Theorem 5.1. We can complete
the proof using this relation and a simple induction on s.

As a consequence of Theorems 5.1, 5.2, and 4.3, we easily obtain bounds on 45
and p.

THEOREM 5.3 (BOUNDS ON AND p).

I111, < C(tl-"llgll-ll + tllgll.-. + IIIglll.-),

Ilpll/ -< c(tai-llll-li + II1111-.),

Proof. From Theorems 5.1 and 5.2 we have

sEN.

By Theorem 4.3,
Ilpoll/ _< CIIllll-.

Applying the triangle inequality, we obtain
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A similar argument gives the estimate on
We may use the interpolation property of the Sobolev norms to obtain bounds

on liOn’liB and Ilpnll8 for noninteger s similar to those given in Theorems 5.1 and 5.2
for integer s. In particular we have

II,II/ < c(I14,IIII,II)/
_< c[(Wllall_/. + llallo)(-/llall_/ + llall)]/

< C(llgll-/ +

and, similarly,

Combining with Theorem 4.3 as above, we get

(5.6)
(5.7)

IIII/. _< C(llgll-/ / /llglll),
llplla// <_ C(llgll-/ / Wllgllo).

In general, however, higher norms of ) and p do not remain bounded as t 0.
Thus far our estimates have all been in the L2-based Sobolev spaces Hs. In

closing this section, we note that our asymptotic expansions and error estimates can
be used to study the dependence of the solution on t in many other function spaces
as well, for example in the/,P-based Sobolev spaces W or the HSlder spaces Cm,a.
To determine the behavior of the norm IIllwo with respect to t, for example, we

Bmay write + + n-" Now, suming g is sciently smooth, llln+3/
is bounded uniformly in t. Hence, if n is suciently large (n > s- in this ce),
then the Sobolev Embedding Theorem implies that llllw is bounded uniformly.
Each of the interior expansion functions is bounded in all the Hs spaces, so [[[[w
is also bounded uniformly. Thus the behavior of is determined by that of B

X(tu0+t3+.. "+tnn_2). Since we have quite explicit expressions for the boundary
correctors (Theorem 3.3), it is not dicult to determine the behavior of _. We
see that -2lw O(t2-s) Thus

IIIIo o(min(2-s’))

Estimates of other quantities, including the errors in the partial sums of the asymp-
totic expansions can be derived similarly. With a little effort we can get a bound
which indicates explicitly the dependence of the norm on the load function g as well.
However, we do not expect that the required regularity on g in these estimates (and
in some of the previous ones as well) is optimal.

6. Asymptotic expansion of the transverse displacement and shear. In
the previous sections we obtained and justified an asymptotic expansion for the ro-
tation variable 5. We now turn to the other primitive variable, w, and obtain an
expansion for it. In contrast to 5, we will see that w has no boundary layer.
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Define the auxiliary variable v w t2r. Clearly v 0 on 0g/and, from (2.6),
A v div b. Then, taking the divergence of (2.4) and substituting (2.3), we easily
compute that D A2 v D A div 4) g. Next, note that grad v grad w-t2 grad r
4) + t2 curlp. Since b vanishes on 0,

Ov _t Op
0-- ss on 0[2.

Thus v is completely characterized as the solution of a certain Dirichlet problem for
the biharmonic operator, and it is easy to see how to expand it in powers of t. For
E N, define vi by the biharmonic problem

g, 0,
D A2

vi in
0, i_>l,

0, 0, 1,

v O, Ova/On -Opo/Os, 2 on 0[2.

-Opi-2/Os OPi-3/Os, >_ 3,

The coefficients in the asymptotic expansion of w are then given by

[ v, 2,

v2 + r, 2.

Note that wo satisfies the boundary value problem

Owo 0 onDA2wo=g in [2, wo On

It is useful to express the first terms of the expansions for w and b in terms of wo.
First of all, there is a simple relation between wo and bo.

THEOREM 6.1.
bo grad wo.

Proof. From (3.10) and (3.9), it follows that bo grad# for some # E//2([2).
Inserting in (3.7) and taking the divergence gives

DA2#=-Ar=g.

Comparing with the defining equations for wo, we see that # wo.
Clearly wl vl 0 and w2 v2 + r, where

(6.1) A2v2 0 in , v2 0, Ov2/On -Opo/Os
(6.2) Ar=-g in, r=0 on 0[2.

on

Now, from (3.7),

(6.3)

(6.4)

08
Or

D
0A wo Or

div C e(bo), n + -n On + 0--"
Opo 0 A wo
0--’ div C (bo) s -D 0----"
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Using (6.3) in (6.1) and combining with (6.2), we get

Ow2 -D
0 A WoA2w2=--Ag one, w2=0, On On

which is a biharmonic problem for w2. From the definitions, w3 v3 is a biharmonic
function vanishing on 0 with Ow3/On- -OPo/Os (since pl 0). Using (3.20) and
(6.4) to simplify the latter boundary condition gives the following biharmonic problem
for w3:

Ow3= D 02A2w3=0 in, w3 O, On c Os2AT on0f.

Turning to the expansion for b, the expression for 4o in (3.20) becomes, in light of
(6.4),

(6.5)
0 A

(0, 0)e’o(, 9) -D
Os

To determine 2, we note from (3.10) that rot 4)2 is constant. Since

/rotb2=-fon2.S=fon40.s=0,
rot b2 0 and b2 grad for some function . Substituting in (3.7) and taking the
divergence shows that is biharmonic. Then the boundary conditions grad -0
on Of determine modulo R and 4)2 completely. In light of (6.5), the boundary
conditions on become

=DAw0 (modR), O/On=O on0.

We now obtain a priori estimates for the wi and error estimates for the finite sums
of the expansion.

THEOREM 6.2 (A PRIORI ESTIMATES FOR THE O)i). Let E N, s

_
2. Then

Proof. This follows easily from regularity for the biharmonic equation, Corol-
lary 4.4, and (4.5).

Let w w in__o tiwi denote the error in the partial sums of the asymptotic
expansion

i--O

The next theorem bounds the error in expansion. Note that the order of the error is
the same in all Sobolev norms, reflecting the fact that w does not involve a boundary
layer.

THEOREM 6.3 (ERROR ESTIMATES FOR W). For n 1, 2,... and s 1, 2,...

Proof. Set vE v n t v. Note that > 1, andwE vE +tr,
so it suffices to prove the theorem with wE replaced by vnE.
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Now

DAg. E 0 in,Vn
E 0 on 0f,Vn

and

Thus, using regularity results for the biharmonic problem,

Applying Theorem 5.1 or 5.2, Theorem 4.3, and Corollary 4.4, we get

as desired. [:]
Using a similar argument, we can also obtain regularity estimates for w in H8 (f)

uniform with respect to t.
THEOREM 6.4. For s 2, 3,... there exists a constant C independent of t such

that

s 2, 3,
s>4.

Proof. Using standard regularity results for the biharmonic problem and (4.5),
we get

(6.6)

s--2 s--4 ti+l EWhen s _> 4, we substitute p ’]=o tP + X=o P +Ps-2, into (6.6) and apply
Corollary 4.4 and Theorem 5.2 to estimate the right-hand side, obtaining

s--2 s--4

I1,11 <- c I111- + t’+llll+,- + t’+llll+,- + tlllll-l
i=0 i=0

which gives the desired result.
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When s 2 or s 3, we substitute p P0 +PiE into (6.6) and complete the proof
with a similar argument. [3

Recall that the scaled transverse shear stress is given by t-2(gradw- b),
which we decomposed as grad r 4-curlp. We can obtain an asymptotic expansion
for the shear stress from either of these expressions, in the former case noting a
cancellation due to Theorem 6.1. Thus, formally,

(grad w2 2) + t(gradw3 (3) 4- X(iio 4- til 4-""

(grad r + curlpo) + t curlp2 + t3 curlp3 +...+ x(tcurlPo + t2 curlP +-.. ).

In light of our previous results, it is straightforward to bound the individual terms in
either of these expansions as well as the remainders when the expansions are termi-
nated. Here we content ourselves with determining the regularity of the shear stress
vector and its dependence on t.

THEOREM 6.5. Let s > -1 be an integer. Then there exists a constant C inde-
pendent of t such that

I1,::11. _< + IIIglll --,).

Proof. This follows immediately from Theorem 5.3 and (4.5).
Similar bounds hold in the noninteger order $obolev spaces. In particular,

1111 /2 < C(llgll- 12 + t 1211gllo),

as follows immediately from (4.5) and (5.7). In general I111, will blow up as t --, 0 if
s > 1/2. Thus the shear stress evidences a rather strong boundary layer.

7. Hard simply-supported boundary conditions. Two sets of boundary
conditions are commonly used with the Reissner-Mindlin equations to model a simply-
supported plate. Boundary conditions for a hard simply-supported plate are

Mnqb O, dp" s O, w O,

where M=4b ntC E(4J)n, or, in (p, 0) coordinates,

Mn4) D -,-p .n + u-- s

(For a soft simply-supported plate the condition 4b" s 0 is replaced by s C ()n O.
Thus, in both cases the lateral edge of the undisplaced plate is not permitted to
displace vertically. In the soft case a vertical fiber on the lateral edge is permitted
to rotate freely, while in the hard case it may only rotate in the plane normal to the
edge. The soft conditions would seem to be easier to realize in practice.)

The boundary layer analysis for the hard simply-supported plate, which we con-
sider in this section, is very similar to that for the clamped plate. The soft simply-
supported plate has a significantly stronger boundary layer which will be investigated
in a subsequent paper.

The only difference in the asymptotic expansions themselves for the hard simply-
supported Reissner-Mindlin plate and the clamped plate is that the boundary condi-
tions for the problems defining the interior expansion functions must be modified. All
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the major estimates for the expansion functions and all the error analysis carries over.
However, at a few places in the analysis additional terms must be considered. In this
section we indicate very briefly these additional considerations.

As in the case of the clamped plate, we use the decomposition of the shear stress
vector, given by formula (2.2). We then obtain the reformulation of (2.3)-(2.6), where
the boundary conditions (2.7) are replaced by:

r=O, .s=O, Mn=O, Op/On=O, w=O.

The forms of the asymptotic expansions for 4) and p are the same as those given in
3 for the clamped plate, and the interior approximations satisfy the same partial

differential equations (3.7), (3.10), but the boundary conditions (3.9) are replaced by

0,

and
0,

MnOi D(Oo/O) n,

D[(O’,_l/O}9) .n- u(O,_2/O0) s], i>2.

The boundary correctors are again defined by (3.16)-(3.19). Thus, the analysis in
3 remains valid. In particular, Theorem 3.3 still holds and the formula for the first

boundary corrector is again (3.20). It follows immediately that Mndpl 0 on 0f and
hence q 0, px 0.

To bound the errors in the asymptotic expansions, we need analogues of the results
proved in 4. From the form of the boundary correctors (given in Theorem 3.3), we
get immediately that

(7.1) I1 +t
s j=O s+i-j

for all s 6 , 6 d. To estimate the interior expansion functions we use the following
analogue of Lemma 4.2.

LEMMA 7.1. Let s 6 N, f HS(f)fq ftl(f), g HS(f)/, k HS+/2(Of),
and e HS-/2(Ofl) be given. Then there exist unique e HS+(fl), q e HS(fl)/R
satisfying the partial differential equations

(7.2)
(7.3)

div C () curl q grad f,
rot g (mod 8),

and the boundary conditions

.s= k, Mn=I.

Moreover, there exists a constant C depending only on s, E, , and fl such that
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Proof. The weak form of the boundary value problem is to find 6 Hl(f) such
that . s k on 0f and q 6 L2(f)/R satisifying

(C :(), (bt)) (q, rot t) -(f, div/) + (1,/z. n),
(rot , v) (g, v),

for all/ 6 Hl(f) such that/, s 0 on 0f and all v 6 L2(f) of mean value zero.
Existence and uniqueness of a solution in Hl(f) x L2(f)/R is proved just as for the
generalized Stokes equations, e.g., by applying Brezzi’s theorem [4]. The estimate
for s 0 follows from the same argument. To establish the claimed regularity for
s >_ 1, we apply the Helmholtz decomposition to to get grad z + curl b, with
z 6 I:II(f), b 6 Ul(f)/. Now, it suffices to show that

since this gives the estimate on immediately, and that on q then follows from (7.2).
From (7.a) we have

Ab=g (modR) inf,,

with boundary conditions Ob/On k, so the desired bound on b follows from regularity
for the Neumann problem for Laplace’s equation. We prove the desired estimate for
z by induction on s. The case s 0 follows from the bound on [1111 since z div .
Thus we assume that s is a positive integer.

Letw=DAz/f. Since

\os2 +’( O Ob Ob )Mn(curlb) D(1 ) Os On t- aN
the boundary conditions for imply that

w f D A z + D(1 .)(O:zlO + OlO + on,

or, since z and f vanish on 0f,

w + D(1 )(aOz/On + Ok/cOs aOb/Os) on Of/.

Now, taking the divergence of equation (7.2) gives

-DA2z A f in

so w is harmonic. Applying regularity for the Dirichlet problem for Laplace’s equation
then gives
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Finally z satisfies

--Az D-(f -w) in z 0 on 0f,

so another application of regularity for the Dirichlet problem shows that

and the proof is completed by induction.
Using this result and (7.1), it follows that Theorem 4.3 holds also in the hard

simply-supported case, and then that Theorem 4.5 also remains valid.
Turning to the finite interior and boundary expansions, Theorem 4.6 and Theo-

rem 4.7 hold as before. However, in order to prove the analogue of Theorem 5.1, we
need a slight refinement of the estimate of

THEOREM 7.2. If E H(f) satisfies . s 0 on Of and m N, then

(l’) tm+3 (D Ofl,m+lOn n, n

Proof. The proof is very close to that of the H- estimate in Theorem 4.7. The
only difference is that instead of (4.14) we must show that

xR’lml %b tm+3 (D Oflim+ n n)
(which is the same as (4.14) for /-/1 (f)). Since does not vanish on the boundary,
when we integrate by parts in (4.13) we get a boundary term:

(At  +lop 0 {(p)b(p, 0)[1 n(0)p]) dpdO+ ;t P +x

( O’m+ A5Pm+l, >tm+ Aot On

Now As. s. 0 and A0 Aon(- n) -Dn(. n), so

On On n, n

The proof of inequality (7.4) and the remainder of the theorem now proceed just as
in Theorem 4.7. [3

Defining bn and pnE as in 5, we see that they again satisfy the partial differential
equations (5.1) and (5.2). The boundary conditions now become

n s 0 M,4En tn+lD Oli=_i Open _tn_ Opn- tn Opn0---- .n, On On On

and the variational equation (5.4) which enters the proof of Theorem 5.1 thus becomes

(C(4}nE),E()) -(curlpnE, ) --(Rn-2,)+ tn+lD
On
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valid for with vanishing tangential component on 0Ft. We bounded the right-hand
side of this equation in Theorem 7.2. This is the only additional consideration in
establishing Theorem 5.1 in the hard simply-supported case.

The higher-order estimates in Theorem 5.2 also carry over to the present case,
but again there is an additional term to be bounded because n does not vanish on
0. The bound for IIbnll8 given in (5.5) must be modified to include the additional
term

tn+l 0-I
(n

F,

-/

In view of (7.1) and Theorem 4.3, this term is easily bounded by tnllglls+n_3, which
is no larger than other terms which were treated in the proof of Theorem 5.2. Of
course, once Theorems 4.3, 5.1, and 5.2 are established, the regularity results given in
Theorem 5.3 follow.

An asymptotic expansion and regularity results for the transverse displacement
and the shear stress can be developed as in 6. Naturally the boundary conditions
in the defining problems for the expansion functions are changed. The boundary
conditions on and p imply that v w t2r satisfies, in addition to the differential
equation D A2 v g, the boundary conditions

(1 ,)O2v/On2 + v A v t2(1 v)aOp/Os on OF/,

where denotes the curvature of 0. It is then clear how to define the regular
expansion for v and hence w, and all the analysis of 6 carries over easily.

Appendix. In this appendix we give the proof of Theorem 3.3 concerning the
existence, uniqueness, and form of the solution of the boundary value problems defining
the boundary correctors.

Proof. Differentiating (3.17) with respect to 3, we obtain

+ ---r=

Multiplying (3.16) by fi.l and taking the inner product with I5, we obtain

Adding these equations and observing from Lemma 3.1 that AsA0̂-lit5 -c2, we get

o P,
(8.1) a o--f ) +

The general solution of the associated homogeneous equation is c1() + c2(O)e-c /

c3(0)ec, with the functions ci arbitrary. Now if we have two solutions to (3.16)-
(3.19), then the difference in the values of/3 must be of this form. Applying (3.19)
implies that cl and c3 vanish, and then the homogeneous form of (3.18) implies that

c2 vanishes. Thus there can be at most one function/3i satisfying (3.16)-(3.19). Once
/3i is known, i is determined up to the addition of a function linear in 3 by (3.16).
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In light of (3.19), is uniquely determined. Thus we have shown that there can be
at most one solution (4,/54) to (3.16)-(3.19).

Let us say that a scalar-valued function (t3, t9) is of type (m, i) if

for some smooth functions ajkt(O). A vector-valued function is of type (m, i) if all
components are. We claim that there is a solution (4,/54) to (3.16)-(3.19) which is of
of type (i, i). We will establish the claim by induction on i, thereby completing the
proof of the theorem. The solution given in (3.20) verifies the claim for 0. Now
suppose that (j,/3j) is of type (j, j) for j 0, 1,... 1. It follows easily from their

respective definitions (just after (3.16) and in (3.17) and (8.1)) that ’4, (4, and/7/4 are
of type (i- 1, i). It is then elementary to see that the differential equation (8.1) has
a unique solution of type (i, i) satisfying the boundary condition (3.18). Next, there
is a unique function 4 of type (i, i) satisfying (3.16). Together (3.16), (8.1), and the
decay at infinity of 4, (4, and the t3-derivatives of/54 imply (3.17). Thus
satisfy (3.16)-(3.19) and are of the desired form. This completes the induction.
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A SINGULAR PERTURBATION ANALYSIS OF REVERSE BIASED
pn-JUNCTIONS*

CHRISTIAN SCHMEISER"

Abstract. A two-dimensional version of the drift-diffusion model for stationary flow of charge carriers
in semiconductor devices is considered. It consists of a system of three elliptic equations that is singularly
perturbed for large applied biases. For the case of a pn-junction diode under strong reverse bias, an
approximating problem, which includes a free-boundary problem for the potential and a mixed elliptic-
hyperbolic problem for the analysis of current flow, is derived. The solvability of this formal limit problem
is proved.

Key words, semiconductors, drift-diffusion model, singular perturbations

AMS(MOS) subject classifications. 35B25, 35R35

(1.1a)

(1.1b)

(1.1c)

1. Introduction. In this paper we consider the system

Aq, n -p- C(x),

eVn-nVO= eJ,, div Jn =0,

-eVp-pVd/= eJp, div Jp =0

for x 12 RE, where 12 is a bounded simply-connected domain with Lipschitz boundary
representing the semiconductor part of an electronic device. The scaling that leads to
(1.1) (see [13]) is valid for large applied biases. The dimensionless parameter e is
small and positive in this case. The Poisson equation (1.1a) determines the electrostatic
potential and thus the electric field E--V. The term -n+p+C(x) on the
right-hand side is the space charge density with contributions from the negatively
charged free electrons (density n), the positively charged holes (density p), and a fixed
distribution of charges C(x) called the doping profile. The equations in (1.1b, c)
represent a convection-diffusion model for the electron and hole current densities Jn
and Jp, and current continuity.

We consider (1.1) subject to mixed Dirichlet-Neumann boundary conditions.
Dirichlet conditions are given at contacts (disjoint, connected boundary segments,
closed with respect to 012) and homogeneous Neumann conditions at the remaining
insulating part of the boundary.

A semiconductor device is specified by the doping profile and the number and
location of contacts. We consider a pn-junction diode, where 12 splits into a p-region
r where C(x)<0 holds and an n-region 122 where C(x)>0 holds. ’1 and 122 are
separated by the pn-junction F. The following technical assumptions will be used"

(A1) F is a smooth curve that meets 012 under right angles. In neighborhoods of
the points where F meets 012, the boundary is given by straight line segments.

(A2) The doping profile is smooth in 121 t.J 122 and has jump discontinuities at F.
C(x)l--> y > 0 holds.
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This work was supported by "sterreichischer Fonds zur F6rderung der wissenschaftlichen Forschung."
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A diode has two contacts C1, C2 ca with C c 01 and C2 01-/2. We assume the
following"

(A3) The closure F of the pn-junction does not intersect the contacts C1 and C2.
A typical example for the device geometry is depicted in Fig. 1.1.

We consider (1.1) subject to the boundary conditions

(1.2) nlc,,c=1/2(C +4c=+4a)lc,,c,
plc,,c=-1/2(-C /x/C2/44)1c,,c2,

(1.3) VO. loa--X7n" loa-Vp" loa=0
where 0f/N =0I\(C1 t.J C2) denotes the insulating boundary segments and v the unit
outward normal.

The parameter a represents the applied voltage with a > 0 in the case of large
reverse bias. The Dirichlet data for n and p are obtained from the assumptions of
vanishing space charge (n-p- C 0) and thermal equilibrium (np 84) at the con-
tacts. The thermal equilibrium equation represents a mass-action law, where 2 is the
scaled intrinsic number of the semiconductor (see [15] for details). In practical
applications 2 takes small values because densities (such as the intrinsic number) are
scaled by the maximal value of the doping profile, which usually is much larger than
the intrinsic carrier density.

Several existence proofs for (1.1)-(1.3) can be found in the literature (see [11]
and [12] and references therein). An application of Theorem 3.2.1 in [11] yields
Theorem 1.1.

THEOREM 1.1. Problem (1.1)-(1.3) has a solution (, n, p) (H(fl) L(fl)) that
satisfies

-efl <- O <- a + efl in fl

where

/3 := 2 In I(11 cII co. + /11 cII =L(ft) / 4t4)/2t2

holds.
Although/3 tends to infinity as 0, the product eft is usually small compared

to unity. This suggests an asymptotic analysis of (1.1)-(1.3) for e-0. Theorem 1.1

cl

IF
/

FIG. 1.1. Device geometry.
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shows that the potential is bounded uniformly in e. For a rigorous analysis of the limit
e->0 additional a priori estimates of this kind would be necessary. However, the
existence result on which Theorem 1.1 is based does not provide suftioiently sharp
bounds.

In [4] Cattarelli and Friedman treated related problems. The main difference from
(1.1)-(1.3) is a modification of the boundary conditions that allows for a rigorous
analysis of a simplified problem.

Similar results for one-dimensional problems have been developed in a series of
papers by Brezzi et al. [ 1]-[3]. The analysis of the present work is based on the formal
methods of singular perturbation theory.

Although the modified boundary conditions in the above-mentioned papers do
not allow for an analysis of current flow, the limiting behavior of the potential is
obtained. Under appropriate assumptions @ is shown to converge to the solution of
the variational inequality

(1.4) oKo," InVoV(V-o) dx>- fnC(x)(v-o)dx lvKo,

where

(.5) Ks := {, H’(Iq)" ’lc, 0, ’1c2 a, 0 -<_ -< a a.e. in

holds. Inequality (1.4) can be interpreted as a double obstacle problem for the deforma-
tion $ of a membrane. The membrane lies between the obstacles represented by , 0
and $- cz and is fixed to the lower obstacle along C1 and to the upper obstacle along
C2. In this context C(x) is a transversal force pushing downward in 1 and upward
in fZ2.

Without being derived as a limit of (1.1)-(1.3), the double obstacle problem (1.4)
has already been formulated as a model for the potential distribution in [7] and 10].
It can be motivated by the reduced equations

(1.6) Ao no Po C(x), nov bo poVo 0

and the estimates in Theorem 1.1.
For the carrier densities no and Po the reduced system implies

no-Po-C(x)=O inZUA

where Z and A denote the coincidence sets

z := {x fz: q,o(X) 0},

A := {x 1): Oo(X) a},

no=Po=0 inN=O\(ZUA).

In the physical literature the noncoincidence set N is called the depletion region, as
it is depleted of charge carriers, or the space charge region.

The equations above are not sufficient for characterizing the limiting charge carrier
and current densities. For a one-dimensional situation the limiting problem has been
completed by Schmeiser [13]. It is the main purpose of the present work to extend
these results to the two-dimensional case.

The formulation of the limit problem requires certain topological properties of
the sets Z, A, and N that are proved in 2 to hold for a small enough.

In 3 we introduce asymptotic expansions in powers of e for the solution that
allow us to formulate equations determining the current flow. It turns out that in the
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space charge region N the flow is purely convective and governed by a hyperbolic
system, whereas diffusion is significant in Z and A, where a system of elliptic equations
has to be.solved. A proof of existence of a locally unique solution of the coupled
problem for small 4 is the main result of 3.

2. The double obstacle problem. This section is concerned with an analysis of
problem (1.4) for small values of a. Standard results for variational inequalities [8]
yield Theorem 2.1.

THEOREM 2.1. (A) Problem (1.4) has a unique solution o that is H61der continuous.

Besides, d/o W2’p(fi’) holdsfor any p < oo andfor any subdomain fi’ of 1 whose closure
does not contain critical boundary points, i.e., (a) points where Ofi is not smooth, and
(b) edges of the contacts where Dirichlet and Neumann boundary conditions meet.

(B) Ao+C(x)<=0 a.e. inZt.J N,

Affo+C(x)->_0 a.e. inAU N.

A direct consequence of (B) is Corollary 2.1.
COROLLARY 2.1. Z c fi1, A c fiE, F c N. By continuity of fro, Z and A are closed,

and thus, N is open relative to fi. A refinement of the last result in Corollary 2.1 is
Lemma 2.1.

LEMMA 2.1. F N.
Proof. Suppose Xo F f)A. The smoothness of F and the continuity of ’o imply

the existence of a ball BR(y) fi1 (q N with Xo dBR(y) (see Fig. 2.1). We have
(a) Abo =-C(x) > 0 in BR(y),
(b) a o(Xo) > o(X) for x BR(y),
(C) o continuous.

Application of Lemma 3.4 in [6] leads to

V o(Xo)" > 0

where v is the outward unit normal on OBR(y). This is in contradiction to V q’o 0 in
A. Analogously we prove F f’l Z- { }, which completes the proof.

r

FG. 2.1

The lemma immediately implies Fz fll, IA ’2 for the free boundaries Fz
separating Z and N and l?A separating A and N. From the smoothness of C(x) in

’1 [’-j "2 we obtain smoothness of Fz and FA by standard results (see [5], [8]).
For the analysis of the following section we will need Z, A, and N to be connected.

For Z and A this cannot be expected to hold in general. But we have Lemma 2.2.
LEMMA 2.2. N is connected.
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Proof. By the above results there is a component Nr of N with F c Nr. Assume
the existence of an additional component N c fl. We have

Ao=-C(x)>0 inN,

o=0 or V0o’V=0 on ON,
which implies 0o =< 0 in N by the maximum principle. This is in contradiction to fro > 0
in N. Analogously we show that there does not exist an additional component of N
in f:. Thus, N Nr, which completes the proof.

In 13] we have shown that Fz and FA converge to F as a - 0 in the one-dimensional
case. In the following this result is extended to two dimensions.

We define

p := {x f/: d(x, F) < p}.

With s(x):= d(x, F) we have

s C2(po) for some po > 0,

[s[=l, s->-M ino for someM>0

by assumption (A1).
TnognM 2.2. Let a be small enough so that p=(2a(Mpo+ 1)/)1/2po holds.

en N holds.
Remark. The theorem is a mathematical version of the statement, "The width of

the depletion region is propoaional to the square root of the applied bias," which is
well known in the engineering literature (see [16]) for the case of abrupt junctions.
The result could be extended to graded junctions where the doping profile smoothly
changes sign across F and, accordingly, > 0 with the required propeaies does not
exist. In this case the width of the depletion region is O(a /3) for small values of a.

Proo Let us deal with the paa of N lying in 1 first. We define a comparison
function by

w(x) :=
a(l_s(x)/p) xOO.

Obviously, w C(), w0 in , wick=0, Wlr=a holds. Besides, we have for

aw(x) 2/p=[(s p)as + IVsl=]

and for x ’,l\"p

<_ Y.-.-----[(p_s)M+ l]
Mpo+ 1

pM+I
<-_v<-<--C(x),

poM + 1

aw(x) =0<-C(x).
This shows that w is a supersolution ofthe equation Aw + C(x) --0 in 1-/1. A comparison
principle as in [8] implies

qo<=W in f/l,

and thus, qo=0 in fl\f/o. Similarly, it can be shown that qto a in ’2\’p holds,
which completes the proof.

COROLLARY 2.2. q0 W2’V(f) for p < oo and for a small enough.
Proof qo 0 or qo a in neighborhoods of critical boundary points by Theorem

2.2 and assumption (A1). The result now follows by Theorem 2.1.
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Theorem 2.2 shows that the free boundaries meet0 within the Neumann segments
for a small enough.

LEMMA 2.3. (a) If f is smooth in a neighborhood of a point Xo where one of the
free boundaries meets Ofv, then the angle between thefree boundary and Ofv at Xo is 7r/ 2.

(b) V,o/IVol is orthogonal to the free boundaries.
Proof. (a) A locally orthogonal smooth coordinate transformation moves Xo to

the origin and a neighborhood of Xo in f to {x2> 0}fq BR(O), where (xl, x:) are the
new coordinates. (See Fig. 2.2.). The extension of o to BR(0) as an even function of
x2 is the solution of a variational inequality in BR(O). The smoothness of the free
boundary that follows from standard results, and its symmetry with respect to the
xl-axis, imply the conclusion of the lemma.

(b) Let Xof lie on Fz. Then o is smooth in a neighborhood of Xo in N by
elliptic regularity. As in the proof of (a) we transform this neighborhood to {x2 > 0}
BR(O). We have d/o(Xl, x2) x2:f(x1, X2) with f smooth because o 0 for X2 < 0 and
o CI(BR). Assumption (A2) and the fact that o satisfies AOo+ C(x) =0 in N imply

f(xl, 0)---> 3>0.

If we use this, straightforward computation shows

lim Vo/IVol (0, 1),
x2-0

which is the desired result. It can be extended to points where Fz meets the boundary
by reflection as in the proof of Lemma 2.3. Points on FA are treated analogously.

raor
\ /\ // /

FIG. 2.2

The remaining part of this section is devoted to a more detailed analysis of the
solution of (1.4) for small a. With the substitution o ab, (1.4) changes to

(2.1) qbeK" a IaVckV(v-qb) dx>-IaC(x)(v-qb) dx fvK1
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where K1 is defined as in (1.5). This is a singularly perturbed variational inequality.
The reduced problem obtained by formally setting a =0 in (2.1) does not have a
solution. This difficulty can be overcome by considering a larger solution space. Lions
[9] treated problems where the reduced variational inequality is governed by a bilinear
form that is coercive in the enlarged space. As this is not possible in our situation, we
guarantee solvability by choosing the larger space such that K1 becomes bounded. Our
choice is L2(’) and the reduced problem is defined as

(2.2) bKl’0->JnC(x)(v-qb)dx VvK1

where/1 is the closure of K1 in L2(I). Obviously (2.2) has the unique solution

(2.3) ={01 a.e. in fl,
a.e. in 12.

From the proof of Theorem 2.2 we obtain a validity result for the formal
approximation b.

LEMMA 2.4. For the solutions dp of (2.1) and qb of (2.2)

holds for p >- 1.

Proof. For the function w(x) defined in the proof of Theorem 2.2 we have

This implies

a.e. in

=< (meas (f, f’l fp))’/P 0( /2p).
Similarly we obtain

II,/,
which completes the proof.

Obviously, b is not smooth enough for a uniformly valid approximation. To
improve on that we introduce a correction layer at F. Considering a local change of
variables

(x, x2)- (r, s)

where

-d(x, F) inl,
s(x)

d (x, F) in

we introduce the fast variable tr=s//--d and the tr-interval I=(-/2(Mpo+ 1)/3,,
/2(Mpo+ 1)/y) (compare with Theorem 2.2). Then the layer problem is given by the
one-dimensional variational inequality"

eff" I, b,(v-) d>= I, C(r, tr)(v-) dr Vve/

where K is defined by

/ ={ H’(I)" (-x/2(Mpo+ 1)/,) O,

(x/2(Mpo+ 1)/,) 1, O=< =< 1}.
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The one-dimensional variational inequality has been treated in [13];, It is easy to show
that the free boundaries are located in the interior of I and that b is strictly mono-
tonically increasing between them.

A formal approximation of the solution of (2.1) is defined by

4 in fZ\fo,

THEOREM 2.3. 6 6asll H’(.) O( 1/4).
Proo By assumptions (A1), (A2) it is straightforward to show that as solves the

variational inequality

(2.4) 6as K: a fas(--as)dx (C(x)+.g(x))(-as)dx g

where Ilgll L. is bounded independently of a. For w - we get from Lemma
2.4 and the definition of as
(2.5) wll Lp(.) O(/2).

If we set v as in (2.1) and v 6 in (2.4), the sum of the resulting inequalities reads

This implies

IlXZwll = llgll=.llwllc. o(L2()

by H61der’s inequality, the boundedness of g(x), and (2.5) with p 1. Combining this
estimate with (2.5) (p 2) completes the proof.

Finally, we state two assumptions that are needed in the following section:

(A4) Z and A are connected.

(h5) Vo/[VOo[ is Lipschitz in N.

Since both assumptions are satisfied by the formal approximations constructed
above, the author conjectures that they are satisfied for a small enough, although a
proof of this conjecture is not available.

3. Analysis of current flow. By formally setting e 0 in (1.1) and considering the
solution of (1.4) we obtain the equations

(3.1a) no-Po-C(x)=O

(3.1b) no=Po=0

(3.1c) div J,o div Jpo 0

inZUA,

in N,

which are not sufficient for the computation of no, Po, J,o, and Jpo. It is a standard
procedure in perturbation theory to derive additional equations by introducing
asymptotic expansions for the solution and equating coefficients of higher-order terms
(see [14], [18]). We make the ansatz

W W0 "1- eW " O( e2)
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where w stands for any of the solution components. Substitution in (1.1b, c) and
comparison of coefficients of e leads to

-Vpo poV1 PlVqo Jpo-
With (3.1) and our knowledge about qo we arrive at

(3.2) J,o =-nlVoo, Jpo--plVOo in N,

(3.3)
J,o V no nov1 in Z (_J A.
Jpo -Vpo-poV qq

Our next aim is to eliminate 1 from (3.1a), (3.3). In [13] this is done by introducing
the slow variable np. As the resulting problem is difficult to handle in the two-
dimensional case, we instead introduce the change of variables

no e q’l u, Po e-1 v.

If we use (3.1a) for eliminating q’l, (3.3) changes to

C +/C2 + 4uv
J.o Vu

2u
(3.4) in Z tO a.

-C +/C2+4uv
Jpo

2v
V v

Substituting (3.2) and (3.4) in (3.1c) yields the system

(3.5a) div (nlV qo) div (plV qo) 0 in N,

in ZUA,

which is elliptic in Z t.J A and hyperbolic in N.
Note that the computation of the current densities J,o, Jpo in N necessitates the

determination of the O(e) corrections n and p of the charge carrier densities. For
singular singularly perturbed problems, it is typical to have to deal with terms of
different orders simultaneously.

The formulation of the problem is completed by prescribing boundary conditions
at 0f and interface conditions at Fz and FA (see Fig. 3.1). As qo satisfies the original

Cz

FIG. 3.1
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boundary conditions for q, homogeneous boundary conditions for the correction
are required. This leads to

(3.6a)
U[ c’c’- 1/2( C /x/C2-t- 4a4)[ c’c:’
1.) CI,C 1/2(-C ’]-4C2

’l
t- 484)l c,,c,

(3.6b) Vu v, V l) 1)](OZUOA)NOI’IN O.

Since the characteristics of (3.5a) are parallel to 0Nfq0flN, we do not need any
boundary conditions there. At the interfaces Fz and FA, we obviously require continuity
of the normal components of the current densities

(3.6c) [J,o" t]rZ,rA [Jpo" t]rz,rA 0

where [. ]s denotes the jump of a quantity across the curve S and r, stands for the
unit normal to Fz(FA) pointing outward from Z(A). The above-mentioned observation
that np is a slow variable leads to the condition [noPo]r,ra =0.

By requiring the concentrations to be nonnegative, we see from (3.1) that only Po
has a jump discontinuity at Fz and only no has a jump discontinuity at FA. This implies
that for u and v

(3.6d) Ulr --0, vlrA =0.
The reduced solution is determined completely by solving (3.5), (3.6).

Before starting to analyze the reduced problem we mention that the jumps of Po
at Fz and no at FA can be smoothed by layer solutions. They are obtained by introducing
fast local coordinates along Fz and FA. This leads to a system of ordinary differential
equations on that has been analyzed in [13].

As a preliminary step in the discussion of the reduced problem we consider the
hyperbolic equations (3.5a). As Vq,o vanishes at Fz and FA, the solutions n and p
have singularities there in the case of nonvanishing current densities. It has been
demonstrated in [13] that, despite these singularities, matching to layer solutions can
be carried out. The following lemma shows that

n,, p, o(Iv

holds close to Fz and FA. From the proof of Lemma 2.3 we see that IX7 0ol is a possible
choice of a local variable there. Written in the fast variable
O(x/-/sc)-contributions result from n and p; these can be matched to algebraically
decaying layer solutions of order O(x/). The current flow through N is analyzed in
Lemma 3.1.

LEMMA 3.1. Let the operator S" H/2(Fz) H1/2(Fa) be defined by

where n is the solution of

S(f) := nVqo" t’lr,,

div (nV 0o) 0 in N,

nVq,o" Ulrz =f
Then S is a bounded and boundedly invertible linear operator.

Proof We introduce t$ n[VOol, which must solve the Cauchy problem

div (V0o/lV 0ol) 0 in N,
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because V0o" /[V0o[ [r 1 by Lemma 2.3(b). Assumption (A5) implies existence and
uniqueness of .

We define the mapping b’Fz--> FA by following characteristics starting at x Fz
until they leave N at b(x) FA. It is another consequence of assumption (A5) that b
is a diffeomorphism.

Let x(s) denote a parametrization of Fz by arclength. An application of the
divergence theorem to the region bounded by the segment between x(s) and x(s + h)
on Fz, the characteristics starting at x(s) and x(s+h), and the segment between
qb(x(s)) and qb(x(s+ h)) on Ia yields

s+h Is+hf(x(o’)) dtr=- S(f)(4(x(r)))lO &r.

By letting h--> 0 we obtain the representation

f(x) -S(f)(
for the inverse of S. A final application of assumption (A5) and Lemma 2.3(b) implies
[bxl > 0, which completes the proof.

Remark. The space H1/2 was chosen only for convenience in the proof ofTheorem
3.1 below. Obviously the result also holds for other function spaces.

Using Lemma 3.1 and introducing U[A--ew, V[z--ez, we must still solve a system
of four coupled elliptic boundary value problems"

2e
div

-C +/C2+ 4ue Vu) =0 inZ,

(3.7a)

(3.7c) 284
C -t-x/C2-t- 4t4

c2
Vlr =0,

div(-C+x/C2+4ueZvz=O inZ,
\ /2

(3.7d)
-C+x/C2+4ueZ

Vz. ritz= S-1( 2eW
Vv. Vlra)2 C+x/C2+4eWv

C "" x/C2 "" 4t4

Zlc-ln Tz. g[afNnoz O.
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LEMMA 3.2. For 4"- 0, problem (3.7) has a unique solution (Uo, Vo, Wo, Zo) that
satisfies

(3.8a) u0 Vo 0,

Wo Hi(A) 0 H2(A’), Zo H(Z) fq H2(Z’),
(3.8b) In /-< Wo, Zo<-ln
for all subdomains Z’ and A’ of Z and A, respectively, that do not contain critical
boundary points as defined in Theorem 2.1.

Remark. Note that HE-regularity holds in neighborhoods of Fz and FA whose
endpoints can be considered critical boundary points for the problem (3.5), (3.6).

Proof. The maximum principle applied to problems (3.7a, c) immediately implies
the estimates

O<=u, v=<
T -t- //2-b 4a4’

of which (3.8a) is a direct consequence. Thus, problems (3.7b, d) for 4__ 0 reduce to

(3.7b)o
div (ICIVwo) 0 in A,

Wolc2 In (Icl)lc2, VWo" ’loA\c=O;
div (I CIVzo) 0 in Z,

(3.7d)o
Zolc.--In (ICl)lc., VZo ’loz\c. --O.

Again applying the maximum principle, we get solutions Woe HI(A)fq L(A), Zo
HI(Z)f’IL(Z) and estimates (3.8b). Elliptic regularity implies Woe H-(A’), Zo
H2(Z’) for A’, Z’, which, in addition to the requirements in the statement of the
lemma, do not contain the endpoints of FA and Fz.

In the neighborhood of an endpoint Xo of of FA we employ a local coordinate
transformation as in the proof of Lemma 2.3. There it was shown that the extension
of IA to the exterior of l by reflection is smooth. The extension of Wo to the exterior
as an even function with respect to Of satisfies an elliptic equation and homogeneous
Neumann conditions at the extended FA. Thus, elliptic regularity results can be applied
in a neighborhood of Xo, giving H2-regularity of Wo there. Treating endpoints of Fz
analogously we obtain Wo H2(A’), Zo H2(Z’) for A’, Z’ as in the statement of the
lemma.

To facilitate the subsequent analysis we make the following additional regularity
assumptions:

(A6) Wo WI’6(A), Z0G wl’6(Z).
(A7) Let fo L3/2() and f,A L3() hold.

Then the solution of

aw=fo+div ((fl,f2)) in

wl c,.c WD, VW ’lo., 0

for smooth Dirichlet data wo is in W’3(O) and satisfies

The validity of the above assumptions requires a certain behavior of af close to critical
boundary points. Differential equations such as those in (A7) occur when the divergence
terms appearing in (3.7) are expanded, and lower-order terms are considered as data.
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THEOREM 3.1. For 4 small enough, problem (3.7) has a solution (u, v, w, z) in the
Banach space

B [(wl’3(Z) r) --/2(z’)) x (WI’3(A) n H2(A’))]2

satisfying

where Z’, A’ are as in Lemma 3.2.
Proof. We introduce the errors

4 u Uo, 4t; v- Vo,

By linearization we rewrite (3.7) as

div
\lcl v/A

-o

(3.9a) 2tTIq

(3.9b)

(3.9c)

(3.9d)

t4l W W0 t4 Z Z0

in Z,

C 4- x/C2 4- 4t4
c,

alr =0,

Va lO.NOZ 0;

( eWo )div Iclx7+- Vwo+A =o in A,

IcIv+ VWo 1- s va, 1 +A,

C +x/C2 + 4t4

8 -4 V if" t’laNnoa 0;fflc In
2C c2

 eWo )div
\lCl v+A =o in A,

C4-x/C24-484 c2
lr =0,

( eZo )div Iclvs+i- aVzo+f =0 in Z,

where the operators

f,f5 B (L3(Z) n HI(z’))2,
f, f4: B (LS(A) n HI(A’))2,

f3:B H1/2(FA), S6:B
can easily be seen to be Lipschitz with O(84) Lipschitz constants. The proof employs
the trace theorem and the continuous imbedding wl’3 L. Theorem 3.1 follows by
a contraction mapping argument if we can show solvability of the linear problem where
the f are considered as inhomogeneities.
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Solvability in HI(A)(HI(Z)) of (3.9a, c) is immediate. H2-regularity away from
critical boundary points follows as in the proof of Lemma 3.2. For proving W1’3-

regularity we rewrite the differential equation in (3.9a) as

Aa v(I cI/eZ)f div (I CI/eZf) -IcI/eV(eZ/[ cI)v a.
Using the estimates

where we applied assumption (A6) and the H61der inequality, we obtain ff WI’3(Z)
and continuous dependence on the data from assumption (A7). For t we proceed
analogously.

Considering t and as data in (3.9b, d) we see that these problems can obviously
be solved. If we note that the trace theorem (see, e.g., [17]) guarantees a sufficiently
smooth extension of the Neumann data into the interior of Z and A, respectively, the
required regularity can be shown similarly to the treatment of ff and .

Thus the proof of Theorem 3.1 is complete.
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STABILITY OF STEADY STATES FOR PREY-PREDATOR
DIFFUSION EQUATIONS WITH HOMOGENEOUS

DIRICHLET CONDITIONS*
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This paper is dedicated to Hiroshi Fujita on the occasion of his 60th birthday.

Abstract. This paper concerns a system of reaction-diffusion equations that describes the evolution of
population densities of a prey species u and a predator species v inhabiting the same bounded domain.
Under homogeneous Dirichlet boundary conditions, asymptotic stability properties of nonnegative steady
states are discussed. The corresponding steady-state problem has nonnegative solutions of three different
types; the trivial solution (0, 0), the semitrivial solutions (u, 0), (0, v) with u, v positive, and a positive
solution (u, v) with both components positive. Stability properties of the trivial and semitrivial solutions
are determined completely. The stability and uniqueness of positive solutions are also studied. This method
is based on spectral analysis, comparison principle, and bifurcation theory.

Key words, reaction-diffusion equations, positive steady state, asymptotic stability, bifurcation, prey-
predator system

AMS(MOS) subject classifications, primary 35K55; secondary 35B32, 35B40

1. Introduction. In this paper we study the following system of reaction-diffusion
equations:

Ut dlAu + au + uf(u, v),
(1.1)

vt d2Av+ by+ vg(u, v),

for x (Xl, x2,’’’, XN) 12 and > 0, where A is the Laplacian, and fl is a bounded
domain in RN with smooth boundary F. In (1.1), dl and d2 are positive diffusion
constants, a and b are some constants, and the interaction between u and v is
determined by f and g. These equations are supplemented by homogeneous Dirichlet
boundary conditions

(1.2) u v 0 for (x, t) F x (0, cx3).

Systems such as (1.1) arise in mathematical ecology and describe the evolution
of population densities of two interacting species that inhabit the same region 12
undergoing simple diffusion. We study (1.1) as a model of prey-predator systems. Let
u and v be population densities of a prey and a predator species, respectively. The
constant a in (1.1) represents the birth rate of u and is assumed to be positive. Similarly,
the constant b represents the birth rate of v, but we do not require its positivity. The
functions f and g, reflecting the dynamics of the prey-predator interaction between u
and v, are assumed to fulfill the following conditions:

(A.1) f(u,v) is a cl-function of (u, v)[0,)x[0,) such that f(0,0)=0 and
f,(u, v)<0 for all (u, v) [0, c) x [0, c).

(A.2) g(u,v) is a Cl-function of (u, v)[0,)x[0,) such that g(0,0)=0 and
g,,(u, v) > 0 for all (u, v) [0, ) x [0, ).

* Received by the editors August 12, 1988; accepted for publication (in revised form) April 21, 1989.
f Department of Mathematics, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo, 160 Japan.
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Moreover, we impose the following self-limiting assumptions on f and g"

(A.3) f(u, 0) is strictly monotone decreasing in u-> 0 and limu_f( u, 0)=-.

(A.4) g(0, v) is strictly monotone decreasing in v_->0 and limv_o g(u, v)=- for
each u >_- 0.

According to (A.3) and (A.4), each species can control its growth rate in the absence
of the other species. Boundary condition (1.2) means that the habitat is surrounded
by hostile environment for both species.

Our purpose is to study the asymptotic behavior of nonnegative solutions for
(1.1)-(1.2). In connection with this study, we are interested in finding all nonnegative
steady-state solutions for (1.1)-(1.2) and deciding their stability. Related problems
have been discussed by many authors; for prey-predator systems with Dirichlet condi-
tions, see, e.g., [1]-[5], [8], [9], [14]-[16]. Especially, Blat and Brown [1] have studied
nonnegative steady-state solutions for (1.1)-(1.2) in the case where

(1.3) f(u, v) -alu a2v, g(u, v) blu b2v,

for some positive constants al, a2, bl, and b2. By making use of decoupling and global
bifurcation techniques, they have constructed nonnegative steady-state solutions,
including positive ones. Recently, their existence results have been sharpened by Dancer
[8], [9] with the use of degree theory. Indeed, necessary and sufficient conditions are
established for the existence of positive steady-state solutions. (See also Li [16].)

However, it seems that stability properties of steady states have not yet been
completely understood. In this direction, we refer the reader to the work of Conway,
Gardner, and Smoller [4], [5], who have discussed the change of stability ofnonnegative
steady states for similar problems in the case N 1.

We will indicate our main results on the stability of nonnegative steady states as
well as on their structure. For the sake of simplicity, we choose f and g of form (1.3)
and take a and b as bifurcation parameters. As in Fig. 1, the (a, b) parameter space
is divided into four regions I, II, III, and IV defined by positive constants a*, b* and
monotone Cl-functions a,/ Curves C and C2 are defined by b--/(a) and a ti(b),
respectively. Besides the trivial solution (0, 0), the stationary problem for (1.1)-(1.2)
has two semitrivial solutions as nonnegative steady states: (u*, 0) for a > a* and (0, v*)
for b > b*. When (a, b) lies in I, (0, 0) is a global attractor for (1.1)-(1.2); that is, all
nonnegative solutions of (1.1)-(1.2) converge to (0, 0) as o. As a increases across
a* for each fixed b, then (u*, 0) bifurcates from (0, 0). For (a, b) II, (u*, 0) is a global
attractor to (1.1)-(1.2) with nonnegative initial data, whereas (0, 0) loses its stability.
Another semitrivial solution (0, v*) existing for b > b* has similar stability properties
when (a, b) III. As a result, (0, 0), (u*, 0), and (0, v*), respectively, possess I, II, and
III as their" global stability regions, so that there are no positive steady states for
(a, b) I U II U III. When (a, b) lies in IV, these trivial and semitrivial solutions become
unstable and a positive steady-state solution (a, ) appears as a secondary bifurcation
from (u*, 0) or (0, v*). Especially, (tL ) is locally stable for (a, b) IV restricted in a
neighborhood of C1 J C2.

The content of this paper is as follows. In 2 we collect some preliminary results
about asymptotic and stability properties for related single reaction-diffusion equations.
In 3 we carry out spectral analysis for trivial and semitrivial steady-state solutions
of (1.1)-(1.2). Section 4 is devoted to the study of global attractivity of trivial and
semitrivial solutions, where the comparison principle is a basic tool. By the local
bifurcation theory due to Crandall and Rabinowitz [6], [7], it is shown in 5 that
positive steady-state solutions bifurcate from two semitrivial ones and that they are
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locally stable. According to global bifurcation theory, these bifurcating solutions are
connected to each other by a branch of positive steady-state solutions. In 6 we carry
out bifurcation and stability analysis near (a, b)-(a*, b*) to get more information
about the branch of positive solutions.

The analysis in the present paper concentrates on reaction-diffusion systems of
prey-predator type. However, most of the methods developed in 3, 5, and 6 are also
valid for studying reaction-diffusion systems of competition type.

Notation. The usual norms ofthe spaces Lp (1)) for 1 -< p < oo and C() are defined
by

In particular, we denote by (.,.)2 the inner product of L2(). For any integer k, let
Wk’p(’) be the Sobolev space of functions u" - R such that u and its distributional
derivatives up to order k belong to LP(). The completion of C(I)) with respect to
the Wk’P(lI)-norm is denoted by Ifvk’P(I]).

2. Some preliminaries for single reaction-diffusion equations. In this section we
collect some results about single reaction-diffusion equations that are required later.

Consider the following initial boundary value problem:

(2.1)
wt=dAw+a(x)w+(c+h(w))w in 12 x (0, oo),

w=0 on r x (0, oo),
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where d is a positive constant, a is a C" (I)-function with/ > 0, and c is a parameter
moving over (-oo, o). We assume that

(H) h’[0, oo)- (-oo, 0] is a strictly monotone decreasing function of class
C1([0, oo)) such that h(0) =0 and limw_ h(w) =-o.

Let p > N and set X LP(f/). We define a closed linear operator A in X with
domain D(A) by

Au=-dAw for w D(A)=- W-’P(fl)f"1 grl,p([-).

It is well known that -A generates an analytic semigroup {e-tAJ,_>-o and that the solution
w of (2.1) with w(0)= Wo satisfies

(2.2) w(t) e-tAWo+ e-(t-s)A(w(s)) as,

where (w) (a + c+ h(w))w.
Let Wo be any nonnegative function of class C(fl) and let w(x, t; Wo) denote the

solution of (2.1) with w(0)= Wo. By virtue of (H), we can choose M > 0 such that
h(M) + c + 0. Then the comparison theorem (see, e.g., Protter and Weinberger
17]) yields an a priori estimate

(2.3) 0<-_ w(x, t; Wo) <= max {llwoll, M},
which assures that the solution w of (2.1) exists globally in time. Moreover, using (2.3)
and the smoothing effect of parabolic equations, we can see from (2.2) that, for any
0_-< a < 1, the solution orbit {w(t; Wo); t_-> 1} is relatively compact in D(A’) equipped
with graph norm of A (see Henry [10, Thm. 3.3.6]). Here we observe that

(2.4) D(A’) CI() if 1 + N/p < 2a,

where injection is continuous and compact (see, e.g., [10, Thins. 1.4.8 and 1.6.1]). In
what follows, we fix a satisfying (p+ N)/2p<a <1. Define the to-limit set tO(Wo)
associated with the solution orbit {w(t; Wo); t->0} by

tO(Wo) {w*; there exists a sequence {t,}’o(2.5)
such that w(t,; Wo) w* in D(A)};

then it is nonempty, connected, and invariant 10, Thm. 4.3.3]. Furthermore, (2.1) is
gradient-like with respect to the functional

E(w) I {dlVw(x)lZ/2-(a(x)+ c)w(x)2/2- H(w(x))} dx,

where H’(w)=wh(w), so that E is a Lyapunov function on D(A), that is,
dE w( t; Wo))/dt <- O. Therefore,

(2.6) tO(Wo) {w* D(A); w* is a nonnegative steady-state solution of (2.1)}

[10, Thm. 4.3.4]; so that any w* tO(Wo) satisfies

-dAw-aw=(c+h(w))w and w->0 inI,
(2.7)

w=0 onF.

Let ’o be the least eigenvalue for

(2.8) -dAw-aw=w inl) and w=0 onF.
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It is well known that, if c_-< ’o, then w--0 is the only solution of (2.7), whereas if
c > sro, then (2.7) has a unique positive solution w* (see, e.g., Blat and Brown [1]).
Thus we are able to show the following proposition in the standard manner with use
of the comparison technique (see, e.g., [5, Prop. 2.1]).

PROPOSITION 2.1. Let w be the solution of (2.1) with w(.. O)= Wo, where Wo( O)
is a nonnegative function of class C(D).

(i) If c <= o, then limt_ w(., t) 0 in C(I).
(ii) If c> o, then limt_ w(., t)= w*(c) in C(), where w*(.; c) is a unique

positive solution of (2.7).
We will investigate some properties related to w*(c) for c > ’0. The linearized

operator L(c)" X--> X of (2.7) about w*(c) is given by

L(c)w Aw- cw- cw-(wh(w))’(w*(c))w with D(L(c)) D(A),

where (wh(w))’=d(wh(w))/dw. As is well known, the spectrum cr(L(c)) of L(c)
consists of eigenvalues that lie on the real axis. Furthermore, we can prove the following
lemma.

LEMMA 2.2. For each c > o, all eigenvalues of L(c) are positive.
Proof. It suffices to follow the arguments used by Ito [11, Lemma A.1] (see also

Blat and Brown [2, Lemma 2.1]). [3

LEMMA 2.3. For each c > o, L(c) has a bounded inverse L(c)-1. Moreover,

L(c)-lf>0 in fl

for all f O) X satisfying f >- 0 almost everywhere in .
Proof. If follows from Lemma 2.2 that L(c) is invertible in X. For each nonnegative

fX, put w= L(c)-f and decompose it as w= w/-w-, where w/ =max {w, 0} and
w-=-min {w, 0}. Since w satisfies

(2.9) -daw-(a+c+(wh(w))’(w*(c))}w=f in f

with w 0 on F, multiplying (2.9) by -w- and integrating the resulting expression
over fl, we can derive

O>-- fafw- dx Ia [dlVw-’2-{oz + c+(wh(w))’(w*(c))}(w-)2] dx

>- ’o I. (w-) dx,

where ’o is the least eigenvalue of L(c), which is positive by Lemma 2.2. Thus, w--= 0;
so that w-> 0 almost everywhere in 12. The strict positivity of w in fl follows from the
strong maximum principle, lq

Finally, we state the dependence of w*(c) on c.
LEMMA 2.4. (i) Limc-o w*(c)= 0 uniformly in .
(ii) The mapping c -> w*(c) is ofclass C1((o, o); D(A)) and the Frdchet derivative

of w* with respect to c, which is denoted by w*, satisfy

w*(c)>0 in fl for C> o.
For the proof, see [2, Lemma 2.2] or [11, Lemma A.3].

3. Spectral analysis. We first give existence and regularity results of global sol-
utions for (1.1)-(1.2) with nonnegative initial data.



(3.7)

(3.8)

(3.9)

with additional condition

(3.10)

332 YOSHIO YAMADA

For p > n, set X= {LP()}2, Y { wE’p(f)fq ff,l,p(f)}2 and define a closed linear
operator A in X by

A(vu) (AlU
where Alu=-dlAu and Av=-dv. Since - generates an analytic semigroup
{exp (-t)},0 in X, the initial value problem for (1.1), (1.2) can be treated as that for
an abstract evolution equation (see 2).

Then the global solvability theorem reads as follows.
Pooso 3.1. Let uo, vo be nonnegative functions of class C(). en there

exists a unique solution (u, v) of (1.1), (1.2) with (u(0), v(0))=(Uo, Vo) in the class
C([0, ); X) C((0, ); D(A)). Moreover,

(3.1) 0u(x,t)ml and Ov(x,t)m2

for (x, t) flx [0, ) with some positive constants ml, m2.
oof Since the local solvability and uniqueness can be derived in the standard

manner, to obtain the global solvability it suffices to show (3.1) (see, e.g., Rothe [19,
Thm. 1]). In view of the forms in (1.1), it is easy to see from the comparison theorem
that

(3.2) u0 and v0

as long as the solution (u, v) exists. Hence, by (A.1),

(3.3) u, dAu + u(a +f(u, 0)).

Since we can choose Ma>O satisfying a+f(Ma, 0)=0 by (A.3), application of the
comparison theorem to (3.3) yields

(3.4) u max {11 nolle, ml.

Therefore, because of (3.4) and (A.2), we can show

(3.5) vt d2Av+ v(b+ g(m, v)).

As in the derivation of (3.4), it follows from (3.5) that

(3.6) vmax

where Nb is a positive constant satisfying b+g(ml, Nb)=0 (use (A.4)). Thus (3.1) is
derived from (3.2), (3.4), and (3.6).

Usually, the asymptotic behavior of global solutions is closely related to the
stability analysis of the corresponding stationary problem. So we consider

-dAu- au uf(u, v) in

-d2Av- bv vg(u, v) in

U=O=0 on F,

u_->0 and v---0 in

Besides the trivial solution (0, 0), the stationary problem above may have solutions
of two different types; semitrivial solutions (u, 0), (0, v) with u and v positive and
positive solution (u, v) with both components positive. The existence of semitrivial
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solutions follows from Proposition 2.1. Indeed, if we denote by ho (>0) the least
eigenvalue of

(3.11) -Au=hu inf,, u=0 onF,

then Proposition 2.1, together with (A.1) and (A.3), yields the existence of a (unique)
positive function u*(a) satisfying

(3.12) -dlAU*- au* u*f(u*, 0) in f, u* 0 on F,

for a > dlho; so that (u*(a), 0) clearly satisfies (3.7)-(3.10). Similarly, there is another
semitrivial solution (0, v*(b)) for b > d2ho, where v*(b) is the unique positive solution
of

(3.13) -d2Av*-bv*= v*g(O, v*) in fI, v*=0 on F.

We now investigate the (local) stability of these trivial and semitrivial solutions
by examining the spectrum of the corresponding linearized operator. Recall that any
solution (, 7) of (3.7)-(3.9) is said to be asymptotically stable if the spectrum of the
linearized operator of (3.7)-(3.9) at (a, ) lies in the right-hand side of the imaginary
axis. If there are some points in the spectrum with negative real parts, we say that
(a, ,3) is unstable. (For details, see Kielhffer [13, Thms. 4.1, 4.2] or Henry [10, Thms.
5.1.1, 5.1.3].)

The linearized operator of (3.7)-(3.9) at (0, 0) is given by

(3.14) Lo(a, b) (a- a 0 )0 A2-b
whose spectrum consists of eigenvalues. Clearly, we have Theorem 3.2.

THEOREM 3.2. Set

(3.15) a*=dAo and b*=d2Ao.
The trivial solution is asymptotically stable if a < a* and b < b* and unstable if a > a*
orb>b*.

We proceed to the spectral analysis of the semitrivial solutions. The linearized
operator of (3.7)-(3.9) at (u*(a), 0) produces the closed operator Ll(a, b) in X given
by

(3.16) Ll(a, b)=(Ll(a) -u*(a)fo(u*(a), O))0 Lz(a, b)

with D(L1) =V, where Ll(a)u =AlU-au-(uf),(u*(a), O)u and L2(a, b)v
AEv-bv-g(u*(a), O)v. By the Riesz-Schauder theory, the spectrum tr(Ll(a, b)) of
Ll(a, b) consists of real eigenvalues and

o’(Ll(a, b)) r(Ll(a)) LI o’(L2(a, b))

(cf. [11, Lemma 3.5] or [5, Thm. 2.7]). By Lemma 2.2, o’(Lm(a)) lies on the positive
real axis. Moreover, r(L2(a, b)) lies on the real axis and the least eigenvalue v2(a b)
is characterized as

(3.17) v_(a,b)=b(a)-b,

with

(3.18) E(a)=inf{d2llvvll-(g(u*(a), 0)1), 0)2; /) I/"1’2(’), Ilvll=-- 1}.

Therefore, the stability of (u*(a), 0) is stated as follows.
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THEOREM 3.3. Define (a*,b*) by (3.15) and 6 by (3.18). Let a>-a*. Then
(u*(a), O) is asymptotically stable if (a) > b and unstable if (a) < b.

For later use we will collect some properties of b.
LEMMA 3.4. The function b defined by (3.18) satisfies the following:
(i) b C([a*, c)) and b(a*) b*.
(ii) / Cl((a *, c)) and ’(a) < O.
(iii) Iff(0, 0)<0, then lim_, b’(a) g(0, O)/f(O, 0)<0.
Proof. We follow the idea used by Ito 11, Lemma A.4] to prove (i) and (ii). Since

b(a) is the least eigenvalue of

-d2Av-g(u*(a),O)v=lxv in f, v=0 on F,

we may take the corresponding eigenfunction /,(a) such that IlO(a)[12- 1 and $(a)> 0
in f/. The infimum in (3.18) is attained by O(a), so that

/(a+ h)= d211V$(a + h)ll-(g(u*(a+ h), 0)$(a + h), $(a+ h))2

(3.19) <--_ d2JlV,(a)ll-(g(u*(a + h), 0)$(a),

b(a)-({g(u*(a+ h), O)-g(u*(a), 0)},(a), t/,(a))2.

The similar inequality is valid if a and a + h are exchanged. Hence

(3.20) I(a+h)-(a)l<-IIg(u*(a+h),O)-g(u*(a),O)lloo.

Thus the assertion of (i) follows from (3.20) and Lemma 2.4. To prove (ii), we observe
that (3.20), together with (ii) of Lemma 2.4, implies the local Lipschitz continuity of
/7 on (a*, oo). Hence making use of (3.19), divide/7(a + h) -/7(a) by h > 0 (h < 0) and
let h --> 0; then

(3.21) /’(a) =-In gu(u*(a), O)u*(a)d/(a)2 dx

for almost every a (a*, ). In (3.21), a u*(a) is continuously ditterentiable in C(f)
by Lemma 2.4 and a - (a) is continuous in L2(f) by the perturbation result of Kato
[12, Chap. 4, 5]. Thus the right-hand side of (3.21) is continuous in a, so that (3.21)
holds true for all a (a*, ). In view of (A.2) and Lemma 2.4, the negativity of/’
easily follows from (3.21).

We prove (iii) with use of the identity (3.21). Let o be the eigenfunction of (3.11)
corresponding to the least eigenvalue Ao; so that we can take o satisfying o> 0 in
and 11o112 1. By (i) of Lemma 2.4, it is possible to show that

(3.22) lim gu(u*(a), 0)= g(0, 0) in C().
a*

Moreover, by the result of Kato [12],

(3.23) lim $(a) Oo in L2(f/).
a->a*

It remains to derive the dependence of u* on a. Since u*(a) is the unique nontrivial
solution of (3.12) for a > a*, we make use of the local bifurcation theory of Crandall
and Rabinowitz [7, Lemma 1.1] to get an expression of u*(a) near a a*. Set X Lp(f)
and Y-- W’P(f)fq l’l’P(I). Define the operator F" YxR->X by

F(u; a) A1 u au uf(u, 0).
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Clearly, F(0; a) 0 and Fu(0; a*) A1 a*; so that dim N(A1 a*)
codim R(A1- a*)= 1, where the null space and range space of a linear operator L are
denoted by N(L) and R(L). Moreover,

Fua (0; a*)po -tpo g(A- a*).

Therefore, applying Lemma 1.1 of [7], we obtain functions (w(s),a(s))s
cl([-So, So]; X xR), where So is a sufficiently small number, with the following
properties" (a) w(0) 0 and a(0) a*; (b) F(u(s), a(s)) =0, where u(s) s(tpo+ w(s))
and w(s) R(A1 a*) Y. The uniqueness ofnontrivial solutions for (3.12) near a a*
(see [7, Lemma 1.1]) implies

(3.24) u*(a(s)) s(tpo+ w(s)).

Now observe that

0 w(s)); a(s)),

-s(a(s)-a*)-s((tpo+ w(s))f(s(tpo+ w(s)), 0), qo)2

because II oll= 1 and w(s) R(A1 ). Hence

a(s)-a*= ((qo+ w(s))f(s(cpo+ w(s)), 0), Oo)2;

SO

(3.25) d-- (o)= (o, o)11  oo11 .

Since it follows from (3.24) and (3.25) that

(3.26) u*(a*) Po/ a(O) -o(fu(O, o)11

identity (3.21), together with (3.22), (3.23), and (3.26), gives

g.(0, 0)
lim b’(a) [3
a-,a* f(0, 0)

The stability analysis for (0, v*(b)) can be carried out in the same way as that for
(u*(a), 0). The linearized operator L2(a, b): X->X of (3.7)-(3.9) at (0, v*(b)) is given
by

( L3(a,b) O)L2(a, b)=
-v*(b)g,,(O, v*(b)) L4(b)

with D(LE(a,b))-Y, where La(a,b)u=Au-au-f(O,v*(b))u and L4(b)v=
A2v-bv-(vg)v(O, v*(b))v. The spectrum

tr(L2(a, b)) o-(L3(a, b)) tA o’(L4(b))

is composed of only real eigenvalues. By Lemma 2.2, the least eigenvalue of L4(b) is
positive. To characterize the least eigenvalue w3(a, b) of L3(a b), we introduce the
following function (cf. (3.18)):

(3.27) a(b)=inf{dllVul[2-(f(O, v*(b))u, u)2; u 1/,1,2([-), i]ull2__ 1}.

Since P3(a, b)=a(b)-a, the stability of (0, v*(b)) reads as follows.
TI-IEORE 3.5. Let b >= b*. Ifa is defined by (3.27), then (0, v*(b)) is asymptotically

stable if a < b and unstable if a > a b ).
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Finally, we state some properties of the function ti, which can be shown in the
same way as Lemma 3.4.

LEMMA 3.6. The function defined by (3.27) satisfies
(i) a C([b*, c)) and a(b*)= a*;
(ii) t cl((b*, 00)) and ti’(b) > 0;
(iii) If go(O, O) < O, then

lim ci’(b) =fv(0, 0)/gv(0, 0) > 0.
b- b*

4. Stability analysis via the comparison principle. In 3 we discussed the linearized
stability of trivial and semitrivial steady-state solutions. More information about their
stability properties can be derived via the comparison principle.

Though Theorem 3.2 means merely the local stability of (0, 0), its global attractivity
holds in the following sense.

THEOREM 4.1. Ifa <--a* and b < b*, then every nonnegative solution of (1.1), (1.2)
converges to (0, O) uniformly in f as 400.

Proof. By the nonnegativity of u and (A.1),

ut<-dlAu+au+uf(u,O) in fx(0, oo).

Let U be the solution of

Ut=dlAU+aU+Uf(U,O) in I x (0, oo),

(4.1) U 0 on F x (0, oo),

U(., 0)= u(., 0)=> 0 in f.

The comparison theorem for parabolic equations implies 0 =< u =< U and Proposition
2.1 ensures that U(., 0) 0 uniformly in f as 00. Therefore,

(4.2) lim u(., t) 0 uniformly in x f.

Because of (4.2) we can show that, for any e > 0, there exists T such that

v,<=d2Av+(b+e)v+vg(O, v) in Ix[T, oo).

Since b + e -< b* for sufficiently small e, Proposition 2.1, together with the comparison
theorem, enables us to show that

(4.3) lim v(-, t)=0 uniformly in x f,
t-->

as in the derivation of (4.2). Thus (4.2) and (4.3) yield the assertion.
Before studying the global attractivity of (u*(a), 0) or (0, v*(b)), we put some

additional conditions on f and g:

(A.5) f(O, v)>-f(u, v) for all u, v->0,

(A.6) g(u, O) >- g(u, v) for all u, v _>- 0.

THEOREM 4.2. In addition to (A.1)-(A.4), assume (A.6). If a> a* and b(a)> b,
then every nonnegative solution (u, v) of (1.1), (1.2) with u(., O) 0 satisfies

(4.4) lim (u(., t), v(., t))= (u*(a), O) uniformly in f.
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Proof. We employ the same method, based on the comparison theorem, as that
used by Conway, Gardner, and Smoller [5, Thm. 2.3] (see also [4]). Note that the
solution U of (4.1) satisfies

lim U(., t)= u*(a) uniformly in

by Proposition 2.1. Therefore, in view of u _-< U, we can show that

(4.5) lim sup u(., t)<-u*(a) uniformly in
t---

This fact, together with (A.2) and (A.6), assures that, for any e > 0, there is T such that

vt<-_d2Av+(b+e)v+vg(u*(a), v)

<- d2Av + (b + e)v + vg(u*(a), O)

in x[T, ). Here we recall that the least eigenvalue of-d2A-g(u*(a),O) with
homogeneous Dirichlet condition is b(a) (see (3.18)). Since b+e<b(a) if e>0 is
sufficiently small, it follows from the comparison theorem that

(4.6) lim v(., t)-0 uniformly in

Having established (4.6), we return to the first equation of (1.1). For any e > 0,

u>--dlAu+(a-e)u+uf(u,O) in x[T’,o)

with some T’ > 0. If e is sufficiently small so that dlho < a- e, Proposition 2.1 enables
us to deduce that

(4.7) lim inf u(., t) >- u*(a e) uniformly in

Letting e$0 in (4.7) and using (4.5), we have

(4.8) lim u(., t)= u*(a) uniformly in
t--

Thus (4.6) and (4.8) accomplish the proof.
When (A.5) is assumed in place of (A.6), it is possible to show the global attractivity

of (0, v*(b)) along the same line as Theorem 4.2.
THEOREM 4.3. In addition to (A.1)-(A.4), assume (A.5). Ifb>=b* and 8(b)> a,

then every nonnegative solution of (1.1), (1.2) with v(., O) 0 satisfies
lim (u(., t), v(-, t))= (0, v*(b)) uniformly in f.

Remark 4.1. We summarize our stability results of 3 and 4 in the (a, b) parameter
space (see Fig. 1). Assume that (A.1)-(A.6) are imposed on f and g. (Observe that f
and g defined by (1.3) satisfy (A.1)-(A.6).) Theorems 4.1-4.3 ensure that (0, 0),
(u*(a), 0), and (0, v*(b)) become global attractors for (1.1), (1.2) when (a, b) lies in
regions I, II, and III, respectively. Therefore, there are no positive steady states for
(a, b) I U IIU III. This fact agrees with the result of Li [16], who has discussed
prey-predator systems by setting almost the same assumptions as (A.1)-(A.6). Finally,
we should say that, by Theorems 3.2, 3.3, and 3.5, trivial and semitrivial steady states
are unstable if (a, b) IV.

5. Analysis of the stationary problem by bifurcation theory. In the subsequent
sections we study positive steady states for (1.1), (1.2). There are several results on
their existence; [1]-[3], [5], [8], [9], and [16]. Among them, Li [16, Thms. 1,2] (cf.
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Dancer [8], [9]) has established necessary and sufficient conditions for prey-predator
diffusion systems (similar to ours) by using the degree theory. According to his work,
it will be shown that, under assumptions (A.1)-(A.6), stationary problem (3.7)-(3.10)
has a positive solution if and only if all the trivial and semitrivial solutions are unstable;
that is, (a, b) satisfies a > ti(b) and b > b(a). However, the stability of positive steady
states is still an open problem. We will discuss their stability with use of the bifurcation
theory, although most of the existence parts are already known.

It is now convenient to restate our preceding results from the standpoint of
bifurcation theory (see Fig. 1). When a (respectively, b) is regarded as a bifurcation
parameter, (u*(a), 0) (respectively, (0, v*(b))) appears as a primary bifurcation from
(0,0) at a-a* (respectively b=b*) and the stability changes there. Moreover,
(u*(a), 0) and (0, v*(b)) lose their stability, when (a, b) crosses the Cl-Curve and the
C2-curve, respectively. Therefore, positive solutions of (3.7)-(3.9) will be realized as
secondary bifurcations from (u*(a), 0) or (0, v*(b)). See the works of Blat and Brown
1]-[3] and Conway, Gardner, and Smoller [4], [5], where some bifurcation techniques

are used.
We first discuss the secondary bifurcation from (u*(a), 0). Let a > a* be fixed

and regard b as a parameter. Define a nonlinear operator F" Y x R-> X by

Av by vg(u, v)
for U e .

Clearly, F( U*; b)= 0, where U* (u*(a), 0). As in the proof of Lemma 3.4, we employ
the results of Crandall and Rabinowitz [7] to show bifurcation at b b(a). In what
follows, we sometimes write b in place of b(a). The Frchet derivative of F(U; b)
with respect to U at (U, b)= (U*, b) is given by

(5.2) Ft:( g*;/) Ll(a,/),
where Ll(a, b) is defined by (3.16). We will verify the assumptions of Lemma 1.1 of [7].

LESSA 5.1. (i) dim N(Ft(U*; tT(a)))= 1 and N(Ftj(U*;/(a))) (’(,, ,:)}
with t) < O, (2 > 0 in 12 and  =11= 1.

(ii) codim R(F( U*;/(a))) 1. Moreover, ’(h, h_) R(Ft( U*;/(a))) if and
only if (h2, o) 0.

(iii)

Fub( U*;/(a))(l) R(Fu( U*;/(a))).

Proof. In view of (5.2), we examine N(LI(a, b)) and R(LI(a, b)). Recall that zero
is the least eigenvalue of L(a, b) (see (3.17)), so that dim N(L(a, b))= 1 because of
the invertibility of Ll(a) by Lemma 2.3. Let ’(Ol, q2) N(LI(a,/)). Then

Ll(a)qgl-- u*(a)fv(u*(a), O)q2, L2(a, b)q2 0.

Since q2 does not change sign, we may take q2 such that q2> 0 in f and IIq2112 1.
By (A.1),

u*(a)f,(u*(a), 0)q2<0 in 12,

which, together with Lemma 2.3, implies

ql Ll(a)-l(u*(a)f,.,(u*(a), 0)q2)<0 in 12.

Thus we have shown (i).
If t(hl, h.) is in R(LI(a,/)), there must be a solution (u, v) of

Ll(a)u u*(a)f(u*(a), 0)v hi, L(a, b)v h_.
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It is well known that the second equation has a solution v if and only if (h2, #2)= 0.
For such a solution v, the first equation has a unique solution u because of the
invertibility of Ll(a). Thus (ii) has been proved.

Finally, we observe that

Fv( U*;/)
-o

Hence the assertion of (iii) easily follows from (ii). [q

We are ready to prove the following bifurcation result.
THEOREM 5.2. Irl addition to (A.1)-(A.4), assume (A.6). Let a > a* befixed. Then

there exists a positive number such that, for every b b a ), b(a) + t ), there is a solution
(_u, _v) of (3.7)-(3.10) with the following properties"

(a) u*(a)>_u>0 and _v > O in 1).

(b) (_u, _v) is the only nontrivial solution of (3.7)-(3.10) near (u*(a), 0).
(c) (_u, _v) is asymptotically stable.
Proof. We will prove this theorem along the same line as Conway, Gardner, and

Smoller [5, Thm. 3.5] by applying the bifurcation theory of Crandall and Rabinowitz
[7].

Because of Lemma 5.1, all the assumptions of Lemma 1.1 in [7] are satisfied, so
that there exist a positive number So and continuously differentiable functions
t(wl, WE)" (--So, So) --> Y and/3" (-So, So) - R with the following properties"

(i) fl(0) 0.
(ii) ’(Wl(S), w2(s)) R(L(a,/)) and Wl(0) w2(0)--0.
(iii) If

u(s) u*(a)+s( + w(s)), v(s) s(+ w(s)),
(5.3)

b(s)=b+(s),

where ql, o2 are given in Lemma 5.1, then F( _U(s); b(s)) =0 with _U(s) t(_u(s), _v(s));
and

(iv) (_U(s), b(s)) is the unique nontrivial solution of F(U; b)= 0 in a neighbor-
hood of U*, b).
This fact implies the existence of a nontrivial solution of (3.7)-(3.9) when (a, b) lies
near the Cl-Curve defined by b b(a). Since t1 < 0 and P2 > 0 in II by Lemma 5.1, it
follows from (5.3) that

u*(a)>_u(s)>O and _v(s)>0 inIl

for sufficiently small s > 0.
As a next step, we will discuss the linearized stability of (_u(s), _v(s)). Let ,r(s)

denote the principal eigenvalue of Fo( _U(s); b(s)). According to Theorem 1.16 of [7],

lim {-sb’(s)(dv2/db)(a, b)/r(s)} 1,
s--O

where v2(a, b) is defined by (3.17). Therefore,

(5.4) r(s)= sfl’(s)(1 +o(1)) for sufficiently small s>0.

We will show

(5.5) /’(0)>0

to see the asymptotic stability of (_u(s), _v(s)) for sufficiently small s > 0. (Moreover,
(5.5) tells us the direction of the bifurcation; b(s)> b for small s>0.) Now
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F( _U(s); b(s))=0 implies that

(5.6) L2(a, 6)v_(s)-(s)v_(s)-v_(s){g(_u(s), V(s))-g(u*(a), 0)} 0.

Since tp26 N(L2(a,/7)) and (v_(s), 2)2=s by Lemma 5.1, taking the L2(f)-inner
product of (5.4) with q2 leads to

(5.7) fl(s)= ((2+ w2(s)){g(u_(s), v_(s))-g(u*(a), 0)}, q2)2.

Differentiation of (5.7) with respect to s gives

(5.8) fl’(0) 1 {g(u*(a), 0)o + go(u*(a), 0)q2}q dx.

Fhus (5.5) follows from (5.8) because q <0 and 2>0 by Lemma 5.1, g(u*(a), 0)>0
by (A.2), and go(u*(a), 0)_-<0 by (A.6).

The assertions of this theorem will be derived from the above results by regarding
b as a bifurcation parameter rather than s (use (5.5)). U

The preceding argument is valid for studying the secondary bifurcation from
(0, v*(b)) at C2-curve defined by a=t(b). Let b> b* be fixed and regard a as a
bifurcation parameter. We define a mapping G" Y x R-> X by

(AlU-au-uf(u,V))v) (:)G(V; a)=\A2v_bv_vg(u for V= Y.

Clearly, G(V*; a)=0 for all a_>-0 with V* =’(0, v*(b)). Correspondingly to Lemma
5.1, it is possible to show the following lemma.

LEttA 5.3. (i) dim N(Gv(V*; a(b)))= 1 and N(Gv(V*; a(b)))= {’(4’, ’2)}
with > 0 and t#2 5, 0 in 2 and I111=--1.

(ii) codim R(Gv(V*; a(b))) 1. Moreover, ’(hi, h2) R(G(V*; a(b))) if and
only if h ’1)2 0.

(g/’),R(Gv(V*’(b))).(iii) Gv(V*; a(b))
$2

The following theorem can be shown in the same manner as Theorem 5.2 with
the use of Lemma 5.3.

THEOREM 5.4. Ir addition to (A.1)-(A.4), assume (A.5). Let b > b* be fixed. Then
there exists a positive number such that, for every a (a(b), a(b)+ 8)), there exists a
solution (fi, ) of (3.7)-(3.10) that satisfies:

(a) fi>0 and > v* b in f.
(b) (, 7) is the onlj nontrivial solution of (3.7)-(3.10) near (0, v*(b)).
(c) (a, ,3) is asymptotically stable.
Sketch of proof. Owing to Lemma 5.3, the bifurcation theory of Crandall and

Rabinowitz yields the existence of a positive number So and continuously differentiable
functions ’(w, w2)" (-So, So)->Y and c" (-So, So)R satisfying (i) a(0)=0; (ii)
’(w(s), w2(s)) R(Gv(V*; a)) and w(0)= w2(0) =0; and (iii) if

fi(s) s(d/i + w(s)), e(s) v*(b)+ s(,2 + w2(s)),
a(s)=a+a(s),

where $ and. $2 are as given in Lemma 5.3, then G(V(s); a(s))=0 with V(s)=
’(fi(s), fi(s)). Therefore, in view of (iii), it is easy to show (a) because of the positivity
of $1 and 2. In studying the asymptotic stability of (a(s), fi(s)), it is essential to know
the sign of a’(0). After some calculations, we can show that

(5.9) a’(0) -I (f(0, v*(b))$l +f(0, v*(b))$2)l2 dx
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(cf. (5.8)). Hence (A.1), (A.5), and Lemma 5.3 enable us to see a’(0)>0, which
completes the proof.

Theorems 5.2 and 5.4 assure the existence, uniqueness, and stability of positive
solutions when (a, b) IV lies in a neighborhood of C1 or C2 curve (see Fig. 1). To
study the general case, we follow the argument of Ito [11, Thm. 5.1] based on the
global bifurcation result of Rabinowitz [18] (see [1, Thm. 3.3]). Then it is possible to
show Theorem 5.5.

THEOREM 5.5. Assume (A.1)-(A.6) and let a> a* be fixed. Then there exists a
branch of positive solutions of (3.7)-(3.9) that bifurcates from (u*(a), O) at b= (a)
and meets with (0, v*(b)) at b (a)-l(a), where (a)-i is the inverse function of t.

Thus we have obtained a fairly clear understanding of the set of solutions for
(3.7)-(3.10) and their stability properties. For example, consider the case a> a*.
Theorem 4.2 implies that (u*(a), 0) is a globalattractor for (1.1), (1.2) if b </7(a). As
b becomes larger than b(a), (u*(a), 0) loses its stability, and a positive solution, which
is stable when b is near 7(a), bifurcates from (u*(a), 0) at b=/7(a) (Theorem 5.2).
Such a positive solution exists for/(a) < b < (a)-(a) (Theorem 5.5), is stable when
b is near (ti)-l(a), and becomes identical with (0, v*(b)) at b=(a)-(a) (Theorem
5.4). By Theorem 4.3, (0, v*(b)) is a global attractor for (1.1), (1.2) whenever b is
larger than (a)-l(a).

6. Bifurcation from a double eigenvalue. In this section we discuss stability proper-
ties of positive solutions for (3.7)-(3.9) in the case when (a, b) VI lies in a neighbor-
hood of (a*, b*) (=- (dlAo, d2Ao)).

The operator Lo(a, b) defined by (3.14) has zero as a double eigenvalue for
(a, b)= (a*, b*). We will derive appropriate expressions of positive solutions by simul-
taneously regarding a, b as bifurcation parameters. Throughout this section we assume,
in addition to (A.1)-(A.6), that

(A.7) f,(0, 0) < 0 and g,(0, 0) < 0.

Define a nonlinear mapping H’Y x R --> X by

(Alu au uf(u, V))v)(6.1) H(U; a, b)=\A2v_bv_vg(u
Then H(0; a, b)=0 for all a, b and Ht:(0; a*, b*)= Lo(a*, b*). In what follows, we
simply write Lo in place of Lo(a*, b*). Clearly, dim N(Lo)= codim R(Lo)= 2. We can
take {1, 2} N(Lo) with

where Oo is the eigenfunction of (3.11) corresponding to Ao and satisfies oo>O in 12
and I1 o11 .-- 1. Moreover,

e R(Lo) if and only if (hl, oo)= (h, oo)=0.(6.3)
h2

For U t(u, v) X, we define

PU (u, 00) +(v, (00)2(I)2

and decompose X as X X +X2 with X PX and X2 (I- P)X. Similarly, Y is decom-
posed as Y Y1 + Y2 with Ya PY and Y2 (I- P). Then X1 Y N(Lo), X2 R(Lo),
and Y2 R(Lo) Y.
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We will look for solutions of H( U; a, b)= 0 in the form

(6.4) U= s{cos tol +sin to 2+ W} with W=t(Wl, W2) EY2,
where s and to are parameters. Since positive solutions are concerned, we restrict to

to (0, r/2). Let to E (0, r/2) be fixed for the time being. We define a nonlinear mapping
K(W, a,[3; s):Y2xRxRxR-X by

K( W, a,/3; s) s-ln(s(cos tol +sin to2+ W); a* + a, b* +/3)

\/3 (Oo sin to + w2) ]
(6.5)

((o cos + wl)f(a, ))(Oo sin to + w)g(a, )
for W ’(Wl, W2) with a s(qo cos to + wl) and s(oo sin to + w2). Clearly, K is a
Cl-mapping from Y2 x R x R x R to X satisfying K(0, 0, 0; 0) 0. The Fr6chet derivative
of K with respect to W, a,/3) at W, a,/3, s) (0, 0, 0, 0) is the linear mapping

(W, t,/3)--> LoW- (t cos to)- (fl sin

which is an isomorphism from Y2x R x R to X. Therefore, the Implicit Function
Theorem im.plies the existence of continuously differentiable functions
(lTV(s), 5(s), fl(s)), defined for sufficiently small Is], that satisfy (i) (0)=0, (0)-
/(0)-0 and (ii) K(’(s), cT(s),/(s); s)-0. Hence, if we set

u(s) s(oo cos to + ff,(s), t;(s) s(oo sin to + ff2(s)),
(6.6)

(s) a* + c(s), /(s) b* +/(s),
then (0(s), (s),/(s)) with O(s)=’(ff(s), t3(s)) becomes a nontrivial solution of
H(U;a,b)=O. Especially, since (ffi(s),Oo)2=0 for i=1,2, it follows from
H( U(s); J(s), b(s))=0 that

(6.7)
(6.8)

t(S) COS to (((0 COS to - I(S))f(I(S), (S)), (00)2,
/3(S) sin to ((Oo sin to + (s))g(a(s), (s)), ’t’o).

Differentiating (6.7) and (6.8) with respect to s, after some calculations we can derive

(6.9) t’(0) (f,(0, 0) cos to +f(0, 0) sin to)llOol[33
(6.10) /’(0) (g,(0, 0) cos to + gv(0, 0) sin to) qoll 33,
so that

(6.11)

lim/(s)- b* /(s)
-o t(s) a*

lim
o (s)

g,(0, 0) cos to + gv(0, 0) sin to

fu(0, 0) cos to +f(0, 0) sin to

If the right-hand side of (6.11) is denoted by/(to), then l(to) is an increasing function
of to (0, r/2) such that

(6.12) lim l(to)=
g"(O’ O)

o-o f (0, 0)
and lim l(to)

g(O, O)
/: L(0,0)"

Now we recall some properties of C1- and C2-curves near (a*, b*). The C1 curve,
defined by b b(a), satisfies

db gu(O, O)
(6.13) lim aa (a)

,--,,,* fu(0, 0)
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by Lemma 3.4(iii), and the C2-curve, defined by a a(b), satisfies

(6.14) lim
a(t)-I =go(0, 0),,_,,. da (a)

fv(O, O)
by Lemma 3.6(iii). In view of (6.12)-(6.14), we can conclude that, for each to e (0, r/2)
sufficiently close to zero, the solution (t(s), t;(s)) constructed as above coincides with
the positive solution bifurcating from (u*(a), 0) at the Cl-curve (see Theorem 5.2);
and that, for each toe (0, r/2) sufficiently close to 7r/2, (u(s), v(s)) coincides with
the positive solution bifurcating from (0, v*(b)) at the C2-curve (see Theorem 5.4).
Thus we may see that the expression (6.6), for sufficiently small s > 0, represents a
branch of positive solutions of (3.7)-(3.10) that connects the bifurcating positive
solution from the C-curve with that from the C:-curve.

We will discuss the asymptotic stability of (if(s), 5(s)) by the spectral analysis for
Hu(O(s); ti(s),/(s)) along the idea of [6], [7]. Observe that the principal eigenvalue
of Hu( U(0); (0), b(0))= Lo is zero with multiplicity 2. Hence, it suffices to examine
the behavior near s =0 for (possibly two) eigenvalues ’(s) such that

(6.15) Hu( (s); t(s),/(s)) U st(s) U
with st(0)- 0. We will look for eigenfunctions U in the form

(6.16) U -- +pt:I)2+ W, We Y2,

where p and W are to be determined later. Substitution of (6.16) into (6.15) yields the
following equivalent problem:

(6.17)
(6.18)

(6.19)
where

LoW-M(s) W-(I-P)N(s)(I+P2+ W)- srW= 0,

-cT(s)-(N(s)(, +p2+ W), ,)2- " 0,

-fl(s)p-(N(s)(dp, +p2+ W),

M(s)=(a(s) 0 )
((uf),,(a(s), (s)) (Uf)o(a(s), (s))N(s)
\(vg),(a(s)), (s)) (vg)v(t(s), (s))]"

By (6.9) and (6.10),

c(s) -s(f(0, 0) cos to +fo(0, 0) sin to
(6.20)

/(s)- -s(gu(0, 0) cos to / go(0, 0) sin o,)11 / o(),
for sufficiently small s-> 0. Moreover, some calculations give

(N(s)(I), (I))2 s(2fu (0, 0) cos to +f(0, 0) sin to) IIOoll] + o(s),
(N(s)(I)2, (I)1)2 SL(0 0) COS ,o I1 o11 / o(s),

(6.21)
(N(s)(I), (I)2)2 sg,(O, 0) sin o, I1o11 / 0(),
(N(s)(I)2, "2)2 s(g,,(O, 0) cos to + 2go(0, 0) sin ,o)11 o11 / o().

We first solve (w, ’) from (6.17) and (6.18) as functions of s and p. From the Implicit
Function Theorem there exist continuously differentiable functions (W(s; p), ’(s; p)),
defined for small s => 0, with the following properties:

(i) (W(0; p), (0; p))= (0, 0);
(ii) (W(s; p), ’(s; p)) satisfies (6.17) and (6.18);
(iii) W(s; p)llv=-< Us(1 +[p[) and [’(s; p)[<- Us(1 /lpl) with some C>O.
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Therefore, it follows from (6.18), with use of (6.20) and (6.21), that

(6.22)
(s; p)=-sp(f(O, 0) cos ,o I1 ooll / o(1))

-s(f,(O, 0) cos to IIpoll + o(1)).

Moreover, since (W(s; p), ’(s; p)) must satisfy (6.19), we are led to the following
equation"

Hence,

0=-r(s; p)p-(s)p-(N(s)(l+p2+ W(s; p)), 2)2

sp2{fo(O, 0) cos to IIOo[l + o(1)}

+ sp{f (0, 0) cos to go(0, 0) sin to  ollfl + o(1)}

s{gu(0, 0) sin to qo[[ + o(1)}.

pZIf(0, 0) cos to + o(1)} +p{f, (0, 0) cos to- go(0, 0) sin to + o(1)}

-{g,(0, 0)sin to + o(1)} 0,

so that we can find two continuous functions p+(s) such that

p+(s) (2fo(0, 0) cos to)-l[(go(O, 0) sin to -f, (0, 0) cos to)

(6.23) +/- {(f(0, 0) cos to-go(O, 0) sin (0)2

+ 4fo(0, 0)g,(0, 0) sin to cos to}l/2] + o(1).

Substitution of (6.23) into (6.22) gives two eigenvalues ’+(s) such that

+(s) -2-1s[f,(0, 0) cos to + g(0, 0) sin to

+/- {(f,(0, 0) cos to-go(O, 0) sin to)2
+ 4fv(0, 0)g,(0, 0) sin to cos to}l/Z] + o(s).

Since it is easy.to see Re ’(s)>0 for sufficiently small s>0, the spectrum of
Ht(/(s); 8(s), b(s)) lies in the right half-plane ofC. Thus we have shown the following
result.

THEOREM 6.1. If (a, b) IV lies in a neighborhood of (a*, b*), then there exists a

solution of (3.7)-(3.10), which is positive and asymptotically stable.
Remark 6.1. If we takef and g of the form (1.3), then all assumptions (A.1)-(A.7)

are fulfilled. Therefore, our results can be summarized as in 1 (see Fig. 1) and improve
on those of Blat and Brown [1]. Especially, the stability properties of the trivial and
semitrivial steady-state solutions are completely determined.

Remark 6.2. Our stability analysis developed in this paper is valid with slight
modification even if some of (A.1)-(A.7) are replaced by other suitable conditions.
For example, it is possible to study the stability of positive steady states for reaction-
diffusion systems such as the Holling-Tanner model (see [2]) or the competition model.
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PATI’ERN FORMATION IN HETEROGENEOUS
REACTION-DIFFUSION-ADVECTION SYSTEMS

WITH AN APPLICATION TO POPULATION DYNAMICS*

S.-I. EI’ AND M. MIMURA"

Abstract. Heterogeneous reaction-diffusion-advection equations are proposed for studying pattern
formation due to spatial heterogeneity. The equations contain a small parameter e, indicating the ratio of
the diffusion and advection rates and the reaction rate. Two-timing methods in the limit e 0 make it possible
to reduce the original partial differential equation problem to the approximating ordinary differential equation
problem, so that asymptotic states of solutions can be investigated. As an application to population dynamics,
population models of the Lotka-Volterra type are considered for studying the effect of spatial heterogeneity
on development of spatial and temporal distributions of individuals.

Key words, pattern formation due to heterogeneities, two-timing method

AMS(MOS) subject classifications. 34A05, 92A15

1. Introduction. To theoretically understand spatial and temporal distributions of
ecological populations, there have been proposed a large number of mathematical
models that essentially include two terms, such as dispersal and growth and/or death.
As one of these models, we have the following reaction-diffusion-advection system:

OU
(1.1) --+div J=f(u), t>0, x,

Ot

where

U (Ul, U2, Un) f(u) (fl(u),fz(u),’’" ,fn(U)),

J J(u) -(dlV ul + UlV el, d2u2 + u2eE," ", dnUn + Unen),

and is a bounded domain in R. Here ui is the population density of the ith species
at time and position x, with the diffusion rate di, the tactic advection Ve, and the
growth term f. We conveniently write (dl, dE," ", dn) and (el, eE," ", en) as d and
e, respectively. Usually d, e, and f depend on t, x, and u. The flux J consists of two
dispersal processes" the normal random movement of individuals, and the directed
movement toward the favorable region (or, on the contrary, from the unfavorable one).
If e is constant, namely, if the advection term is absent, J is reduced to the usual
diffusive flux. The boundary condition to (1.1) is

(1.2) (v,J)=0,, t>0, xOl

where (,) is an inner product, v is the outward normal vector on the boundary
and 0 is the n-dimensional zero vector. This condition ecologically implies that there
is no population flow through the boundary

The scalar case of (1.1), (1.2) (n 1) has been widely investigated when the
advection term is absent and the growth term f depends only on u. The resulting
problem of (1.1), (1.2) is

(1.3) O--U=div(d(x)Vu)+f(u), t>0,
ot

* Received by the editors September 6, 1988; accepted for publication (in revised form) March 13, 1989.
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with the boundary condition

(1.4) --=0, t>0,

For (1.3), (1.4), there are interesting results on existence, stability and bifurcation
properties of nonconstant stationary solutions [1], [10], [11], [14]-[16], [22], [33],
[39]. The most noteworthy result is that when the domain f is convex, any stable
nonconstant stationary solutions do not exist if d is constant, but possibly exist due
to suitable heterogeneities of d(x). In application points of view, a class of equations
such as (1.1) has been discussed by various investigators in population genetics [7], [8],
in population dynamics [12], [25], [26], [29] and in neurobiology [20], [30], [31].

To our knowledge, there has not yet been any full and systematic analysis for the
system of equations of (1.1) (n-> 2) to study the effect of spatial heterogeneity on
solutions, except for several works including [13],[37]. Under such circumstances,
Shigesada [34] has dealt with the extreme case, where the rate of dispersal is sufficiently
large compared with that of growth. This restriction is required by the ecological
situation such that the dispersal processes take place daily, while the growth process
takes place only once or twice a year. Under this assumption, (1.1) is written as

c3U
(1.1) n+divJ=ef, t>0, xI

at

with a small parameter e. By using the two-time-scale (two-timing) method, approximat-
ing ordinary differential equations can be formally derived from (1.1), (1.2) as e $ 0
[34]. Although this reduction of partial differential equations (PDEs) to ordinary
differential equations (ODEs) is formal, we can obtain much information on the time
development of solutions of (1.1), (1.2) by studying the corresponding ODEs.
Recently, Ei and Mimura [5] and Ei [4] have shown that this reduction is valid for
all up to O(1/e), and that in some situations it is valid for all [0, oo). Such reduction
methods for infinite-dimensional dynamical systems to finite-dimensional dynamical
systems are among the most recent interesting topics in the analysis of dynamical
systems (see [2] and [9], for instance).

Let us show one population model equation, described by (1.1), (1.2), which
represents competition between two species in the one-dimensional heterogeneous
habitat. It is given by

Ot Ox -x Udl + e r
K1

u
(1.5)

t>0,

with

x f-= (0, 1)

tg U
"jt-(1.6) d,-x u,d,=0, t>0, xeOf (i=1 2),

where di=(dei/dx) (i=1,2) and (rl,r2) is the intrinsic growth rate, (O1, O2) and
(/3,/32) are, respectively, the intraspecifie and interspecific competition rates between
the two species, and (K, K2) is the carrying capacity. Here we assume that all the
parameters are positive constants, leaving e and K (i 1, 2) to be functions of x. We
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specify that Ki(x) (i 1, 2) be humped as shown in Fig. 1, where xi is the maximum
point of K(x) (i= 1, 2), and consider the effect of the heterogeneities of K(x) on the
stability of spatial distributions of the two competing species. To do so, we introduce
one parameter 0 x2- Xl that indicates the distance between the most favorable regions
of the two competing species. We assume that e satisfies

e,(x) =-3’ log K,(x)

with a positive constant 3’ (i 1, 2). This relation implies that each species tends to
migrate toward the higher gradient of its carrying capacity in f. This requirement
seems to be phenomenologically reasonable. We show numerically the time develop-
ment of (Ul, U2) of (1.5), (1.6) for the same initial distributions. When 0 0, U exists
while u2 is extinct (Fig. 2(a)). When 0 =0.2, u2 exists while ul is extinct (Fig. 2(b)).
On the other hand, when 0- 0.4, the situation changes so that Ul and u2 can coexist
(Fig. 2(c)). These simulations suggest that stable spatial distributions of the competing
species strongly depend on the heterogeneous carrying capacities. Mathematically
speaking, bifurcation phenomena may possibly occur when 0 varies.

Motivated by these phenomena, we are interested in pattern formation of solutions
of (1.1), (1.2). Especially, we study the dependency of spatial heterogeneities of J
and f on solutions.

In 2, we apply the two-timing method to the PDE problem (1.1), (1.2) and
derive the approximating ODE problem ((2.8), (2.9)) in the limit e $0. The validity of
this method is also shown. In 3, we study existence and stability problems of stationary
solutions as well as periodic solutions of (1.1), (1.2). We emphasize here that not only
existence but also stability of such solutions of the PDE problem generically inherit
from those of the approximating ODE problem. In 4, we give proofs of the theorems
shown in 3. Finally, in 5, as an application of our procedure, we study the qualitative
behavior of solutions of the specified model (1.5), (1.6) when 0 varies. Further
application to population models with spatially heterogeneous environments will be
reported in [6].

2. Reduction of PDE lroblems to the approximating ODE problems. In this section,
we apply the two-timing method ([33], for instance) to the following initial boundary
value problem to (1.1) with a small parameter e:

(2.1) --+divJ=ef(x,u), t>O, x
Ot

(2.2) (v,J)=0,, t>0, xOf,

(2.3) u(O,x)=(x), xf,

X X

FIG. 1. Graph of heterogeneous carrying capaciO, K (i= 1, 2).
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u

(a)

u

(b)

Ul u2
(c)

FIG. 2. Time development of solutions of (1.5), (1.6) with the same initial condition for the suitably
specified parameters (see (4.5), (4.6) and e =0.1) when 0 varies: (a) 0=0, (b) 0=0.2, (c) 0=0.4. In each
figure, bold lines denote the functional forms ofK (x).

where (1, 2, n), ’ is a bounded domain in RN with sufficiently smooth
boundary 0f, and e andf are smooth functions in every argument. Here we assume that

(A) d is a positive constant and e is a function of x only.

When e is sufficiently small, namely, when the dispersal proceeds much faster than
the dynamics, we can imagine that the spatial distributions of individuals are governed
by the dispersal process as the initial stage and then are followed by the dynamical
process as the second stage. Such time development of solutions requires us to introduce
two different timescales and 7. (= et). We now attempt to find solutions of (2.1), (2.2)
in the form

(2.4) u(t, x; e)= Uo(t, 7., x)+ eUl(t, 7", x)+ O(e2).
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With the relation O/Ot=O/Ot+ e(O/O’), inserting (2.4) into (2.1)-(2.3) and equating
coefficients of like powers of e, we obtain

--uo+divJo=0, t>0, x12,
Ot

(2.5)
(U, Jo)=0,,, t>0, xO,

where Jo J(uo). Similarly,

--u+uo+diVJl=f(x, uo), t>0,
Ot

(2.6)
(’,J1)--0n, t>0, xO12,

where J =J(u). Let o(x) be the stationary solution of (2.5) with a o(x)dx=
where 1, is the n-dimensional vector whose components are all 1. Then we find that
there is a function U(r)= (U, U,. ., U,)(r) such that

(2.7) lira Uo(t, z, x)= U(z). o(x)
t--

for a uniquely determined o. Here, for x (x, x,..., x,) and y (y, y,..., y,),
x.y means the vector (xy,xzy,... ,x,y,). Similarly, V. x means the set {v. x
"lv e V} for x " and a set V in R". Here U(z) is determined as follows. Integrating
(2.6) over 1, we have

O Ia dU Iu,( t, ’, x) dx +-d-- f(x, Uo( t, ’, x)) dx.(2.8)
ot

Suppose that for any fixed z, u(t, % x) is bounded for all t>0, or equivalently,
O/Ot Ul(/, "r,x)dxO as t-oo (Ei [4]). Then, when t-oo, (2.8) reduces to the
following ODE of U only:

dU
F(U), r>O,(2.9)

d

where F(U) jaf(x, U. o(x)) dx (F( U), F2(U),’’., F,(U)). Since O/Ot
Uo(t, % x) dx 0, by (2.5), we have uo(O, r, x) dx U(). Therefore, by Uo(0, 0, x)
:(x), the initial condition to (2.9) is

(2.9)2 U(O) (x) dx.

Thus the initial value problem for U(r) is formulated as (2.9).
Remark 2.1. If (2.7) is valid, the spatial and temporal distributions of solutions

of (2.1)-(2.3) for large time could be governed by o(x) and U(r), respectively.
Remark 2.2. If e(x) are all constant, that is, if Ve,(x)= 0, then q(x)= 1/[II[, so

that F(U) 1/1 1 f,(x, u /l l, ", u /If l) dx, This case has already been discussed
by Conway, Hoff, and Smoller [3], Yu [37], and Hale [13].

We omit the construction of u0(t, r, x), because it is shown in Ei [4]. However,
we should note here that it is not unique. One explicit form is Uo(t, r,x)=
w(t, x)+ U(z). o(x), where w(t, x) is the solution of

Ow
+divJ(w)=0,, t>0, xsfl,
Ot

(2.10)
w(O, x) (x)- (x) dx. (x), x e a.
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Next we briefly mention the validity of Uo(t, % x) as an approximation to the exact
solution u(t, x; e) of (2.1)-(2.3). We first introduce some notation. Let C(f/; Rn) be
the Banach space consisting of all bounded continuous functions over f/with the norm
Ilullo-sup, lu(x)l for u c(o; R") and dist {V1, v}=inf{llx-yllolX v,y V2}
for two closed sets V1, V2 in C(f/; "). Similarly, ck(fl; ") denotes the Banach
space consisting of all k-times continuously ditterentiable functions over f with the
norm Ilull- Y,=o sup. ID’u(x)l. When a finite-dimensional space can be considered
as a subspace of C(f/; "), we identify the Euclidean norm of the finite-dimensional
space with the restriction of I1" Iio to the space, say I’1, because all norms of a
finite-dimensional space are equivalent to each other. Similarly, we use the same symbol
dist { V1, V2} even if V1 and V2 are subsets of the finite-dimensional space.

Let 7r(z; ..) be a solution of (2.9)1 with the initial condition

(2.11) U(0) E R".

DEFINITION. We call a closed bounded set F in R" an exponentially stable attractor
of r if there exist an open bounded set V (F) in " and constants Mo> 0, a > 0
such that

dist (or(z; ), F) =< Mo e dist (:, F)

for any : V and any r > 0.
THEOREM 2.1 [4]. If 7r(r; a (x) dx) converges, as zoo, to some exponentially

stable attractor F, then there exist constants el > 0 and C1 > 0 such thatfor any e (0, el]
a solution of (2.1)-(2.3) u(t, x; e) exists for all and

dist {u(t,. e),F. q(’)}--< Cle

for sufficiently large t.
Theorem 2.1 indicates that if the initial value c :(x) dx of (2.9)1 is contained in

the attractive region ofF, then u(t, .; e) eventually enters an e-neighborhood off q(.
in C(f/; ").

As a special case, if F consists of either only one equilibrium or only one periodic
orbit of (2.9)1, Theorem 2.1 can be stated as follows.

COROLLARY 2.1 [4]. In addition to the assumptions of Theorem 2.1, assume that
F is an equilibrium of (2.9)1. Then there exist constants el > 0 and C1 > 0 such that

Ilu(t, .; e)-Uo(t, et, .)11o_-<

uniformly for any e (0, eli and any [0, ).
COROLLARY 2.2 [4]. In addition to the assumptions of Theorem 2.1, assume that

F is a periodic orbit of (2.9)1. Then, there exist constants el > O, q (0, 1), and C1 > 0
such that

dist {u(t, .; e), t.J_o u(s’ es" )} <-- Cle’

uniformly for any e (0, e 1] and any [0, oo).
The results above indicate that the solution u(t, x; e) of (2.1)-(2.3) asymptotically

enters an e-neighborhood of the lowest approximation Uo(t, et, x) in suitable function
spaces. However, these do not reveal the behavior of the solution in that neighborhood.
That is, even if F consists of a unique periodic orbit, for instance, we cannot say
whether (2.1), (2.2) also has a unique periodic solution such that the solution u(t, x; e)
tends to it as oo.
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In the next section, we study the relation between the asymptotic states of solutions
of (2.9) and (2.1), (2.2) when e is sufficiently small.

3. Asymptotic states of u(t, x; e). In this section, to study asymptotic states of
u(t,. e) of (2.1), (2.2), we are concerned with the existence and stability of stationary
solutions as well as periodic solutions.

DEFINITION. Let 77" and or, {Trp()} be an equilibrium and a periodic orbit of
(2.9)1, respectively. Consider the linearized equation of (2.9)1 about 7re or

(3.1)
dz

Ftey,

where Ft dF/dU. We call "r/" a nondegenerate equilibrium if Fu(’ll’e) has no zero
eigenvalue, and call 7rp a nondegenerate periodic orbit if the characteristic multiplier
1 is an isolated simple eigenvalue of the period map of (3.1).

THEOREM 3.1. If 7r is a nondegenerate equilibrium of (2.9)1, there is a constant

eo > 0 such that (2.1), (2.2) has a unique stationary solution (x; e) for el < eo which
satisfies tT(.; e) C((-eo, eo); C(fl; Rn)) and limo (x; e) 71" (x) uniformly in
xII.

THEOREM 3.2. Suppose that 7r is a nondegenerate equilibrium of (2.9)1 and that
(.; e) is a unique stationary solution associated with 7r as shown in Theorem 3.1. Let
L be a linearized operator of (2.1), (2.2) about t(.; e). Then there exist el > O, C1 > O,
and a > 0 such that the spectrum ofL consists oftwo spectral sets tr e ), tr2( e satisfying
O’l(E) c {/ cll,I -< C1E} and o’2(e) c {A eC[Re A <-a}for 0< e _--< el. For any A(e)e
trl(e), there is some Aoe tr(Ft(Tre)) such that lim$o A(e)/e =Ao and its converse also
holds, where tr(Ft (Tre)) denotes the spectrum of Ft (’71"e).

For this theorem, (i) L has n eigenvalues in an e-neighborhood of the origin;
(ii) by the suitable e-scaling, these eigenvalues coincide with those of Ft(re).

THEOREM 3.3. If the nondegenerate equilibrium 71" is asymptotically stable, (x; e)
associated with 7re is also asymptotically stable for sufficiently small e > O. Moreover, it
has an attractive region V, which is independent of e, in C(I-I;

Similar results hold for the case of the nondegenerate periodic orbit.
THEOREM 3.4. If 7rp is a nondegenerate periodic orbit with period to, there is eo> 0

such that (2.1), (2.2) has a periodic solution P( t, x; e) with period t for 0< e < eo which

satisfies

lim dist {P(t,. e), 7rp. q (.)} 0 for 0 <- <= t,

lim et ’o.
$o

THEOREM 3.5. Suppose that 7rp is a nondegenerate periodic orbit and that P( t, x; e)
is a periodic solution of (2.1), (2.2) associated with rp as shown in Theorem 3.4. Let
U(t) be a period map of P(t,x; e) in (2.1), (2.2). Then, there exist el>0 and Ci>0
(i 1, 2, 3) such that the spectrum of U (t) consists of two spectral sets trl (e), trE(e)
satisfyingtrl(e) {A Cl CI<_-IAI<_- C2} andtr2(e)= {A CIIAI<_ C3e}forO<e<-el. For
any A (e) try(e), there is some characteristic multiplier Ao of (3.1) such that lim+o A (e)
Ao and its converse also holds.

Remark 3.1. The spectrum of U (t) is independent of because ofthe compactness
of Ue(t).

THEOREM 3.6. Assume rp is nondegenerate and the spectrum of the period map of
(3.1) (except 1) lies in {IA[< (} for some ( < 1. Then P(t, x; e) associated with 7rp is
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orbitally asymptotically stable for sufficiently small e > O. Moreover, it has an attractive
region V that is independent of e, in C(O;

These results imply that asymptotic states of solutions of PDE problems derive
from those of the approximating ODE problems except for degenerate cases. Con-
sequently, the asymptotic behavior of solutions of the PDE problem can be generically
investigated by studying the ODE problems.

Let 0 be a parameter indicating the heterogeneities of circumstances for individuals
in ecology. Then problem (2.1), (2.2) is written as

OU
(3.2) --+divJ(u;0)=ef(x,u;0), t>0, xfl,

Ot

(3.3) (u,J(u; 0))=0,, t>0, xOl’l,

and the stationary solution p(x) of (2.5) as p(x; 0).
The approximating ODE becomes

(3.4) dU_ F( U; 0), - > 0
dz

with a parameter 0. For a study of pattern formation due to spatial inhomogeneity,
we are interested in bifurcation problems of (3.2), (3.3) with respect to 0. Suppose
that solution structures of (3.4) can be globally analyzed with respect to 0. Then
Theorems 3.1-3.6 imply that the regular (i.e., nondegenerate) branch for 0 of (3.4)
extends to that of the PDE problem (3.2), (3.3). However, we should note that these
theorems do not give any information to degenerate cases such as bifurcation points
or limiting points. It is expected that the global picture of asymptotic states for PDE
problems will be generically deformed from that of associated ODE problems. These
imperfection problems are now in progress.

4. Proofs. Let B be the Banach space C(fl; R") with sup-norm II" 110 and let A
be the operator defined by Au =-div J(u) with domain D(A)
{u W2"+(f; ")lAu B and (v,J(u))=O, on xOll}. &(B) denotes the Banach
space of bounded linear operators from B into itself with operator norm I1" II. Then A
is a generator of an analytic semigroup in B with the spectrum r(A)=
{0= h0> hi > h2>" } (Stewart [36]), Ker A =". p, and the projection Q: B--> Ker A
is given by Qu= u(x)dx.o for u B. Under this notation, F(U) in (2.9)1 is
represented by

(4.1) F(U). (.)=Qf(., U. q(.)) for

and problem (2.1), (2.2), (2.3) is written as the initial value problem in B:

(4.2)

du
Au + ef(u), > O,

dt

u(0) ,
where f(u)(.) denotes f(., u), so that f(u) is a smooth function from B into itself.
Here we give other notation used in this section: r() denotes the spectrum of if. is a closed operator in B; Id is the identity in B; P Id- B; B1 QB; B2 PB; Ii
is the identity in Bi (i 1, 2), respectively; E is a unit matrix in "; M and a are
constants such that Ile’Pll <--Me-at for t=> 0; C and C (i--1, 2,... are constants
independent of sufficiently small e > 0.
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Proof of Theorem 3.1. The stationary problem (2.1), (2.2) is written as

(4.3) O=Au+ef(u).
We define ul and u2 by ul 0u and u2 Pu, and we decompose (4.3) into

(4.4) 0 Qf(ul + u2), 0 Au2+ ePf( Ul + u2).
By (4.1), the nondegeneracy of 7/" is equivalent to det (Qf,(Tre. o)]a,) 0, so that by
the standard Lyapunov-Schmidt method, we see that (4.4) has a solution (l(e), 2(e))
with (al(0),a2(0))=(Cre’0,0) (see Theorem 3 of Ei and Mimura [5], for
instance).

Proof of Theorem 3.2. Let if(e)(.) (.; e) (lel-<- eo) be the stationary solution
of (4.3) satisfying if(0)(. )= 7re" 0(’). Then the linearized operator L of (4.2) about
ff (e) is described by L A+ efu (ff (e)). Consider the equation

(4.5) (it L)u v

for it C and v B. Putting ul Qu, u2 Pu and Vl Qv, v2 Pv, we have a pair of
equations equivalent to (4.5):
(4.6)1 itul- eOfu(fft(e))(Ul + u2)
(4.6)2 Au2-A2u2- ePf,(f(e))(ul + u)) v2,

where A2 is the operator that is restricted to B2, which is invertible in B2. Let a be a
constant satisfying 0 > -a > it1. Then, if it satisfies Re it > -a and e > 0 is sufficiently
small, (4.6)2 is solvable on u2 and it is written as

(4.7) u2 G(it, e)(v2+ ePfu(f(e))),
where Gl(it, e)=(itI2-A2-ePf,((e))) -1. Substituting (4.7) into (4.6)1, we have

(4.8) {AI1- eQf,(fi(e))(I1 + eG(A, e)Pf,,(ft(e)))}Ul vl + eQf,(ft(e))G(A, e)v2.
Since O(e) and Gl(it, e) are uniformly bounded for sufficiently small e > 0, there is a
constant Co> 0 such that ]]Qf,(a(e))(I1 + eGl(it, )Pf(()))ll-<- Co. Hence, if
satisfies ]it]> Cle for some C1 > Co and sufficiently small e >0, (4.8) is solvable on

ul. Consequently, there are positive constants C1 and el such that if it satisfies
and Re it > -a for 0< e <_- el, it is an element of p(L,). This implies that the spectrum
r(L) consists of two spectral sets rl(e), r2(e) such that rl(e) c {it  cllxl-< c,e} and
r2(e) {it CIRe it <-a}.

We consider the spectrum contained in rl(e) for 0< e <= el. Since L has the
compact resolvent, rl(e) consists only of isolated eigenvalues with finite multiplicity.
Putting it’= it/e for it rl(e), we consider the following eigenvalue problem"

(eit’- L)u =O,
which is equivalent to

(4.9)1 it’ ul Qf,( f( e )( ul + u2) O,
(4.9)2 eit u2 A).u2 ePfu f( e ))( ul + u)) O,
where ul Qu and u2 Pu. Since (4.9)2 is solvable on u2, we obtain

(4.10) u2 eG2(A’, e)Pf((e))ul,
where G2(it’, e)=(eit’I2-A2-ePf,((e))) -1. After substituting (4.10) into (4.9)1, we
see G3(A’, e)ul=0, where G3(A’, e)={A’I1-Qf,(f(e))(Ii+eG2(it’, e)Pf,(f(e)))}.
Here G3(A’, 8) is a matrix in the finite-dimensional space B1, so that it suffices to
investigate zeros of g(A’)=detG3(it’,e). Let D,-{ACIIAI<C,). g(A’) is an
analytic function of it’, and as e $0, it converges to go(it’) =det (it’I1- Qf, (Tre o)],)
det (A’E-Fu(Tre)) uniformly on D1. We may assume that g(it’) and go(it’) are not
zero on c3D1, so that the proof is complete by use of the theorem of Hurwitz.
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Proofof Theorem 3.3. From Theorem 3.2, it is obvious that fi(e) is asymptotically
stable for sufficiently small e > 0. We show only that t(e) has an attractive region
independent of small e > 0.

Under the assumption of Theorem 3.3, it is proved by Lemma 5.1 of Ei and
Mimura [5] that there exist positive constants/3, 0 (0< 0 < r/2), e2, and C such that
for 0<e<e2, the sector S={A eCllarg (x-/3e)[< r/2+0, x /3e} is contained in
p(L) and

C
(4.11) II(A t)-i][ <-- for all A S

holds. By transforming into r (=et), (4.2) becomes

(4.12) du_ 1
Au +f(u)

dr e

and the linearized operator about a(e) becomes 1/eL (=l/eA+f,((e))). Let S=
{xCllarg(X-/3)l<r/2+0, x/3}. Then by (4.11), we have II(x-1/eL)-ll_-<
C/IA -ill for all A S, implying that Ilel/ell <- C2 e-r for some C2>0 independent
of e satisfying 0 < e -<_ e2. Thus it turns out that a(e) of (4.12) has an attractive region
V independent of sufficiently small e > 0. [q

Proof of Theorem 3.4.
LEMMA 4.1. For a given constant Co>0, there is eo>0 such that (4.2) has an

invariant manifold Me for el < eo which is represented as M {Ul + h (Ul, e) U Do},
with Do--{unlllull< Co}. h satisfies h(., .) CI(Do (-Co, eo); B2), Ilh(u,,  )11 --<
c1, and h(u,, )11 -< C1 for some C > O.

Proof Problem (4.2) is rewritten as follows:

dUl du2(4.13)
dt

eQf(Ul + u_),
dt A2u2 + ePf(u +

where U Qu and u2 Pu. Noting Ile’All- lie ’APII Me we can prove this lemma
in a standard manner (cf. Carr [2]), so we omit the proof. U

By Lemma 4.1, we find that the dynamics of (4.13) on the invariant manifold
is reduced to that of du/dt eQf(Ul + h(u, e)), or equivalently,

(4.14) du Qf(Ul d- h(Ul, e)),
dr

where r= et. Since "B’e(r (" is a nondegenerate periodic solution of (4.14)o (e =0
in (4.14)) with period ro, it is shown by Theorem 8.3.2 of Henry [18] that there exists
a periodic solution P(r; e) with period r for sufficiently small e such that re - ro and
dist{P(r;e)(.),Trp.O(’)}-O as e0. Therefore the definition of P(t,.;e)=
13(et; e)(. completes the proof, l-]

Remark 4.1. We note that (4.14) is reduced to (2.9)1 as e 0. This implies that
(2.9)1 constructed by the two-timing method is the lowest approximation to (4.14) on
the invariant manifold Me.

ProofofTheorem 3.5. We define P(t, .; e) by P(t; e)(. and consider the linearized
equation of (4.2) about P(t; e):

(4.15) dU-(A+ ef,(P(t; e)))u.
dt

Let T(t, s) be the evolutional operator of (4.15), that is, T(t, S)Uo gives a solution of
(4.15) with u(s)=uo. Then the period map Ue(s) of P(t; e) is given by Ue(s)=
T(s+te,te).
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LEMMA 4.2. There exist el > 0 and C > 0 such that PU (s)ll c, for o < < e
and s >- O.

Proof. Equation (4.15) is equivalent to

(4.16)1 dUl
dt

eQf(P(t; e))(u + ua),

(4.16)2
du_

dt A2u2+ ePfu(P(t; e))(u

where U --Qu and u2 Pu. Let u(s)= Uo with Iluollo 1. Then, as is done in Lemma
6.6 of Ei [4], we can show that there exist e2>0 and C2>0 such that ]lu2(s+ t)-
e ta2 PUollo <- C:e for 0< e < e2, so that we have

(4.17) u=(s / t)llo--< c= /Me-’ll uollo.
Since the inequality t >= C3/e holds for some C3 > 0, we see that

u=(s / t)llo-IIPUuollo <- c= /Me-aC3/ <= C4e
for some C4 > 0. The estimate above holds uniformly for Uo (lluollo<_-1), which gives
the proof.

Suppose IIPU(s)ll <- ce for0< e < and consider the equation (A U(s))u v,
or equivalently

(4.18)1 IU QUe(s)(u

(4.18)2 Au2- PUe(s)(Ua +
where u Qu, u2 Pu and v Qv, v2 Pv. If A satisfies I;tl > c=e for some C2 with
Cz> C, then (4.18)2 is solvable on u2 and we have

(4.19) u2 (A PU(s))-l(vz PU(s)u),

< C3(4.20) PU s - IA--
for some C3 > 0. Substituting (4.19) into (4.18)i, we see

(4.21)

where k v-QU(s)(A-PU,(s))-v. Let If(z) be the periodic map of rp in

du Of,(’n’p(r). o)ul for Ul B1,
dr

which is the same equation as (3.1). Since IIQU(s)Q-(es)ll-o as e0, there exist
Ci (i=4, 5,6) such that cr(QU,(s)Q)m {x clc<l;tl< c} and such that, for any A
satisfying I;tl -< C or IXl-> C, (X-QU(s)Q)- exists with II(x-QU(s)Q)-II <- c6.
Hence there exists C7 > 0 such that

C7.___E < C7II(z -QU(s)Q)-’QU,(s)(A -PU(s))-’PU(s)ll <-
IAI c-

for A satisfying C2e < Ix c4 or IAI c. Taking C2 such that C2 > C7, we see that
(4.21) is solvable on Ul when e >0 is sufficiently small, that is, {A C]C2e <IA[ -< C4
or Ixl >-- c} is in p(U,(s)), which gives the proof of the first half of this theorem.

LEMMA 4.3. u(s) (s)Q - 0 as o.
Proof. From (4.17), we suppose that there exists a positive constant C8 such that

(4.22) u2(s + t)llo c8(e 4-e-’)
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uniformly for Uo with Iluollo 1. Let Te(t, s) be the evolutional operator of

du
(4.23)

dt
eQfu(P(t" e))u

and let O, (s) be the period map, that is, Oe (s) L (s + te, s). Then L (t, s)ll is bounded
for te>-_t>=s>=O and Ue(s)Qzr(es)Q as e0. Equation (4.16)1 implies that

f s+te
(4.24) u,(s+ te) U,(s)Quo+ e | Te(s+ te, o’)Qf,(P(cr; e))u2(tr) dtr.

From (4.22) we have

Ilul(s / t)- O()Quollo IIQU(s)Uo- O(s)Quollo
s+t

<= e C9( e + e-a) dcr

(4.25)

for some C9 and Clo. Hence

U(s)-rt(s)QII <-_ Qua(s)- C(s)QII
(4.26)

+ O(s)Q-rt(s)OII + PU(s)II- o
as eO.

We consider the spectrum contained in try(e). Noting that r(U(s))=
cr,(e)Uo’2(e) such that O’l(e)c {h clc4<lxl< C} and tr2(e)c
we define a projection corresponding to o’l(e) by Qe(s), that is, Qe(s)=
1/2ri Ir (x Ue(s)) -1 dX, where F is a closed curve enclosing O-l(e with C2e <11 < c
or I1 > c for any y F. Let Be (s) Qe (s)B and I (s) be the identity in Be (s). Since

Ue (s) has a compact resolvent, o"1(e) consists only of isolated eigenvalues with finite
multiplicity. Hence Be(s) is a finite-dimensional space, and it suffices to inves-
tigate the zeros of ge,(h)=det(hle(s)-Qe(s)Ue(s)). From Lemma 4.3 and Q=
1/2zri r (h -Tr(es)Q) -1 dh, we have [IQe(s)-QIl-O as eO, so that ge,(h) converges
to go(A) =det (hI-QII(O)Q)=det (hll-II(O)) uniformly for h satisfying C4-<_1A1<_-
C5. Since g,(h and go(h are analytic functions of A and go(h 0 on F, the theorem
of Hurwitz completes the proof.

Proof of Theorem 3.6. If we transform into z (=et), (4.15) becomes

d--u-(a+ef((z; e)))u,(4.27)
dr

where/3(z; e) is a periodic solution~ with per.iod ze associated with rp. o as shown in
the proof of Theorem 3.4. Let Te (’, s) and Ue (s) be the evolutional operator and the

p.eriod map of (4.27), respectively. Then we remark that Te(et, es)= T(t, s) and
U(es)= U(s) hold, where Te(t, s) and Ue(s) are the evolutional operator and the
period map of (4.15), respectively. From (4.22) and (4.25), we see that there exists
C1.1 > 0 such that

(4.28) ’if"(’7", S)I Cll
for all z>=s>=O. Then, in a way similar to the proof of Theorem 7.2.3 of Henry [18],
we can prove that there exist C2 > 0 and 8 > 0 independent of sufficiently small e > 0
such that

(4.29) (, )11o<- c,= e-(-)llu IIo
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for z_-> s and u Bl(s), where Bl(s) is a subspace invariant under O(s), tr(O(s)[)
tr(U(s))\{1}. The estimates (4.28) and (4.29) imply this proof.

5. Allflieation to two-competing sleeies models. In the previous section, we have
found that when e is sufficiently small, the qualitative property of solutions of PDE
problem (2.1), (2.2) is similar to those of ODE problem (2.9)1, if they are nondegen-
crate.

In this section, as an application of our procedure, we consider the two-competing-
species model already proposed as (1.5), (1.6) in 1. For this model, we introduced
a parameter 0 in some interval O indicating the distance between the maximum points
of Kl(X) and K2(x). Here, to make clear the dependence on 0, we write the carrying
capacity K(x) as K(x; O) and the stationary solution (x) of (2.5) as (x; 0). Then,
applying our procedure to (1.5), we obtain the following approximating ODE with
the parameter 0"

(rl- a,(O) U1- bl(O) U2) U1,
dz

(5.1)
dU (r2 b2(0) U1 a2(0) U2) U2,
dz

where

(x;
dx, b,(O) fl, Jn0___.._) (01(X; 0) (2(X; 0)

a,(0) a,
K,(x; O) K,(x; O)

dx

for 1, 2. The asymptotic states of solutions to (5.1) can be studied by phase-plane
analysis, namely, the global structure of equilibria of (5.1) is completely known with
respect to 0.

Let us show one example. We choose- cos 4r x + + 1 --+-< x < --+
2 4 2

KI(X; 0)--
2

otherwise,

(5.2)

"’cos4r x- +1 +<x<+
K(x; O)=

2
otherwise.

By noting that xl =-(0/2)+1/2 and x2 0/2+1/2, we find that 0 varies in the interval
19 [0, 1/2]. We specify d, r, a,/3, and 3’ as

d=(dl,d2)=(1,1), r=(1,1), a=(1,1),
(5.3)

/3 (1.5, 1.2), y 1.6,
respectively.

First we consider the case when the dispersal is ignored, so that (1.5) is formally
reduced to the ODE system with parameters x and 0:

dt
-e rl-- KI(x; O) ]

(5.4)
du2 ( 1Ul -’
dt

e r2- K2(xi -j ]
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A simple calculation shows that the parameters in (5.4) are chosen so as to have no
stable coexistence equilibrium for any x e f and 0 e 19. In ecological terms, this situation
indicates the competitive exclusion between the two species as long as they do not
migrate. Under this situation, we have the following problem. If they migrate in a
heterogeneous habitat, is it possible for them to coexist? For this problem, the
approximating ODE system (5.1) works well.

First, consider the case when the advection is ignored, that is, 3’ 0. We easily
find that the stationary solutions of (1.5) with e 0 and of (1.6) are q(x; 0) (1, 1),
which is independent of 0, so that the approximating ODE system is also independent
of 0. Phase-plane analysis shows the global picture of equilibria of (5.1) in Fig. 3. The
ecological interpretation is that if the two competing species move with diffusion only,
they never coexist even if the heterogeneous habitat encourages a favorably segregated
pattern for them.

Next, consider the case when the advection term is present, say 3’ 1.6. Figure 4
shows the global bifurcation pictures for 0, where there are two critical values 0,
(= 0.15) and 0* (---0.27) such that three qualitatively different asymptotic states appear
for 0 < 0 < 0,, 0, < 0 < 0", and 0, < 0 < 1/2. The stable coexistence equilibrium exists
for 0, < 0 < 1/2. Theorems 3.1-3.3 say that there is a stable stationary coexistence solution
of (1.5), (1.6). That is, coexistence ofthe competing species occurs due to incorporation
of spatial heterogeneity and tactical migration (see [34]). Thus, from Fig. 4, the reader
can now completely understand why three different asymptotic states of solutions
appear for suitable 0 as in Fig. 2.

EO+

E++
E+o
EO0 --o

0 1/2
FIG. 3. Global structure of equilibria of (4.4) when y =0. Eoo (0, 0), E+o= (rl/al, 0), Eo+ (0, r2/az)

and E++ is the coexistence equilibrium, is the stable branch, is the unstable branch.

EO+
E

E+0
EO0

0 1/2
FIG. 4. Global structure of equilibria of (4.4) when y 1.6.

E++
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There remains one interesting problem. Our theorems do not discuss bifurcation
points 0 0, and 0 0". This analysis, with further applications to the multispecies
model, will be reported in [6].

Acknowledgment. We are grateful to Miss T. Yamanoue for numerically computing
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THE STEFAN PROBLEM WITH A KINETIC CONDITION
AT THE FREE BOUNDARY*
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Abstract. This paper considers a class of one-dimensional solidification problems, in which a kinetic
undercooling is incorporated into the temperature condition at the interface. A model problem with linear
kinetic law is considered. This study indicates that the presence of a kinetic term at the interface can prevent
finite-time blowup even though supercooling (superheating) exists. The mathematical effects of the kinetic
term are discussed.
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1. Introduction. Mathematical models of solidification that include interface
kinetics effects have been considered for quite some time (see [1], [2], and references
therein). This class of free boundary problems, which arise in a number of physical
situations, is that of nonequilibrium problems, in which the phase-change temperature
is dependent on the velocity of the front at which the phase change occurs (for more
physical problems, see [3]-[6] and references therein). Here we study a model problem
with linear kinetic law at the interface in the one-dimensional case. Specifically, let
the curve x s(t) with s(0)= b (0< b < 1) be defined as the interface that separates
the liquid and solid phases. With u denoting temperature (scaled so that it vanishes
at equilibrium), we may write the system of equations as

(1.1) ut kLUxx in Q1 {(X, t)/0 < x < s(t), 0 < <-- T},

(1.2) ut=ksu,,, in Q_={(x,t)/ s(t)<x<l,O<t<-T},

and on the interface x s(t) as

(1.3) u-=u+=u x,
(1.4) kLU- ksu+ -Lg( t),

(1.5) U
I e( t),

(1.6) s(O) b, O<b<l,

where kL and ks are thermal diffusivities of a liquid and a solid, respectively, L # 0 is
the latent heat, e is a constant, and the superscripts / and denote, respectively, the
right-hand and left-hand limits with respect to the spatial variable x. These equations
are subject to the initial and boundary conditions

(1.7) u(x, O) ckl(x), 0 <-- x <-_ b,

(1.8) u(x, 0) thE(X), b <_- x <_- 1,

(1.9) u(i 1, t) =f(t), _-> 0 (i 1, 2).
For the discussion below, we will also denote problem (1.1)-(1.9) as problem (P).
In the absence of the interface kinetics effects (i.e., when the coefficient e =0),

this problem is known as the Stefan problem, which has been widely studied and for
which the mathematical results are fairly well understood.

* Received by the editors April 11, 1988; accepted for publication (in revised form) April 28, 1989. This
work was supported by U.S. Navy grant N00014-86-G-0021.

f Mathematical Institute, 24/29 St. Giles, Oxford, OX1 3LB, United Kingdom.
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The model in which the coefficient e is nonzero has been considered by Coriell
and Parker in [3], where the shape stability has been carried out for the effects of
linear kinetic and of square kinetic law (i.e., eg- u2) when temperature u satisfies
Laplace’s equation, in place of the time-dependent diffusion equation (see also the
references in [3]). This has also been generalized by Coriell and Sekerka [4], who
discuss the morphological stability of a planar solid-liquid interface during unidirec-
tional solidification of a binary alloy. Crowley [5] has described several physical
situations in which two kinds of nonequilibrium problems occur; those that arise in
the modeling of alloy solidification in certain regimes, and those that arise in the study
of condensed-phase flame propagation in which the reaction zone is thin. Visintin [7]
has studied the latter problem using a variational approach, but has only been able
to establish the existence of a generalized solution.

Our objective in this paper is to understand the mathematical effects of the kinetic
term for the above model problem in the classical framework. The results here are
completely parallel to the results that have been proved for the standard Stefan problem,
but without sign restriction on the boundary and initial data that may lead to the
finite-time blowup for the Stefan problem in certain circumstances. This indicates that
the interface kinetics effect may regularize the problem, at least in the one-dimensional
case, in such a way that it can stop blowup, even if supercooling (superheating) exists.

In 2 we give the existence proof via a fixed-point argument. Section 3 establishes
the uniqueness of the solution. Section 4 discusses the regularity of the free boundary
(also for temperature u(x, t)), and the C-regularity is proved by repeating the
"bootstrap" process. Last, in 5, we retrieve the solution of the Stefan problem by
taking the limit e-> 0, with sign restriction on the boundary and initial data and an
additional assumption about the free boundary.

2. Existence of a solution of problem (P). In this section we establish the existence
of problem (P), (1.1)-(1.9). A definition of a classical solution (s(t); u(x, t)) is defined
in the usual sense, which satisfies

(i) s C1(0, T).

Denoting by Qr Q-- (0, 1) x (0, T) and by ui the restrictions to Qi of u(x, t),

(ii) u,(x, t) C( O,) V1C21(Q,),
U,x C( Qi\{x i- 1}), 1, 2,

and (1.1)-(1.9), the functions b,(x) and f/(t) (i 1, 2) in (1.7)-(1.9) satisfy

(2.1) f(t)e cl(’)OL(R1), ,(x) e clio, b], _(x)e Cl[b, 1]

and the consistency conditions

(2.2) fl(0) thl(0), f2(0)= b2(1), tl(b)-- b2(b).
To prove the existence result, we use a fixed-point argument.
Let K(To, M)={s(t)C[O, To]/s(O)=b,O<s(t)<l, lgl<-M}, where M is a

fixed constant to be specified below and To is small enough so that

(2.3) MTo <- min { b, 1 b}.

For simplicity, we first consider the case in which the constants e and L are positive.
For any given s(t) K (To, M), there exists a unique solution u(x, t) of problem

(1.1)-(1.3), (1.6)-(1.9), and

(2.4)
L

kLU-(s(t), t)-ksu+x(s(t), t)+-u(s(t), t)=O
E
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(see, e.g., [8], [9]). With this choice of u(x, t), we define the mapping F such that
Fs h with

(2.5) h(t) b+l f u(s(’r), ’; s(t)) d%
E o

where u(x, t; s(t)) is a solution of problems (1.1)-(1.3), (1.6)-(1.9), and (2.4) corre-
sponding to the given interface x s(t).

If we can show that F has a fixed point that belongs in K(To, M), then from
(2.5) and (2.4), it follows that (1.4) and (1.5) are satisfied. Thus (s(t), u(x, t)) will then
form a solution of problem (P).

To show that F maps K(To, M) into itself, we observe that h(t) is again in
CI[0, T] and h(0) b because u(x, t) is a classical solution of (1.1)-(1.3), (1.6)-(1.9),
and (2.4). Note that a straightforward application of maximum principle yields the
estimate

(2.6) Ilu(x, t)llo,Oo<_-Mo -= max (11 ,11o, IIf, llo, i= 1, 2).

If we take M= Mole, then by (2.5) we have h(t) K(To, M). This means the
mapping F is from K (To, M) into itself.

We next show that F is a continuous mapping. To do this, suppose s" (t), s(t) K
(n= 1,2,...), s"- s uniformly on [0, To]. Define u"(x, t), u(x, t) to be the solution
of problem (1.1)-(1.3), (1.6)-(1.9), (2.4) corresponding to the boundary x=s"(t),
x= s(t), respectively. We first prove that u"(x, t) u(x, t) in C(Qo).

Since the u"(x, t) is bounded uniformly, which is also the generalized solution of
the problem

(2.7) u,-(K(x, t)u,+a(x, t)U)x+a(x, t)u=0 in Qo,

with boundary and initial conditions (1.7)-(1.9) in the sense of [10], where

(2.8) K(x,t)={ kL’ {0 in O’={O<x<=s"(t),O<t<To},
ks,

a(x,t)=
-L/e in Q’={s’(t)<x<l,O<t<To},

then u"(x, t) has uniform HSlder constants on Qro [10]. Thus there is a subsequence
(which we also denote by u"(x, t)) converging in C(Qro) to some function u(x, t).
Any region Q’ bounded away from the interface x s(t) and parabolic boundary F
of QT"o is also bounded away from x s(t) for n sufficiently large. The uniform bounds
on higher derivatives of u(x, t) in Q’ allow us to pass to the limit to conclude that u
satisfies 1.1 ), 1.2).

To prove (2.4), we note that the u"(x, t) satisfy

f l [u’+K(x, t)u,+a(x, t)u’+a(x, t)u,] dx dt =O
QT

for all smooth :(x, t) vanishing in a neighbourhood of F. Passing to the limit as n - cwe have the same equality for u. As sO(x, t) is arbitrary and (1.1), (1.2), integrating by
parts and noting that s(t) K(To, M) can show that (2.4) holds.

The uniqueness of the solution u(x, t) of the boundary value problem (1.1)-(1.3),
(1.6)-(1.9), (2.4) for given interface follows by standard methods (see, e.g., [8]). Then
the limit function u(x, t) of u"(x, t) is a solution of problem (1.1)-(1.3), (1.6)-(1.9),
(2.4) corresponding to the interface x=s(t); this implies that u’(x, t)- u(x, t) in
C(QTo).
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We now prove F(sn)--> F(s) in C[0, To], denoting by a(t)=min (sn(t), s(t)) and
by u(x, t; (t)) the solution of (1.1)-(1.3), (1.6)-(1.9), (2.4) corresponding to the
interface x =/3 (t).

Then

(2.9)

F(s F(s) -el Io [un(s"(7.), 7.; s"(t))-un(t(7.), 7.; s(t))] d7.

[u"(ce(7.), 7.; s"(t))-u(a(7.), 7.; s(t))]

[u(a(7.), 7"; s(t))-u(s(7"), 7.; s(t))] aT.

-= I + 12 + l

From the H/Slder estimates of u"(x, t) and u(x, t) on QTo we get

Mc
(2.10) [I’]<--_]]S"--S[lcO,To (i= 1,3),

and the Dominated Convergence Theorem implies that

(2.11) IIl- 0 as

because u"(x, t; s"(t))-> u(x, t; s(t)) in C(QT-o).
Hence, from (2.9)-(2.11), we get the continuity of the mapping F.
We have thus proved that the mapping F has a fixed point K(To, M) by the

Schauder fixed-point theorem. The fixed point is also in K To, M). This gives a solution
of problem (P) in 0 < _-< To.

Noting that u(x, To) CI[0, s(To)] f’) Cl[s(To), 1] and (2.6), we can continue the
process step by step to construct a global solution of problem (P) in 0< t_-< T by
the same argument as that given above, where "global" means that either T c and
0 < s(t) < 1 for < 00, or T < +oo and limt_,T- s(t) 0 or 1. Thus the existence is
proved for positive e and L.

The method demonstrated above can clearly be extended to the case of negative
e and L.

In the case of eL<O, we note that the solution of (1.1)-(1.3), (1.6)-(1.9), (2.4)
for given interface s(t) K(To, M) is also a generalized solution of problem (2.7),
(1.7)-(1.9) in the sense of [10]. We then can obtain the L-norm estimate of the
solution u(x, t), which may depend on 116,ILL, IIf, (i-1,2), e, L, and T, but not
on the interface s(t) [10]. Using the same method as stated above we can prove the
existence of a classical solution in 0< t-< To. We are careful to note also that the
L-norm estimate for u(x, t) holds for any T>0 for which (1.1)-(1.3), (1.6)-(1.9),
(2.4) has a solution (and not just for the small To for which existence is assured, as
above). We then can extend the solution in 0< t-< To, step by step, to a global one;
"global" here refers to existence either for all times => 0 or until the free boundary
hits one of the fixed sides x 0 or x 1.

3. Uniqueness. We now prove the uniqueness of problem (1.1)-(1.9). Note that
problem (1.1)-(1.9) corresponds to the Stefan problem if e 0; the uniqueness of the
weak solution and hence of the classical solution has been proved by Oleinik [11].
Here we consider the uniqueness of solution of (1.1)-(1.9) when e # 0.

We first derive some estimates for the solution of (1.1)-(1.9) for discussion below.
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By a direct calculation of the integrals j d/at 1o u2 dx at and or d/at 1o ku dx at
and using the boundary and interface conditions, we have

sup u2(x, t) dx + 2 ku2 dx dt
O<=t<= T QIUQ2

(3.1)

Io’ Io4(x) dx- (u’) dt-2 (k,f(t)u(O, t)-ksf2(t)u(1, t)) dr,
B

ku(x, T) ax + 2 k udxdt
UO

(3. ((x ax + (uu, sUUl

(kL(U-)--ks(u+)2)dt-2 (kLUx(O, t)fl(t)-ksu,(1, t)f2(t)) at.

Note that by (1.3)-(1.5) on x= s(t), the second term on the right-hand side of (3.2)
is equal to

2L for dI I +

e - -2 (kL(U;)2- ks(u)-) dt.
o

Then we get

ku(x, T) dx + 2
OU 02

(3.3)

k2 2 fo L
2(Ux, dx dt k((x))2 dx-- (u s(T), T)- d b))

(k,(u;)2- ks(u+)2)d at

T

-2 (kLUx(O, t)(t)-ksux(1, t)f2(t)) dt
o

from (3.3), (3.4), and using the inequality below [12],

o,)=cllux[l=o,)
we can derive

2x(X, t) (ku2 k2 2(3.4) sup ku dx + + u) dx dt <- C,
O<=tT QtAQ2

where constant C depends on e, L, T, IIb, ll,,, Ilfllu’o.r) (i=1,2), and =
min {s(t), 1-s(t), O t T}.

To prove the uniqueness, let (s(t); u(x, t)) and ((t); (x, t)) be two solutions in
some time interval 0 < < T, such that for some positive constant 6 > 0,

<=s(t), .s(t)_--<l-6 as 0<t=<T,
we can prove that s(t)=.s(t), u(x, t)=-.u(x, t) in [0, T1].

Define the new space variable by

(3.5) (x, s(t)),
where the function ce(x, s) as defined in [0, 1] x [6, 1- 6] satisfies [13]
(3.6) a(i,s)=i, (i=0,1), a(s,s)=1/2, ax(s,s)=l as6-<s=<l-6,

(3.7) a(x, s) >= ao> O, [Dl<-_c ([t[-<_3) in [0, 1Ix[6, 1-],

where ao and c are positive constants.
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Then (3.5) determines x as a function of : and t, and the function v(:, t), described
by

(3.8) v(,t)=u(x,t),

is defined on 0T Q for any 0 < T < T1.
Setting

(3.9) Q- (0, 1/2) (0, T), Q+ (1/2, 1) (0, T), Q Q- U Q+
and noting that u, veax, ux ve(a)2 + vea,,x, and ut v, + vasg(t), we find that the
function v(:, t) satisfies the system

(3.10) l)t-- kL(ax)2)( 1)g(kLOtxx--Ots(t)) in Q-,

(3.11) vt ks(ax)2vee= ve(ksaxx-asg(t)) in Q+,
(3.12) v-(1/2, t) v+(1/2, t) eg(t), > 0,

(3.13) kLV-(1/2, t) ksv(1/2, t) -Lg( t), > O,

and the initial and boundary conditions

(3.14) v(:, 0)= b(:), 0=< sc _-< 1,

(3.15) v(i-l,t)=f(t), i=1,2, t->_0,

where b (:) bl if sc [0, 1/2] and th (:) b2 if : [1/2, 1]; the superscripts + and denote,
respectively, the right-hand and left-hand limits with respect to the variable :.

Similarly, define w(:, t) .u(x, t) with : a(x, .s(t)). Then w(:, t) satisfies a system
similar to that satisfied by v(:, t).

Now define

kL in Q-,
(3.16) k=

ks in Q/,

(3.17)

(3.18)

(3.19)

(3.20)

where

z(:, t)= v(:, t)-w(:, t).

Then z(:, t) satisfies the following system:

zt- k(tx)Eze g in Q,

z-(1/2, t)= z+(1/2, t)= e(g--.g), t> 0,

kLZ-(1/2 t)-- /1ksze(, t)=-L(-.), t>0,

in Q-,
(3.21) g=

g2 inQ+,

(3.22) gl (kL(ax)2 kL(.a)2) --~.wge-F(kLOtxx-OGd)zfq-[(kLOtxx otsd)-(kLxx

(3.23) g2 (ks(cx)2 ks(.ax)2)w+ ksaxx asg)z + [( ksax a) (ks.axx .as)]w
with .a a(x, .s).

From (3.18) we get

Ig, c[Izl + I -.1 + Is -.sl + Iwl I -.sl]

Note that

(3.25) (i= 1,2)
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and the lower bound of the left-hand side of (3.24) is

1 z(, T) a+c (z)(3.26)

while the right-hand side term of (3.24) is bounded by

c r_I,, (Izllzl/l-.llzl/ls-.sllzl/lw,ll-.sllzl)ddt
(3.27) c I- dt+n ((z +(w)ls-

Q

The first term on the right-hand side of (3.27) is bounded by

c ,t dt IIz(’,t)lldt
(3.8)

Q Q

Noting also that JJo Iwel= d dt c because of estimate (3.4), we have

Iweel=ls-12 dg dt we dg Is-12 dt
Q

C fo (fo )fo’(3.29) <-- w d (llz(" )11 ==L (0,1/2)

+ lz(, )11 =g 0,) dz dt

c ff w, de at ( f f z2 + d dt).e Q Q

From (3.26)-(3.29) and choosing suciently small, we get

lfo’ fro forfoz2(, ) d+c z ddtc z2(, t) ddt.

This implies that

o
z(, ) d 0

so that z0 on Q and consequently v(, t)= w(, t), s(t)=(t). Thus the uniqueness
is proved.

4. Regularity of the solution. We now discuss the regularity of the solution for
problem (P). Recall that, for the ordinary Stefan problem, the free boundary is always
infinitely differentiable on the time interval in which existence is assured [14], [15].
Here the same result is proved for the problem with linear interface kinetics (1.5).
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To prove the regularity of the free boundary, we consider a neighbourhood of the
free boundary x s(t) for 0< < T, where [0, T] is the time interval in which the
solution of problem (P) exists with min {s(t), 1-s(t), 0=< t=< T}>0.

Choose 8 > 0 so small that the region

N= {(x, t)/ s(t)- 8 <x< s(t)+8, O< < T}

lies in Qr. Change the variable to

(4.1) =x-s(t)

and let v(sc, t)= u(:+ s(t), t) for (:, t)E N1, where (s(t), u(x, t)) is the unique solution
of problem (P), N1 {(:, t)/-8 < sc < 8, 0 < < T}.

Then v(:, t) satisfies the following system"

(4.2) v,- kLt g(t)v, -8 < < O,

(4.3) v, ksvCe g (t) v, 0 < s < 8,

(4.4) v(s, 0) b(), -8 <_- <- 8,

0<t< T,

O<t< T,

(4.15) .w(:, O) b, (:) + kb(-.k:) -8<s<0,

where N- {(sc, t)/-8 < s < 0, 0< < T}. Note that the functions on the right-hand
side of (4.10), (4.13) belong to L. According to the local parabolic LP-estimates for
the problem with the Dirichlet boundary condition and the problem with directional
derivative 10], we have

1
(4.14) kL(.W(0, t)q .w(0, t)=0, 0=< -< T,

(.k+ 1)e

(4.7) w(, t)= v(, t)-v(-.k, t),

(4.8) .w(sc, t)= v(sc, t)+ .kv(-.k, t),

where

(4.9) .k= ks/ kL)l/2 <= 1.

Then w(:, t) satisfies

wt--kLW= g(t)(v(, t)-- v(-.k, t))

w(0, t) =0, O<=t<-T,

w(, o) ,() (-.k),

in N-,

-a_<_ :__<0,

W.t- kLW. 6 g(t)(v(, t)+.kv:(-.k, t)) in N-,

(4.10)

(4.11)

(4.12)

and .w(s, t) satisfies

(4.13)

(4.5) v-(0, t)= v+(0, t)= e(t), 0< < T,

(4.6) kLt-(0, t)- ksv(0, t)-- -g(t) 0 < < T.

We assume, without loss of generality, that kL => ks and define the following two
functions:



370 XIE WEIQING

where p > 1 is arbitrarily constant, for any interior domain N2, the boundary of which
contains a segment : 0. We choose p > 1 suitable large such that

(4.17) we, w CC’/2(]r2)
where 0 < a < 1 [10].

Note that, from (4.7) and (4.8),

1
(4.18) v(:, t)= k+ i (’kw(’ t)+ .w(, t)),

1
(.w(:, t)-w(:, t)),(4.19) v(-.k, t)

k + 1

and hence v(, t)C’"/(N)f’IC’/(N-), where N- is a domain of the form
(-, 0)x (r/, T) and N- is its reflection in the line so=0. By (4.6) we have g(t)
C/(O, T), and so the functions on the right-hand sides of (4.10), (4.13) are now
C’/2(N). Then, according to the parabolic Schauder estimates [10], [16] for (4.10),
(4.13), we have

w(, t), w. (, t) 6 C2+’(+’)/(N-),
where N is an interior domain of N, the boundary of which contains a segment of
the :=0 axis; and so w(, t), w.(, t) C1+x1+)/2(N2). Using (4.18), (4.19), and
(4.6), we find that the functions on the right-hand side of (4.10), (4.13) are
C+.(I+)/2(N-).

This "bootstrap" process may now be continually repeated, each time to derive
better estimates on the derivatives of w, .w and therefore of s(t), V(, t), v(-k., t), all
the way up to the : 0 axis for any > 0. Hence s(t) is infinitely differentiable in the
time interval 0 < < T.

By standard parabolic regularity theory [12], [17], we can also obtain that u(x, t)
is infinitely differentiable in Q1U {X s(t), ) 0} and Q U {x s(t), > 0}.. The limit process as e 0. We now discuss the limit process for e when sign
restrictions are imposed on e, L, and boundary and initial data. This means we will
henceforth assume that

(5.1) fl(t)>0, f(t)<0, bl(X)->0, b2(x) _-< 0,

where thl (b) the(b) 0 and e, L are positive constants.
We will retrieve the solution of the standard Stefan problem by taking the limit

e 0/ in the classical sense, and this only with an additional restriction about monoton-
icity (nondecreasing) of the free boundary.

We recall from previous sections that problem (1.1)-(1.9) possesses a unique
classical solution and note that the solution (s(t); u(x, t)) (e >0) satisfies

(5.2) u(s( t), t) eg( t),

(5.3) Ls(t)=L+ 6(x) dx- u(x,t) dx- (kLU(O,r)-ksU(1,’))dr

and estimates (2.6). To pass the limit e0 in the classical sense, we need to derive
some a priori estimates for the solution (s(t); u(x, t)), which is independent of e.

Using the method employed in [8], we can derive an estimate of (1/e)u(s(t), t)
that is independent of e. This is done by comparing the function v(x, t), which satisfies
(1.1)-(1.3), (1.7)-(1.9), and the interface condition v=0. Note carefully that
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V(S(t), t)< 0 by the maximum principle and that the. lower bound of v-(s(t), t) can
be estimated by using the auxiliary function method that is independent of e [9]; this
is derived from the crucial assumption about nondecreasing of the free boundary.

Consider the function (1/e)(u-v) and suppose that Po is a positive maximum
point of that function. Then Po must belong to {(x, t)/x= s(t), O< <- T}, (u-x- v)
(po) > O, and (u+ +

Vx )(Po) < 0 by the strong maximum principle. Furthermore, we have

L L L
max- (u v) (u v)(po) u(po)

(5.4)
--kL( u- v-)(po) + ks(u+ v+)(po) kLV(po) + ksv+(po)

this implies that

(5.5)

<=--kLV-(po)<= B (independent of e);

[&(t)[ C,

where C is a constant that is independent of e. From (3.1) and (3.3) and using (5.5),
we have

Io’ Io’ II2 t) dx+ ku2 (x, T) dx+2 k2uz dxdtsup u(x, xx
OtT QQ2

-< c [11,/,11:’"1(0,1) + IIf, ’o,+ IIAII %’o,

(5.6) + (Ill,x(" t)ll L2(0,s.(t)) + Ilux(’, t)[l=(.(o,,)) dt
0

Q1U Q2

+ c(n) u dx dt

Then we derive.

2(x, t) +u2x(x, t)) ax+sup (u
(5.7) o_-<,_<-" O, uo:

(u2 + U2x) dx dt

2<= C(T, II,/’ II,-, o,,+ IIf, llG’o,-(i 1,2)).

We can then get the solution of the Stefan problem via compactness arguments,
and possibly take subsequences. Indeed, in the light of estimates (5.5) and (5.7), there
exist a couple (s(t); u(x, t)) with s(t) C’I[0, T] and u C’/2(07") (0< a < 1), such
that s s uniformly in C[0, T] and u u uniformly in C(QT"); moreover,
(s(t); u(x, t)) satisfying (1.1), (1.2), (1.7)-(1.9), and (5.2), (5.3) imply, respectively,

(5.8) u=0 onx=s(t),

(5.9) Ls(t)=b+ dp(x) dx- u(x, t) dx+ (kLUx(O, r)-- ksux(1, z)) dr.

Note that s(t) c’l[0, T] and then Ux C(O)fq C(Q2); then (5.8) implies the
Stefan condition (1.4).

Our demonstration above also indicates that we can retrieve the solution of the
one-phase Stefan problem by taking e- 0/ without any additional restrictions (the
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monotonicity of the free boundary, in fact, holds automatically in this case). Note that
from (3.1), (3.3), we can get

2
X 1,12 2(5.10) sup ux( t) dx + + Uxx) dx dt <-_ C,

where the constant C depends only on the known data, but not on
By the interpolation inequality [12], IIfll

implies that

for lUx( t)]] o,<t> dt C,

and then [[(t)[[ <o,r) C, where the constant C is independent of e. With the above
estimates at hand, we can easily get the solution of the one-phase Stefan problem via
compactness arguments.

It is perhaps also woh noting that, in general, without the restriction (5.1), it
may not always be expected to pass the limit e 0 because the finite-time blowup
might, in fact, occur for the supercooled (superheated) Stefan problem in ceain
circumstances (see, e.g., [18]-[20]).
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SEMIGROUP THEORY AND NUMERICAL APPROXIMATION
FOR EQUATIONS IN LINEAR VISCOELASTICITY*
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Abstract. The following abstract integro-differential equation

fi(t) + A Eu(t) g(s)u(t / s)ds f(t)

is considered on a Hilbert space. Such equations arise in the modeling of linear viscoelastic beams.
The equation is reformulated as an abstract Cauchy problem, and several approximation schemes
are discussed. Well-posedness and convergence results are given in the context of linear semigroup
theory. Results of numerical eigenvalue calculations for various approximation schemes are discussed.
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1. Introduction. We consider the following integro-differential equation:

(1.1) ii(t) + A Eu(t) ()u(t + ) d f(t).

Here .4 is a positive definite, self-adjoint unbounded operator on a Hilber space H,
and f(t) is an H-valued function. Also, E is a positive eonsan (a siffness coefficien
in applications to linear viscoelasticity) and g(s) is a "history kernel" which is further
characterized below. In 2, we formulate the equation as an abstract Cauchyproblem
and prove well-posedness. This abstract framework is useful for the construction
and convergence analysis of approximation schemes for (1.1). It can be seen that an
approximation scheme for this type of equation involves discretization of the spatial
variable (finite elements, for example) together with an appropriate approximation
scheme for the resulting delay equation (we consider the so-called averaging scheme of
Banks and Burns [1] and a newer scheme recently developed by Ito and Kappel [10].)
In 3, we discuss this approach to approximation, and prove a convergence result using
the Trotter-Kato semigroup approximation theorem.

The results here extend those of [2]. Our theory allows for a singularity at the
origin in the kernel g(s), while in [2] it is required that g(s) be bounded. Less impor-
tantly, there is a possibly restrictive technical condition in the convergence proof of
[2] which we do not require.

One of our motivations for studying (1.1) is that this type of equation arises in
the modeling of linear viscoelastic beams (see [4]-[9]). The abstract framework that
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we consider is especially useful for the applications to parameter identification and
control problems for viscoelastic models. (We do not discuss these applications here;
see [2], [3]). It is also of interest to investigate the damping induced by the assumption
of Boltzmann viscoelasticity in modeling the motion of a beam. This is related to the
behavior of the eigenvalues. In the purely elastic model (no damping) the eigenvalues
of the underlying dynamical system lie on the imaginary axis. A good indication
of the damping behavior in the viscoelastic model is the location of the eigenvalues
in the left halfplane. In 4, we calculate these eigenvalues, and we also discuss the
convergence behavior of the approximation schemes developed in 3. In addition, we
consider a new approximation scheme based on a variation of the averaging scheme
in which a nonuniform mesh is used. The theoretical convergence arguments for this
scheme, which are similar to those used for the averaging scheme, are not included
here. However, we do include some numerical examples for this scheme to illustrate
the fast convergence which we have observed.

2. An abstract Cauchy problem. In this section we reformulate (1.1) as an
abstract Cauchy problem and prove well-posedness. First we establish some prelimi-
nary ideas. Assume V and H are Hilbert spaces and V C H with continuous dense
injection. Let V* denote the strong dual space of V. We identify H with its dual,
so that V C H H* C V*. The dual product (, )y,y. on V x V* is the unique
extension by the continuity of the scalar product (, )H of H restricted to V x H.
Consider a symmetric sesquilinear form a on V such that

(2.1) la(u,v)l < Clulv IV]v for u, v e V
(2.2) a(u,u) > wlu] for u e V

where w > 0. Let A e (V, V*) be defined by

(2.3) a(u, v)= (Au, V)v.,v for all u, v e V.

It then follows from [16, Thm. 2.2.3] that the restriction of A on H with

(2.4) dom(A) (u e V" Au e H},

where we will use the same symbol A for such a restriction, defines a positive definite
and self-adjoint operator on H, dom(A/2) V, and

a(u, v) (A/2u, A/2v) for u, v V.

Thus, V can be equipped with the scalar product (u, v) a(u, v, ).
Given r e [-, 0) consider the second-order equation in H

(2.5) fi(t) + A Eu(t) g(O)u(t + O)dO f(t)

where E is a positive constant, t f(t) is an H-valued integrable function, and we
assume g > 0 and g 0 on (-r, 0), and g is integrable with

ao > o.
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An example is

(2.7) g(e)
I1"

where c > 0 and 0 <_ p < 1 and /> 0.
Next, let W L(-r, 0; V) be the Hilbert space of all V-valued, square integrable

functions defined on the measure space (I-r, 0], Borel sets, g dO), equipped with norm

(2.8) Iwl ,. g(O)l,(O)l,
dO.

Let Z denote the Hilbert space V x H x W equipped with norm

(.9) I(, v, v)l cll + Ivl + (0)1(0)1 do.

Motivated by the state-space formulations found in [6] and [17], we define for
t>0

(t) (t)
(2.1o)

(t, ) (t) (t + ),

Then z (u, v, w) E Z formally satisfies

(2.11)

where

-r<0<0.

d
=-z(t) A(t) + col[o, ](t) o]dt

((f ) ")(2.12) Az v, -A au + g(O)w(O) dO v + --w
for z (u,v,w) Z.

Thus (1.1) has been reformulated as the abstract Cauchy problem (2.11). Next
we use the Lumer-Phillips theorem [13] to show that ,4 generates a Co-semigroup on
Z.

THEOREM 2.1. The linear operator .4 on Z, defined by (2.12) with domain

(2.13)
(u,v,w) eZ:vEV

dom(4) b e L(-r, 0; Y), w(0) 0,
0

u + f-r g(O)w(O) dO e dom(A)

generates a Co-semigroup S(t) on Z.
Proof. First we argue the dissipativeness. For z (u, v, w) E dom(A)

(Az, z) (u, V)y A(u + g(O)w(O) dO), v

+ (o1( + D,o1 0
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where
d

(2.14) De - with dom(D)= { e W’D E W and (0)= 0}

and we used (u, Vly a(u, v) (Au, V}v.,y for u, v E V. Let us consider for e > 0
and R < r,

Ie, 9(0) Iw(O)l dO
R

(.1) gg(-e)lw(-e)l
1< 2g(-e)lw(-e)l2

V*

Since w(-e) w(O)- f Dw() dO -f Dw(O) dO, by the Cauchy-Schwarz in-
equality

Note that 9(-e)f dO/9(O) fe 9(-e)/9(0)dO e. Thus, we obtain

I, (0)1 a0,

aM his implies for dom() that

(2.16) (,) lim I, O.

Nex we will show hat (I- )dom() Z for Re > 0.
(M-) (, , h) is written as

(.17) au v e

(2.18) Av + A au + g()w() d =Cell

(2.19) Aw-v-Dw=h and w(0)=0.

om (2.19), we obtain

om (2.17), v lu- . Substituting these into (2.18), we have

or

(2.20)

The equation

A2u + A ou + g(O) eA(-e) (Au + h()) d dO +

+ A + eg(O) e-)’(A ( h(()) d( dO
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where we used f: Ae(-) d 1-e. Note that the right-hand side of belongs
to V*. Thus, if we define

A(A) A2I + A E e)’g(O) dO e (V, V*)
r

then A E p(.A) if and only if A-I(A) E : (V*, V). For fixed A C consider the
sesquilinear form # on V:

(2.21)
,(u,

+ E ao v) for u, v V.

Then, for some constant C

I (u, v)l Clulv Ivly for u, v 6 V,

and for A a + bi with a > 0

Re #(u, u) _> (a2 b2)lUl2H + for u e V.

Thus, it follows from [15, Thm. 3.2.A] that if A > 0, then A-I(A) e (V*, V).
Since Z is a Hilbert space, it follows from [13, Thm. 1.4.6] that dom(4) is dense

in Z. Therefore the theorem follows from the Lumer-Phillips theorem.

3. Approximation schemes. In this section we consider the construction of
approximation schemes for (2.11)-(2.12), and we give convergence arguments based on
the Trotter-Kato theorem (see [13]). Construction of these schemes involves choosing
finite-dimensional subspaces of the state space Z and an approximation of the state
operator A. It can be seen that this involves two stages--the spatial variable, which
includes the spaces H and V and the operator A, and the delay variable, which includes
the space W and the operator D. We assume r is a fixed positive constant. For the
spatial variable let VN be any sequence of finite-dimensional subspaces of V. We
assume the following approximation condition:

(C1)
for any E V, there exists a sequence CN VN such
that Ig -ely --* 0 as n --. .

PHN and PvN will denote the orthogonal projection of H and V onto VN, respectively.
Let us define continuous linear operators AN Vg ---+ Vg by

(3.1) <ANx, y)
H

O’(X, y) for x, y VN.

Thus, the spaces VN complete the discretization of the spatial variable in the sense
that they give finite-dimensional subspaces of V and H, and (3.1) defines an approxi-
mation of the operator A. This is often equivalent to simply choosing a standard finite
element scheme. We consider next the discretization of the delay variable. There are
many approximation schemes available for delay equations, and we shall consider the
so-cMled averaging scheme (see [1]) and a newer spline-based scheme recently devel-
oped by Ito and Kappel (see [10]). What is involved in any case is the discretization
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of the delay interval I-r, 0] and an approximation of the differential operator D. To
proceed, let B/M, 1,... M be the usual first-order spline elements corresponding
to the mesh -jr/M, j -0,..., M; i.e.,

B/M (0) M (0/M_I 0)
0 elsewhere,

and put EM X[oy,oM_I), 1,... M. Here, X[a,b) denotes the usual characteristic

function on the interval [a, b). For each integer N, M, we define the following subspaces
of W L(-r, 0; Y)"

(3.2)

WN,M= w cr. W w biMBiM, by E VN
i=1

aMEM ai
M VNWN,M w e W[w

i--1

Let P9N’M be the orthogonal projection of W onto WN’M. Then we have the following
convergence result for the orthogonal projections.

LEMMA 3.1. PN’Mh -- h for all h W.
Proof. It follows from arguments used in Theorem 2.1 that D is dissipative in W

and range (I- D) W. Hence it follows from [13, Thm. 1.4.6] that

dom(D) {w e W" Dw e W and w(0) 0}

is dense in W. If w e dom(D) then g[wl is uniformly bounded on I-r, 01. In fact,
for 0 <

O

9(O)[w()l, 9(0)[ Dwd[
o g(O)

d glDwl d < r]Dwl2

Similarly, dom(D2) is dense in W and for 0 _<

for w e dom(D2).

For w dom(D2), define

M

wN’M (O) E WV(oiM-I)EiM (o)’
i--1

where wr PvNW.

Note that

f0 f0wN(O) Pw(O) P Dwd PDwd.
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Thus, DPvNw PDw for w e dom(D)so that if w e dom(D2), then wN e dom(D2)
and ID2wNIw g In2wlw Hence for w E dom(D2),

< w- IoNI -f" wN wN’MIW pgN’Mw <IZO--zoN,MIw_ W WW

where the first term of the right-hand side tends to zero as N oc by the dominated
convergence theorem. By the mean value theorem, for E (0/M, o/M_1) i-- 1,"., M,
there exists () e (,1) such that

Thus

wN (O) wN’M (O) DwN() (0

IwN wN,MI2 < g(O) IDwN(5)Iv (O Oy--1 dOw-

< --5-r [D:wV]w
Hence for w e dom(D2)

[w--pgN’Mw[ ---0 as N,M oc.
W

Since dom(D2) is dense in W and [PN’M <_ 1, this implies that pN,M I, strongly
in W.

In order to define approximations of the operator D, consider the sesquilinear
form aN,M on WN,M WN,M defined by

for w, W, and h, W,. Since a, is continuous, there exists a linear
operator DN,M" WN, WN, such tha

aN,M (wN,M, hN,M) (N,MwN,M, hN,M
W

Note that OWN,M WN,M. Hence a simple calculation shows that DN,M is given
by

M

(3.4) 5N,MwN,M (b b)E

for wg,M bBy, b VN, where by 0. We will consider two isomor-

phisms i’M" N,M WN,M, k 1, 2, defined by

M

(3.5) iNI ’MwN’M E biMEiM
i--1

and

" +by
(3.6) .N,M N M EM2 w E 2

i----1
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N,M WN,M WN,M by ’k [kWe define the operators Ok
FIN’M )N,M’N’M-I k

1, 2. It will be apparent that the operators DN1’M and DN2’M correspond to the av-
eraging scheme and the spline-based scheme, respectively. We can now complete
the construction of our finite-dimensional approximation schemes for (2.11)-(2.12).
Specifically, define the finite-dimensional state space ZN,M VN Vg x WN,M,
and let PNz’M Z ZN,M be the corresponding orthogonal projection. Letting
zg,M(t) (uN(t), vg(t), wN,M(t)), we consider the following differential equation on
ZN,M:

d
zN,M(t AN’MzN,M(t) + CO1 (O, Pfff(t) O)d-’ k

where

AN’M" ZN,M ZN,M is defined byHere the operator

vN

"-’kaN’MzN’M _AN (huN + fO,, g(O)wN,M (O) dO)
N,M N,MVN -t-Dk w

and the norm of ZN,M is induced from the Z-norm defined by (2.9).
In the next two subsections we prove a semigroup convergence result for each of

the schemes (corresponding to k 1, 2).

3.1. Averaging scheme. The isomorphism iN1’M defined by (3.5) corresponds
to the so-called averaging approximation considered in [1]. Recall that S(t) is the
C0-semigroup generated by the operator A. Let S1N’M(t) ZN,M ZN,M be the
semigroup generated by A1N’M. We intend to use the Trotter-Kato theorem (see [13])
to show that sN1’M (t)Pff’M - S(t) as N, M cx (see Theorem 3.4 below). We will
need the following two lemmas. The first is a uniform (in N and M) dissipativeness
result for the operators .41N’M, and the second is a resolvent convergence result for the
operators oN1’M.

LEMMA 3.2. ,,flNI’M i8 dissipative in ZN,M.
aMEMProof. For zN,M (uN vN wN,M) ZN,M with wN,M ,

g(O)WN,M (t9)dO, vN)
aM) EM WN’M) g(O) dO

v
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o 0 d# (),
Continuing, we have

(AN1’MzN,M zN,M )

2i= r y 2r

1 Mg/M laV a/M_ll2 < O,
2

i=l
r V

since gM
_

giM+l for 1

_ _
M- 1. El

LEMMA 3.3. For A > 0, (AI oN1’M)-IPgN’Mh (AI D)-h for all h e W.
Proof. It follows from the arguments in Lemma 3.2 that D1N’M is dissipative in

WN,M so that I(A/- DNI’M)-llw
_

1/A for A > 0.
Let us define the sesquilinear form a on dom(D) x W by

(3.9) a(w, h) (Dw, h)y g(O)dO for w e dom(D) and h e W.

For A > 0, let w (AI- D)-h and wg,M (AI- DN’M)-IPN’Mh for h E W, or

equivalently (AI- D)w h and (AI- DN ’M)wN,M pgN,M h. Then, we must show
that Iw wN,MIw 0 as N, M oc. We have

A(w, ") a(w, "/) (h, )
for all E W and

A (iNI ’MN,M, [N,MI aN,M (N,M,,N,M)

(h, [N,M)

for all .yN,M WN,M, where N,M (iN,M)-lwN,M EiM__ aiMBU. Choosing

/- .yN,M in the first equation, we obtain for every N,M WN,M

aN,M (N,M N,M, 7N,M)A (i’M (N,M N,M) N,M)w
=a(w,N,M)--aN,M(N,M,N,M)--A(w--i’MN,M,N,M)w

for all N,M WN,M.
Let us choose N,M W,M as

(a.10) , (Dw) (.

Then

a (w, N,M) aN,M (N,M, N,M) DW (Dw), 7N,M g(O) dO 0

for all [N,M wN,M. Using this and the fact that
-1

for
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it follows that

(3.11) liNI ’M (N,M N,M)I
Moreover, we have

w

<Iw -iNI’MN,MIw
But

w

w

<_ g() - Dw-PgN’MDw
r w

< Dw P9N’MDw2 W

as N, M oc. Also,

< (o oV) I VIw-.= JeT v

\1V1/

d8

wherepgN,M(Dw) EM M N,M_wlWi Ei Hence, liN1 ’M
then follows from (3.11) that

[wN,M iNI ’MN,MIw ---*0

SO that

Iw wN,MIw
_

IwN,M iNI ’MN,M
W

as N,M oc. D

Now we can state and prove the main result of this section.
THEOREM 3.4. For all z 6 Z

IN’M S(t)z as N, M oc

0 as N,M -, oc. It

uniformly on bounded t-intervals.

Proof. In Lemma 3.2 we showed that the stability hypothesis of the Trotter-Kato

theorem is satisfied. It remains for us to show convergence of (AI- jiNx’M)
-z
P’Mz

to (AI--A)-Zz for A > 0. To do this, let z (,,h) e Z, and let P’Mz
(N, CN, hN,M) e ZN,M. Also, let

(u, v, w) (I A)-*z,

and

uN’ Z Z.
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Then, recalling (2.17)-(2.21), it follows that

/0w(0) e(0-( + h()) a, , au ,
and u satisfies

for all X E V. Here # is defined by (2.21). Following a similar analysis for the operator

A’M, we have

(3.12b)

(3.12c)

.,uN VN N

AvN + AN ouN + gi
M

ai
M )N

)aiM vN __M (aiM_l aiM) hiM, i= 1,... ,M

where wN,M _iM= aiMEiM and hN,M EiM= hiMEiM.
From (3.12c),

aiM MaiM-r + vN + hiM, i= 1,’-. ,M,

or
r r

aiM= (I+A) [a+(vN+hiM)]
By induction,

with aoM 0.

(3.13) aim E 1 + --, --M (vN + h).
j=l

From (3.12a), vN ,\uN -CN, and substituting these into (3.12b), we obtain

12UN + AN uN + I g 1 + I --uN

i= = M

M

+I +9A 1+ --M ( hf)"
i=1 j=l

)-i Thus we haverl) r rl)j_i=l_(l+Here, (1 + =(1 +

A,Mu +
(3.14) /:+ AN

"
g(O)(I- DN ’M)

where ANI’M (VN, VN) is given by

-1

(N hN,M) dO

(3.15) "IAN’M=2I+AN E-EgiM 1+-
i=1
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Next note that if we define
M

(.) () , + EV(o),
i--1

then I- M(0)I- 0 M oc, uniformly on I-r, 0] (see [11]). For each M > 1,
define the sesquilinear form #M on V by

#M(u,v)- A2(u,v)H + E- g(O)eM(AO)dO a(u,v)

for u, v E V. Then

and

(3.18) M(U, U) >_ A21UI + lul for 1 u e y.

Finally, from (3.14)-(3.15), we can write down the following equation for uN"

zM1 uN’XN) {N_[..ACN,XN)H

qN hN,M dO, X.N)
for all XN E Vv.

Now, to finish the proof it is sufficient to show that UN --o U. If we set N Pu,
then it is sufficient to show that [N ug[y _.., O. We have

(3.19)

for all XN Vv. It then follows from (3.17)-(3.19) that for A _> 0

aIz2N--UN]v < A2lu-fiNln +AI-NIn + K u Nlv
...- (

\oc[-,-,o]

"[- (,I- D)-1(- h)- (/I- DNI ’M -1
vg,M(_ h)

\

where K is independent of N and M.
It thus follows from Lemma 3.3 that [fiv UN[V 0 as N, M oc, so that for

all z Z,

(,I--,ANI ’M)-Ip;’Mz-- ()kI-,m)-lz "-+ 0
z



386 R. H. FABIANO AND K. ITO

as N, M -- . The result follows from the Trotter-Kato theorem.

3.2. Spline-based scheme. The isomorphism i’M defined by (3.6) leads to the
scheme developed in [10]. Let $2N’M(t)" ZN,M - ZN,M be the semigroup generated
by 42N’M The proof of convergence of $2N’M (t)z -- S(t)Z for z e Z will be parallel to
one for S1N’M(t)z, given in 3.1.

LEMMA 3.5. 4N2’M i8 dissipative in ZN,M.

Proo]. Let ZN’M (UN, VN, wN’M), where WN’M EiM=I ayEiM and where

(iN2,M)-IwN,M N,M EiM__I bMBM. We have

g(O) dO
v

1 (M)(gM_ gil)IbMI 2 1(_) 2
<0

where aM (b +bM)/2, 1 <_ <_ M,
follows. [3

b0M 0, and gMM+ 0. The result

Before proceeding to the main convergence result of this section, we discuss some

preliminary calculations for the resolvent (M ,A2N’M) -1 Consider the equation for

zN,M (uN, vN, wN,M) E ZN,M given by

zN,M N2 ,MzN,M (N, )N, hN,M) ZN,M,

or equivalently

(3.20a)

(3.20b)

(3.20c)

uN VN N

i=1
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where from (3.6), N,M 1bMBiM and wg,M ig2’Mg,M y.((b /

bM)/2)EM (i.e., ai
M (b + bM)/2, i-- 1,... ,M) and boM --0. From (3.20c)

/-- bM A}\ bM / vN / hM2 /

or

?" r --i-(1- /

+ 1 + --a (vN + hM), 1 <_ < M.

By induction

(v + 7).

From (3.20a), vN UN --CN and substituting these into (3.20b) we obtain

where we used

a/M b/M- + bV
2

and

l<_i<_M,

(with x (1 rA/2m)/(1 + 1)).
Thus, we have

(3.21)
A’Uu + ,xCN

/ (o (I- vf,) -1

(N hN,M) dO
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where A2N’M E (Y, V*) is given by

r -1 1- --A(3.22) AN2’M A2I + AN E- ZgM I + -A I +A=1

Hence, it is easy to show that A p(A’) if and only if (A’M)- exists. We can
now state the min result of this section.

THEOREM 3.6. For all z Z

S’M(t)P’Mz S(t)z as N, M
uniformly on bounded t-intervals.

Proof. om Lemma 3.5, if A > 0, then A e p(A’M) and [(AI- A’M)-[z
A>0. Next, note that forw=(AI-D)-h hW,A>O

w-.= 2 v

[Dwl 0 asM

where N,M is given by (3.10) and P’M(Dw) E. Hence, arguments
similar to those in the proof of Lemma 3.3 allow us to show

for all h E W. Note that for each A > 0

e0- 1+ E 0
i=

1+ rA
uniformly on I-r, 0]. If we define the sesquilinear form on V by

for u, v g, then

where
M

(e2M(A0)=Z l+mA - EM
i=1

1+ -rA
and e2(A) 0 as M c. Thus, using the exact same arguments as in the proof of
Theorem 3.4, we can show that for all z E Z and A > 0

(AI 4N2 ’M) "-N’M-z z- (AI- .4)-lz -- 0
z

as N, M --, c. Now, the theorem follows from the Trotter-Kato theorem.

4. Numerical results. In this section we apply the approximation results de-
veloped above to a specific example. In particular, we consider the following model
for transverse vibrations of a cantilevered linear viscoelastic beam:



SEMIGROUP THEORY IN LINEAR VISCOELASTICITY 389

(4.1)
02u

(t, x) / Euxx(t,

where 0 < x < 1, t >_ 0, and

x) g(s)uxx(t + s, x) ds f(t, x)

o) o,

u (t, 0) =0,

Eu(t, x) g(s)ux(t + s, x) ds
r c--1

0__ Eux(t, x) g(s)uxx(t + s, x) ds
Ox r

=0,

Here u(t,x) is the transverse displacement at time t and position x of a vibrating
beam. Assume that g(s) ae8/xflL-. It has been observed that such exponentially
decaying kernels with a singularity at s 0 provide a reasonable model for many
viscoelastic structures (see [7], [9]). For this example we fix the parameter values in
the model to be E 40, r 1, c 10, and/ 5. Define the Hilbert spaces

H L2(0, 1)

and
V {v e g2(0, 1): v(0) 0 v’(0)},

and the following sesquilinear form on V x V

(4.2) a(u, v) (u", v")g.
Then if we set u(t) u(t, .), we can write (4.1) in the form of (1.1) and apply the
theory we have developed for (1.1).

The first step in the approximation scheme is the construction of the finite-
dimensional spaces Vg C V. For a positive integer N and partition {xi}i=o,N xi i/N,
of [0, 1], let $3N denote the set of cubic splines with knots at the xi. Let {B/N}y+li=l be
the standard cubic B-spline basis of $3N (see [14]). The set $3N is not contained in V,
but we can define basis elements hN which satisfy hN (0) d/dx hN(0) 0. That is,
define

B0 +
and

hN BiN, i=2,...,Y+l.

Let Vg span{hg}N+1=1 The approximation scheme is completed with either
of the delay discretizations described in 3. Hence we are led to finite-dimensional
ordinary differential equations of the form

(4.3) kN,M (t) Aff’MzN’M (t) + col (O, Pif(t, x), O)
where k 1 or 2 corresponds to the choice of delay discretization.

Returning to consideration of the original equation (4.1), note that the eigenvalues
of this viscoelastic system (that is, the eigenvalues of A) are the solutions A of the
characteristic equation (recall A(A) in 2)

( )(4.4) A2+wj E- g(s)es ds =0.
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Here -wj, j 1, 2,... are the eigenvalues of the operator A which is determined by
4 wherecj j-1 2,... are the roots of(2.3) and (4.2). It is well known that wj cj,

the frequency equation

cos c. cosh c + 1 0.

Note that cj (j-1/2)r asj c. Note also that for the caseg(s) =_ O, the

solutions A+ of (4.4) are given by A+ +ix/--. Naturally we expect this since the
case g 0 corresponds to no damping (i.e., perfectly elastic system). Now (4.5) and
(4.4) can be solved to high accuracy numerically using Newton’s method. In Table 1
we note the effect of viscoelastic damping by comparing the eigenvalues of the damped
and undamped systems for the first five modes.

TABLE 1

Undamped Damped

Mode 1 0 +/- 22.2372i -0.69475 + 21.4162i
Mode 2 0 -4- 139.3583i -1.86160 +/- 137.4791i
Mode 3 0 +/- 390.2074i -3.13974 +/- 387.1056i
Mode 4 0 +/- 764.6508i -4.30433 +/- 760.3019/
Mode 5 0 +/- 1264.0226i -5.61023 +/- 1258.2092i

Next we compare the efficacy of the two approximation schemes by observing the
rate of convergence, as N, M ---, c of the eigenvalues of tN’M"’k to the eigenvalues of
4. Actually, we fix N 9, which from finite element theory gives a good approxi-
mation of the eigenvalues corresponding to the first four undamped modes. In Tables
2 and 3 we observe the behavior of these eigenvalues as M increases. We note that
convergence is "frequency dependent," i.e., larger values of M are required for higher
mode eigenvalues. After extensive numerical experiments, it appears that the scheme
based upon the delay approximation of Ito and Kappel converges about twice as fast
as the AVE scheme.

TABLE 2

Mode 1 Mode 2
M AVE SPLINE AVE SPLINE

4
16
64
400
1600
4000

-.3451 + 22.189/ -.6052 + 22.077i
-.7462 + 21.913i -.8493 + 21.609/
-.7766 + 21.527i -.7339 + 21.430i
-.7067 + 21.430i -.6977 + 21.416i
-.6974 + 21.419/ -.6951 + 21.416i
-.6957 + 21.417i -.6948 + 21.416i

True -.69475 / 21.4162i

-0.3510 + 139.363i -0.6428 + 139.344i
-0.8997 + 139.306i -1.4325 + 139.168i
-1.7917 + 138.915i -2.2485 + 138.291i
-2.0769 + 137.732i -1.9648 + 137.526i
-1.9177 + 137.534i -1.8760 + 137.493i
-1.8846 + 137.505i -1.8654 + 137.491i

True -1.86160 + 137.4791i

We turn finally to an idea which, from a computational point of view, may well
be the most important contribution of this paper. When using the schemes discussed
above for control and identification problems, large values of N and M may be required
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TABLE 3

M
Mode 3

AVE SPLINE
Mode 4

AVE SPLINE

4
16
64
400
1600
4000

-0.3511 / 390.517i -0.6436 / 390.511i
-0.9042 + 390.497i -1.4640 + 390.446i
-1.9265 + 390.339i -2.8700 + 389.962i
-3.6268 + 388.776i -3.6509 + 387.809i
-3.3829 / 387.660i -3.2392 / 387.415i
-3.2249 + 387.491i -3.1688 / 387.422i

True -3.13974 + 387.1056i

-0.3512 / 767.455i -0.6437 / 767.451i
-0.9047 + 767.444i -1.4664 + 767.419i
-1.9431 + 767.363i -2.9760 + 767.158i
-4.4611 + 766.203i -5.2997 + 764.679i
-5.0077 + 763.946i -4.7064 / 763.176i
-4.6596 / 763.367i -4.4174 / 763.091i

True -4.30433 + 760.3019i

in order that the finite-dimensional system gives a good enough approximation to the
infinite-dimensional system to be useful for the intended application. However, for
N and M too large the computational burden may be unreasonable. Thus we were
led to consider an alternative scheme in which a "nonuniform" mesh is used. More
specifically, we discretize the interval [-r, 0] according to the mesh 0}u, where 00M 0,

0MM --r, and 0, j 1, 2,..., M- 1 is defined so that

g(s)ds
Je M’ j-1,.’.,M-1.

Here c .for g(s)ds. Thus the mesh is distributed according to the "mass" of the
function g(s). In our example this amounts to a greater concentration of mesh elements
in the immediate "past history" than in the far "past history." Note that, using this
mesh, we have (recall 3.15)

A,M A2I + AN E- Y7
i--i j--i

where c =8_,-8.
Because g(s) (-r, 0), it can be shown that all of" the convergence arguments

used for he "uniform" mesh can be suitably modified so as to hold for this onuniform
mesh. In fact, for the AVE] scheme, these arguments ca be found in [12]. What we

ain with this new scheme, however, is a much faster rate o convergence. In ables
4 and 5 we observe eienvalue convergence just as in Tables 2 and 3, except now
with the nonuniform mesh. Aain, the scheme of Ito ad Kappel performs slihtl
better than the AVE scheme, but the important feature is the comparison of Tables
4 and 5 with Tables 2 and 3. For example, the value M 8 for the nonuniform mesh
compares favorably to the value M 400 for the uniform mesh. This is a significant
improvement and this scheme should prove useful for the applications to control and
identification mentioned above. Finally we note that the improved rate of convergence
with the nonuniform mesh is as yet only a numerical observation. However, we are
working on a theoretical justification of this observation.
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TABLE 4

Mode 1
M AVE SPLINE

Mode 2
AVE SPLINE

4 -.6618 / 21.520i -.7532 / 21.344i
8 -.6793 + 21.471i -.7298 / 21.456i
16 -.6838 / 21.444i -.6745 + 21.423i
32 -.6883 + 21.430i -.6976 / 21.410i
64 -.6910 + 21.423i -.6942 / 21.420i
128 -.6921 + 21.420i -.6932 + 21.417i

True -.69475 / 21.4162i

-1.9313 + 138.535i -2.0511 + 137.889i
-1.9081 + 137.842i -1.8974 / 137.575i
1.8683 + 137.648i 1.8989 + 137.496i
1.8633 / 137.564i 1.8661 + 137.486i

-1.8636 + 137.525i -1.8665 + 137.486i
-1.8645 / 137.506i -1.8663 + 137.488i

True -1.86160 + 137.4791i

TABLE 5

Mode 3
M AVE SPLINE

Mode 4
AVE SPLINE

4 -2.3553 + 390.123i -3.4216 + 389.313i
8 -3.3751 + 388.695i -3.5016 + 387.865i
16 -3.1873 + 387.879i -3.1993 + 387.506i
32 -3.1358 + 387.624i -3.1517 + 387.422i
64 -3.1264 + 387.510i -3.1302 + 387.413i
128 -3.1250 + 387.456i -3.1272 + 387.406i

True -3.13974 + 387.1056i

-2.4200 / 767.247i -3.8252 / 766.743i
-4.3446 + 766.046i -5.1251 / 764.507i
-4.5922 + 764.114i -4.6197 + 763.388i
-4.4165 + 763.545i -4.4419 / 763.162i
-4.3830 + 763.312i -4.3890 / 763.118i
-4.3763 + 763.205i -4.3792 + 763.106i

True -4.30433 + 760.3019i
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DIFFERENTIABILITY PROPERTIES OF SOLUTIONS OF THE
EQUATION -e.Au + ru f(x,y) IN A SQUARE*

H. HAN AND R. n. KELLOGG$

Abstract. A singularly-perturbed, elliptic boundary value problem is considered in a square.
A theory of corner singularities for a 90 angle that takes account of lower-order terms in the equation
is developed. In the case r(x, y) =_ const., an asymptotic expansion of the solution is obtained that
can be differentiated termwise and which displays both the corner singularities and the boundary
and corner layers of the solution.

Key words, singular perturbations, boundary layers, asymptotic [Aanalysis, corner layers
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1. Introduction. The solution of an elliptic boundary value problem possesses
as much smoothness as the coefficients of the equation, the data of the problem, and
the boundary of the domain permit. For example, if the domain has corners, and
is therefore not smooth, the solution has corner singularities and derivatives of the
solution become infinite near these corners. If the highest order terms in the equation
have a small parameter that alters the balance between the ellipticity and the other
terms in the equation, the solution may have a boundary layer, a region of rapid
transition near the boundary of the domain. In this paper we study in a simple
example a problem that contains both corner singularities and boundary layers.

We consider the equation in the title in the unit square Ft with u specified on
the boundary F. It is known that the solution u(x, y, ) has singularities near each of
the four vertices of 2. It is also known that, for small , u(x, y, ) has a boundary
layer behavior near F. We seek a joint asymptotic expansion of u(x, y, ) as (x, y) -a vertex of and as --. 0 that displays the singular behavior of u in the two limits.

Butuzov [1] has already given an asymptotic expansion of u for small e. This
expansion, which serves as our starting point, contains boundary layer terms for each of
the four sides of gt, and "corner layer" terms for each of the four vertices of Ft. Butuzov
has also established the uniform validity of the expansion by giving a uniform bound for
the remainder in t. Our concern is with the differentiability of the Butuzov expansion.
The importance of this lies in the fact that if the boundary data is continuous, the
solution u is continuous in t. The corner singularities in u occur in the derivatives of
u,. starting with the second derivatives which have logarithmic singularities near the
vertices of . If we want to understand the interaction of the corner singularities and
the boundary layer, we must obtain asymptotic expansions of the derivatives of u.

Our main result is that in the case r(x, y) =_ const.\ the Butuzov expansion can
be differentiated termwise to provide an asymptotic expansion of derivatives of the
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solution. As a consequence of our analysis, we write the expansion in a form that
shows explicitly both the traditional corner singularities and the boundary and corner
layers of the solution.

In 2 we develop the Butuzov expansion. Section 3 contains a discussion of
corner singularities on the square . Grisvard [2] gives an exposition of this theory,
especially for the Laplace operator. In this theory, there are constructed certain linear
functionals of the data of a problem whose nonvanishing guarantees the presence of
corner singularities in the solution of the problem. Each linear functional is associated
with a vertex of the domain. In the case of the Laplace operator, when the angle of
the vertex is r/2, the corresponding linear functionals are local; that is, they depend
only on the data and the derivatives of the data at the vertex. We construct the
appropriate linear functionals for the operator Mu -As + pux + quu + ru on the
square . In the construction, we pay particular attention to the effect of the lower-
order terms. We find that if the coefficients p, q, r are not constant, the higher-order
linear functionals are not, in general, local. In 4 we give our results on the derivatives
Of Uo

We let Dins(x, y) denote a generic derivative of order m of u. When appropriate,
we use subscripts to indicate the independent variables that are being differentiated.
We let Cm,a(S) denote the usual Holder space of functions of differentiability class
m, and whose ruth order derivatives are Holder continuous with exponent a in a set
S. When S we simply write Ck,a.

2. The Butuzov expansion. We consider the singularly perturbed elliptic
boundary value problem

(2.1a) Lu -2Au + r(x, y)u f in ,
(2.1b) u(s, O) gs(s), u(s, 1) gn(s), u(O, s) gw(s), u(1, s) ge(s), s e [0, 1],

where (0, 1) (0, 1). The functions r, f are assumed to be smooth in and
r(x, y) > 0. We let rmin > 0 denote the minimum value of r(x, y) in , and we let a > 0
denote a constant with a < rmin. The boundary data gl, hi are assumed to be smooth
in [0, 1] and to satisfy the compatibility conditions gs(0) gw(O), gs(1) ge(0), etc.
The asymptotic analysis of the solution of (2.1) is complicated by the fact that the
domain does not have a smooth boundary. Nevertheless, Butuzov [1] has given
an asymptotic expansion of the solution with an arbitrary number of terms, and has
provided an estimate for the remainder in the expansion. The expansion of Butuzov
contains "boundary layer functions," whose role is to correct discrepancies between
the boundary data and the boundary values of the reduced problem on the four sides
of , and "corner layer functions," whose role is to correct discrepancies between the
boundary data and the boundary values of the reduced problem near the four vertices
of ’/. In this section we describe the Butuzov asymptotic expansion, and we give a
bound for the remainder in the expansion.

We start with the "outer expansion." For this, define so(x, y) f(x, y)/r(x, y),
ul(x, y) 0, and ui(x, y) Aui-2(x, y)/r(x, y) for _> 2. Thus, ui 0 for odd and

Lui -2ui T Aui-2, 2, 4,....

We set
2n
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Then from (2.2) we have

(2.3) LU2, f 2’+2Au2,.

From (2.3) we see that L(u U2n) O(’2n+2). Unfortunately, u U2n is not small
on F. The boundary layer functions, which we now define, are designed to correct this
discrepancy in the boundary data of u- U2n.

We introduce a stretched variable /, defined by y]. We note the formula

Lv(x, ) -e2vx(x, ) v,m(x, ) / r(x, y)v(x, ).
We make a formal expansion of the equation Lv 0 into powers of , and equate to
zero the coefficients of i, to define a sequence of functions v0, vl,... as follows.

vo.,, + ro(x)vo O.
v.,, + ro(x)v -nr(z)vo.

i--1

Vi,,, + 0() Vi--., y ,-Zri-(x),
/=0

2,’" ,2n.

The functions ri(x) are defined to be the coefficients in the Taylor series expansion of
r(x, y) in the variable y"

(,) ().
i--O

The equations (2.4a) are a sequence of ordinary differential equations that are used
to recursively determine v0, vl,.... We must specify boundary conditions to complete
the determination of the vi. We specify the boundary conditions

(2.4b)
vo(x, o) 9(x) uo(x, o), vo(x, ) o s ,
vi(x, o) -ui(x, o), vi(x, 1) ---* o as / c, 1, 2,....

It is easy to see from the positivity of to(x) that (2.4a,b) has a solution vi(x, rl), and
that the functions vi satisfy

Dm (x,l)l < e-a’, m 0,1,(2.5) xnvi Cm

where the constant Cm depends on the data of (2.1) and its derivatives. The constant
a E (0, rmin). We also note the formulas

Lvo(x, rl) -2vo,zx(x, 1) + [r(x, y) ro(x)lvo(x, rl),
nvl (x, rl) -2v,x(x, 1) + r(x, y)vl (x, rl) ro(x)v (x, 1) lr (x)vo(x, 1),
Lv(x 1)= 2v- ,(x, ) + _,(x,) + (,)v( )

Z li-*ri-(x)vl(x’ 1), >_ 2.
/=0

We set

We then have

2n

y(,) ’,,(, ).
i=0

(2.6a)
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(2.6b) y(x, o) () v.(x, o),

(2.6c) Dx%V:n x r < cme a" m O, 1,’’’

In a manner similar to the construction of the vi, we define a stretched variable
x/e, and we define functions wi( y) and W2n(, y) 2n’=0w(, y). Also, we

define stretched variables (1- y)/e and (1- x)/e, and we define boundary
layer functions i(x, ) and i(, y) as above. We also define functions V2n(x, ?) and
W2n(, y). These functions satisfy equations analogous to (2.6). Then we find that
the remainder, u- U2n V2n W2n 2n ITV2n, is not small near the four vertices
of Ft. We introduce corner layer functions to correct this discrepancy in the boundary
data near the corners.

Consider a function zl(, 7) of the stretched variables (, 7). Note that

Lzl( 7) -zl zu / r(x y)z

We make a formal expansion of the equation Lz 0 into powers of e, and equate to
zero the coefficients of ei, to define a sequence of functions z(, r/). In defining the
functions z we shall require the Taylor series expansion of r(e, r/) in powers of e.
We write this expansion as

r(e,e) E (, ),
i--O

where p r(0, 0), p rx(0, 0) + ru(0, 0)r], and in general p(, 7)is a homogeneous
polynomial of degree i. With this, the functions z/(, 7) are defined by

Z Z "4- PoZ01 .,o, o,w
i-1

Z Z + pozil E pi_iz_ ,1
l--o

i= 1,... ,2n.

We use the boundary conditions

(2.7b)
zi(, 0) -wi(, 0), 0 _< <_ 2n,

z:(0, v) -v(0, v), 0 < < 2,

z(,) - o , -We note that the boundary data in (2.7b) are compatible at the origin:

( gs(O) O,
(o, o) v(O o)

L O i>0.

It can be shown that (2.7a,b) has a unique solution z which satisfies

(2.8b) mIDe,z (, r)[ < ce-’,’, p >_ 1,

where we have set p ({2 + r/2)1/2. The restriction p >_ 1 in (2.8b) is to avoid the
possible corner singularities in these functions at the origin. These corner singularities
will be discussed at the end of 3. We also note the formulas

Lz(, 7) Jr(x, y) p(, y)]z(, y),

nz(, 7) r(x, y)z(, ) (, )z(, y)Pi-j
j=O
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We set

We then have

2n

z.(, ) ,(,,).
i--O

LZn(’) Ez(,l) r(x,y) Jp}(,y)
i=0 j=0

(2.9b) z].(, 0) -w.(, 0), z].(0,.) -y.(0,.),

2(, rt), 3 4(, ) respectively, atWe also define corner layer functions z z (, /), and zi
the other three corners, (1, 0), (0, 1), and (1, 1) of . These functions satisfy equations
similar to (2.Ta,b), and the corresponding sums, Z2n, 2,3,4, satisfy equations
similar to (2.9).

Using the functions defined above, the asymptotic expansion 2n of Butuzov is
defined to be

4

(2.10) U2n + V2, + W2, + (z2, + I7V2, + E Z2,"

We let R2n u t2n denote the remainder in the asymptotic expansion.
We have the theorem of Butuzov.
THEOREM 2.1. Let u solve (2.1a,b). There is a constant cn > 0 that is indepen-

dent of such that
I(x, ) (x, )} < +.

Proof. We examine the boundary value problem satisfied by R2n. From (2.3) we
have IL(u- U2n)] <_ ce2n+2. Since

2n--i

(, ) (1
k-O

_
cy2n-i+

c2n--i+l2n--i+l
the inequalities in (2.6) give

2n

ILVu.(x, )l -< 2n-[-1 _}_ C2n-t-1 E
i=0

c2n+

Similar inequalities hold for the other terms that appear in the definition of fi2,. Hence

(2.11) ILRe,(x,y)l <_ ce"+, (x, y) t.

To examine the size of R2n on OFt we consider the typical side y 0. From (2.6) we
have

u(x, o) u(x, o) v(x, o) o.
From (2.9) we have

z(, o) +w(, o) 0,
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and similarly,

Hence

(2.12)

0) + 0) 0.

R2n(x, O) -(J2n(x, l/e) Zgn( l/e) Zn(, l/e).

From the exponential decay of these functions, IR2n(x,O)[ <_ cexp(-a/e) g

Reasoning in a similar manner on the other sides of fl, we obtain

(2.13) IR2n(x, y)[ g cexp(-a/e) <_ ce2’+, (x, y) e 0.

Using (2.11), (2.13), and the maximum principle for the operator L, we obtain the
result.

Using the exponential decay of the boundary layer functions, we may differentiate
both sides of (2.12) an arbitrary number of times with respect to x and obtain

(2.14) [DxmR2n(X, 0)[ _< ce-a/e.

Similar inequalities hold on the other three sides of . These inequalities will be used
in 4.

It is useful to interpret the expansion (2.9) in terms of the asymptotic analysis
of a function of three variables. We are concerned with the solution u(x, y, e) of (2.1)
in a neighborhood of x y e 0. The function 2, is defined by (2.9) as the
sum of functions of fewer variables: the functions ui, which are independent of e, the
functions vi, which depend on (x, y/e), the functions z, which depend on (x/e, y/e),
etc. The asymptotic analysis of u has thus been reduced to an asymptotic analysis of
functions of fewer independent variables.

3. Compatibility conditions. On a domain with a smooth boundary, the
solution of an elliptic boundary value problem has an amount of differentiability that
is determined by the differentiability of the data. If the boundary of the domain is
piecewise smooth, as for example, a polygon, this is no longer the case. In addition
to the differentiability of the data, some auxiliary conditions are also required to
guarantee the differentiability of the solution. These auxiliary conditions are expressed
by the vanishing of certain linear functionals of the data. The theory that leads to
these auxiliary conditions is presented in Grisvard [2]. In this section we present this
theory in the case of the square f, and with special regard for the effect of the lower-
order terms. We find that in the case of constant coefficients, the linear functionals
are local, and the vanishing of the linear functionals may be regarded as a statement
of compatibility between the boundary data at a vertex and the differential equation
at that vertex. It is this fact that enables the analysis in the paper to be carried out.
If the coefficients of the equation are not constant, the linear functionals are not in
general local functions of the data.

We develop the linear functionals and the compatibility conditions for the bound-
ary value problem

(3.1a) Mu =_ -Au + p(x, y)u + q(x, y)uy

(3.1b) u(s, O) gs(s), u(s, 1) gn(s), u(O, s) gw(s), u(1, s) ge(s), S e [0, 1].

We suppose that the coefficients and data of the problem are smooth. We let fl0 be
the set OFt with the four vertices excluded.
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A sequence of linear functionals, Ao(f, g), Al(f,g),..., is defined by

ho(f,
It It(0) + + 0),

h (f (o) (o) + nzf(O, O) n2vf(O, 0),

and, in general,

(3.2)
k

F}2(k--)/2(i-1Ak(f,g) gs(2k)(0) + (--1)k+lg(w2k)(O)+ Z(--1)’- z U f(0,0).
i----1

We also write /k /(k1), and in a similar way we define linear functionals (kl),
2, 3, 4, at the other three vertices of ’/..(kl) (f, g) is defined only if f and g possess

sufficient regularity. It is convenient to define a space Xk,a of pairs (f, g) such that
f E Ck-2,a(), gs Ck’a([0, 1]), and similarly for the other three sides of . X,a is

Banach space with the corresponding norm. ) is a bounded linear functionala on

X2k, for j < k.

The linear functionals/(k) pertain to the Poisson equation on . Sometimes we

shall need to apply /(kt) to the data generated by a function u. For this, we let 7u
denote the boundary values of u. Then/(kt) (--An, 7u) refers to the value of/(l) on the
data generated by the function u. Volkov [3] has analyzed the regularity of solutions
of the Poisson equation, and the results are presented in Grisvard [2]. From these
sources we cite the following theorem.

THEOREM 3.1. Let u solve the problem -An f in with boundary conditions
(3.1b). Let k > 1 and suppose (f, g) X2,. Then the solution u e C2k,() /f and
only if

(3.3) .t) (f, g) 0, 0 _< j _< k, 1 _< _< 4.

If, furthermore, (f,g) X2k+i,a, the solution u e C2k+l,a() if and only if (3.3)
holds.

We want to apply this result to the problem (3.1). For this, let f and g be given,
let u be the solution of (3.1), and set F f- ru- puz -quu We then define linear

functionals A(k0 (f, g) by

-(O(F,g).
As above, A() (Mu, 7u) provides the value of u on the data generated by the function

u. In the case l= 1 we write Ak(f, g) for Al) (f, g).
The problem of determining whether Ak(f, g) is well defined is a little tricky and

is best settled by an inductive argument. Suppose the data (f, g) E X2,a, and suppose
further that A(ol) (f, g) 0 for 1, 2, 3, 4. That is, suppose the boundary data are
compatible at the four vertices of ft. Then it turns out that the solution u of (3.1) lies in

Cl,a(). Hence (F, g) q X2,a, so A) (f, g) =/t) (F, g) is a bounded linear functional
on X2,,. The next linear functional, A) (f, g), is well defined only if Al) (f, g) 0,
and in an inductive argument, A(k) (f,g) is well defined only if A.t)(f,g) 0 for
j 1, 2,..., k- 1 and 1, 2, 3, 4. This reasoning is the content of the following
theorem.
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THEOREM 3.2. Suppose (f g) e X2,a, and suppose A(0) (f g) 0 for 1, 2, 3, 4.
Then the solution u of (3.1) lies in Cl,(t). If (f, g) E X2k, and u C2k-l,(t),
the linear functionals h) (f, g), j 1, 2,..., k are well defined and A) (f, g) 0 for
j 1, 2,..., k 1. We have A(k) (f, g) 0 for 1, 2, 3, 4 if and only if u e C2k,(t).

()If, further, (f, g) X2k+, and Ak (f, g) 0 for l- 1, 2, 3, 4, then u e C2k+,().
Proof. Suppose (f, g) X2,a. Since the boundary data are compatible at the

vertices of Ft, g may be extended in
satisfies a problem of the form (3.1) with zero boundary data. A reflection argument
shows that v C,a(t), so u

C2k-1,(/). Then F e C2-2,(t), so (F, g) e X2k,a, so h) (f, g) is well defined for

j 1,... ,k. Again since u C2k-l,a(t), from Theorem 3.1 we have A)(f,g)
/) (F, g) 0, j 1,..., k 1. From Theorem 3.1, A(k) (f, g) .()(F, g) 0 for

1, 2, 3, 4 if and only if u C2k,a(t). If (f, g) e X2k+,a and A(k) (f, g) 0 for
1, 2, 3, 4, then since u e C2k,(), F e C2k-,(t). Hence (F,g) X2k-,a, so

from Theorem 3.1, u

From its definition we note that/() (f, g) is a local functional of (f, g) in that the
value of the functional only depends on the values of f and g and their derivatives at a

certain point, the/th vertex of t. This is what enables the well definedness of .() to
depend only on the smoothness of f and g, and not on the vanishing of the preceding
functionals. If M has constant coefficients the functionals A(k) can be reformulated to
be local functionals, and to be well defined regardless of the vanishing of the previous
functionals. This is established in Lemma 3.1.

LEMMA 3.1. Suppose M has constant coefficients. Then there are bounded linear

functionals (t) on X2k,a, l= 1, 2, 3, 4, such that (kt) (f, g) depends only on the values
and derivatives of f and g at the th vertex of , and such that if k >_ 1 and (f, g)
X2k,a, the solution u of (3.1) is in C2k,a() /f and only if

(3.4) /)) (f, g) 0, 0_<j_<k, 1<_1_<4.

/f (3.4) hold and if, furthermore, (f, g) e X2k+,a, then u C2k+,a(gt).
Proof. The definition of the linear functionals/(t) involves a formal differentiation

of (3.1). We take the case 1 and we write/k instead of/(k1). Let u be the solution

of (3.1) and suppose that u e C2k-,a(). From Theorem 3.2, ht)(f, g) 0 for all/

and for 0 _< j _< k- 1. From (3.2) we see that Ak(f, g) (F, g) involves derivatives
of u of order <_ 2k 1 of u evaluated at (0, 0). Also from (3.2), each derivative of even
order of u occurring in k(F, g) is of the form D2D’u(O, 0). From the boundary
conditions, DJu(O,O) gs(O), DJyu(O,O) gJw(O). By successive differentiations of
(3.1a) and evaluations at (0, 0) we find that any odd order derivative of u, evaluated
at (0, 0), may be written in terms of the values and derivatives of f, gs, and g at
(0, 0). Similarly, it may be shown that any even order derivative of u of the above
form, when evaluated at (0, 0), may be written in terms of the values and derivatives
of f, gs, and gw at (0, 0). If these expressions for the derivatives of u at (0, 0) are
substituted into the formula for Ac(F, g), we obtain a new linear functional, denoted
k(f, g), which depends explicitly on the values and derivatives of f and g at (0, 0),
and which is a bounded functional on X2k,,. By the construction, ,.k(f, g) Ak(.f, g)
if u C2k-,"(). Hence (3.4) holds if and only if u
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If the coefficients of M are not constant, this reformulation of the linear function-
als will not, in general, be possible. To see this, consider for example the case 1.
If u satisfies (3.1a,b) and is smooth at (0, 0) we have F f rg8 pgs qgw at (0,0),
so

(3.5) Al(f,g) g(0) -p(0,0)g(0)- r(0,0)gs(0)+ g(0)- q(0,0)g(0) + f(0,0).

A similar result holds for the other vertices, so At) can be reformulated to be a

local functional, even if the coefficients are variable. To calculate A1) (f, g) we must
obtain formulas for Fxx and Fuy at (0, 0). In particular, we must obtain a formula for
(pux)yy puxyy + 2pyuxy +pyyux at (0,0). There seems to be no formula for uu(0, 0)
in terms of the data f, gs, gw and their derivatives evaluated at the origin. Hence the
linear functional A) is not, in general, a local functional. If the operator M has no

first derivative terms, so p q 0, then the functionals At) can be reformulated
to be local functionals. In this case, since F f- ru, if u is smooth at (0, 0),
F fx rg 2rxg rg at (0, 0) and similarly for F, so we may set

(3.6)
/2(f, g) g4)(0) g)(0) + D2f(O, O)- Df(O, O)

r(0, 0)g’(0) 2rx(0, 0)g(0) rx(0, 0)gs(0)

(o)
In this case, however, A3 involves rzy(0, 0)Uy(0, 0) and so is not, in general, a local
functional.

If the solution u of (3.1) does not satisfy the compatibility conditions, we can use
Theorem 3.2 to obtain estimates for the derivatives of u near the corners. For this,
we introduce singular functions associated with the corners. Let (r, 0) denote polar
coordinates, and let

Ck(x, y) r2kO cos 2kO + r2k(ln r) sin 2kO.

This function arises from taking the imaginary part of the analytic function (x +
iy)2k ln(x +iy). Therefore we have ere(x, 0) 0, Ck(0, y) (--1)k(Tr/2)y2k and ACk
0. It is easily seen that Ck E C2k-,a(gt) for any a < 1 but D2kCk is not bounded.
Hence Ai(MCk,/k) is well defined for <_ k, Ai(MCk,’YCk) 0 for < k, and
hk(MCk,’k) : 0. In fact, hk(MCk, "YCk) -k(0,’yCk) -(r/2)(2k)!. We also
write Ck , and in a similar way we construct singular functions k, 2, 3, 4 at
the other vertices of Ft. The only singularity of is at the/th vertex of Ft. Collecting
these facts and using Theorem 3.2, we obtain the following lemma.

LEMMA 3.2. AJ)(M,-y) is well defined .for < k, vanishes .for < k, and
satisfies

(3.7) h(j)(M,’) { ark -(r/2)(2k)!, j l,
O, jl.

The derivatives of satisfy the inequalities

c, m < 2k,

ID i(x,v)l < I n l],
cr-(m-2k), m > 2k.

and similar inequalities hold .for the other vertices.
We use the singular functions to obtain bounds on the derivatives of u. This

is done, in the following theorem, by establishing a recursive set of adjustments to
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the solution u, subtracting off the singular part. In the case of constant coefficients,
we could use the localized linear functionals /(kl), and a recursive definition of the
adjustments to the solution would not be necessary.

THEOREM 3.3. There are bounded linear functionals ) on X2,a such that if
(f,g) E X2k+l,a, if u is the solution of (3.1), and if vk is defined by

4 k

)(s, +
/=1 i=1

then vk C2k+,a and ]]vk]]C+,, c]](f,g)]]x+,,,. The derivatives of u of order
up to 2k + 1 satisfy the inequalities

(3.8) Dmu(x, Y)I c[1 + lnr], m 2,
cr-(m-2), 2 < m 2k + 1,

which are valid in a neighborhood of the origin. Similar inequalities hold at the other
vertices of .

Proof. The linear functionals are defined in a recursive fashion, and the proof is

by induction. om Theorem 3.2, u e C,() and the linear functionals A) (f, g) are

well defined. Set v0 u. Suppose, by induction, that ) and vj have been defined

for j 0,..., i- 1 with vi_ C2-,a. Thus, h)(Mvi_, vi_) 0 for j i- 1

and A)(Mvi_, vi_) is well defined. Let

Then

Also,

v’) (I, g) i’) (Mvi_, "vi-)/a.

4

Vi Vi--
1--1

so A)(M,’vi) 0. Since A)(M,’) 0 for
j i. Hence vi C2i+, and the induction is complete. Inequality (3.8) now follows
from (3.7) and the bounds for Dmvk(x, y).

4. Expansion of the derivatives. In this section, we consider the asymptotic
expansion of the derivatives of u. It is found that, in the case r(x, y) const., the
desired asymptotic expansion of Dmu can be obtained by differentiating the Butuzov
expansion. The analysis proceeds by studying the derivatives of the remainder R2n
in the Butuzov expansion. For this, we set M -2L and apply the compatibility
conditions developed in 3. In (2.10) all the functions on the right are smooth except
possibly the Zn and Zn is smooth at all vertices of except possibly the/th vertex.
Hence

(4.1) A)(M2n,fi2) A)(MZn,Zn).
We stateWe first require some information concerning the corner layer functions z

the result only in the case 1.
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LEMMA 4.1 For some c > O, a > O,
ap m 1,

IDz(, r/)[ < c[1 + ln pl]e-ap m 2

Cp-(m-2)e-aP m >_ 3.

If r(x,y) =_ const., there are constants aik such that ;kk(Mz, z) -aik/e2k.
Proof. From (2.7) we know that z is smooth for > 0, r/ > 0, and the only

possible singularity is at the origin. We consider z as being defined by a boundary
value problem in the unit square Using (3.8) to estimate Dm~l for p < 1 and using
(2.8b) for p > 1, we obtain the first assertion. Now suppose r(x,y) const. Let
fi(,r/) denote the right side of (2.7a), and let Fi Mzi. Then Fi e-2Lzi
-zi,xx zi,yy - e-2rzi -e-2fi. Note also that Dkzi(x, O) e-k, Dkzi(O, y))
A computation then shows that Ak(Mz,’z) is a homogeneous function of e, and
the degree of homogeneity is e-2k, SO we obtain the second assertion.

Although in general the derivatives of R2n are not bounded in f, the derivatives
of LR2n are bounded in . This fact is important in our analysis. The next lemma
provides bounds for these derivatives.

m ce2n+l--mLEMMA 4.2. Suppose r(x, y) =_ const. For rn < 2n + 1, ]DxyLR2n] <_
DmProof. From (2 11) the result is true for m 0. From (2.3) xyn(u-

Dmce2n+2. Since Dy -e-tOy, xyv(x, )] g ce-m]Dv(x, ?)]. Using (2.6) we get
m Ce2n+l-m _< 2n + 1.IDxyLV2n(x, )1 - m

Similar results hold for the other boundary layers. From (2.9), LZ2n 0, and similarly
for the other corner layers. Combining these estimates, we obtain the result.

We now have the following lemma.
LEMMA 4.3. Suppose r =_ const. Then if 2k < 2n + 1, A(kl) (MR2n,"/R2n) 0.

Proof. We give the proof in the case 1. Since u 2n + R2n, we use (4.1) to
get

(4.3) e+Ak(Mu, "u) ek+Ak(MZ, "Z2) + ek+Ak(MR2,, "R2,).

Since r const., we may use the linear functional/ given by Lemma 3.1. A com-
putation shows that k(Mu,’u) is a polynomial in e-1 of degree <_ k + 1, and from
Lemma 3.1 we note that the coefficients of the polynomial are linear combinations of
the derivatives Dgs(O) and Dygw(O) for 0 _< _< 2k, and the derivatives Dx_yf(0,0)i
for 0 _< _< 2(k- 1). Furthermore, each derivative Dyf(O, 0) that appears in Ak(f, g)
appears in the coefficient of e-(2k-i). Hence the left side of (4.3) is a polynomial of de-
gree _< k + 1 in e with coefficients that depend only on the data f and g. From Lemma
4.1, e+Ak(MZn,’Zn is a sum of powers eJ with -k + 1 <: j _< 2n- k + 1. The
coefficients of eJ in this expression depend only on the data f and g. We now estimate
hk(e) ek+;kk(MR2n,’R2n). As we have seen, hk may be written as a polynomial
in e with coefficients depending on e. These coefficients are linear combinations of the
derivatives DixR2n(x, 0) evaluated at x 0, 0 <_ _< 2k, the derivatives DiyR2n (O, y)
evaluated at y 0, 0 <_ <_ 2k, and the derivatives DyLR2n(O, 0), 0 <_ <_ 2(k 1).
From (2.14) and the analogous inequalities on the other sides of g/, the derivatives
of the boundary values of R2n are exponentially small. The derivatives of LR2n(O, O)
that appear in hk(e) appear in the form e-k+DxyLR2n, and from Lemma 4.2, these
terms are bounded by Ce2n+2-k. Hence we have proved

(4.4) Ih(e)l <_ ce2’+2-k.
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Hence if k + 1 < 2n + 2- k, hk(s) vanishes more quickly than the other two terms
appearing in (4.3). Since hk is an analytic function of s, we must have hk(s) =-- O. The
proof in the case of other is similar.

We now have the following lemma.
LEMMA 4.4. Let , #, and be nonnegative integers with # + <_ m and 2 <_ #.

Then #2Dt rvxy. may be written as a linear combination of s2D-2DV+2R, deriva-x y

tires of R of order <_ # + - 2, and derivatives of LR of order <_ # + - 2. The
coefficients appearing in the linear combination depend only on r and its derivatives,
and in particular are independent of s.

Proof. The proof follows from successive differentiations of the equation -s2Rxx-
s2Ryy + rR LR and an examination of the linear combinations of derivatives of R
of order # + u that are obtained.

The next lemma gives bounds for the solution of a mixed boundary value problem
associated with the operator L, with the dependence of the constants on s made
explicit.

LEMMA 4.5. Let R E C2(gt), and let c > 0 be such that ILR(x,y)l <- c on t,
and on each of the four sides of either R
8cmax{1, l/train}, where rmin > 0 denotes the minimum value of r.

Proof. Set

T(x, y) 2c[4 e-/ e-(1-)/ e-U e-Cl-Y)/e].
Then a computation shows that LT >_ Crmin in Ft, T(x, O) >_ c, Ty(x, O) >_ c/e, and
similarly for the other three sides of Ft. Applying the maximum principle to the
function max{l, 1/rmi}T -t-R, we obtain the result. El

Using these lemmas, we give the desired results for the derivatives of 2n.
THEOREM 4.1. Suppose r(x,y) =_ const., and let u be the solution of (2.1). Let

n >_ 2. Then there is a constant c > O, independent of s, such that for m <_ 2n + 1,

Dm Dm (x,)- Dy2n(x,y)l < CS2n+i-m

Proof. From Lemma 4.3, A(1) (MR2n, R2n) 0 for k <_ n. Hence from Theorem
3.2, R2n E C2n+i’a(t), so DR2n is continuous in for m _< 2n + 1. The proof
is by induction on m. From Theorem 2.1 the result is true for m 0. To continue,
let m > 0 and suppose the inequality is true for all orders of differentiation less than

mm. Let ’ DzyR2n. To estimate S we will apply the maximum principle to a
boundary value problem satisfied by S. For this we must estimate LS and the right-
hand sides in the boundary conditions that we will impose on S. It is easily seen that

DLR2n LDR2n is a linear combination of derivatives of Rn of order less than
m. Hence, by induction and Lemma 4.2,

(4.5) ILS(x, Y)I <- CS2n+-m"
The boundary conditions which we impose on S depend on the particular derivative
that is being estimated. Note first that from (2.14) and the analogous inequalities on
the other three sides of

IDkR2n(x, 0)1

_
ce-a/, IDkR2n(x, 1)1

_
ce-a/,

(4.6)
IDR(0, y)l < IDR(1, y)l <

Let S D"DR.,x where # + m. The boundary value problem that we associate
with S depends on the parity of # and . Suppose, for example, that # is even and
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is odd, so m is odd. In this case, for the boundary value problem satisfied by S
we impose Dirichlet conditions on the vertical sides of and Neumann conditions on
the horizontal sides of 2. Using Lemma 4.4, we write S as a linear combination of
DnR2n, and of derivatives of R2n and LR2n of order <_ m 2, where the coefficients
of the latter derivatives are bounded by ce-2. We evaluate this relation on a vertical
side of . We use the inequality (4.6) to bound DR2n, and (4.5) and the inductive
assumption to bound the other terms in the linear combination. We obtain

(4.7)  s(0,  s(1,
Similarly, we write Sy DD+R2 as a linear combination of D+IR2n, and of
derivatives of R2n and LR2n of order m- 1, where the coefficients of the latter
derivatives are bounded by c-2. We evaluate this relation on a horizontal side of. We use the inequality (4.6) to bound D+IR2n, and (4.5) and the inductive
assumption to bound the other terms in the linear combination. We obtain

(4.8) [Sy(x, 0)[ c2n-m, [Sy(X, 1)[ c2n-m.

Using (4.5), (4.7), (4.8), and Lemma 4.5, we obtain [S(x, Y)l c2n+-m" If is odd
and v is even, we assign Dirichlet conditions to the horizontal sides of and Neumann
conditions to the vertical sides of . If and v are both even, Dirichlet conditions are
assigned to all the sides of , and if and v are both odd, Neumann conditions are
assigned to all the sides of . The reasoning is similar in all these cases. If r(x, y)
const., we use the reformulation of Ak for k 1, 2 given in (3.5) and (3.6). om these
formulas we obtain Lemma 4.1 for k 1, 2, and then we obtain Lemma 4.3. The
rest of the proof of (4.5) follows as before, so in the general case we obtain (4.5) for
k=l,2.

It is natural to ask whether Theorem 4.1 holds in the case r(x, y) const. We
conjecture that the result holds for m 5, but that for m > 5 the Butuzov expansion
must be modified to obtain an asymptotic expansion of Dmu. The question is not
studied further here.

It is of interest to combine the corner expansion (3.7) given in 3 with the bound-
ary layer expansion provided by (2.10). Since the outer expansion U2n is smooth, and
the boundary layer expansions V2u, W2n, etc., are smooth, and since a consequence of
Lemma 4.3 is that R2n is smooth, it follows that the corner singularities of u at the/th

of 2n To analyze these cornervertex of fl are contained in the corner layer terms zi
singularities we may use the expansion (3.7). It is useful here to introduce singular
functions that are specifically adapted to the operator N that defines the corner layer
functions:

gz(, ) -z(, ) zv,(, ) + r(O, O)z(, ).
We define singular functions Xk(, ) as the solution to the problem

-Ax+r(0,0)X=0, >0, >0,

(4.9) 0) 0, x (0,
Xk 0 as p .

Considered as a function on the unit square in the y plane, Xk has a singularity only
at the origin and

0, < k,
(4.10) hi(gxk, X) is 0, i= k,

not defined, > k.
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It may be shown that Xk satisfies the inequalities

ce-r(,)P, < 2k,
(4.11) IDtxk(, ?)I <- c[1 + lnp[]e-r(,)p, 2k,

Cp-(l-2k)e-r(O,O)p, > 2k.

Using these functions, we write the singular expansion of z(,) as

(4.12) z(, ) E Ak(Yz, 7z)Xk(, Y) + m(, ).
k--1

The remainder, (m has 2m + 1 continuous derivatives in the positive quadrant >_ 0,
r/_> 0 and satisfies

(4.13) IDt(, r/)l _< ce-r(,)P, 0 _< _< 2m + 1.

(1) y) Xk( r/), and in a similar manner we define singular functionsWe also write Xk (,
Xk pertaining to the other vertices of Ft.

We now formulate a result that expresses the interaction between the corner
singularities of the problem and the singular perturbation behavior of the problem.

THEOREM 4.2. Let u be the solution of (2.1). Suppose r(x, y) =_ const. Then

4 rn

(4.14) u(xy) EE’ <’) Iun -4- Sm(x,y,),a(e)X + V2n + W2n + I/V2n +
l--1 k--1

where ak(e) is a polynomial in e of degree 2n, and where the remainder Sm satisfies
]DSm(x,y,e)] <_ c, 0 g g 2m + 1.

Proof. Inserting (4.12) into (2.10) we obtain (4.14) where
2n

a(e) E e’A(k’)(yz’ Tz)’
i=0

+ +
i,!

The inequality then follows from the properties of the functions that form Sin. []

As a corollary of Theorem 4.2, we obtain bounds on the derivatives of u that
display both the parameter e and the distance to the nearest corner of Ft. To state
these bounds we define distance functions dv and d8 measuring the distance to the
nearest vertex of fl and the nearest side of respectively by

dr(x, y)2 min{x2 + y2, (1 x)2 + y2, x2 _+. (1 y)2, (1 x)2 + (1 y)2}
ds(x, y) min{x, y, 1 x, 1 y}.

We then have the following corollary.
COROLLARY. Let u be the solution o.f (2.1). Suppose that r(x, y) const. Then

we have
a-ad/e m 1,

Dm c[1 ln(dv e-ad*/e< + + +1
c(dv/e)-(m-2)e-ad*/ m >_ 3.

Proof. The result follows from Theorem 4.2 and the bounds on the derivatives of
the various functions that have been established. El
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CONVEX FUNCTION OF A MEASURE OBTAINED
BY HOMOGENIZATION*

FRAN(OISE DEMENGELt AND TANG QI:

Abstract. This paper defines and studies convex functions of a homogenized measure. These types of
mathematical objects are F limit of integral functionals which depend on the deformation ofthe displacement
of a material. This work has been done in view of its applications to homogenization in perfect plasticity.
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Introduction. This paper states mathematical results necessary for studying the
homogenization for one kind of material, namely, elastic perfect plastic, for Hencky’s
law.

The theory of homogenization consists in assuming that the domain [l occupied
by the considered material is composed of a great number of identical cells of size e.
For e > 0, P is defined as the prehomogenized corresponding displacement problem,
and P* as the stress problem. By letting e tend to zero the domain fl becomes almost
homogeneous and the question is, in what sense P converges to the homogenized
problem, which will be defined later.

Variational mechanical problems for nonhomogeneous materials other than plas-
ticity have been studied with theories of homogenization (cf. [3], [4]), but the func-
tionals used were coercives on reflexive spaces. The main difficulty here lies in the fact
that the "prehomogenized" energies are bounded only in L1. This has motivated this
first theoretical part. The homogenized energy (u) is defined not only as a functional,
but also as the integral on the open set l’l of a measure. We show in 1 that qY(u) is
a measure that is absolutely continuous with respect to the measure ]e(u)l +[div u[ 2.
As Buttazo and Dal Mazo [4] did for homogenization of coercive problems on H1,
we state in 2, the existence of a punctual function, called homogenized and denoted
XI’hom, such that

(xI(u), o)= atthom(e(u)(x))cp(X dx,

when u is sufficiently regular (for example, for u in HI(fl)). Moreover, hom satisfies

co(l:l + Itr :12-1) -< xI’hom(:) =< C,(IDI + ]tr :1 + 1).
The theory of convex function of a measure, studied in 11 and 12], then allows

the measure xlthom(e(u)) to be defined when u belongs to U(fl)= {u LI(fl), (ui,j+
uj,i)/2 MI(II), for all i,j [1, N] and div u L2(fl)}. The central result of this paper
then consists of showing that the measure Xlthom(e(u)) coincides with (u); in other
words, the formula just above may be extended in a certain sense to functions of U(fl)"

(XI(u), p)= (XIhom(e(u))
This result will be crucial for stating (see [9]) the convergence of prehomogenized
problems towards the homogenized one.

* Received by the editors February 5, 1987" accepted for publication (in revised form) April 17, 1989.
f Universit6 Paris-Sud et Centre National de la Recherche Scientifique, Laboratoire d’Analyse

Num6rique d’Orsay, Btiment 425, 91405 Orsay Cedex, France.
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We conclude by giving an "explicit" expression of Whom, and by determining the
convex set Khom, which is the domain of (Whom)*= (W*)hom. These results have been
obtained before by Bouchitt6 [3], [2] for the gradient and by Tang Qi [19] for the
strains, but our method seems to be more direct and uses the properties of convex
functions of a measure.

1. The homogenized measure alr(u) for u in U([I). Let fl be an open bounded set
of, N-> 2, and let E be the space of symmetric tensors of order two on . When

N: belongs to E, its deviator :o is defined by :o -(tr /N) Id, where tr :==1 :.
We denote by Y the open N-simplex ]0, 1[ m, and we suppose that W is measurable
and Y-periodic with respect to the first variable, convex in relation to the second one,
and verifying that

(1.1) W is nonnegative, W(x, 0) 0.

There exist some positive constants Co, c, such that for every

(1.2) co(l:[ + (tr :)2 1) -< W(x, :) <= Cl(IDI + (tr :)2 + 1 ).

A useful consequence of (1.2) and the convexity ofW is the following. If tr : tr rt, then

(1.3) IW(x, :) W(x,

We denote for a real e > 0 by W the function

(1.4) W(x, e)=W(,
Now we give more notation, e(u) will denote for u in L the deformation of u, i.e.,

(1.5) e(u)i.i =ui’j+uj’i fi, j[1 N]
2

(where the derivatives are taken in the sense of distributions). We define the spaces:

(1.6) LU(f) {U LI(’), e(u) La(’, E), div u L2(f)},
(1.7) O(f) {U E LI(’), e(u) M(f, E), div u L2(f)}
where Ml(f, E) denotes the space of bounded measures on f that take their values
in E. Let us finally recall the characterization of F-limits (cf. [7], [8], [1]). If (X, z) is
a topological space satisfying the first axiom of countability, Fh is a sequence of
functions from X into R, and u is an element of X, then

h-= F- lim Fh(V
h--O

if and only if, for every sequence Uh converging to u in (X, z),
(i) A- =<lim Fh(Uh);
(ii) There exists a sequence Uh converging to u in (X, ) such that A- lim Fh(Uh).

In a similar manner we define the F lim, by replacing lim by lim in the inequalities
above. It is easy to see that F-lim Fh and F-lim Fh exist, since they may also be
defined as

F- lim Fh u inf { lirn Fh Vh }hO

F-lim Fh(u)= inf,h_.,, {lhimo Fh(vh)}.
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A sequence Fh is said to be F convergent in u if and only if (F-lim)
Fh(u) (r- lim Fh)(U).

In the following definitions we will take X’-LP(’), where p is fixed in
]1, NN-1[ endowed with its strong topology.

Let us take p in fig(l)),1 p -> 0, u in U(f), and define the functional

(1.8)

and the following F-limit:

(1.9) (-(u), )= r-(L) lira F(v, go) < +o,
e-0

(+(u), ) r-T F(u, ).

In the result above (Theorem 1.1(i)) we will see that the F limit of F,(u, o) exists for
a subsequence, for every u, and o => 0, in C(f/). We will then restrict to this subsequence
and denote by ((u), o) the corresponding F limit.

THEOREM 1.1. (i) There exists a subsequence e’ for which -(u)= +(u)= (u)
for every u in U(I). Moreover, (u) may be extended as a bounded measure on f,
absolutely continuous with respect to le(u)] + (div u)2.

(ii) is a convex function of u.
Proof. (i) We begin to show that for every u in U(f), -(u) and +(u) are

Lipschitz with respect to p >-0 in fig(fl). We proceed toward that aim in several steps.
For convenience we give them only for @-(u), the changes for +(u) being obvious.

Step 1. For every p fig(O), q _-> 0,

,+moo (ff-(u), Sup (, -ln)) (ff-(u), )

Step 2. For every pl and (2 in 1(fi), 01 and p2>_-0, we have

Suppose for now that steps 1 and 2 have been proved, assume that (01 and q2 have
been proved, and take q and q2 in c(f), q and q>_-0. Define qi Sup (pi, 1/n),
for i-1, 2. There exists qS’ figl(), 13_ pl__< 1/2n. Then 0= g3’-1/2n verifies

1
n<0n +-O<--O’;<=Pi=

n

and then by step 1,

(-(u), )-<_(-(u),

-<_ (,-(u), o’ +-)
(because (V-(u),.) is obviously increasing with respect to p >-0).

The definition and results that follow are also valid for o cO(f/), o bounded.
2It is well known that LU(IDc Lq(f), for all q[1, N/N-I].
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By step 2 we then obtain

(,V-(u), o)_-< (,I,-(u), o)+

2
-< (,-(u), )+I-l+-n

C2(u) 2
2n n

n being arbitary, this proves the desired result, by changing
Proof of step 1. Take B > 0 and q => 0 in cg(f), B < [p1/2. We easily have

(-(u), ) (-(u), sup (, )). Let us take

0=
1 on{x,(x)2B},
0 on {x, (x)

O 01, [VOa] G(8), Oe 1(), and let u eLU(O)

Now Theorem 3.4 of [21] shows that there exists e LU(),

le(a)l- le(u)l ,
Idiv a div ul < ,
u ul, C3()"

Let us define w uO + a(1- 0). (We drop the dependence on . )We have w u
in LP(), and e(w)=e(u)O+e(a)(1-O)+(u-)@VO. By a technical result of
Giaquinta and Modica [14], there exists z s WI’v() such that

div z=-tr((u-)@VO),

lr=- tr(u-)@VO,

where the constant C4 above depends only on N, , and p.
We now define v w + z. We have

e(v) e(u)O + ( O)e(a) + e(z) + ((u,

and then

div v 0a div u + (1 0) div a
so v v in LP() and v LU(O)"

a le(v)- Oe(u)-(1- O)e()l a le(v)- Oe(u)-(1- O)e()l

N (C4+ 1) (meas. a)-/

_-<
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And then, using (1.3)

I*(x)- qt(Y)l-<- Clx yl,

I(,e(v)) Sup(q,()<-I(,e(u)O+(1-O)e(f)) Sup (q, )

+ C,(u)(l[+)

<--I, *(,e(u))O+f2 *(, e(fi))
(1- o) Sup (, )+ c(ll+)

y.(, e(u))(x)+2,C
"( (le()’+ldiv l)+meas.") + C’(II+’)

and then

(-(u), Sup (, )) N (-(u), >+2C(llull(+ +meas. a) + C,(l+ ).

This implies the desired result, being arbitrary.
oofofstep 2. We want then to show that for every u in U(a), -(u) and +(u)

are Lipschitz with respect to , when e W’(a), for the norm of (a). Toward that
aim, let >0 be given, and in wl’(a), , 0, and let u be in LU(a),
such that u u in L(a) and

liI*(,e(u,))(x),(x)(-(u),)+8.
By Theorem (3.4) of [21], there exists a LU(O), au in Le(O), div a,div u in
L:() and le(a)lle(u)l. (We will denote it for convenience as the tight
convergence in U().) We define 0=inf(1,(/(:+8))). It is easy to see that
OW1’. Define w=uO+a(1-O). We have wu in LP(), and e(w)=
e(u)O+e()(1-O)+(u-)@VO. By a technical result of Giaquinta and Modica
[14], there exists z W’() such that

div z -tr ((u a)@V0),

r=-where the constant above depends only on N a, and p. Since (u-)0 in L, we
may choose e suciently small to have

We now define v w + z. We have

ale(v)-Oe(u)-(1-O’e()l=ale(v)-Oe(u)-(1-O)e()l
le(z) + VO@(u v)lc
(C4+ 1) 8(meas. )-/P
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Then, by (1.3),

](x) (y)[ <= CllXD yO[,

I’ttt(,e(v,)):z<=I(,e(u,)O+(1-O)e(,))2+Cs5121.
This implies

(*-(u), o:)_-<lirn * e(v)

We now remark that 02 and obtain

(-(u),)Nli(,e(u))l+lim(,e())(1-O)+Cs,ll
(-(u), )+C lim fa (le(a)l+(div a)+ 1)(1=-11+ )

+ Cl=l

)+c f (le(u)l+ (div u)=+ 1)1=-1+ c6.-(u,

Since B is arbitrary, we obtain that

-(u, =) -(u, 1)+ Callull.l=-1
where IJull. =$. (le(u)l +(. (div u)=)/.

This ends the proof of Steps 1 and 2 and thus of the Lipschitz propey of -.
The analogous is true for +, following the same arguments. Now let {} be a
countable dense subset in ff(fl). Fix j in ; there exists a subsequence (e) such
that the corresponding F(., ) are F-convergent. (This is a consequence of a Buttazzo
compacity result, since Lp possesses a countable base.) By a diagonal process we then
obtain that there exists a subsequence (e) such that for every u in (), we have

(ff+(u), )= (ff-(u), %)

=F-lim( x )o (e)’ e(v)(x) (x).

Then take u in U(O) and in (), 0, for all e > 0; there exists % in , such
that I 1< e/C(u). We then have

I<-(u), >-<+(u), >1 I<-(u), >-<-(u), >1 + I<+(u), >-<+(u), %>1
2C1(u)1-1
2e.

With e being arbitrary, this implies that for the subsequence (e), (-(u), )=
(+(u), ), for every in (fi), 0. We denote the common value -(u) =+(u)
by (u). Now let us show that (u) may be extended as a bounded measure on .
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For the first time we show the additivity of (u) on Wl’(f). Let pi->0 (i 1, 2)
be in Wl’(f), and u be in LU(f), such that u--u in L(I), (x/e, e(u,))(+
q2)(x) ((u), Pl + 2). By the definition of F- limits,

((u),,)li e(u) , for i=1,2,
e0

and then E(u), )((u), 1+2). For the reverse inequality, with 8>0 being
gven, let u be in LU(O), such that u’ tends to u in L () and
((u), )+ 6, for 1, 2, and as in the proof of the Lipschitz propeay of , and
define

=, ++Z
It is easy to see that u LD() and that u o u in LV(). The calculus of e(u) gives

e(u,) =E o,e(u

where O /( +) for 1, 2.
By the technical result of Giaquinta and Modica [14] already cited, let w be in

WI’(O), such that

div w tr

w. n =-1/IFI , tr X,

We may choose e sueiently small in order to have the last quantity on the right above
less than . We then define v u + w. We have vu in LV(O), and

2 2lev-Oeu- Oe(ul leOv- OeO(ul,- OeOl
2le(w)l+l(-o

We get

((u),+)liI*(:,Oe(u’)+O2e(u:))(l+2)+(C2+2)B]l+2+]

With being arbitrary, this ends the proof of additivity for (u) on W’(a) +(a),
and then on +(fi), by density, since (u) is Lipschitz with respect to for the usual
norm of (a).

We now extend (u) to (a) by setting

(.0 ((u, (e(ul, -(e(ul,
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where o ql-(02 is every decomposition of q in the difference of two nonnegative
functions in c+(1)). That this does not depend on the decomposition of q is a
consequence of (u)’s additivity. Let us now show that (u) is absolutely continuous
with respect to le(u)l + (div u)2. For that purpose, we use a result of approximation
in [21]. For u in U(O), there exists u in LU(), u tends to u in LI(), le(u)l
le(u)l tightly on , and div u,div u in L2(). By definition of (u),

((u),)Nli ,e(u)

(1.11) lim c(le(u)l+(div u)2+ 1)

Cl(le(u)l+(div u)+ 1).

(ii) It is easy to show that is a convex function with respect to u. Take in
o(), 0, a real in [0, 1], and functions u in LU(), with u tending to u in
LP(O) (i= 1,2) such that (x/e, e(u))((u), ). By the convergence of tu +

2(1- t)u toward u in L() and the propeies of the F-limit,

((tu +(1-- t)u2), )li te(ul)+(1 t)e(u)

lim t e(u) + (1-t) X, e(u.)

t(ff(u), )+(1- t)((u:),
PROPOSIrIO 1.1. Let u be in LU(fl). ere exists u. in LU(fl), u tends to u tightly

in LU O u ulr and

COROLLARY. For u in LU(fl), there exists u in LU(O), u u tightly in LU(O),
u ur and *(x/e, e(u.))*(u) tightly on O.

Proo Assume that u belongs to LU(fl). We are going to show that for every
> 0 there exists u, in LU(), such that

(1.12) lu, ull < 8,

(1.13) I. xlt(,e(u,))<--_I. Ctt(u)+
(1.14) /’/e,8 -"/’/IF"

Let us show (1.12)-(1.14). For 8>0 given, let K be a compact subset in II such that
J.\ le(u)l< and a function o in o(fl), p= 1 on K, 0<-o <- 1. By definition
of . (u), there exists v, in LU(fl) such that

,e(v) <= (u)+&
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This last inequality and (1.2) imply that v is bounded in LU(II) and then is weakly
convergent toward u in U(fl). We define z, ov, + (1 o)u. By the result of
Giaquinta and Modica [14], let w, be in WI"p for some p ]1, NN-1[

div Vo" v u) (V. v u)),

Or,

I ’,, 2c[(V)(v
and define u v-w; div u= div v +(1-) div u + (1/11) Ia" (v-u)
tends to div u in L2(O). Let us calculate e(u)"

e(u) ,e(v,) + (1 ,)e(u) + (V,)@(v, u)- e(w,)

,e(v,) + (1 ,)e(u) + [V, @(v, u)] e(w)

+ V" (v-u) Id.

Using the convexity of and (1.2) and (1.3), we get

.e(u) . .e(v) + (1-)* X.e(u)

+C1 Nlal v. (v-u) Inl

.(u)+6+ le(u)l+C, 2C6+6+ 2[fl

(u)+C,

which ends the proof of Proposition 1.1.

Proof of the corollary. Let u be in LU() and u as in Proposition 1.1. Since u
is tightly convergent toward u, (x/e, e(u)) is (due to (1.2)) a bounded sequence in
L(), we may then extract from it a subsequence, still denoted u such that
(x/e, e(u)) vaguely. By the definition of the F-limit (u), we have for every

in (a), 0,

{(u), }li e(u)(x) (x) dx

and then (u) . On the other hand, by lower semicontinuity we have an open set
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(by definition of u). We finally obtain v=(u); thus every subsequence of
(x/e, e(u)(x)) converges to v (u) and then all the sequence tends to it.

Furthermore, we will need the following locally Lipschitz result for . Let be
an open set in I. We denote for u in LU(f) by Ilullo the quantity Ilull--
j, le(u)l+(e Idiv ul2)/. We then have the following result.

PROPOSITION 1.2. For every R>0 and for every (u, v)LU(I) subject to

a [eO(v)l+(div /))2 less than R, for every (7 an open set in 12, we have

(1.15) f ((u)-X(v)) _--< C,(3R /4)llu-oll.

Proof
Sppo it tat Ilu- vll > .T

Io-(,I,(u)-.(v)) _-< (,I,(u)+(v))

-<_2C(R+ 1)

<= Ilu- vll2C,(R + 1).

Assume now that 0< Ilu-vll 1 and define w= u+(v-u)/(llu-vll); we
have v= u+ Ilu-vll(w-u), and by the convexity of

q,(v)-CI,(u) <- Ilu- vll((w)-CI,(u))
<-Ilu-
<--Ilu-vll(3GR +4)

[because fe (w)<-_ C,(Ie le(w),+ I ldiv wl

<=C,(IleO(u)l+ l +2((div u)+ l))
_-< C(2R +3)].

By changing u and v we get the desired result.
We finally deal with the case where Ilu-oll=0, and show that e (X(u)-

(v)) 0. Toward that aim, bythe definition ofJe x(/)), let q be in Co(12), 0<=p <- 1,
with a compact support in I, such that e X(v)(1-o)< 6. Also, let u be in LU(12),
subject to u u in LP(I), and (x/e, e(u)(x))o (u)o. The sequence u + v-
u converges toward v, and then

((v), p)--<lirn xI e(u+v-u) (x)on

(1.16)
<-’irnI(,e(u’(x))o(x)dx+C,I(IeD(v-u)l+ldiv(v-u)12)o
_-< I,(u)o. + 0

with 6 being arbitrary, we obtain the desired conclusion by changing u and v.
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We conclude this section by giving two useful results. One is a lemma of"commuta-
tivity" of xt with translation, which is due to the periodicity of qt. The other may be
considered as a Jensen’s inequality for the measure (u).

LEMMA 1.1. Assume that u belongs to U(f), q is in rCo(f), and y is such that
lyl < d(Supp p, 0). Then

(1.17) (CIt(u)(.-y), o)= ((u), o(. +y)).

Proof. We will obtain (1.17) by showing the inequality

(xlt(u)(.-y), p)-< ((u), q(. +y))

for q in o(f) f3 W’(12), q>-O, and y, ]y]<d(Suppq,Of); the reverse is obtained
by considering the functions u(.+y) and q(.-y) in place of u and q. So let q and
y be as above. The function q(. + y) is nonnegative in o(f). Let us then take u in
LU(f), u tending to u in L strongly, and [.(x/e,e(Ue)(X))q(x+y)dx
((u), p(.+y)). Let yie=[yi/e].4 We easily have that y--(ye)iE.N,
d(Suppt.q,Of), and we let fie be in LU(f), ae u in LU(I") tightly, and
(’+yl)/(‘5+q(’+eye)). For e sufficiently small, 0e is less than 1. We define
OeUe + (1- Oe)Ve and 6e ve + we in a way we have already used twice"

div we -tr (Ue--Ve)(R)VOe,

1 Iwelr -[ tr ue v (R) V Oe

Iwl w,,, --< Cltr (u
It is easy to see that IV Oe[ is bounded independently with respect to e, and then

we may choose e sufficiently small to obtain ]we] w.--< ‘5. By definition of F-limits, we
may write, since fie u in Lp and te (" eye) u (" y):

((u(.-y)), )=<lirn e(a)(x-ey)((x))

<limI(x+eye ),e(ae)(X)((x)+ eye)

--< lim f I’ ( xe e(ue)(x)Oe(x)((’P(x)+eYe))
+limf (,e(e)(x)(1-Oe)(x)(x+eye))
+lim C1 f (le(w)l/lVO(R)(u-a)l)(x/ey)

+C1 f ([e(u)l+(div u)2) SuPl(x+eye)-(x+ y)[
d

<- 2C1‘5 +((u), ,,o( y)).

With ,5 being arbitrary, we have the result of the lemma.

3For a measure v we define its shifted v(.+y) by (v(.+y), o)=(v(.), o(.-y)) for all in Co(f),
y < d(Supp q, Ol-l).

4 For a real :, [] denotes the entire part of .
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We now give a result that we will need in proving the fundamental result of
Theorem 2.1 in the next section.

PROPOSITION 1.3. Let p be in co(rv), p>-O, p= 1, and q in qgo(f), q>-O, such
that

Supp p + Supp p c

Then for all u in U(),

(,I,(u ,), ><-<p ,(u), >.
Proof. With 8 > 0 being given, let us define (/)i a partition of f into disjointed

universally measurable sets, such that meas. (f)< 8. Using the Mean Value Theorem
on f, we are allowed to choose yf in f, such that p(y)= 1/1,1 ., p(x)dx, so
the equality Z,Iflp(yf)=l holds. It is well known that the function us=
Y.[ff]p(yi)u(’-y) is strongly convergent towards p. u in L(f), so by lower
semicontinuity of the F-limit, and using the convexity of xtt, we have

((p * u), p) lirn ((u), p)
8--0

-<_lira Y. [flp(yf)((u(.- yf)),
6,----0

We now apply Lemma 1.1 for y=yf, and use the uniform convergence of, [flp(y)q(.+y) toward t * , to obtain

((p u), q)_-< lirn Y
-0

With the left-hand side of the inequality above being nothing but (p (u),
this ends the proof of (i).

2. Integral representation of alt(u). In this section we want to show the existence
of a function hom, defined on E, such that for all in %)0(f) we have

(xlt(u), q;’)= Xtthom(e(u)(x))(X dx

when u is sufficiently regular (C 1, for example). The convexity of xIl’ho and its behavior
at infinity will permit us, using the theory of convex function of a measure (cf. [11],
[12]), to define the measure atthom(e(u)) when u belongs to U(f). The central result
of this section will be that

atthom e u xIt u

for every u in U(I).
The existence of the punctual function hom is a consequence of Proposition 2.1

below.
PROPOSITION 2.1. There exists a function h on RN E, measurable with respect to

x and uniformly locally Lipschitz with respect to the second variable, such that

(2.1) (xIt(u), q)= h(x, e(u)(x))q(x) dx

for every u in LU(f).
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Proof. This proof borrows ideas from Lemma 4.1 of [4]. Inequality (1.11) implies,
for every u LU(f), that (u) is absolutely continuous with respect to the Lebesgue
measure. We then denote by hu the function in L1(12) defined by

(.(u, o= h(x(o(x dx.

Let be the set of functions of the form . x where belongs to , with coordinates
in . There exists a subset M in , such that meas. (-M)=0, which verifies the
following. If x e M and u e , we define

1 f h,(x) dxh(x, )=
IB(x, )1 ,

where u . x. h may be extended to E by continuity. It is clear that h(x,.) is a
convex function. Moreover, by (1.11) we have

1 f (u)Ih(x, )1 IB(x )l nx,)

Cl(le(u)l+(div u)=+ 1)

c(lOl + (tr )= + 1).

Then, as in the proof of Proposition 1.2, the functional A h(x, e(u)(x)) dx verifies the
local Lipschitz Propey (1.15), where (u) and (v) are replaced by h(., e(u)(.))
and h(., e(v)(.)). Let us then take u LU(), >0, and (Ak) some open disjoint
subsets subject to U Ak and meas. (OAk)=0, (k)k E with rational coordinates,
such that

e(u)-2x + div u-2 (tr) < &
k k

Let us note that we may choose the to have in addition

2 (11 + (tr ))(meas. A) N [ (e(u)l + div ul) R.
k

We then obtain

I h(x, e(u))---, fA h(X, k) <=" IA h(x, e(u))- h(x, k)

+ C1(3R +4)&

Now we denote by Vk a function in LU(), such that v(x)l . xla, which verifies

Ia le(v)l + div v R. By Proposition 1.2 for and by using meas. OA =0, we may
write

(U)--(Vk) CI(3R+4)Ilu-vIIA.

Fuhermore, by summing on k"

(u)- *(Vk) C(3R+4)B
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using the fact that Ak I’t(Vk)--Ak h(x, k), we have finally obtained that

xlt(u)- h(x, e(u)(x)) <= C1(3R +4)26.

with 6 being arbitrary, this ends the proof of Proposition 2.1.
PROPOSITION 2.2. The function h defined in Proposition 2.1 does not depend on

x R In other words, there exists a function Xlthom, defined on E such that

(2.2) (xlt(u), q)= Xlthom(e(u)(x))q(X) dx

for every u in LU(12).
Proof It suffices to show that h is locally constant with respect to the first variable.

Let ( be in %o(12), and y, lYl < d(Supp q, 0f). By using Proposition 2.1 and Lemma
1.1 we get

I h(x + y, e(u)(x))o(x) dx= I h(x, e(u-y)(x))p-y(x) dx

(,I,(u), o).

Now we want to show that the integral representation formula of may be
extended to the u’s in U(f). In other words, we want to show Theorem 2.1.
Tzo 2.1. Assume that u belongs to U(f); then for every o in Co(O),

(2.3) ((u), p)= (xI)’hom(e (U))

where hom(e(u)) is taken as function of a measure (cf. [11], [12]).
Proof. To show (2.3) let us first remark that

atrhom(e(u)) >alr(U ).

Indeed, by an approximation result that we have used already [21], there exists u in
LU(f), u. tends to u in Ll(f), and XIrhom(e(u,)) xtrnom(e(u)) vaguely. Propositions
2.1 and 2.2 give, for o in Co(12),

{(Un), o}= glrhom(e(Un))(X)qO(X) dx,

so by lower semicontinuity of the F-limits,

lira I ho(e(u,,)(x))q(x) dx

I atthm(e(u)(x))cP(X) dx.

For the reverse inequality let us take o _-> 0, o in (o(I), n, such that 1In <
d(Supp o, 0f) and p,(x)=np(nx), where p is in
p, u. It is shown in [11] that u, tends to u andJ atthom(e(u,))q9 tends to , XIthom(e(u))o.
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Using Proposition 1.3, we then write

f xI/’hom(e(u)) nl+m f xll’hom(e(un)(X))(X dx

lim (q(u.), )

lim ((p u), )

li (p, (u), ).

From the classical fact that p, (u) is vaguely convergent toward (u), the conclusion
follows.

Let us remark that it is now possible to extend the approximation result in
Proposition 1.2 to the u’s in U(). This may be written as follows.

PROPOSITION 2.3. Assume that u belongs to U(). en there exists u in LU(),
such that

u --> u in LI(),

Ue UlF,

div u- div u in L2(f) weakly,

f (,e(ue))-f qhom(e(u))

Proof Let 6 > 0 be given, and u be in U(fl). By an approximation result in [21],
there exists v in LU(12) such that Iv-ul<6, Idiv v-div

and I[. hom(e(v))--*hom(e(u))l< 6. By applying Proposition 1.2
to v, we obtain the desired result.

3. An explicit expression of altho.. This section is devoted to the explicit expression
of hom for a particular subsequence. It involves a new method that uses "lower
semicontinuity" for convex functions of a measure. The expression we find is

(3.1) Xi/hom() inf f *(x, + e(u))
LUpcr( Y)

where LUper(Y) will be defined later. Formula (3.1) has been given by Tang Qi [19]
and Bouchitte [3] for the gradient, but their proofs use, respectively, penalization and
dual methods. Before showing (3.1), we need some preliminaries on periodic measures
that we did not find in the literature (but they must exist!).

3.1. Preliminaries on periodic measures.
DEFINITION 3.1 We denote by Mper(Y) the space of the measures/z in that

verify the property

(3.2)

for every continuous with a compact support in Y,f :, and where (x) (x+f).
Remark 3.1 Of course, a measure in Mper(Y) that is not identically zero cannot

be a bounded measure on
Remark 3.2. This notion coincides with that of usual periodicity when /z is a

function. Moreover,/z Mper( Y)l/z[ Mper(Y).
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Remark 3.3. / is a Y-periodic measure if and only if it is a Y-periodic distribution
and also a measure. The if part directly results from Definition 3.1; the only if part is
a consequence of Proposition 3.1(i).

PROPOSITION 3.1. (i) Formula (3.3) may be extended to functions in c(v, X),
Yperiodic, in the sense that

I tz" =I lz’ forallfin ZN.
Y Y+f

(ii) I1,
+f

for every Borel subset B in and for all f in

Proo (i) Using Remark 3.2, we may assume that is nonnegative. Let us then
take a nonnegative function in (N, X) that is Y-periodic, and a function in
o(s) with compact suppo in Y, 0 , such that y y + & By applying
(1.26) and remarking that _y belongs to o( Y+f) and _y_y , we have

y N

+

g+f

The reverse inequality may of course be shown by the same process.
(ii) We begin to show (3.4) when B is a subset of Y and first of all when B is

open. We assume once more that is nonnegative, ff is an open set in Y, is a positive
number, and is in o(Y), O la and e - 6. The function is in
o(f), 0 f 1 exf so that

with being arbitrary, we get the half pa of (3.4) for . By changing ff in ff +f and
j n -j, we obtain the desired result. Now let K be a compact subset of Y, a positive
number, and a function in o(Y), 1 on K such that

The function + is compactly supposed in Yj and = 1 on Kj. So by definition
of

K\f
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With 8 being arbitrary, we get

and by a now classical argument

\i

Finally, let us consider a Borel subset B in Y. By definition of p,(B),

/z(B) inf/z(7).

So let be an open subset in Y such that B and ()-</z(B)+& The open set
\j contains B\j; thus

With 8 being arbitrary and by the usual process, we obtain

Let us now deal with the general case of a Borel set in v. It is easy to find a partition
(B) of B in Borel subsets in , and j in Zrv such that B\f Y. By the additivity
of/z on disjoint measurable sets and by the result above for measurable subsets in Y,
we get

(3.3) =Y I((B,-j)+(f+j))

PROPOSITION 3.2. Assume that Mp( Y), ]0, 1[ is such that (+) O,
and define ]0, 1} as

(3.4) ]0, 1} ]0, 1] ify > O,
(]0, 1[ if y, O.

Then

+Y i]0,1}i

Proof. We prove (3.5) by induction on N. For N 1 we have to show that for
a ]0, 1 ] and for tz in Mper(]0, 1[), such that {} I1- 0,

]0,1]
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Toward that aim we write, using Proposition 3.2(ii),

]0,1]

I]0,1] "}" I]0,a[ ]
and, since tz has no mass on a,

]0,a[

Let us now define the measure v in Mper(]0,1 1[ N-l) by the formula

(v, go)= j- /zrp(x,,""", XN-1)() 1]0,1[

for every go in Cgo(]O I[N). By applying the induction hypothesis to v we get

liN-I ]Yi,Yi+l[ liN-I ]0,1]

I_]0,1} 0,1}

Ill ’N-]0,1}

which ends the proof of Proposition 3.2.
Remark 3.4. Assume that is a continuous function defined on X, which is at

most linear at infinity, i.e., I(:)l_<-k(l+ll), for all :eX, and such that (:)=
lim_,+ ((t)/t) exists in X. Then () may be defined as in [14] and [15] by the
formula

So we get (3.5) for N 1. Now let us suppose that (3.5) has been proved for all v in
Mer(]0, 1[N-1), and let /z be in NMper(]0, 1[ ), and in ]0, 1[N We define /zN

Mer(]0, 1[) by

/ZN(" JgN+]0,1tN-’ /J,(Xl,""", XN’+I

(where fin )7-- YN.N). By applying (3.5) to /ZN for N 1 we obtain

IfiN+]0,1 10,1]

fi_i]yi,yi+l[]o,1}
IHIiN-I ]Yi,Yi+l[

}I/,(X1,""" XN)

]0,1}N
(XI,""" ,XN)].

xIt x) g dx + xItoo ix

where/z--g dx + tz is the Lebesgue decomposition of/z,/z being singular. When/z
is Y-periodic it is obvious that g and/z are Y-periodic, so (/z) is too. The same
result still holds if we assume that is convex but not necessarily at most linear at
infinity (see 12]) and may be obtained by the use of a duality formula 12]. We now
give a result of the approximation in M(Y), for a topology related to t’.
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PROPOSITION 3.3. Let be a convex function greater than or equal to zero that is
at most linear at infinity, and let tx be in Mper(Y). Then there exists Un in qg(RN), Y
periodic, such that

lunl-> IIxl vaguely on ,
vaguely on ’,

Y Y1 Y Y1

where Y1 ]0, 1] v.
Proof. Let t9 be in q(]-l, +l[)p >-0, p 1, p(0)= 1, m, pro(X)= mVp(mx),

and u,, Pm * Ix. It is easy to see by the definition of Mper(Y) that p,, * Ix is Y-periodic.
Moreover, IPm * Ixl is vaguely convergent toward Ix, and by Lemma 2.3 in [11], (u,)
is vaguely convergent to (Ix) on N. NOW let Yo be in ]0, 1[ s, such that o(ro+Y)I1-0;
we have

q’(Um) IY o+Y

Y + Y + Y Y

which ends the proof of Proposition 3.3.

3.2. An explicit expression of Ifhom The convex set Kho In this section we give
an explicit calculation method of the function hom for a particular subsequence or(e),
namely, the sequence 1/n.

Let us now give several definitions"

LUper( Y) {u LUloc(s), u(x + f) u(x),

for almost every x in s and f in zN};
BDpe( Y)- {u BDioc(N), u(x +f u(x)

for almost every x in Rs and f in Zs};

Uper(Y) {u BDper(Y), div u L(N)}.
The internal and external traces for functions of BD, LU, U have been defined

by Suquet [17] and Temam [21]. We remark that functions of LUper(Y) must not have
discontinuities on 0 Y. On the contrary, functions of BDper(Y) are allowed to have
one, although the Y-periodicity implies that the external trace y+u on some face of
Y must be equal to the internal trace y_u on the opposite face (functions in Uper(Y)
must verify, in addition, u. n/= u. n-/ Y.

By the study made in the first two sections, we know that there exists a subsequence
tr(1/n) (which we will denote 1/n for simplicity) for which the functionals F1/n(v,"
are F-convergent to the measure hom (e(u)), for all vn--u in U(f). To show the
expression of hom given in the introduction of 3, we will need the three lemmas
below. Note that the expression found for hom() does not depend on r. We then
may say that the entire sequence F1/n(’, o) is F-convergent toward Xtthom(e(u)).

LEMMA 3.1. Assume that E, and define the problem

inf Phom() inf
uLUper(Y)
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Then

inf ehom() XI?hom()"

LEMMA 3.2. Let P,() be the variational problem defined as

inf P,, ()= uLUper(y)inf {yIXtt(nx,+e(u))}.y
Then

LEMMA 3.3.

inf P, inf P

lim inf P, (:) lim inf P, (s)
q-O0 --I-

inf ehom"
Equation (3.1) follows obviously from these three lemmas. It remains to show them.

ProofofLemma 3.1. (i) Let be in E and u in LUper(Y). The equalityy e(u) =0,
and the convexity of Whom imply that

XIhom()--I’hom{f (:+e(u))}Y

f XIYhom(-e(u))
JY

f XIhom(+e(u)).
JY

The reverse inequality is obtained by setting u 0 in the infimum.
(ii) We may suppose without loss of generality that 0. Let u be in tUper(Y),

and u,, as in the proof of Proposition 3.3, i.e., u,, LUper(Y) f’l co(RN), u,, tends to
u in Lo(RN), and e(Um)l - e(u)l vaguely on. By Lemma (2.2) of[14], Whom(e(u,,))
is vaguely convergent toward Whom(e(u)) on R. By taking 370 such that J0(yo+ Y) e(u)l 0,
we obtain that

f "ffhom(e(tl))--I( ’ffthom(e(tl))
Yl Yo+ Y)

lim [ a’I/’hom(e(Um)
+o ,](yo+ y)

lim f hom(e(u,,)).
m-+cx3 .]y

Proof ofLemma 3.2. A first step consists of showing that inf Pl(s) =inf P,(:) for
every n . With 6 > 0 being given and u, in LUper(Y) such that

xIt(nx, e(u,,(x)+) dx<=infP,,()+6,
Y

we define the function u by the formula

1
u(x) Z Z u. (x +

I<_j<_N O<_i<_n--1
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u belongs to Vper(Y), and

()e(u)(x) =- i e(u.) (x + i)

Since u is admissible for Px, using the convexity of W, its Y-periodicity, and Y
U (1/ n)( Y+ i),/ _-< n 1, valid for all n M, we get

infel(sr) -< [ W(x, e(u)(x)+ )
dY

1 I *(x,e(u)((x+ ))+,)dx
1

dx

=X [ (nx, e(u.)(x)) dx
Y+)/n

[ (nx, e(u)(x)+ ) dx
Y

inf P,() + &
For the reverse inequality, let u be in LUpr(Y) so that vW(x,e(u)(x)+)dx
infP(), and define u(x)=(1/n)u(nx), u is in LUlo(), (1/n)Y-periodic, and
then Y is admissible as a period, so it is admissible for P and we may write

infP() [ W(nx, e(u)(x)+) dx
Y

[ W(nx, e(u)(nx)+ ) dx
Y

(x, e(u)(x)+ ) dx
3 nY

[ (x, e(u)(x)+ ) ax
Y

infP() + &

Lemma 3.2 is then proved.
oof of Lemma 3.3. We first show that inf Pom() lim inf P(). Let u be in

LUp,r(Y), such that v hom(e(u) + ) inf Pom() + & By Proposition 1.2 in 1, there
exists vLU(Y), vu+.x in U(fl), vW(nx, e(v)(x))vWom(e(u)+),
v#to u + . xto. Then u v-. xto uto and may be extended by periodicity to
Rm as a function of LUpr(Y). We then have

lira inf P() N lira (nx, e(u)(x)+)
Y

f *hom(e(u)(x) + )
Y

inf Phom() + &
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For the reverse inequality, 6 > 0 being given, let u. be in LUper(Y) such that

1 f W(nx, e(u,,)(x)+)<=infP,,+6.

This implies that e(u,,) is bounded in L and that div u, is bounded in L2(12). With
u being periodic, there exists a constant c, such that (u, c,) is bounded in LUIoc(RN).
We may extract from it a subsequence, still denoted u,- c,, such that

(u,,-c,,) u in Uloc(R) weakly,

u being, of course, periodic.
Since e(u) is a bounded periodic measure, there exists o, Xo # 0, for all i, such

that JOo/Y le(u)1-0, which means that u does not present a discontinuity across the
boundary of o+ Y. Then, using the properties of Y-periodic measures, we get

and then

Whom(e(u)+)= Whom(e(u)+)
Y + Y

-<lim f, W(nx, e(u,,)(x)+ ) dx
+ Y

=lirn f W(nx, e(u,,)(x)+) dx,
Y

XIhom() inf Phom lim inf P,.
The explicit expression of XI/hom() permits us, first, to find again the explicit

expression of W*om, and second, to show the equality

(3.6) (XI/’hom) (xI/oo)hom
where Woo denotes the asymptotic function of W. An explicit calculation of XI/h*om has
been given in [2], 19]; we calculate it by starting from the previous form of Whom and
using convex analysis techniques (see Ekeland and Temam [13] for the details of the
calculations)"

XP’h*om(r/) Sup { s" ’O inf
uLUper(Y)

inf
,u LUper( Y) (fy W(X, e(u)+ )-. q)

div tr=O y
yo’=O

(o’/’rl )D K D(x)

(3.7) xlt h*om n
div a=0 y

This also gives a rather precise description of the convex set Kho:

(3.8) Khom=DomW*om ,eLp(Y),(+ eKe(x), =0, div=0

where KD(x) K(x) fq {r, tr r 0}.
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3.3. The functions (Ifhom)oo and (Ifoo)hom In this section, the results of 1 and 2
concerning are extended to functions that do not satisfy (1.1) and (1.2); moreover,
the equality (hom) ()om is shown. It permits us to prove the approximation
result (3.11), which is not obvious.

Let us recall that when is convex and continuous, its asymptotic function
is defined as

(t)
()= lim .

If satisfies (1.2), the domain of is the space of deviators Eo={ E, tr =0}
and verifies (x, 0)= 0, and when belongs to E,

Coll (x, ) CIIDI
We define the spaces

LU() {u LU(), div u =0}, U() {u U(), div u =0}

and the analogues of -(u), +(u)"

(3.9) <L(u)) t-(r,) i v(u,
eO

(3.10) ((u),=r-(,)i F(u, )
eO

where 0 is in () and

F(v,)=I+*(’e(v)(x))(x) dx ifif not,ULU(")’
and we have the analogue of Theorem 1.1.

THEOREM. (i) ere exists a subsequence e’ for which (u)=(u)=(u)
for every u in U(fl); (u) may be extended as a bounded measure on fl, absolutely
continuous with respect to [e(u)l.

(ii) is a convex function of u and verifies

Proofi The proof follows that ofTheorem 1.1, and the changes it brings are obvious
if we use at each step the approximant ff, the following result of approximation, also
stated in [21]. Let fl be an open C bounded set of s; for every u in U(fl) there
exists a in CX(fl, E) L(fl, E) such that

fiu inLl(fl),

le (a )l le (u)i tightly on ,
div fi 0,

This is the main argument used to prove the approximation result below. It is left to
the reader:

Let u be in LU(). There exists u in LU(), u tends to u in
(3.11)

U(), u=ulr and (x/e, e(u))on (u).
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Following the argument in Proposition 2.1, it is easy to show that there exists a punctual
function that we denote (W)hom, of domain E such that

(xt%(U), q)-- (qoo)hom(e(u))(X)q(X) dx

for every u in LU(f), p in c0(f); of course, the results in Theorem 2.1 and Proposition
2.3 are still valid for (u) when u belongs to LU(I).

We may give an explicit form of (oo)hom. For s e E it is

(3.12) (XIx)hom() inf ([(x,,+e(u))].
ueLUper( Y) y

Note that the domain of the function in the right member of (3.12) is E O. Indeed, the
infimum must be taken for u verifying tr s / div u 0. But u LUper(Y) implies that
r div u 0, and then tr : g tr : r tr : / div u 0.

To show (3.12), we proceed as we did for (the analogues of Lemmas 3.1-3.3
are true and may be proved by adapting the arguments used already).

Now we will prove the following:

(3.13) (Ihom) (Ico)horn
The left member of (3.13) makes sense because it is the asymptotic function of Ihom
Moreover, (1.2) yields that hom(:) is "quadratic" with respect to tr , and "linear"
with respect to ICI, and then dom (hom)o E o. Since (hom)o and (oo)hom are lower
semicontinuous and proper, it suffices to show that their conjugates coincide. We have

(Xithom) (’0) Sup { ’0 , inf (foo(x,,+e(u)))}
E uLUper( Y) y

div =0

inf
E

uLUr(Y)

+e(u))-rl" }.
These calculations are rather technical, although classical in the theory of duality (cf.
Ekeland and Temam [13].). We obtain

XIt hom( ,0 Sup {o} x-o(n)
lcr L2er(Ydivcr 0 in
yo-D--o

(o-+n)K

2 )Dwhere Khom={rl,:lo’6Lper(X), divr=0in, ytr=O, (tr(x)+r/ KD(x)}.
Let us note that ghom ghom. First, we obviously have Khom c Khom. Second, take

2
tr
D =0, (o’(x) + r/)D KD(x).7 in ghom, and tr Lper(Y), such that div tr 0 in N, Y

2Then trlij (trij-ytrr60) verifies trlLpCr(Y), divtr=0, ytr=0, (o’+r/)
K(x), and thus r/ Kho We have finally obtained that

(Ihom) (I’too)hom.
In particular, for u in U(I)), there exists u LU(f), div u-0, u- u in L(),
u ulr such that

-, e(u) (x) dx (XIhom)o(e(u)).

This result will be important to study the relations between the prehomogenized limit
analysis problems and the homogenized one in [9].
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In [9] we apply these mathematical results to homogenization in plasticity. The
displacement problem for a nonhomogeneous, elastic, perfect plastic material made
with a great number ofidentical cells of size e may be written in the following variational
form"

inf ( @(, e(u)) -A fu-A Fu
uH l

UOlFo

where Uo H1/2(F), Uo XroUo, f is the body force (f LN/(N-1)), F is the boundary
force (F L(F)), and A is a real parameter; is the energy functional that verifies
the assumptions in 1. In [.9] we show that when A is less than a positive limit load
Ao, which we define precisely, then inf P converges toward the homogenized problem

inf { fa 6hom( e( u x fafu X fr FU }uH(O)
uolFO

where 6om is the function defined in 1.

Appendix. Let us give a concrete mechanical example for which the formulas
found in 3 give an explicit description of the homogenized convex set, and of hom.
Suppose that ko is a divergence-free function, with kii=0, kx2(Xl,X2, X3) kx(x3),
k3(x, x:, x3)= k:(x), k:3(xx, x2, x3)= k3(Xl), k, k2, k3 being periodic of period 1.
We assume in addition that

We have div (k)=0 and K(x) is defined as
DK (x) {, I, I(x) <- k0(x)}.

2By the formula following (3.7) in 3, Khom is defined as Khom {r/E E, ::lcr E Lper(Y),
J . cr 0, div r 0, and cr + r/e K}. We will show that

ghom-- n e E, In, <

Y

Toward that aim, we denote by Khom the right member in the equality above; we begin
by showing that Khom c Khom. Thus suppose that r Khom, and that r verifies r

L2per(Y), y r--0, o" + r/G K, and div r 0. We have

D (+ n) ij
Y

k0(x).and then 9 Khom. Conversely, if r/is such that Ir/. <- Jy kij(x), let aj be r//jy
we have la] <-- 1 for all ij, and we define ris aik0- n. We have Jy cr 0 (or + r/) D-i

D(crj + r/j )(x)= ajk(x) <- k(x), and div or=0; this implies that r/ Khom.
Suppose now that

[1/2a(tr )2 if sc K(x),
(A1) *(x, sc)

(+oo if not

where a is some positive constant. Then (x,. satisfies the hypothesis in 1. Let us
calculate *om. Using (3.7) we have

inf (cef (tr(,+cr)))(A2) Itm()
div o-=0 y
yo---0

(q-o’)DKD(x,)
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Let us show that

Xith,om()=Ia(tr)2 iflsCl_--< IY k(x),

I+oo if not.

Since the two sides of (A2) are infinite when : Khom, we may suppose that s Khom.
By setting 0 in the right-hand side of (A2) we get that

om() a(tr )2.
Now Jensen’s inequality yields

-a (tr (+ )) < a(tr (+))2

2 y = y

and then, with y tr g 0,

(tr ()) N inf tr (+)
2 y y

y=O

’I-tom().
We have finally obtained the desired result, and are able to calculate Whom:

.hom(S) =__ (tr )2+.. v
k,(x) [sl.
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SOME NONLINEAR WEAK ERGODIC THEOREMS*

ROGER D. NUSSBAUM"

Abstract. Let C be a cone with nonempty interior in a Banach space and, for j _>- 1, let f’ be a

sequence of maps. It is frequently assumed that each f is homogeneous of degree and order-preserving
with respect to the partial ordering induced by C; but it is not assumed that f(C-{0})c . If F,
f,,J’,-i""" fl, the composition of the first m f, and if d denotes Hilbert’s projective metric, then theorems
(usually called weak ergodic theorems in the population biology literature) can be proved ensuring that,
for all x and y in 7, lim d(F (x), F (y)) 0 and (if C is normal) lim II(Fm (x)/II Urn (x)ll)
(F,.(Y)/IIF,.(Y)II)I1-0. If u e t is fixed and assumptions on the f are strengthened, it can be proved that
for every z e t there exists A x > 0 such that lim F,. (x) A (x)Fm(u )II 0, These theorems are applied
to the case where C {x Rn: x->0 for =< =< n} and where the maps f belong to a class M arising in the
theory of "means and their iterations" and in certain problems from population biology.

Key words. Hilbert’s projective metric, nonlinear weak ergodic theorems, cones, nonlinear cone maps,
positive linear operators

AMS(MOS) subject classifications. 47A35, 47B55, 47H07, 47H09

1. Preliminaries. In an effort to make this paper self-contained, we begin by
recalling some definitions and theorems from the literature. By a cone C (with vertex
at 0) in a Banach space X we mean a closed, convex subset C of X such that (a)
tC c C for all >- 0 and (b) if x C -{0}, then -x C. A cone induces a partial ordering
on X by

x<_-y if and only ify-xC.

Two elements x, y C will be called "comparable" if there exist positive reals a and
/3 such that

ax<=y<=flx, a, fl>O.
If x and y in C are comparable, we follow Bushell [6] and define

(1.1) M(y/x) inf {/3 > O: y <-_ fix},

(1.2) m(y/x) sup {a > O: ax <= y}.
If u s C-{0}, Cu will denote the set of elements of C that are comparable to u. If u
is an element of the interior of C, Cu is the interior of C. In general Cu satisfies all
properties of a cone except closedness.

Associated to the set Cu is a natural normed linear space E.,

E {x X" there exists a > 0 such that -au <- x <= au}.
For x E., we define a norm Ixl by

]x], inf {a > O" -au <= x <-_ au}.

A cone C in a Banach space X is called "normal" if there exists a constant M
such that

* Received by the editors July 5, 1988; accepted for publication (in revised form) May 3, 1989. This
research was partially supported by National Science Foundation grants DMS 85-03316 and DMS 88-05395.

f Mathematics Department, Rutgers University, New Brunswick, New Jersey 08903.
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for all x, y C such that x =< y. A cone C is "total" if the closure of the linear span
of C equals X. If C is a cone, C* will always denote the set of continuous linear
functionals X* such that (x)>-0 for all x C. It is not hard to see that if C is a
total cone, then C* is a cone.

The basic technical tool we will use in this paper is the so-called "Hilbert’s
projective metric" d. If C is a cone in a Banach space X and u C-{0}, then for
x, y C, define/3 M(y/x), a m(y/x), and

(1.3) d(x, y)= log (-),
(1.4) a(x, y)= log (max (/3, a-l)).

We can easily prove (see [6]) that the projective metric d satisfies all properties of a
metric except that d (y, x) 0 if and only if y Ax for some A > 0. On the other hand,, which was introduced by Thompson [36], is a metric on C,. If E- {x C," ]lxll- 1},
(E, d) is a metric space, and it is natural to ask if (E, d) is complete. It is proved in
[37] that (E, d) is complete if and only if

(1.5) sup (llxll" 0_-< x-<_ u <,
and (1.5) is satisfied if and only if E is a complete normed linear space. Also, one
can show that (C,, d) is complete if and only if (1.5) is satisfied. It should be noted
that the results in [37] are closely related to much earlier theorems of Thompson [36]
and BirkhotI (see Theorem 5 in [5] and Remark 1.1 in [25]). Notice also that if C*
and (u) > 0 and

r. {x C" 4,(x) },

then (E, d) is complete if and only if (E, d) is complete, because (E, d) and (E, d)
are isometric.

If K {x e N"" x _>-0 for 1-< i-< n}, K will be called the "standard cone in N".
Obviously, K is normal, so if E={xe/’=x 1} or E {xe/" x 1} the
remarks above show that (E, d) and (;, d) are complete.

We also need to recall some results about positive linear operators. Suppose that
C is a cone in a Banach space X and that L" X-X is a bounded linear operator
such that L(C)c C. Assume that Lx and Ly are comparable for all x, y e C such that
Lx 0 and Ly 0 and define a number A(L), the "projective diameter of L(C)- {0}"
by

(1.6) A(L)=sup{d(Lx, Ly): x,y C, Lx#O and Ly#O}.

If Lx 0 for all x C, we define A(L)= 0. If L is as above and A(L)< o we shall say
that "L has finite projective diameter."

If x,yC-{O} are not comparable, define d(x,y)=o. If x,y C-{0} and
M(y/x) < c, define

(1.7) osc (y/x)= M(y/x)- m(y/x).

If M(y/x)=c, define osc(y/x)=o. If L is a bounded linear operator such that
L(C) c C and Lx and Ly are nonzero and comparable for all x, y C-{0}, define

k(L)=inf {k>O: d(Lx, Ly)<-_kd(x, y) for all x, y C-{0}},

N(L) =inf{A >0: osc(Ly/Lx)<-A osc(y/x) for x, y C-{0}}.
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It is easy to see that k(L) -< 1 and N(L) -< 1. However, if A(L) < c, results of Birkhott
[4], [5] and Hopf [19], with refinements of Ostrowski [27], Bauer [2], Bushell [6], [7],
and others [20], [37] imply that

(1.8) N(L) k(L) tanh (A(4L)) < l.

As a particular example, note that if K is the standard cone in R and L is an
n x n matrix, all of whose entries are positive, then A(L) < o. In fact, it is not hard to
prove that A(L)=supi.jd(Lei, Lej), where ei, l<=i<-n, is the standard basis of Rn.
From this observation and (1.8) we derive an explicit formula (see [6], [35]) for A(L)
and k(L).

If C is a cone and D c C, a map f" D C will be called nonexpansive with respect
to d if

(1.9) d(f(x),f(y))<-_d(x,y) for all x,yD.

We have the obvious modification for d. A map f: D- C will be called "order-
preserving" if f(x)<-_f(y) for all x, y D such that x<-_y. The map f will be called
"homogeneous of degree 1" on D if

f(tx)=tf(x) for all t>0 and xD such that txD,
and will be called "subhomogeneous" on D if f(tx) > tf(x) for all t, 0< -< 1, and
x D such that tx D. It is an easy exercise that if u C-{0}, D C, and f: D D
is order preserving and homogeneous of degree 1, then f is nonexpansive with respect
to d" see [6], [25], [29]. Thompson [36] observed that, iff" C, - C, is subhomogeneous
and order-preserving, then f is nonexpansive with respect to d. Potter [29] observed
that, for q, C* with q,(u) > 0, the restriction off to + {x C." q,(x) 1} is nonex-
pansive with respect to d.

Now suppose that C is a cone in a Banach space X, u C-{0}, and S is a
collection of maps f’C,-+ C,. In most of this paper we will assume that f is order
preserving and homogeneous of degree 1 for every f S. Suppose that f S, 1 =<j < oo,
is a sequence of functions in S and define

(1.10) F. =f.f._f._2’’ "A
for n --> 1. We are interested in finding further conditions ensuring that for all x, y C,

(1.11) lim d(F,,(x), F(y)) 0.

Such results are called "weak ergodic theorems" in the population biology literature
[11], [17]. The linear theory is well understood: see the excellent survey article [11]
by Cohen. If (1.5) is satisfied, it is known (see eq. (1.20a) in [25]) that there exists a
constant M such that

(1.12)
IIx-yll<-M[exp(d(x,y))-l] for all x,yE,- {x Cu. Ilxll- 1}.

Using (1.12) we can see that if (1.5) and (1.11) hold and the functions f are
homogeneous of degree 1, then

(1.13) lim F, (x)[[ F, (x)[[ - Fn (y)[[ F, (y)[[-1[] 0.

Note that if (1.5) is satisfied, C E, is a normal cone with nonempty interior C,
in the Banaeh space E,, so by working in E, we can assume that C is normal with
nonempty interior.
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In fact, the question we are asking is motivated by a particular class of maps M
defined on the interior of the standard cone K in Rn, so we recall the definition of M
(see [24], the Introduction to [25], and 4 of [23]). Recall that a probability vector tr

is a vector tr K such that ni= tri 1. If r is a real number and tr a probability vector,
define Mrs"/ - R by

If r 0, define

(,Y’ ) /Mro.(X) O’iX

Mo(X) x, ,.
i=1

Such maps, of course, have an extensive classical theory, described in 18]. For 1 <= <- n,
let F be a finite collection of ordered pairs (r, tr), with r a real number and tra

probability vector. For (r, tr)e F let cr be a positive real number and define f"/
(0, oo) by

(1.14) f(x) X c,M(x).
(r,o’)F

Define f to be the ith component of a map f:/ -/. If f"/ ->/ can be written in
this form, we will writef M. Iff can be written as in (1.14) in such a way that r->_0

for all (r, or) F and 1 <_- <_- n, we say thatf M/; iff can be written as in (1.14) such
that r<0 for all (or, r) Fi and 1 <_-i_-< n, we say thatf M_. Note that iff is a linear
map such that of(K) /, thenf M+fq M_. We define //(+, _) to be the smallest
set of maps f: K ->/ such that M(+ M/,

_
M_) and d/ (f//+, ///_) is closed

under addition of functions, composition of functions, and multiplication by positive
scalars. The class arises in the theory of "means and their iterations"; see [1], [12],
[15], [23]-[26]. It is proved in [26] (this is not hard) that if f J//, then f extends
continuously to K andfl/ is C. We will see that establishing weak ergodic theorems
may already be nontrivial when S-- and C K. Existing nonlinear weak ergodic
theorems as, for example, in the work of Fujimoto and Krause [16], are frequently
inapplicable. On the other hand, we have not attempted to give an all-inclusive abstract
framework: there are examples to which our general theorems are not directly applicable
but which can be handled with theorems from [16].

2. Some nonlinear weak ergodic theorems. The following definition will play a
crucial role in our subsequent work.

DEFINITION 2.1. Let C be a cone in a Banach space X and D a subset of C such
that all elements of D are comparable. Suppose that f" D--> D, j _-> 1, is a sequence of
maps and define F,, =fmf-""" f to be the composition of the first m functions f,
1 -<j _-< m. We say that (f) has "the bounded orbit property" (with respect to Hilbert’s
projective metric) if for every x D, there exist y D and R > 0 (possibly depending
on x) such that

d(Fm(x),y)R for all m>_-l.

If each of the functions f is nonexpansive with respect to d, it is an easy exercise
(left to the reader) to prove that (f) has the bounded orbit property if and only if
there exist Xo, Yo D and Ro> 0 such that

d(F (Xo), Yo) =< Ro for all m _-> 1.
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If D Cu for some u C- {0} and each of the functions f:D--> D in Definition
2.1 is homogeneous of degree 1 and order-preserving, select C* such that O(u) > 0
and define E, {x Cu: O(x)= 1} and hi:D-> D by

h(x) f(x)/(f(x)).

It is another easy exercise (again left to the reader) to prove that (hi) satisfies the
bounded orbit property if and only if (f) does. The maps h can also be considered
maps of D1 5: to itself and (h) satisfies the bounded orbit property on D1 if and
only if (h) satisfies the bounded orbit property on D.

Suppose that C is a cone with nonempty interior in a finite-dimensional Banach
space X and f: t D--> t is homogeneous of degree 1 and order-preserving. We can
define f =f for all j-> 1 and ask whether (f) satisfies the bounded orbit property with
respect to d. It is a special case of results in 4 of [25] that (fj) satisfies the bounded
orbit property if and only if f has an eigenvector v t (so f(v)= by). Note that if f
extends continuously to C, it certain,ly has an eigenvector in C- {0}, but the question
of whether f has an eigenvector in C may be quite subtle, even if f /_. The reader
is referred to [25], [26] for further details. Even the simple-looking four-dimensional
mapf M_ in [34] requires some care. For a complete, rigorous analysis see [26].

We will need the following simple geometrical lemma to prove our first weak
ergodic theorem.

LEMMA 2.1. Let C be a cone in a Banach space X and let S be a subset ofC. Assume
that all elements ofS are comparable and that there exists p > 0 such that d (x, y) <-_ p for
all x, y S. Ifw C and w xl + x2 forpoints xl x2 S, we have that xl >-- Aw or x2 >- Aw,
where h 1/2 exp (-p).

Proof. Suppose that w xl +x as above and that d(xl, x2)= r <- p. It suffices to
prove that

xl-->w or x_=>/xw where=1/2exp(-r).

It follows easily from the definition of Hilbert’s projective metric that

(2.1) d(x1, W) 7" and d(x2, W) ’o

In fact, we have strict inequality in (2.1) if - > 0. Formulae (2.1) imply that there exist
positive constants ct and/3j for j 1, 2 such that

(2.2) aw<-_x<-w and (fl/aj)-<_exp (-).

Assume that a < for j 1 and j 2. Then we obtain

(2.3) x <-_ flw a/I g flj/a w <- cw,
where

(2.4) c (1/2)( a/ tz < 1/2.
By adding (2.3) for j 1 and j 2 we obtain

(2.5) w Xl + x <- (cl + c2)w cw.

Since the constant c in (2.5) is less than 1, we have a contradiction, and therefore it
must be true that 31 _->/z or a2 /./,o [[]

We will actually use Lemma 2.1 in the following less general version.
LEMMA 2.2. Let C be a cone in a Banach space X and let A X - X be a bounded

linear operator such that A(C) C and A has finite projective diameter (so A(A)<
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for A(A) as in (1.6)). Then if z C and z x + y for x, y C, we have Ax >-_ AAz or
Ay >= AAz, where

A (1/2) exp (-A(A)).

Proof. In the notation of Lemma 2.1, define S by

(2.6) S (Ax: x C and Ax 0},

so the diameter p of S with respect to Hilbert’s projective metric is A(A). If Ax =0
or Ay 0 for x and y as in the statement of the lemma, the result is obvious. Otherwise,
if we define w Az, Xl Ax, and x2 Ay, Lemma 2.2 follows immediately from Lemma
2.1.

With these preliminaries we can establish our first weak ergodic theorem. In
reading the statement of Theorem 2.1 below, recall that if A and B are linear maps
and C is a cone, we say that A -< B (in the partial ordering induced by C) if A(x) <- B(x)
for all x C.

THEOREM 2.1. Let C be a cone with nonempty interior in a Banach space X and
for each j >- 1 let f" (? be a map that is order-preserving and homogeneous of degree
1. For m >- 1 let F,, f,,f,-i "fl denote the composition of the first m maps f and let
Fo denote the identity. Assume that there exist u I, an integer p >-1, a real number
R > O, and a sequence of bounded linear operators Ai: X X, >= 1, with the following
properties:

(a) For every j >- 1, f is continuously Frdchet differentiable on BR(F-l(U)), where
BR(y) {x " d(x, y) < R}.

(b) The operator Ai satisfies A,()c () for all >- 1.
(c) Ifg =pf-i "f-/ and G,, g,g,_ g F,p, then g(x) >= A for all

x BR(G_I(u)) and allj >- 1.
(d) There exists a positive constant k such that A G_I(u)) >- kg G_ u)) forj >-_ 1.

IfA has finite projective diameter, let A(A) be the projective diameter as in (1.6),
and otherwise define A(A) =oo and exp (-A(A)) =0. Then if we have that

N

(2.7) lim E exp (-A(Aj)) o,
Nj=

it follows that

(2.8) lim d(F,,(x),F,,(y))=O forallx, y.
m.oo

Also, if C is normal, (1.13) is satisfiedfor all x, y . In particular, ifAj A for allj >- 1
and A A < oo, then (2.8) is satisfied.

Proof. By the triangle inequality it suffices to prove (2.8) for all x e ( and for
y u. As has already been noted, each map f is nonexpansive with respect to d, so
for any x , d(Fm(X), F,(u)) is a monotonic decreasing sequence of reals. Thus to
prove (2.8) it suffices to prove that

(2.9) lim d(G(x), G(u))=0 for all xe (.
joo

Fix a number R1,0 < R < R, and suppose we can prove that there exists a sequence
of numbers h with 0<h=< 1, such that if d(y, G(u))<-R, j>=O, then

(2.10) d(g+,(y),g+l(G(u)))<-_A+ld(y, G(u)),
N

(2.11) lim I-I A=0 for anym>=l.
N-oo j_--
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Repeated application of (2.10) and (2.11) then implies that if d Gin_ (x), Gm_ (tl)) <- R
for some m >= 1, then

d(GN(x), GN(u))<=( ] h) forall N>-m,
j=m

which establishes (2.9) in the case d(x, u)<= R1.
If d(y, Gj_l(U))=p > R1, Proposition 1.9 in [25] implies that there exists yl on

the line segment connecting y to G_l(u) such that

(2.12) d(y, Yl) --/9 R and d(yl, Gj_(u)) R

Using the nonexpansivity of gj and (2.10) we obtain from (2.12) that

(2.13) d (g(y), G(u)) <- p R1 / AR1.
If p _-< R2, R_ > R1, we obtain from (2.13) that

(2.14) d(gj(y), Gj(u)) <-_ txd(y, G_l(U)),
where

(2.15) tx gE- (1- hj) gl]gf 1.

Formula (2.14) was proved under the assumption that R1 < p --< R, but because/x ->_ hi,
the equation holds for p _-< R.

If d (x, u)_-< R, the nonexpansive property of G implies that

d(G(x), G(u))<-R2 for all j>-0.

Thus by repeated applications of (2.14) we obtain

d(GN(X), GN(U))<=( I tzj) d(x, u),
j=l

so (2.9) will follow if we can prove that

(2.16) lim (/x)=0./Nr-

If Aj -< 1/2 for infinitely many indices j, we can easily see that there exists a constant < 1
such that 0<=/x <-c for infinitely many indices c and (2.16) will be satisfied. Thus we
can assume that 1/2 < )t -<_ 1 for j -> m, so < -< 1 for j -> m. Under these conditions it
is well known and easily checked that

N

lim H h=O:> 2 -log(hj)=oo:> 2 (1-h)=oo,
N- j= j=

N

lim I-I /x./=O:> E -log(/zj)=oo::> E
Nj=m j=m j=m

Because (1-1x)=(R/R2)(1-Aj), the equations above imply that (2.16) is
satisfied.

Thus it suffices to prove that (2.10) and (2.11) can be satisfied. For a fixed

0 C* -{0} it suffices (by homogeneity) to define uj Gj(u)/q(G(u)) and to prove that

d(gj+l(Uj), gj+l(Y)) <= Aj+ld(y, uj)

for all y such that q(y)= 1 and d(y, u)<=R < R. Recall (see Lemma 4.1 in [25] or
argue directly) that

V,,(u) {y: d(y, u) <- R,}
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is convex. For notational convenience, define Gj+ g, Aj+ --A, and uj v and let a
and/3 be positive numbers such that

av<=y<=v and log(/a)=p=d(y,v).

The normalization q,(y) O(v) 1 implies that a =< 1 and/3 -> 1. If we define

wt=(1-t)(av)+ty and zt=(1-t)y+t(v), 0-<t-<l,

we obtain

g(y) g(av) g’(w,)(y av) dt,

g(Clv) g(y) g’(z,)(flv y) dr.

If we recall that g’(zt) >- A, we obtain from the preceding two equations that

Note that

A(y av) + A(v y) ( a )Av,

so Lemma 2.2 implies that there exists a positive constant y Yj/I (1/2) exp (-A(A+I))
such that

A(y av) >= y(/3 a)Av or A(v y) >= y(/3 cr)Av.

For definiteness we assume that

(2.18) A(y av) >= 3,(/3 a)Av.

The proof in the other case is essentially the same.
Next, remember that we assume the existence of a positive constant k, independent

of j >- 0, such that

(2.19) A(v) A+(u) >= kg(v) kg+,(uj).

If we use (2.17)-(2.19) we obtain

(2.20) ag(v) + ky(/3 a)g(v) <- g(y) <= fig(v),
where log(/a)=d(y, v) and y=(1/2)exp(-A(Aj+)). Formula (2.20) implies that
ky <= 1 and

(2.21) d(g(v) g(y))<=log( )a+ky(-a)

If we define s =/3/a, with 1 =< s<=exp (R), and recall that d(v, y)=log (s), we obtain
from (2.21) that d(g(v), g(y)) d(g+l(u), g;+(y))<=Aj+ld(u, y), where

(I(S)
(2.22) /j+l sup

l<sexp(R1) (02(S)

with ql(S) log Is(1 + ky(s- 1))-] and qE(S) log (s).
Because q(1)-0, the generalized mean value theorem implies that for each s,

1 < s-<exp (R1), there exists tr with 1 < tr < s such that

(2.23) (01(s)/(02(s ( (O’)/(0(O’) (1 ky)(1 + ky(tr- 1 ))-1,
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SO

(2.24) Aj+I-" 1-() exp (--A(Aj+I)),

The same sort of argument that we have used already proves that

N

lim I-I A-0 for every rn->l
N-x3

if and only if (2.7) is satisfied.
This completes the proof of (2.8); the remaining assertions of the theorem are

straightforward and left to the reader, l-1
Remark 2.1. Let hypotheses and notation be as in Theorem 2.1. However, do not

assume condition (d), and suppose that (gj) satisfies the bounded orbit property. Then
condition (d) is equivalent to the following condition (d’)"

(d’) There exists a positive constant kl such that

Aj(u) >- k&(u) for all j>_- 1.

We will prove that (d’) implies (d); the opposite implication is proved similarly. If u
is as defined in the proof of Theorem 2.1, the bounded orbit hypothesis implies that
there exist positive constants c and d, j-> 1, such that

CjUo<= U <-_ duo and d/ c <= M,
where M is a constant independent of j. It follows that

cjg.,+(Uo) <= &+l(U) <= d.i&+l(uo),

cjAj+ tlo <= Aj+ ttj <= djAj+ uo
If we use these inequalities and hypothesis (d’) we find that

&+(u) <= d&+,(Uo) <- k-(ldAj+,(Uo) <- k-(l () A+,(t)

<- k-(1MA+ U
which is equivalent to hypothesis (d).

It may be unclear how we can expect to find operators A such as those in Theorem
2.1. The next corollary shows that under mild assumptions a scalar multiple of
g(Gj_l(U)) can serve as Aj.

COROLLARY 2.1. Let C be a cone with nonempty interior in a Banach space X, and
letf" - , j 1, be a sequence of maps that are order-preserving and homogeneous of
degree 1. For a fixed p >- 1, let & and Gm be as defined in Theorem 2.1, and assume that
there exist r > 0 and u such that f is C on B(F_ (u)) for all j >- 1, where B(x)
{y " d (y, x) < r}. Define u G(u)/II G(u)ll and assume that there exist positive
constants c and p <-r such that, if d (x, U-l)< p and j >-_ 1, then

(2.25) g(x) _>- cg(uj_).

Finally, assume that the operators B g(G-I(u)) g(u_l) satisfy

(2.26) Y exp (-A(B)) oo,
j=l
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where A(Bj) is given by (1.6) if Bj has finite projective diameter, and that they satisfy
exp (-A(B)) 0 otherwise. Then it follows that

lim d (F, (x), F, (y)) 0 for all x, y .
If C is normal, (1.13) is also satisfied for all x, y .

Proof. Define A cB for c as in (2.25). It suffices to prove that the hypotheses
of Theorem 2.1 are satisfied. Formula (2.25) implies (taking p R) that hypothesis (c)
of Theorem 2.1 is satisfied.

Because gi is order-preserving, Bi and Ai cBi are also order-preserving, so
A(C) c C. The homogeneity of g implies that

(2.27) g,(t/i_l) ni(t/i_l) ,
and using (2.27) and the order-preserving property of Ai we conclude that A(t)c t.
Thus hypothesis (b) of Theorem 2.1 is satisfied. Hypothesis (d) of Theorem 2.1 also
follows directly from (2.27). Finally, because A(cB)=A(B), (2.7) is equivalent to
(2.26). l-]

The homogeneity of the functions f in Theorem 2.1 plays less of a role than it
might at first seem to. We illustrate this by stating a result that follows by essentially
the same argument as Theorem 2.1. First, we need a lemma proved by Potter (see [29])
in the case where the function g is defined, order-preserving, and subhomogeneous
on all of .

LEMMA 2.3. (Compare [29].) Let C be a cone with nonempty interior in a Banach
space X, and for @ C*-{O} and A > I define E={xt’q,(x)=l} and D=
{x " A -1 < d/(X) < A }. Assume that f" D --> is order-preserving and subhomogeneous
on D. Then fie is nonexpansive with respect to Hilbert’s projective metric d, so
d(f(x),f(y))<=d(x, y) for all x, y,.

Proof. If Xo and Xl are points in E with d(xo, xl)=p, define xs =(1-S)Xo+SX.
For a given integer n > 1, it follows from Proposition 1.9 in [25] that there are real
numbers s, with sj < S/l for O<=j<n and So=0 and s,= 1 and (writing y=xsj)

d(y, Yj+I) pn -1 for 0<-j < n.

Note that in general s jn-.
Choose n so large that pn-< X. It suffices to prove that

(2.28) d(f(yj),f(y+)) <- d(y, y+) pn-,
for then the triangle inequality gives

rl--1

d(f(xo),f(xl)) <= Y d(f(y),f(yj+l)) <- n(pn-) d(xo, Xl).
j=O

For a fixed j select numbers a and/3 so that

(2.29) ay<-y+<-fly and log()=pn-a.
Because O(y) (yj+) 1, we easily obtain from (2.29) that 0< a _-< 1 -</3 and a- -<
pn-< A and/3 < pn-< A. It follows that the points cty, fl-y+, y, and Yj+I all lie
in D. By using the subhomogeneity and the order-preserving property of f on D we
find that

otf(yj) <=f(otyj) f(Yj+I) and fl-f(y+) <=f(fl-yj+) <-_f(y),
SO
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We can now give a version of Theorem 2.1 for order-preserving, subhomogeneous
operators. Once we know Lemma 2.3, the proof of the next theorem follows by
essentially the same argument as in Theorem 2.1 and is left to the reader.

THEOREM 2.2. Let C be a cone with nonempty interior in a Banach space X and
for fixed C*-{O} and h>l deofine D={x’h-<d(x)<h} and
{x " tp(x)= 1}. Suppose that g" D--> C, j >-1, is a sequence of order-preserving, sub-
homogeneous maps and define

hi(x) gj(x)/ @(gj(x)),
with H, hmhm-1 h and Ho equal to the identity. For some u E define uj I-t(u)
and assume that there exists R > 0 and a sequence of bounded linear operators Aj, j >- 1,
such that:

(a) g is continuously Fr.chet differentiable on BR (uj_l) fq D for all j >- 1, where
BR(y) {X (S" d(x, y) < R}.

(b) A,()c for all i>-I and gl(x)>-A, for allxBR(U,_l)f’lD and i>=l.
(c) There exists a positive constant k such that Aj(Uj_l)=> kgj(u_l) for all j >- 1.

If we have
N

lim E exp (-A(A)) ,
where A(Aj) is given by (1.6), then it follows that

lim d (H, (x), H, (y)) 0 for all x, y E,

and

lim (x) H= (Y)ll 0 for all x, y E

if C is normal.
Remark 2.2. Note that in the statement of Theorem 2.2 there is no integer p

analogous to the one in the statement of Theorem 2.1. If we assume that the g satisfy
a "ray-preserving property" as in [16], then

{g(tx):t>0}{sg(x):s>0} forj_->l and xE.

Then if G, g,g,.-l""g, we can verify (see [16]) that

Gm(x)/ @( Gm(X)) Hm(X).

Using this fact we can then give a version of Theorem 2.2 that directly generalizes
Theorem 2.1. Without the ray-preserving property there seems to be no necessary
connection between Gm and H,.

However, the assumption of the ray-preserving property for order-preservin,
subhomogeneous operators can be restrictive. To see this, suppose that f:C- C,
j 1, 2, is order-preserving and f(tx) txJf(x) for 0 < -< 1 and x 7, where 0 < A <- 1.
Then f is subhomogeneous, order-preserving, and ray-preserving. However, f=fl +f_
is subhomogeneous and order-preserving, but not ray-preserving unless A1 2.

Remark 2.3. In 16], Fujimoto and Krause have obtained weak ergodic theorems
for ray-preserving maps of the standard cone K {x ": x >_- 0 for 1 =< =< n} into
itself. If F= {x K: q(x) 1} (q K*- {0}) andf K - K,j > 1, is a sequence of maps
for which we want to establish a weak ergodic theorem, then the assumption of"uniform
pointwise boundedness" in Theorem 4 of [16] (assuming, for simplicity that r 1 in
the statement of that theorem) implies that there exist a, b/ such that

(2.30) a <-_f(x)/ q,((x)) h(x) <- b for all x F.
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Formula (2.30) (or its analogue for r => 1) implies that hi" F f’l/ - F f’l/, j => 1, satisfies
the bounded orbit property with respect to d, but uniform pointwise boundedness
represents a less general condition than the bounded orbit property does. In particular,

iff for j >- 1, m.any examples of interest do not satisfy (2.30) or even the condition
that f(K-{0})c K, but they may satisfy the bounded orbit property. Of course (see
4 of [16]), there are also many examples where the uniform pointwise boundedness

assumption is satisfied.
Remark 2.4. The reader will note that the bounded orbit property is not assumed

in Theorem 2.1, Corollary 2.1, or Theorem 2.2. Nevertheless, the bounded orbit property
plays a crucial role: to verify the hypotheses of Corollary 2.1 or Theorem 2.2 for
examples of interest, we will typically have to verify the bounded orbit property.

In the framework of Theorem 2.1 it is natural to ask if a stronger conclusion can
be obtained. Does there exist v such that

lim d(F,,(x), v)=O and lim IIF.(x)/llf.(x)ll-vll-o for all xe ?

A similar question can be asked for Theorem 2.2. Such results are called "strong
ergodic theorems" in [11]. As we now show, such a theorem can be derived easily
from Theorem 2.1.

THEOREM 2.3. Let C be a cone with nonempty interior in a Banach space X and

f ,j >- 1, a sequence ofm aps that are homogeneous ofdegree 1 and order-preserving.
Assume that there exists v C, vii- 1, such that

(2.31) lim d(f(v), v)=0,

where d denotes Hilbert’s projective metric. Assume there exists R > 0, an integer p >- 1,
and a sequence of bounded linear operators Aj, j>-1, with the following properties:

(a) If gj is defined as in Theorem 2.1, gj is continuously Frdchet differentiable on

BR(V)= {X " d(x, v)< R} for all j>-_ 1.
(b) For all x BR(V) and all j >- 1 we have g(x)>-Aj.
(c) The operators Aj satisfy Aj()c , Aj has finite projective diameter A(Aj), and

(2.32) sup {A(Ai): j_--> 1} <
(d) There exists a positive constant k such that A(v) >- kg(v) for all j >- 1. Then it

follows that limn-. d Fn x), v 0 for all x ;, and lim ,-.oo (x) /II (x)tl v 0

if c is normal.
Proof. By using the triangle inequality and the nonexpansiveness of f we can

verify that
Jp

d(g(v), v)<- Y d(f,(v), v),
i=jp--p+l

SO

lim d(g(v), v)=0.
j-oo

We claim that to prove the theorem it suffices to prove that

(2.33) lim d(G,x, v)= lim d(Fnpx, v)--0 for all x 7.

To see this, note that the triangle inequality and the nonexpansiveness of the f imply
that for np < m < np + p,

m--rip--

(2.34) d(F,,x, v)<-d(F,px, v)+ E d(f,,_jv, v).
j=0
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Formulae (2.31), (2.33), and (2.34) imply that

lim d(F,,x, v)=0 for all x (.

Thus it suffices to work with gj and G.
Select a fixed number R1,0< R1 < R, and define VR,(V)= {Z: d(z, v)<= R1}. Essen-

tially the same argument used in the proof of Theorem 2.1 actually shows that for all
x, y e Vg,(v),

d(gj(x), g(y)) -< cd(x, y),

where c=[1-(k/2)e-R, exp(-A(A))]. (Note the extra factor e-R in cj; this is
unnecessary if x or y equals v.) Because we assume that A(A) is bounded above, we
have

sup {c" j_-> 1}- c < 1.

Now select any number e, 0 < e < R, and suppose that x V(v), so d (x, v)-<_ e.

Then we obtain

d(g(x), v)<-d(g(x),gj(v))+ d(g(v), v)

<-- ce + d(g(v), v).

It follows that there exists an integer m m(e) such that

g(V(v))c V(v) forj>-m(e).

We now apply Theorem 2.1. For m m(e) as above, define qi(x)= g,,+i(x) and
%q_ q. The sequence %, j >= 1, satisfies the bounded orbit property; in fact,

dp(v)e V(v) for all j>= 1. It is also easy to check that all the hypotheses of Theorem
2.1 are satisfied, so

lim d(%(y), (v))=0 for all ye

Taking y Gin(x) for x e t, we conclude that

lim d(G+,(x), I)(v)) =0 for all x e t.
j-->

Since (v)e V(v) for all j-> 1, we conclude that for any fixed xe there exists n
such that

d(Gj(x), v)<2e for allj->n.

Since e > 0 can be taken as small as desired, the proof is complete.
Remark 2.5. Suppose thatf" t --> ( is a map andf(v) Av for some v t. Assume

that f" ( --> t, j >= 1, is a sequence of maps as in Theorem 2.3 and that for every x
we have

lim d(f(x),f(x))=O.
jx

Then it is certain that lim_. d(f(v), v)=0, which provides a situation where we can
find a vector v as in Theorem 2.3. However, such a vector v may well exist even if the
functions f do not converge to a function f.

Remark 2.6. Essentially the same argument as in Theorem 2.3 can be extended,
as in Theorem 2.2, to the case of order-preserving maps that are subhomogeneous.
Details are left to the reader.
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Under the hypotheses of Theorem 2.1, it is natural to ask if, for every given x ,
there exists a positive number 3’ y(x) such that

lim IIF(x)-f.(u)ll=O.

Iff =f for all j-> 1 and f(u) u, this question is considered at length in 3 of [25].
Before considering the general case it is convenient to prove a simple lemma.

LEMMA 2.4. Let C be a normal cone with nonempty interior in a Banach space X.
If u and R, cl, and c2 are positive reals, define V by

V= {x " d(x, u) <- R and c < Ilxll-<-
where d denotes Hilbert’s projective metric. Then there exists p > 0 so that, for every x V,

(z x. IIz-xll < p} .
Proof. If x V, there exist positive numbers a and/3 such that

(2.35) au<=x<=/3u and a-l <-_ e R.
By the definition of normality there exists a constant M so that if 0 =< x-< y then

(2.36) Ilxll <= MIIyII.
Combining (2.35) and (2.36) gives

(2.37) llull-<- MIIxll <- Mc= and c1<-Ilxll <- Mllull.
Formulae (2.35) and (2.37) imply that

(c,/Mllull) e-R <= a and fl <-- (Mc=/llull) e R.
Thus there exists a number 3’ >- 1, independent of x V, such that

(2.38) y-lu -< x -< yu.

Because y-lu (, there exists p>0 such that y-u+z for all zX with
and (2.38) then implies that x + z for all x V and all z with Ikzll < p.

If C is a cone with nonempty interior in a Banach space X, x C and {y" Ily x
p}c (, then we can easily prove that for Ily-xll < p we have

(2.39) (P -Ily x II)p-’x --< y --< p / Ily xll)p -ix.

THEOREM 2.4. Let notation and assumptions be as in Theorem 2.1. Assume also
that (f) satisfies the bounded orbit property, that C is normal, and that

(2.40) sup{llFm(u)ll" m->0}< and inf{llF,.(u)ll" m=>0}>0.

Then for every x there exists a positive number y y(x) such that

(2.41) lim IIf(x)-rF(u)ll=O.

The map x y(x) is homogeneous of degree 1, order-preserving, and continuous.

Proof It is known (see [32]) that there exists an equivalent norm on X whose
restriction to C is order-preserving. Thus we can assume that if0 <- x =< y, then Ilxll--<

For a fixed x , define numbers a, and/3, by

a, m(F,(x)/F,(u)) and /3, M(F,(x)/Fn(u)),

so

(2.42)
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Applying fn+l to (2.42) we find that

a,F,+,(u) F,+I(X) 8,Fn+,(u),

and we conclude from this inequality that

(2.43) a,<-_a,,+, ,8,+<-_, a,, for all n,

so lim.. a, a and lim,. , .
If we can prove that a , we can define y(x) and (by normality of the cone)

it is evident from (2.42) that (2.41) is satisfied. Fuhermore, the homogeneity and
order-preserving propeies of y(x) follow immediately from the formula

y(x) lira M(F,(x)/F.(u)).

Because y is homogeneous of degree 1 and order-preserving, we can easily derive from
(2.39) that y is continuous.

Theorem 2.1 implies that

(2.44) lim IIf.(x)llf.(x)ll-l-f.(u)llf(u)ll-lll=O,

and (2.42) gives

(2.45) a. r IIF(x)lI/llF(u)ll .
Formulae (2.40) and (2.45) imply that IIf(x)ll is bounded above and below by positive
reals. Using the fact that IIf(x)ll is bounded above, we obtain from (2.44)

(2.46) lim IIF.(x)-vF.(u)ll= lim e,=0.

We now use Lemma 2.4. The bounded orbit propey implies that there exists
R > 0 such that

d(%F,(u), u) d(F,(u), u) R for all n 1.

Fuffhermore, as already noted, there exist positive reals Cl and c such that

c, llF(u)ll IIF(x)ll

Thus Lemma 2.3 implies that there exists p > 0 such that if z- r.f (u)II < P for some
n 0, then z . If e, is defined as in (2.46), then (2.39) implies that if e, < p for
n N, then for n N,

[(p e.)p-]y.F.(u) F.(x) [(p +(2.47)

It follows that

0=. a. <-- (p + e,,)p-’%, -(p e,,)p-"),,,

and we conclude (using (2.46) and the fact % is bounded) that

lim (/. a.) O.

As an easy corollary of Theorem 2.4 we mention the following result, a slightly
weaker version of which has been proved by Cohen in [12]. Of course, in this simple
situation it is also possible to give an elementary, direct proof, so the following corollary
is meant only as an illustration of Theorem 2.4.
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COROLLARY 2.2. (Compare [12].) Let K {(Xl, X2) E [2: Xi

_
0 fOl" 1, 2}. Let Aj,

j >-1, be a sequence of real numbers such that 0 <= Aj <-_ 1, and for each j >-1 define

f’-- by fj(xl,x2)--((1-Aj)Xl+Ajx2,x
and define F, f,f,-l "fl. Then for each x (Xl, x2) E/, there exists y y(x) > 0
such that

lim F,(x) y, y).

Proof Let u (1, 1) so f(u) u for all j-> 1. Thus f, j->_ 1, satisfies the bounded
orbit property in Theorem 2.1 and (2.40) in Theorem 2.4. The functions f are clearly
all order-preserving, homogeneous of degree 1, and C on/. For a fixed R > 0, define

Aj= e-R( 1-Aj
It is easy to check that f](x)>= Aj for all x with d (x, u)_-< R and

_->

Also, A has one-dimensional range, so A(Aj)=0. If we take p= 1 (in the notation of
Theorem 2.1), we thus see that all hypotheses of Theorems 2.1 and 2.4 are satisfied,
so the conclusion of the corollary follows from Theorem 2.4.

The preceding theorems typically make some assumption of differentiability. These
assumptions are motivated by the applications we have in mind and can certainly be
weakened. The hypotheses of Theorem 2.1 represent only a convenient way to obtain
the estimates in (2.10) and (2.11). To illustrate this point we mention the following
theorem, whose proof is essentially the first part of the proof of Theorem 2.1. Details
are left to the reader.

THEOREM 2.5. Let C be a cone with nonempty interior in a Banach space X. Let
be a subset of and S {y (" [[y 1} and assume thatfor each y S there is a unique
positive number 3, h (y such that hy X. Suppose that the hi" X - E, j >- 1, is a sequence
of maps and that there exists u X, such that if H, hoh,_ h (the composition of
the first m functions hi) and Ho denotes the identity, then

d(h,,(x),Hm(u))<-__d(x,H,_(u)) forallxEX and m>-_l.

(Here d denotes Hilbert’s projective metric.) In addition, assume that there exist R > 0
and a sequence of reals hi, j >_- 1, such that 0 <- hj <- 1 for all j,

d(ho,(x),Hm(u))<-hd(x, Ho_l(U)) for allxX with d(x, Ho_l(U))<-_R, and

N

lim I] hi=0 for allm>=l.
N->ooj=

It then follows that for every x E,

lim d(H,(x), H(u))-0.

3. Applications: verifying the bounded orbit property. In this section we show how
the results of 2 can be applied in the case where f M for all j-> 1, M being the
class defined in 1. We shall show that the main difficulty lies in verifying the bounded
orbit property with respect to d. Iff M/ for all j _-> 1, we will give reasonably general
conditions ensuring that the bounded orbit property is satisfied. As we have already
noted in 2, if f E M_ for all j_-> 1, verifying the bounded orbit property can be a
difficult problem even when f-f for all j _-> 1.
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We begin with some needed notation and definitions. We will always denote by
K the standard cone in

(3.1) K ={xR": x->0 for l<=i<-n}.

If f e M is a sequence of functions for j ->_ 1, we will denote by f, 1 <_- <= n, the ith
component of the function f"/ /. By definition of M, there is a finite collection F
of ordered pairs (r, or), r a real number and r a probability vector, and positive real
numbers cj for (r, tr) Fji, such that

(3.2) f,(x) E cj,r=Mr(x).
(r,o’) I"ji

Because (xr)l/r=x, the set Fj described above may not be uniquely determined
by the function f. However, we will need some control of the size of the numbers r,
which appear in (3.2). Thus we make the following definitions. Suppose that b M
so 4i, the ith component of b, can be written

(3.3) 6,(x) E c,M,(x),
(r,o’)Gi

where G is a finite collection of ordered pairs (r, o’), r a real number and tra probability
vector, and c> 0. If b M/, the sets Gi can be chosen so that r >= 0 for all (r, tr) G.

DEFiNITiON 3.1. If b M, we define/x(b) by

/x(b) =inf{/x >0: b(x) can be expressed as in (3.3),
(3.4)

and Irl <-- z for all (r, or) Gi and for 1 -< =< n}.

If th M/, we define v(b) by

v(b) =inf{v>0: chi(x) can be expressed as in (3.3),
(3.5)

and 0 <- r -< v for all (r, tr) G and for 1 =< -< n }.

If C is a cone in a Banach space X and A and B are bounded linear maps of X
to X, we will say that A -< B if (B A)(C) c C; the ordering depends on C. If A(C) c C
and B(C)c C, we will say that A and B are comparable if there exist positive numbers
cl and c such that

cA <- B <- c2A.

If C K and X , then bounded linear maps are n x n matrices, A (ao) <- B (b)
if and only if ao <-_ bo for all i, j. If ao >- 0 and b0 >_- 0 for all i, j, A and B are comparable
if and only if there exist positive reals Cl and c2 such that

ca <-_ b <- cEa0 for all i, j.

Our next lemma is easy, but we give a proof for completeness.
LEMMA 3.1. Assume that C is a cone in a Banach space X and that A, B X X

are bounded linear operators such that A(C) C and B(C) C. Assume that A and B
are comparable; then there exist positive reals Cl and c2 such that

(3.6) cA<-_B<=c2A.

IfA has finite projective diameter A(A) (see (1.6)), then B has finite projective diameter
and

(3.7) zX(B) =< A(A) + 2 log (c:/c).
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Proof. If x and y are any two elements of C such that Bx and By are nonzero,
then by using (3.6) we see that Ax and Ay are nonzero. By definition of finite projective
diameter, it follows that there exist positive reals a and/3 such that

(3.8) aA(x)<-A(y)<-_SA(x) and log(8/a)<--_A(A).

By using (3.6) repeatedly we obtain from (3.8) that

(3.9) a (ell c2) B(x) <-_ B(y) <= fl (c2/cl)B(x),
which implies that

(3.10) d(Bx, By)<-2 log (c2/cl)+log (fl/a).

Formulae (3.8) and (3.10) yield (3.7).
In [26] it is proved that iff eg (see 1 for definitions), then f is C on/ and

f’(x) and f’(y) are comparable for all x, y/ (this is not hard). We need a more
precise version of this fact, relating the sizes of f’(x) and f’(y), whenf M.

LEMMA 3.2. Let K denote the standard cone in R" (see (3.1)), let v (1, 1,. ., 1)
be the vector all of whose components are 1, and define tp K* by

g,(x)= x,.
i=1

Suppose thatf: I I is homogeneous ofdegree 1 and order-preserving. Ifx I, d/(x) n,
and d x, v) <= R d denotes Hilbert"s projective metric), then

(3.11) e-f(v) <=f(x) <= ef( v).

Iff M and I(f) < 3" (see Definition 3.1), then for all x I such that d (x, v) <- R,

(3.12) exp (-R(3’+ 1))f’(v)<-f’(x)<-exp (R(3"+ 1))f’(v),

where f’(x) denotes the Jacobian matrix at x.
Proof. If O(x) n tp(v) and a m(x/v) and M(x/v), we must have a <- 1 =<

/3; and if d(x, v)<= R, then

(3.13) /a<=eR.
Formula (3.13) implies that/3-<eR and a>-e- (since ce-< 1_-<), and (3.11) follows
from the homogeneity and order-preserving properties of f.

If fe M,/z(f) < 7, and f denotes the ith component off(x), then we can write

(3.14) f(x) Y c,rMr(x), [rl < 3’ for (r, or)e G,.
(r,)e Gi

Here Gi is a finite collection of ordered pairs (r, or) with r eR and cra probability
vector and cir, > 0 for (r, or) Gi, 1 <= <- n. If d(x, v) <-_ R we have

(3.15) e- <= xj/xk <= e for all k.

A calculation implies that for d (x, v)<-R,

(3.16) OMr_____ (x) erj[x(M(x))-]-.x
Recall that M is an order-preserving map on/ for any real number r and that (3.15)
implies that

e-xv <= x <- exv.
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Using this we conclude that for d (x, v)<_-R we have

e-R <=xj(Mro.(x))-l <_ e

(3.16) then implies that

Ro

OMr"
eRIr-ll(3.17) o) e-RIr-ll <--_ (X)<%

aX
Because Ir] < y for all r such that (r, tr) Gi, we conclude from (3.17) that

(3.18) exp (-g(y+ 1)) ci,.,oj<--Of(x)<--exp(R(T+l)) _, C,r%.

Of course (3.18) is equivalent to

exp (-R(y+ l)) Of (v)<= Of (x)<=exp (R(y+
Ox Ox

which implies (3.2).
We can now state a weak ergodic theorem, for functions f M. In the statement

of the following theorem recall that a nonnegative n x n matrix B is called "primitive"
if there exists p => 1 such that BP has all positive entries.

THEOREM 3.1. Let K be the standard cone in n (see (3.1)) and suppose that for
j >-1, f M, where M is the class of maps of I into itself defined in 1. Assume that

(f) < ), < o for all j >- 1 (see Definition 3.1). If v (1, 1,. , 1), suppose also that
there exist an n n primitive matrix B and an n x n matrix A such that B <=fj( v)<-A
for all j >= 1. Finally, assume that (f) satisfies the bounded orbit property with respect to
Hilbert’ s projective metric d (see Definition 2.1). Then if Fk fkfk- "fl,

lim d(Fk(X), Fk(V)) =0 for all x I,

lim IlF(x)llF(x)ll-l- F(v)llF(v)ll-ll -0 for all x I.

Proof. Select an integer p _>- 1 such that B p has all positive entries, and for this p
let Gk and gk be as defined in Theorem 2.1. The bounded orbit property implies that
{Fk(X)" k->O} has finite projective diameter for any x /. In particular, there exists
R > 0 such that

(3.19) {Fk(V): k_->0}c BR(V)={z: d(z, v) < R}.

For notational convenience, define

Ok Fk(1) and Uk G(u)/llG(u)ll.
Because each f is nonexpansive with respect to d we see that if x BR(Vk), then for
j_--> 1 we have

(3.20) fk+jfk+j-l" f+,(X) G BR(Vk+j)= B2R(V ).

If x B(u)= B(Gk(U)), then by using (3.20) and the chain rule we see that

(3.21) g’+(x) f[,p+p(yl)f[,p+p-,(y2) f:p+,(yp),
where yl, y,..., y, are points in B(v) that depend on x and the maps f.

We now use Lemma 3.2 and (3.21) to conclude that

exp (-p(T + 1)(2R))fjp(V)fjv_a(v)...fjp_p+a(v) <= g(x),
g(x) <= exp (p(y+ a)(2R))fjp(v)fjp_(v)...fjp_p+(v)
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for all x BR(Uj_I),j 1. It follows that for some Cl>0 we have

(3.22) exp(-2p(y+l)R)BP<=g(x)<-ci exp(2p(y+l)R)B p for all XBR(Uj_I).

By using (3.22) we see that there exists a positive real number c, independent of j,
such that

g(x) >= cg(uj_l) for allj=>l, X BR(Uj_I),

which is (2.25).
If we define Bj g(uj_), then (3.22) and Lemma 3.1 imply that

A(Bj) =< 4p(T + 1)R + A(B’),

SO

E exp (-A(Bj))=.
j--1

The conclusions of Theorem 3.1 now follow directly from Corollary 2.1. [3

As an immediate consequence of Theorems 3.1 and 2.4 we obtain the following
result.

COROLLARY 3.1. Let the notation and assumptions be as in Theorem 3.1. In addition,
assume that there exists u I such that (2.40) is satisfied. Then for each x I there
exists ), y(x) > 0 such that

lim IIF(x)-,F,(u)ll--O,

and x y(x) is continuous, order-preserving,, and homogeneous of degree 1.
Similarly, by using Lemmas 3.1 and 3.2, we can derive the following corollary of

Theorem 2.3. Details are left to the reader.
COROLLARY 3.2. Let notation and assumptions be as in Theorem 3.1. Assume that

there exists w K such that

lim d (f(w), w) 0.
j-oo

Then it follows that for all x I,
lim d(Fk(X), w)=0 and lim [[Fk(x)llFk(X)[[-1-w]l =0.
k- k

If tr is a probability vector and x /, we will use the notation

(3.23) x
j=l

where xj and j are the jth components of x and r, respectively. If x, y e/ we will
also use the notation

log (x) (log (x), log (x2), ", log (x,)) and y. log (x) yj log (xj).
j=l

If (fk) is a sequence of maps, order-preserving and homogeneous of degree 1, of
/ into itself, verifying the bounded orbit property may be difficult. However, we now
show that if fki(X) can be bounded below in a suitable way by cx, where c > 0, tr is
a probability vector, and both c and o- may depend on k and i, then we can prove
that (fk) satisfies the bounded orbit property with respect to d. This idea has already
been used in 4 of [23] for the case where fk =f for all k -> 1.
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Our next lemma is a slight variant of Lemma 4.1 in [23]. Since the argument is
the same, the proof is left to the reader.

LEMMA 3.3. Suppose that K is the standard cone in " andfand g are maps ofI
into itself. Suppose that A is a nonnegative n x n matrix with no zero rows; suppose also
that if aij > O, then there exist a positive constant c and a probability vector cr (or depends
on and j) such that crj >- rl > 0 (where cr denotes the jth component of or) and

fi (x) the ith component off(x) >- cx for all x I.
The constants c and rl are assumed independent of and j. Similarly, suppose that B is
a nonnegative n x n matrix with no zero rows and that if bi > O, then there exist a positive
constant d and a probability vector - such that - >- 0 > 0 and

g, (y) >- dy for all y I.
Here d and 0 are assumed independent of and j, but may depend on and j. Then BA
is an n x n nonnegative matrix with no zero rows, and if the entry in row i, column j of
BA is nonzero, there exists a probability vector tx such that

gi(f(x)) >= Ax for all x I,
where A >-cd and tz >- Orl.

In the statement of the following theorem, recall that fk(X) denotes the ith
component of a map fk" I - I.

THEOREM 3.2. Let K denote the standard cone in n and suppose that fk" I,
k >-_ 1, is a sequence of maps that are order-preserving and homogeneous of degree 1. Let
A (a!j) be an n x n nonnegative, primitive matrix. If aj > O, assume that there exist
c > 0 and 5 > 0 (independent of i, j, and k >= 1) and a probability vector cr with cr >- (or
may depend on i, and k) such that

fi(x) >= cx for all x .
If v (1, 1,..., 1), assume that there exists a constant c: such that f(v)<-_ c:v for all
k >= 1. Then (f,} satisfies the bounded orbit property with respect to Hilbert’s projective
metric d, and for every u I, there exists R > 0 such that

d(F(u), u)<=R for all k >- 1.

Proof. Let F be as defined in Theorem 2.1 and select p _-> 1 such that all entries
of Ap are positive. For any fixed k -> 0, define g"// by

(3.24) g=fk+pfk+p-l fk+l.
By applying Lemma 3.3 (p- 1) times and recalling that Ap has all positive entries, we
see that for any i, j with 1 <= i, j-< n there exists a probability vector cr (depending on
i, j, k, and p) with cr => P r/ (cr =the jth component of or) and

(3.25) g(x) the ith component of g(x) >= cPx for all x /.

Suppose that x/ and d (x, v)-< R, and select j so that

(3.26) x= M(x/v)= M.

If m m(x/v), we obtain from (3.25) and (3.26) that

(3.27) gi(x) >- cPx >- cPM%m1- >= cP(M/m)’m cPM’m1-’.

In deriving (3.27) we use Mm >-1.
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On the other hand, we assume that f(v)=< C2/.) for all j, so

(3.28) g(v)<=cv.

Because x <= My we conclude from (3.28) that

(3.29) g(x) <= cM for 1 =< s =< n.

Combining (3.27) and (3.29) we conclude that

+(1 r/)R.

It follows from (3.30) that there exist a real number A, 0< A < 1, and a number R1,
both independent of k in the definition of g, such that

(3.31) d(g(x), v)<-AR if d(x, v)<-_R and R>=RI.
We can also assume that R1 is SO large that

(3.32) d(Fj(v), v)<gl for l<-j<p.

In general we can write F,, for m >_-p in the form

(3.33) F,, gg2"" gtFj,

where 0_<-j < p and each gi in (3.33) is assumed to be of the form given by (3.24) for
some k->0. Since every g as in (3.24) maps BR,(V) into itself and since Fj(v) BR,(1))
for 0 _-< j < p, we conclude that F, (v) BR,(v) for all m >_- 1.

With the aid of Theorems 3.1 and 3.2 we can give a more concrete weak ergodic
theorem.

THEOREM 3.3. Let K denote the standard cone in R (see (3.1)) and let (fk), k >- 1,
be a sequence of maps such that fk M+ for all k >= 1. Assume that tx (fk) < P < oO for all
k >- 1 (see Definition 3.1). Let v (1, 1,. , 1) denote the vector all ofwhose components
equal 1 and assume that there exists an n x n nonnegative, primitive matrix B such that

(3.34) f:(v) >= B for all k >- 1.

Assume that there exists f12 > 0 such that

(3.35) fk( V) <-- fl2V for all k >= 1.

Then we have that for all x I
lim d(Fk(X), Fk(V))--0,

lim IIF(x)llFt:(x)ll-’ F( v)llF,( v)ll-’ll O.
koo

If there exists u I such that

supllF(u)ll" k-->l}< o and inf(llF(u)ll" g->l}>0,

then for every x I there exists T T(x) > 0 such that

lim IIF (x)-  F (u)ll =o.
k-c

If there exists w I such that

then for every x I,

lim d(fj(w), w)=0,
jo

lim d(Fk(X), w)=0.
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Proof. The existence of a matrix A as in Theorem 3.1 follows from (3.35) and the
equation f[(v)(v)=fk(V). Thus, by virtue of Theorem 3.1 and Corollaries 3.1 and 3.2,
it suffices to prove that the sequence (fk) satisfies the bounded orbit property. We
establish the bounded orbit property by using Theorem 3.2.

First note that, because fk is homogeneous of degree 1,

fk(V) =f(v)(V) >-- By;

therefore there exist positive constants/31 and f12 so that

(3.36)

If we write

fllv <-f(v) <- 3.v for all k->_ 1.

A,(x) ., Ck,ro-Mro-(X), 1 <= i<= n, k >= 1,
(r,cr)eFki

we can assume r _-> 0 for (r, r) e Fki (because fk e M+). Formula (3.36) implies that

(3.37) fll <-- fk,(v) Cki Z Ck,’, <= 2.
(r,o’)Fki

It is a classical result (see [18]) that Mr(X)>=Mo(X) for r>=O, so

(3.38) fk( V) >= Ck , Ck,C-i1Mo,(x).
(r,o’)Fki

If we apply log to both sides of (3.38) and use the concavity of log we obtain

(3.39) lOgfki(X)>=(lOgCki)+( CkirC-ilo’)’(logx).
(r,o’)Fki

If we define a probability vector rki by

(3.40) rk, CkirC-ltr,
(r,o’)Fki

we obtain from (3.37), (3.39), and (3.40) that

(3.41) fki (X) ----> CkX"ki >= fll X

Denote by bi the ith row of the matrix B. A simple calculation shows that the ith
row of the Jacobian matrix fib(v) is Ckirk, SO by the hypotheses of our theorem we
have that

(3.42) ’k, -> C b, => fll b.
If B (bj), define a positive number t by

t inf { bijfl 1. bi2 > 0}.

Then it follows from (3.41) and (3.42) that if bo>0 the jth component of rki in (3.41)
is greater than or equal to 3. Since fll and are independent of i, j and k => 1, Theorem
3.2 implies that (fk) satisfies the bounded orbit property.

Remark 3.1. Note that, for functions fk that satisfy the hypotheses of Theorem
3.3, it can easily happen that fk does not map certain nonzero points in the boundary
of K into the interior of K and that the diameter (with respect to Hilbert’s projective
metric d) of {fk(X)’X e/} is not finite. Both of these phenomena are illustrated by
the simple arithmetic-geometric mean map

2
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In addition, both phenomena are typical of many examples of interest. For example,
suppose that Xk Fk(X), where Fk is as in Theorem 3.3. More generally, for fk M/,
we can define fk by

fk(X)= tZk(X)fk(X),

where IXk(X) is a positive scalar function of x. If we define k =fkfk-’’" f and
Xk Fk(X) and x0 x, it is easy to see that

k

Fk(X) Ak(X)Fk(X), Ak(X) H l’j(Xj--1)"
j=l

Here Ak(X) is a positive scalar, and the presence of Ak(X) does not affect the validity
of the first part of Theorem 3.3, because Hilbert’s projective metric does not distinguish
points on rays. In this terminology, x may represent an initial "population vector" (so
that the j-compo.nent of x represents the number of members of the population in
class j) and Xk Fk(X) may represent the population vector at time k. Under reasonable
assumptions on the biological model, we expect fk to vanish at certain nonzero points
on the boundary of K. Note, however, that if fk is linear and irreducible, fk does not
vanish on nonzero points of the boundary of K. This point indicates a drawback of
linear weak ergodic theorems in population biology.
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ON BERNSTEIN-SZEG00RTHOGONAL POLYNOMIALS
ON SEVERAL INTERVALS*

FRANZ PEHERSTORFERf

Abstract. Let lNl, a <a2<...<a21, Et=l,.Jk= [a2k_,a2k], H(x)=l-i2k= (X--ak) and let p,(x)=
c II[*= (x-Wk) ’k be a real polynomial with Wk tint (Et) for k 1,. ., * and if wk is a boundary
point of E. For given p and e (e, , e.), ek {--1, 1}, the following linear functional on , denoting
the space of real polynomials, is defined:

p(x)
sgn - (x--a2k_l) dx

k=l

* k
+ Z (1--ek) Z ,kp(-)(w)
k=t j=

where .k’s are ceain numbers. Polynomials ohogonal with respect to the (not necessarily positive
definite) linear functional n., are characterized. Those polynomials are given the name Bernstein-Szeg6
ohogonal polynomials on several inteals. Special attention is given to the most interesting case e

(1,.. ",1).

Key words, orthogonal polynomial, associated polynomial, several intervals, Bernstein-Szeg/5 weight
function, point measure

AMS(MOS) subject classifications. 42C05, 33A65

1. Introduction and notation. Let [, ak . R for k 1, , 21, a < a2 <. < a21
and put

21

E U [a2k-,, a2k], H(x) H (X--
k=l k=l

1 -Isgn(Ik=,(x-a2k-1))/x/H(x) forxaEl,
h(x)

0 elsewhere.

R and S denote polynomials with leading coefficient 1 of degree r, respectively,
s, that satisfy the relation

g(x)S(x)=H(x)

and p denotes a real polynomial of degree v that has no zero in E, i.e.,

p(x) c[I (x- w)
k=l

where c R\{O}, v* [o, ’k for k 1 , V=Y.k= Vk, WkC\El, for k=
1,. , ,*, and the Wk’S are real or appear in pairs of complex numbers. Furthermore,
we set

p,k(X) p(X)/(X-- Wk)k for k 1,. ., v*,

E.={(el,’’’,e.)’ek{--1,+l} fork=l,...,v*}.

* Received by the editors August 24, 1987; accepted for publication (in revised form) November 18,
1988.

f Institut fiir Mathematik, J. Kepler Universit/it Linz, A-4040 Linz, Austria.
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For given R, p, and e e ". we define the following linear functionals on the
space of real polynomials P:

(1.1) LR,p,e(p)-" ? (Wk) for peP,
=(u--l)t ,

(1.2) *,o.(p) pdx+L,o,(p) for pep

where we make the additional assumption that ek+l-" ek if wk and Wk/ are complex
conjugate and where that branch of is chosen (see Lemma 1) that is analytic on
C\E and satisfies

sgnx/H(y) sgn H (y a2k-1) for y e \El.
k=l

Here g(J denotes the jth derivative of g. Instead of l,p, we write p,.
In this paper we study polynomials Pn xn+’’" n e , which are orthogonal

with respect to R,p.... i.e., which satisfy

XltR,,,(XJpn =0 for j=0,..., t
where t _-> n 1. Let us note that r > n 1 is possible since the linear functional need
not be definite. It is not difficult to demonstrate (see Lemma 2) that for given R, p, e

there exists a unique sequence of so-called basic integers (in), i0:=0< il < i2 ’’"with in+ <= in + ’ + and a unique sequence of polynomials Pi. xi" +" , n e No, such
that

(1.3) R.,.(xJp,.) =0 for j =0,..., in+l--2,

(1.4) R.,.(X’"/-lp,.)O,
and the p.’s satisfy a recurrence relation of the type

(1.5) p,.(x)=d,.(x)p,._(x)-h,.p,_(x) for nN

where h Ek{0}, d

__
(as usual, denotes the set of polynomials of degree

at most n), po 1, and p_ 0. If the functional R.. can be represented in the form

(1.6) *R,..(P) [ P dR,.

where OR,o. is a (not necessarily positive) measure, we write also, instead of (1.3),
that p. +/-P./_ with respect to dbR,p,e respectively, with respect to R/ph, if LR,o,e --0,
i.e., if ek 1 for k 1,. , ,*. Obviously, (1.6) holds if all zeros of p are simple and
real. The orthogonality condition in this case becomes

f Mp,.(x)j [x-a[
sgn ( )) sgn ( )) dx

(1.7)
* (1--ek) a/ I-I,e(wkYa)+E in -2Xll_i,i,:\(Wk_a,)Wkp.(W,) 0 for j 0,
k=l fltu(Wk)

where K { 1, 2, , 2/}, I { 1, 3, 5, , 21-1 } and J K. If qR.o.. from (1.6) is a
positive measure, i.e., if R.o., is positive definite, then it follows from (1.6) and (1.3)
that the sequence of basic integers (in) satisfies in n for n e t, which implies that the
recurrence relation (1.5) becomes

(1.8) pn(x)=(X--an)pn--l(X)--hnpn--z(X) for net.
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For the case where (p,) satisfies a recurrence relation of the form (1.8) with A, 0 for
n N (i.e., for the case where i, n for n N), we define the so-called associated
polynomials (p)), of order j,jo byl

(1.9) p)(x) (x a,+j)p)l(X)-
with pJ)= 1 and p O.

To state our results we need the following additional notation. For p let

where it is understood that R.p.. operates on x. The index R,p,e is omitted if there
is no possibility of confusion. Note that pt,lj, n N, is, up to a constant, the associated
polynomial of degree n-1 of order 1 if R.p.. is definite and if p, denotes the
corresponding orthogonal polynomial with leading coefficient 1. Op denotes the exact
degree of p ff. Henceforth Pn, Pi., q,,, qi. denote polynomials of degree n,
respectively with leading coefficient 1.

For the single interval case, say [- 1, + 1 ], R.o. with e (1, 1, , 1) is ofthe type

(1.11) .(1-x)(l+x)/O(x dx where ,e{-1/2,1/2}.

Polynomials orthogonal with respect to such weight functions have been studied by
Bernstein [5] and Szeg5 [25, pp. 31-33] and are now known under those authors’
names. These polynomials also play an important role in Lp- and Chebyshev approxima-
tion on [-1, +1] (see [1, pp. 249-254] and [6]). Since R,,, can be considered a
generalization of (1.11), we call polynomials orthogonal with respect to g.o. Bern-
stein-Szeg/5 polynomials on several intervals. Another extension ofthe Bernstein-Szeg/5
orthogonal polynomials for a more general class of weight functions than that given
in (1.11) has been given by Nevai [26].

Polynomials orthogonal on two intervals with respect to R/h, their recursion
coefficients, and their close connection with polynomials deviating least from zero on
two intervals with respect to the maximum, respectively, the L1-, norm are investigated
by Peherstorfer in [21] and [22]. For the representation of L-minimal polynomials
on several intervals in terms of polynomials orthogonal with respect to R/h, see [20].
Using elliptic, respectively, Abelian, functions, polynomials orthogonal with respect
to particular weight functions of the type (1.7), without point measure, have been
studied by Achieser and Tomuk [2], [3 ], Nuttall and Singh 18, 5], 19, 4.3.1-4.3.4],
and Magnus [17, 4].

In [13] Geronimus (see also [11]) has shown that polynomials satisfying a three-
term recurrence relation with periodic recursion coefficients are orthogonal on a set
of several intervals with respect to a functional of the type /_/,,,. Polynomials
orthogonal to certain special weight functions of the type above have been given by
Ismail [15], very recently by Geronimo and Van Assche [12, Remark 7], and by
Peherstorfer [23]. In this paper we do not use elliptic, respectively, Abelian, functions,
and our approach, and our results as well, are different from those given in the
above-mentioned papers.

This paper is organized as follows. In 2 we list and discuss the main results of
the paper. Section 3 contains all the preliminary results. In the remaining sections the
listed results of 2 are proved.

Finally, we would like to mention that, based on the characterization of the
orthogonal polynomials in 2, we will show in a forthcoming paper how to obtain a
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nonlinear recurrence relation for the recursion coefficients of the polynomials
orthogonal with respect to R.o., and we will give a necessary and sufficient condition
for the periodicity of the recursion coefficients of orthogonal polynomials.

2. Statement of results. The first main result is Theorem 1.
THEOREM 1. Let nN be such that n>-_max{,+l-l,(,+l-r)/2}, put m=

n + r- l, and suppose that Pn P satisfies
(2.1) Rp Sq2 + p,

where q, P,. Furthermore, assume that p and q,, have no common zero and that at
the zeros Wk ofp

Rp(Wk) ekx/H(Wk)q,(Wk) for k: 1,.’., u*

where ek {-- 1, + 1 }, and set e (el,. ", e.). Then the following propositions hold"

(a) .o..(xp.)=O forj=O, n+ 1-2;

(2.2) (b) s...(xJq,)=Oforj=O, .,m+l-2;

(c) q,,,(z) [ (Rp,)(z)-(Rp,)(x) dx
z-x h(x)

and, if m> u-l,

(2.3)

(d)

(Sqm)(Z)--(Sqm)(X) dx
p.(z) |

z-x h(x)’
p.(z)-p.(x)R(x)

z-x h(x)
q,.(z)

p.(z)-p.(x)R(x)
z-x h(x)

dx if r<l,

dx+p,.(z) if r=l.

COROLLARY 1. Suppose that the assumptions of Theorem 1 are fulfilled and that
p _,g,, where Ix {0, , ,}. Furthermore, assume that Wkj, j 1, , ,* Ix*,
are the zeros of_, and put = ek,," ek._,.). Then

XItg,_,(xJp.)=O forj=O, n+l-2-Ix,

s.._,.(Xqm)=O forj=O,. .,m+l-2-Ix.

In particular, P,+/-P,+t-E-(qm+/-P,,+t-2-) with respect to R/h (S/h).
The next corollary shows how to construct a polynomial p for a given polynomial

p, such that p, is orthogonal with respect to o."
COROLLARY 2. Let p, P,. Put

q(z) I p.(z) -p.(x) dx
z- x h x

and p p2. Hq2..

Furthermore, suppose that p. and q,. have no common zero and that at the zeros Wk ofp
p.(Wk) ekx/H(Wk)q,.(Wk).

Then p P.+1_1 and

o.(xp.) 0 forj=O,...,n+l-2.

In view ofTheorem 1 the question arises: under which conditions does R.o..(P)
p(R/ph) dx for peP? We give the answer for the special case R 1 only, since the
conditions become rather complicated in the general case.
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THEOREM 2. Let n N, n >-max {l, ,} and suppose that p, P, satisfies
(2.1) p2n- Hq=p
where p, and qm, qm GlUm, have no common zero. pnlPn+l_2 with respect to 1/ph if and
only if all zeros of p, and qm are simple and are in int (El) and the zeros of p, and

I-Ik=2 (x-a2k-1)qm interlace strictly.
The next theorem shows that the sufficiency conditions of Theorem 1 are also

necessary. For Theorem 3 compare also [17, p. 161].
THEOREM 3. Let i, be a basic integer with respect to R.o.. and suppose that

in+l nt- in + r >- u+ 1+ 1. Furthermore, let V P,_ and u Pr-(l+,) be such that at the zeros

Wk ofp(X) I-I ,*= (X Wk)k

(2.4) V(J)(Wk) ek(R/vr--)(J)(Wk) forj=O, Uk-- 1,

R(z)/lv(z)/n(z u(z)-- O(z-1)
and put

Y up + v.

Then the following propositions hold"

R 2(a) p,. S( Yp,. + pp,.

where g(i.)e Pi.+t-.+, and g(.) has leading coefficient 2R,o..(Xi"+’-lp.).
(b) Y is of the form

y(z)=I R(z) R(x) dx (p(z)- p(x))z-x h(x) R,o....
Z--X

(c) If in+l >- ’ + 1, then

/s,pv, xJ ypin .3t [1]
P,Pi, ))-’0 forj=O,’’ ",in+,+r-l-2.

Notation. Let (in) be a sequence of basic integers with respect to R,o., and let
Y be defined as in Theorem 3. We put

(2.5) q.. yp,. +
where i,, in + r- 1. Note that, in view of Theorem 3 and Theorem 1, (ira) is a sequence
of basic integers with respect to s.o., for those m satisfying im+l -->-- V + 1 + r-- and
that the q’s satisfy the same recurrence relation as the pi,’s.

As an easy consequence of Theorem 3 we obtain that a polynomial orthogonal
with respect to R.o. satisfies a second-order differential equation. Using different
methods, this fact has been proved by several authors [4], [10], [14].

COROLLARY 3. Suppose that the assumptions of Theorem 3 are fulfilled and let
pi., p, g(.), Y be such as in Theorem 3. Put N Rpg(.) and Ix =0g(.). Assume that
Rpi. and q have no common zero.

(a) There is an u e P++,-1 such that Ruqi =-N’Rp./2+ N(Rp.)’.
(b) y Rp./x/ satisfies the differential equation 2G(x)y"+ G(x)y’ + 2y O, where

(3= -H(N/Ru).
Note that the differential equation of Corollary 3(b) is not of Sturm-Liouville

type, since G depends on p,,.
The next theorem and corollary show how to make those polynomials orthogonal

with respect to kIR,ov.t if we know all polynomials (P.)n and one polynomial
/ orthogonal with respect to R,o,, respectively, R.., where tr=

(11, ", v*, -t" 1, -- g’/t*)"
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THEOREM 4. Let i.) be the sequence of basic integers with respect to R,ov, and
suppose that i.+ " in + r >- v + + 1. Assume that

U-- HVk=(2.6) uj

where the polynomials u x +... and Vk xk+ have no common zero,
2j > IX, and at the zeros of ,

u,(ffK) gKx/H(ff)Vk(ffK) for 1,..., *,

K {- 1, + 1 }. Furthermore, put

(2.7) Pi.+, u,pi. + SVkqim and Qim+j u,qim + RVkp.,

(2.8) .+,_, u,pi. SVkqi. and im+l--, u,q RVkp.

where i., in + r- I. Then the following propositions hold"

(a) R.ov,..,(x;Pi.+S) =0 for A =0," ., i.+l+j-2

for A =0,’’’, ira+ +j-2

where o-=

(b) If 2in + tx + r> 2j+ v then P.+,_j, respectively, Q+_j, is a polynomial of
degree i, + Ix -j, respectively, im + Ix --j, with leading coefficient K, where K is the leading

coefficient ofp, that satisfies for i,+1 > v+j

XIt R.o.,.,,(xXP,i.+-j) 0 for A 0," |n+l + Ix --j 2,

respectively,

s,o..,a( Q+._,) 0 for , 0," Im+ "[- Ix -j 2

where & (81," ", $v* ,- 1 ," ",- E’/z*).
(c) The polynomials Pi.+,, P.+._,, Q+,, and Qm+.-, satisfy the same recurrence

relation with respect to i. as the polynomials p. for in+l + in + r -> v + + 1.
Since in general not fi,, but ;,g, g Pt-1, has a representation of the form (2.6),

let us state the following corollary.
COROLLARY 4. Suppose that the assumptions of Theorem 4 arefulfilled. In addition,

assume that i. n for n N]o and that fi ._g, where ._, g P and Og r. Then
for each n >- v + Ix -j there are z numbers Co,., , c,n, such that

/5.+, := cK.nPn++/g and Q,.+, := c..Q,.+,+/g
=0 =0

are polynomials of degree at most n +j, respectively, m +j, that satisfy

R,o_.,(Xa/3,+,)=0 for h=0,...,n+j-1,

tls,pvt_r,6(XhOm+j)=O for h=0,...,m+j-1

where (e, e., , e-(,_,).).
Concerning the single interval case [-1, +1], we obtain from Theorem 4 the

corollary below.
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COROLLARY 5. Let El:[-1 1] and let t(z)=I-I *K=l(Z-ZK) and (z)=
II* (z- z), where Izl < 1 respectively, Iz’l > 1 for K 1 ,*, respectively,
1, *, and put

E dz=
0

p.(x):lt.(ei)[" and (x):l?(e’)l’
x=cos, 6[0,]. enfornu+

o.. x dT_(+.>+ =0 for h =O, n-1
0

and for n > v +

Xx-l,o., dgn-l-(+.)+ =0 for I =0,’’’, n-2
=0

where (,. ., .+.) is such that

1 a the zeros ofp,
-1 a the zeros of,.

As usual the polynomials T, respectively, U, n e N, denote the Chebyshev polynomials
of degree n offirst, respectively, second, kind on [-1, + 1 ].

Remark In Corollary 5 we have excluded the case that the polynomials
respectively, ,, have zeros on the circumference I1 1, The reason is the follpwing
simple fact. If 2=o d, d e N, has the complex conjugate zeros e, e- then
2;=o L-+(2;=o u__+) and o(x)= 12;=o d e’*l have the common zero
=cos .

Let us note that, by a well-known result of Fejr and Riesz, each polynomial
that is positive on [-1, +1] can be represented uniquely in the form (x=cos ,
(0,

2 2

=1 =1

where c, N+, and lz < 1 for 1,... . Note that the second equality gives the
unique representation of 0 by a polynomial of degree at most with all its zeros
outside of the open unit disk.

Applying Corollary 5 to z- b, respectively, (z- b-b+ 1)(z- b+b+ 1), b
we get the ohogonality propeies of U- bU_, respectively, U-2bU_- U_,
given by Chihara [8], [7, p. 205] (see also [29]). Note that there is a misprint in [7,
form. (13.6)]. The denominator 1 + b-t in (13.6) should be replaced by 1 +b- .
From a different point of view, the single interval case has also been considered by
Geronimus [13] and by Dombrowski and Nevai [28].

Next let us determine that functional to which the associated polynomials are
ohogonal.

THEOREM 5. Let (P)o be orthogonal wich respect o .o, and suppose tha
the basic incegers i) satisfy i nfor each n eNo. Letj eN, 2j-2> + l- r, k =j+ r- l,
and

(.9



468 FRANZ PEHERSTORFER

where at the zeros zK.j-1, K 1, , l* 1, of g(j_l)

Rpj-1)( zK.j-1) ’SK.j-I(V/--qk-1)( Z.j-1), to=l,’’’, 1"-1.

Furthermore, we put for n e [o

.+t RP.+jPj-1 Sqn+kqk-)/Kjp,

D? q..kP- P.+qk-)/Kjp

where K I-[=, A, and A, q’,.p.(1).
(a) for n o
(b) Cu>"+t, n o, are polynomials of degree n + with leading coecient 1 that

satisfy the recurrence relation

(c) The polynomials ..+t,ru) respectively, p), n No, are orthogonal with respect to

g<j-l),-j-,, respectively, /_/,g<j_l),__,
Remark. If R,, is positive definite, then (if we use the facts that R/ph > 0 by

(1.2) and Rpgu_l)> 0 on int (El) by (2.9)), gu-) has exactly one zero in each interval
[a2, a2+l], K 1,"" ", l-1.

Finally, we describe the location ofthe zeros ofp. and qm ifo, can be represented
by a positive absolutely continuous measure.

THEOREM 6. Assume that 1/hp, > 0 on El and let p,(x) I-I k= (x--Wk)V(X), where
a= < w < w2 <" < wg < aEt_ and v is a polynomial that is positive on [al, aE/]. Let/91,
/92 be polynomials such that/91/92 --rig (X--Wk) and that pl respectively, /92 vanishesk=l

at the first, third, etc., respectively second, fourth, etc., zero of p in (a2;, a2;+l), j=
1,. , 1. Furthermore, suppose that n >- max { v + 1 l, (v + 1 r)/2} and that, m
n+r-l,

(2.10) p2,_ Hq2m pg(,)

where g<.) Pl_ and p. and q,. have no common zero. Then p._l_P._l (qm-l- ) with
respect to 1/ph (h/p) if and only if all zeros ofp. and q,. are in (a, a21), Pn and
have at most one zero in each interval (a2, a2+l), j 1,. , l-1, and the zeros of/91q,.

and P2P. interlace strictly.

3. Preliminary results. To prove our results we need several lemmas. Lemma 1
plays an important role.

LEMMA 1. Let with leading coefficient 1.
(a) For z C\E

t(x) dx
z-xh(x)

t(z)
,/I-I z

t(z)
/H(z)

if ot <= 1-1,

-1 if ot=l

where that branch of x/-- is chosen for which

Z
lim

x/H(z)
1.
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(b) Ify R\Et and Ot <- 1-1, then

t(x) dx t( t) t(y) sgn 1-[= (Y- a_)
y x h(x) x/H(y) H(y)

I dx {O frj=O,’",I-2,=(c) #
h(x) 1 forj 1-1.

Proof. (a) First let us consider the case Ot =< 1-1. Put
2/--1

C I_J (ak, ak+),
k=l

F(z)= t(z)/x/n(z)= t(z)/41n(z)l e’(argl4(z))/2 for zC\E,,

F/(x) lim F(z) and F-(x)= lim F(z)
C c-

where z- x on C +/- means that x C, Iz-xl 0 and Im z 0. From Theorem 4.1 and
p. 495 of [16] it follows that

1 fc F-(x)- F+(X)
dx for z C\[a, a2].F z "i z x

Since by simple calculation

lim argH(z)=+/-(2/-k)w forx(ak, ak+), k.{O,...,2/}
C

where ao :=-o and a2+ := oo, we obtain

t(x) [ e_i(arg H(z))/2 e_i(arg H(z))/2]lim liraU-(x)- F+(x)
4ln(x)l C- C

t(x) 2i(-1)t-k forx(a2k_l,a2k), k{1,...,l},
4In(x)] 0 for X . (a2k a2k+l), k {1,’" ", I- 1},

which proves (a) for Ot<=l-1 and zC\[al, a21]. Observing that both functions

t(x) dx
z-x h(x)

and t(z)/x/S(z)

are analytic on C\Et, it follows by the Identity Theorem that equality holds for z C\E.
If 0t we get, setting

Fa(z)=F(z)-l,

that

lim F z O.

If we proceed as above the assertion follows.
(b) We obtain by calculation that for y (a2k, a2k+), k {0,""", l},

lim t(z)/4H(z) (-1)’-t(y)/4iH(y)l,

which, in conjunction with (a), gives the assertion.
Part (c) follows immediately by series expansion of 1//H(z) at z =oo.
Next let us state some facts on polynomials orthogonal with respect to a linear

functional. The following two lemmas are essentially known (see [27] and [30]).
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LEMMA 2. Let K No and let c be a real linear functional on P with

c(xJ)=o forj=O,. .,K-1 and c(xK)#O.
Assume that there does not exist such that c(xJt) 0 for allj No. Then thefollowing
propositions hold"

(a) There exists a unique sequence ofso-called basic integers i,, n 1o, io := 0 < il <
i2 <" and a sequence ofpolynomials pi,,(x) x i" +" .such that for n

c(xJpi.)=O forj=O,. i,+1-2 and c(x’./,-lp,.)O.
(b) The polynomials p. satisfy a recurrence relation of the form

(3.1) p.+,(x) d.+,(x)pi.(x)-h,.+p.(x) for n

where d.+ i.+-., Ai.+ \{0} and po(x)= 1.
(c) The associated polynomials

p.(z)= c(pi" (Z)z_x-p. (x))
satisfy the same recurrence relation as the p.’s. Note that pl.l._l_i(.

(d) [1] [1] C(X,.+’-Pi.Pin+ Pi.+Pi. lpi.) for n .
Proof Part (a) follows from [27, Props. 1.14, 1.17].
(b) Representing p.+, in the form p.+ Y=o ei+p, where %+, i/_i, and using

the orthogonality property of the polynomials pi gives the assertion.
Part (c) follows with the help of (3.1).
(d) From (3.1) we get that for n

(3.2) Ai.+, c(xi"+’-’pi.)/c(xi"-lpi._,).
Since, again by the recurrence relation of p. and

[1] [1]
i.

nil] []

the assertion follows with the help of (3.2) by induction arguments.
LEMMA 3. Suppose that the assumptions ofLemma 2 are fulfilled, put cj c(M) for

j I%1o, and assume that Yj=o elz-+ convergesfor sufficiently large Izl. Furthermore, let
n >= K + 1, p.(z) z" +. I., q .--i(, and tz I. Then

q(z) .+.-2

E cz-++0(z-"+’)(3.3)
p,(z) j=o

if and only if
c(xJp,)=O forj=O, 1, tx-2,

q(z)= c(p"(z)z-x-p"(x))"
Proof Sufficiency. Since

c((p.(z) -p.(x))/ (z x))
p.(z) ( !, ) c(p./(z-x))

c
z x p.()

c Z x -zUp,(z) C
1-(x/z)

where in the last equality we have used the orthogonality property of p,, the sufficiency
part is proved.
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Necessity. Since Pn has leading coefficient 1 and c/ # 0, it follows that Oq
n- 1- K. If we set

pn(X) oXn + lXn-l-[ 4r" n
it follows immediately from (3.3) that

Y, C,+-kk O forj=O,...,/z-2,
k=O

which is obviously equivalent to

c(xJp,)=O forj=0,...,/x-2.

Since, by the sufficiency part,

(p.(z) -p.(x))c q(z) p,,(z)O(z-"+’)) O(z-),
Z--X

the lemma is proved.
LEMMA 4. There exists an M+ such that (1.1) holds for p:=1 z

{z C: ]z] > M}, where LR,o... operates on x.

Proof Since LR.o.,. is of the form := maxa=k=* Vk,

t.,..,(p)= Z .w(w),.
j=o k=l

we get, setting M1 maxj,k [/Z,k[ and M max { 1, maxk Wk[}, that for j > K

IL,,(#)I <=j(j 1)’’. (j MM,*( + 1).

Thus

( )1
LR,t,e(xJ)z-j-1 uniformly for [z[ > M.(3.4) LR,o,e z X j=

Using Leibniz’s formula we get by (1.1) that the series is equal to

"* 1 ek /k- 1

k=l (Uk--1)! ,=0 tX k
(Wk) Y’. zj+,

Taking into consideration the fact that for ]Wk/Z] < 1

( 1 )
( (xJ)()(Wk)
(w)= E

Z X j=o

the asseion is proved.
DEFXNITION 1 (see [24]). We say that a function f has n sign changes on a set

X if there are n + 1 points {xli 1,. ., n + 1, x < x+} in X so thatf(x)(-1) > 0(<0).
S(f X) denotes the number of sign changes on X.

LEMMA 5. Let mo, vLI(EI) and let p,=x"+.... If S(v, El)=m and
P, L,-l+:, j o, on E! with respect to v, then j m and p, has at least n +j m simple
zeros in int (El).

Proof First we demonstrate that j m. Assuming that j > m and choosing a
such that

sgn v >- 0 on El,
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we get

f p2,tv dx > O,

which is a contradiction to the orthogonality property of p,.
Now suppose that p, has k < n +j- m simple zeros in int (E). Then p, is of the

form

p.(x) =fk(x)g(x)

where fk, g e P and g _-> 0 on Et. Since

f XfkgVdx= f x’p,vdx=O for i=O,. .,n-l+j,

we get

fk_L[k_l+(n+j_k) on Et with respect to gv.

Using the fact that

S(gv, E)= S(v, E,)= m,

in view of the first part we obtain that

n+j-k<-_m,

which is a contradiction to the assumption.
Remark. Observing that

q,n,,,(pp)=fP-ffdx for p e ,
with the help of Lemma 5 we get that two basic integers i., in+i, /I o, with respect
to R.p,, satisfy i.+1 <----i. / v+ I. Moreover, taking into account (3.4), Lemmas 2 and
3 can be applied to R,p..

4. Proofs of Theorems I and 3 and Corollaries 1-3. In this section we omit, because
of abbreviation, the indices of p., Pi., q.,""", p, respectively.

Proof of Theorem 1. (c) from (2.1) we get that

q(z) 1
+O(z-("++-)),(4.1)

Rp(z) x/H(z)

which, in conjunction with Lemmas 3 and l(a), gives

(4.2) Rp-Ln+l-2-v with respect to 1/h

and that q is of the form (2.2).
From (4.1) it follows that

(Sq)(z) 4H(z) + O(z-"++’-)+-’),
p(z)

which implies, in view of n + rn + s, that

p(z) 1 Z_2m+s+(4.3)
Sq z x/H z-------7 O( -9)).
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Hence

(4.4) SqlPm+i_2_ with respect to l/h,

and p is of the form (2.3).
(a) Since each -Pn+l-2 can be represented in the form up+v, where u

P,/-2- and v-l, it follows from (4.2) and the fact that LR,o,(upp)=0 that

*,o,( tp) *,o,(vp) -pR-+ L,o,(vp).

Thus it remains to show that

dx * (ek--1){ vpR (k-1,pR -- k= Vk 1)! \pkx/-] Wk ).

Partial fraction expansion gives, for v P_I,

v(x) * As
p(X) k--"=a j=l (X- Wk)j

where

(4.5) Akj (kk) (k-j)

(Wk)/(Vk--j)!.

Since by Lemma l(a) and (2.2)

J" (Rp)(x) dx j" (Rp)(x)-(Rp)(z) dx f 1 dx
x z h(x)- x z h(x- +(Rp)(z) x-zh(x)

q(z)-
(Rp)(z)
4H(z)

we deduce that for z C\E

(Rp)(x) dx
(4.6) J! (x- z)s+l h(x)

q)(z)- - (z).

Taking into account the fact that p and q have no common zero, we obtain from
(2.1) that

q()(w) s " (w) forj=O,..., Vk--1.

Thus, with the help of (4.5), (4.6), and Leibniz’s formula, we get

dx * f (Rp)(x) dx
(Rp)(x) h(x): kE1 E Ak,

=1 (x- Wk)J h(x)

E Akd(ek -1) (Wk)/(j--1)!
k=lj=l

v* : uRp (vk-1)k=,Z (S-- I)\OV/--] (W),

which is the desired result.
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Part (b) can be demonstrated analogously.
Part (d) follows immediately from the relation

(Rp)(z)-(Rp)(x) dx
z-x h(x)

f R(z)-R(x) dx
z-x h(x)

part (c), and Lemma 1 (c).
Proof of Corollary 1. Let us consider the simplest case:

p=(x-we).

Observing that

+I p(z)-p(x) R(x)

pk(X)/(X-- Wk*) for k k*,
(x)

p.(x) for k k*,

we get, since by Leibniz’s formula for /2k* > 1

that for f P

(Vk*--2)!
(1--ek.) ((X--Wk*)f )("*-l)(wk.)=Vk* 1)! Ok*

,p, X Wk*)f) R,,(f).

z-x h(x)

Since, by Theorem 1,

XttR,p,((X--Wk.)tp)=O for all tGPn+l-3
the assertion is proved for the simplest case. The corollary now follows by induction
arguments.

Proof of Corollary 2. Since

it follows that

q(z)_ 1 1 f p(x) dx

p(z) x/H(z) p(z) J z-x h(x)

1
%/H(z---]- O(Z-(n+l))

p2- Hq2-- o(zn+l-1),
which, in view of Theorem 1, proves the assertion.

Proof of Theorem 3. (a) Since Y satisfies (2.4) and the relation

R(z)//H(z)- Y(z) O(z-),
p()

we deduce that

where

R(z)/v/H(z)- Y(z) "* " AkG(z) :=
p(z)

, Z (z w)j----1

(4.7) Vk --j) !Ak, [(R/x/-- Y)/Pkl("k-2)(Wk)
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is analytic on C\EI and of order O(z-1). Using Theorem 4.1 and p. 495 of [16], we
get that

(4.8) G(z)= l 1 R(x)
dx.

z-xp(x)h(x)

Since, by Lemma 4 for sufficiently large Izl,

( 1 ) * jVl(R/pkX/--)(’k--J)(wk)L Z (1-
z x k=, (Vk--j)!(Z-- Wk)

we obtain from (4.7) and (4.8) that (Iz] sufficiently large)

R(z)//H(z)-Y(z)_I 1 R(x) ( 1 )p(z) z-x p(x)h(x) dx+Lo z x

R,o.(Z l x)-
Hence, by the orthogonality property of p,

(4.9)
ptl(z) R(z)/4H(z) Y(z)
p(z) p(z) - O(z-’o+o+)from which it follows that

(4.10) 4H(z)( Vp + ppt’)(z)= (p)(z) + O(z’+-’o+,).
Squaring this relation, we obtain that for in+l + i. + r >- v + + 1

S(z)( Yp + ppt’)2(z) RpZ( z) + o(zl+v+in-in+l).
Since Y satisfies (2.4), it follows that

)2Rp2 S( Yp + ppt’3 pg

where g 3)in+l_in+l.
Observing that the O( part of (4.9) is of the form

O(z-(’.+’.+,)) (--R.o,(X’.+,-’p,.))Z-<’.+’.+) + 0(Z-’.+’.+,+1)),
we find that g has the given leading coefficient.

Part (c) follows immediately from Theorem 1 and Corollary 1.
(b) In view of Lemma 2 and the remark at the end of 3, we can choose an n N

such that i.+1-> v+ 1. Then on the one hand, setting R,o,=, we get

(P(z)P(Z)-P(x)p(x)) P(Z)(P(z)-P(X)) +(p(z)-p(x)z-x z-x
p(x)

=p(z)p[1](z)
and on the other hand,

(p(z)p(z)-p(x)p(X))z -x p(z)(p(z)-p(X))z -x +(p(z.-p(x)._ -x p(x))
=p(z)(P(z)-P(X))+; p(z)-p(x)R(x)

z x z x h(x)
dx

=p(z)[(p(z)-p(x),) I R(z)-R(x) dx ]z-x z-x

(Rp)(z)-(Rp)(x) dx
+

z-x h(x)’
which, with the help of (a) and Theorem 1(c), gives the assertion.
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Proof of Corollary 3. (a) Since Rp and q have no common zero and since

Rp)E nqE Rpg,

it follows that N Rpg > 0 on int (Et). Differentiating the relation

(4.11) (RpN-/2)2- H(qN-/2)2= 1,

we get that at the zeros of q

(4.12) (RpN-/2)’= N-a/E[-N’Rp/2+(Rp)’N]=O.

Thus there is a [r+l+v+g-1 such that

aq= -N’Rp/2+(Rp)’N,

which proves (a).
(b) From (4.11), (4.12), and (a) it follows that

y2 + G(x)(y,)2 1.

Differentiating this relation, we have part (b).

5. Proofs of Theorems 4 and 5 and Corollaries 4 and 5. The following lemma plays
a crucial role in what follows.

LEMMA 6. Let

(5.1) R=AB, S=CD and =AD, g=CB

where A, B, C, D P, RS H and B and D have no common zero. Furthermore,
assume that the polynomials e,, f,, g), hk have the following properties"

(5.2) Re2.-Sf2m=p

where 2n + r > v, e. and fm have no common zero, and at the zeros w ofp
(5.3) Re,(wK) ek4H(w)fm(W) for 1,’.’, v*,

(5.4) g]-gh=
where 2j + > , g and hk have no common zero, and at the zeros ff of
(5.5) g(ff) 4H(ff)hk(ff) for 1,..., *.
en the following propositions hoM"

(a) BD(Ae,g Cfhk)2- AC(Dfmg Be,hk)2 p,, where at the zeros w ofp

BD(Ae,g Cfhk)(W,) e4n(wk)(Dfmg Be,hk)(W),

and at the zeros ff of
BD(Ae,g Cfhk)( ff) ,H(ff,)(Dfg Be,hk)( ff,).

(b) If 2n + + (r- ) > 2j + , then Ae,g Cfmhk, respectively, Dfg Be,hk, is of
degree n-+-ODz respectively, m-j+ g-OA, and both polynomials have leading
coecient K, where K is the leading coecient of.

Proo (a) Simple calculation gives

BD(ae,g Cfhk)2-AC(Dfg Be,hk)2 (g]- h)(Re Sf) p,.
Since, in view of (5.1) and (5.3) at the zeros w of p,

BDAe,g efDg and BDCfmhk ee,Bhk,
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and in view of (5.1) and (5.5),

BDAe,,gj gz,,4’-hkBe,, and BDCfmhk
part (a) follows.

(b) From (5.2), respectively, (5.4), we derive that for 2n + r> v

(5.6) (f,,,-)(z) (Re,,)(z)-(K/2)z-(’-’) + O(z-("-+l)),
respectively, that for 2j + >/z
(5.7) (hkV"-)(z) (gj)(z)--(ff;/2)z-(J-u)+ O(z-(J-’+l)),
where K, respectively, /, denotes the leading coefficient of p., respectively,

Multiplying (5.6) and (5.7) and observing that

H ABCD, R A2BD, n +j + OA m + k + OC, rn +j +OD n + k + OB,

we get

respectively,

Ae,g Cfmhk (I/2)gn+’+A-(j+) + lower terms in z,

Dfmgj Be,hk (K/2)z"+’+-(+) + lower terms in z,

which gives part (b).
Proof of Theorem 4. (a) By Theorem 3 we have for i,+1 + i, + r > v +

R2_S 2
Pi,, qi.. P,g(i.)

where Og(.)= + i,- i,,+, and at the zeros wK of p

Rpi.(wK) e,,x/H(w,,)qm(W,,) for K 1,’’’, v*.

From Lemma 6 we obtain that
2 2RPi.+ SQi,. +j

and that

RP.+j(w) eKx/n(Wk)Qim+j(w) and RP.+()
for K 1,. ., v* respectively, r 1,. /z*

Applying Theorem 1 and Corollary 1 gives part (a). Part (b) can be proved
analogously. Part (c) follows immediately from the definition of P.+, , and Lemma
2(c).

Proof of Corollary 4. Let (l) be the sequence of basic integers with respect to

R,o.-. and let i* o be such that l. =< n +j _-< l.+ 1. Then gp,. can be represented
in the form

"r+li. "r+ li.
gPl,. E cK.,P E c.,P

K=0 =/i*+1--1

where the last equality follows from Theorem 4(a) and the fact that gpli.l[li.+--2
with respect to R,o.,._.g,. Hence the corollary is proved for P.+.

Concerning t,.+, we observe that in view of (2.6) and (2.7)

=0 =0 =0

Since, by (2.6), uj does not vanish at the zeros of g, we obtain that Q+ e Pm+. The
assertion now follows from Theorem 4(a).
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Proof of Corollary 5. First let us demonstrate that the assertion holds for/x 0.
Since t has all zeros in the open unit disk it follows that

(5.8) (Re {t(e’)})z +sin2 q(Im {t(ei)}/sin q)2= p(cos q)> 0,

from which we get by the orthogonality property (Theorem 1) that the polynomials
Re {t(ei)} and Im {t(ei)}/sin p, x =cos q, have v, respectively, v- 1, simple zeros
in (-1, + 1) that, because of (5.8), separate each other. Using the well-known fact that
T.(x) Re ei", respectively, U._l(x) Im ei"/sin p, n c, is orthogonal with respect
to l/x/1 -x2, respectively, q’l- x2, on [-1, +1] we obtain from Theorem 4(a) combined
with Theorem 2 that

Re {t(ei)} Re ei" +(x2-1)
Im {t(ei)} Im ei"

sin sin
=Re{ei"t(ei)},

respectively,

Im ein Im {tv(ei)} Im {ei"t(ei)}
Re {t(ei)}+ Re ein

sin sin p sin p

is orthogonal with respect to 0.,(1,1,...,1), respectively, x2_1,p.,(1,1,...,1). Hence the
assertion is proved for/x 0.

Using the relations

(Im ?(e-i))
2

(Re { ’. (e-i)})2 + sin2 q .(cos q)
sin q

and, setting K =/z + u,

Re { ’,(e-i)} Re {e’<"-qt(e’)}+sin2 Im { g(e-i’)} Im {ei(n-)t(ei)}
sin p sin p

Re {ei(’-)t(ei),,(ei)},
we get the assertion from the first part of the proof and Theorem 4(b).

Proof of Theorem 5. (a) Using (2.5) and relation (10) of [9], we get that
[1] n, [1]

"nqn+kPj-1--Pn+jqk-1 P(Pn+jl"j-1--Pj-lr +j

which proves (a).
(b), (c). In view of Lemma 6 and (2.9) we have for j e No

(5.9) (Rpn+jPj-1- Sqn+kqk-1)2 H(qn+kPj-1--Pn+jqk-1)2 2
Pvg(j-1)g(n+j),

with

Rp,+jpj-1 Sq,+qk-1)(z,j-1)
(5.10)

--t,,j-l(X/-(qn+kPj-l--P.+qk-1))(Z,j-1) for 1,..., l*- 1.

From (5.9) and (a) we obtain that zrJ,,+i n + I. Since, in view of (2.5), (P-+),o and
(q,+k)-o satisfy the recurrence relation

Yn (X Ogn+j)Yn_ hn+jYn_2,

part (b) follows. Part (c) follows immediately from (5.9), (5.10), and Theorem 1.
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6. Proofs of Theorems 2 and 6. In the following we put

Proof of Theorem 2. Set

P P,,, q qm, P

U(X) I-I (X- a2j-1).
j=2

Necessity. From Theorem 1 and Lemma 5 it follows that all zeros of p and q are
simple and lie in int (El). Now let

X < X2 X

denote the zeros of p. Since, by (2.1’), p > 0 on int (El), we get that u/ph > 0 on int (El).
Taking into account that, in view of Theorem 1, p-l-P,_l with respect to u/ph, we
obtain by Gaussian quadrature formula that

-odx= 1t(x) for all e P2,_,
j=l

where I e +. Hence

I "xi(6.1) tu--= O(x)t(x) for all
j=l

Since, by Theorem l(c) and Corollary 1,

u(z)q(z)
z-x h(x)’

we get with the help of (6.1) that at a zero xj. of p

u x. q x. X.t, x. p x.
which implies that uq and p have strictly interlacing zeros. Thus the necessity part is
proved.

Sufficiency. Since all zeros of p and q are simple and are in int (El), and since
the zeros of p and uq interlace strictly, we get that p and (x-al)uq have the same
number of sign changes in each interval [azj-1, azj), j 1,. ., l, which implies that

sgn p(x) sgn I-I (x azj-1) sgn q(x) for x e R\EI.
j=l

Hence we obtain from (2.1) and Lemma l(b) that at the real zeros wk of p

p(Wk) 4’H(Wk)q(Wk).

Thus it remains to show that at the complex zeros w of p

(6.2) p(w) 4H(w)q(w).
Since on the one hand, by partial fraction expansion,

(uq)(z) A A I+
p(z) j=l Z--Xj’

and on the other hand, by Lemma l(a),

u(z) f u(x) clx
x/-h-) J z-xh(x)’
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we obtain with the help of the relations

Im{1/(z-xj)}0 forImz0,

and that

u/h > 0 on int (El)

sgn Im {(uq)(z)/p(z)} sgn Im {u(z)/x/H(z)} for z c C\R,

which implies that (6.2) holds at the zeros of p.

Proof of Theorem 6. Since 1/hp > 0 on E it follows that pl has in each interval
(a2j, a2s+1), j 1,..., 1-1, exactly one zero more than p2. Hence

Opl=Op2+l-1 and O(plq)=O(p2p)-l.

Furthermore, we deduce that the zeros of pl and I-I[_12 (x- a2s)p2 interlace strictly,
which gives, in conjunction with the relation

1--1

-sgn;I]__2 (X- a2j) for X E [al, a21]\El,
(6.3) sgn x/H(x)

i-1

sgn [I (x-a2;) forxER\[al, aEl],
j=2

that at the zeros Wk,1 of tOl

(6.4) sgn x/H(Wk,1) sgn pE(Wk,1)= --sgn P(Wk,1)

and at the zeros Wk,2 of/92

(6.5) sgn Pl(Wk,2)= sgn x/H(wk,2) sgn p[(wk,2).

Necessity. Since 1/ph > 0 it is well known (see, e.g., [7]), that the zeros of p and
pill interlace strictly. Hence we get from Theorem 3(b) that at the zeros Xk of p

sgn q(Xk) --sgn p(Xk) sgn ptll(Xk) --sgn p(Xk) sgn p’(Xk),

which implies immediately that

sgn (plq)(Xk)= sgn (PEP)’(Xk).

Since, by Theorem 1,

p(Wk)=/H(Wk)q(Wk) fork=l,’..,

we obtain from (6.5) that at the zeros Wk,2 of P2

sgn (Plq)(Wk,2)= sgn (P2P)’(Wk,2),

which proves the necessity part.
Sufficiency. From the interlacing property of plq and PEP it follows that at the

zeros Wk,2 of P2

sgn (Plq)(Wk,2) sgn P’2(Wk,2) sgn p(Wk,a)

and at the zeros Wk,1 of p

sgn (P2p)(Wk,1)---sgn p(Wk,) sgn q(Wk,1),

which implies, by (6.4) and (6.5), that

(6.6) sgnp(wk)=sgnx/H(Wk)sgn q(Wk) for k= 1,...,.
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Using the fact that

sgn q(x)=sgnx/H(x) sgnp(x) forxR\[al, a21],
we find with the help of (2.10) that at all real zeros w of p

(6.7) p(w) x/H(w)q(w).
Since p and q have at most one zero in each interval (a.j, a2j+l), j 1,. , l- 1, and
since the zeros of plq and PEP are strictly interlacing, we can choose exactly one zero

Wkj.1 of Pl from each interval (a2, a2+), j-1,..., l-1, such that the zeros of
and p interlace strictly, where

!--1

1(X) H (X- Wkj,1 ).
j=l

If we proceed as in the proof of the sufficiency part of Theorem 2, it follows that (6.7)
holds also at the complex conjugate zeros of p, which proves the theorem.
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ZEROS OF TRANSFORMED POLYNOMIALS*

A. ISERLESf AND S. P. NORSETT"

Abstract. Transformations that map polynomials with zeros in a certain interval into polynomials with
zeros in another interval are considered here. By using the theory of bi-orthogonal polynomials, a general
technique for the construction of such transformations is developed. Finally, a list of 16 different transforma-
tions formed by using the authors’ technique is presented.

Transformations of this type have already been applied in numerical analysis, approximation theory,
and real analysis.

Key words, orthogonal polynomials, hypergeometric functions, bi-orthogonal polynomials, q-hyper-
geometric functions, zeros of polynomials
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1. Introduction. Let D and E be two real intervals that need not be distinct. The
theme of this paper is transformations that map polynomials whose zeros all lie in D
into polynomials with all zeros in E.

Many nontrivial instances of such transformations are known ([Marden, 1966],
[P61ya and Szeg5, 1976]). Probably the most important are due to P61ya and Schur
[1914]: Let the transformation T be defined as

(1.1) T pkxk Ol.kPkXk,
=0 =0

where {ak}k:o is a given real sequence (called a multiplier sequence). Then, given that
all the zeros of p(x)= ,pkXk are real, all the zeros of Tp will also be always real if
and only if the function f(z)=k=o (1/k!)akZ

k is of the form

(1.2) f() c e 1-[ 1+

where n is a nonnegative integer, N is either a nonnegative integer or infinity, c ,
d ->_ 0, z > 0 for all 1 -<- _<- N and1 z-1 <. See also [Hille, 1962], [P61ya and SzegS,
1976], as well as the extension of these transformations for complex D E by Craven
and Csordas [1983].

In the present paper we introduce a mechanism for generation of numerous
transformations of similar type. It is based on the theory of bi-orthogonal polynomials
that has been recently developed by the authors [Iserles and NOrsett, 1988]. This
mechanism, as well as relevant elements of the theory of bi-orthogonal polynomials,
is described in 2. By using our mechanism and further algebraic manipulation, we
introduce sixteen transformations in 3-6. These transformations are listed below,
with names ("Jacobi," "Laguerre," etc.) given for identification purposes. The reason
for these names will become clear in the sequel. We use throughout the standard
notation for Pochhammer symbols (a)m"

(a)o := 1, a

(a)m:=(a)m-l(a+m--1), m>=l,
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and for Gauss-Heine symbols (a; p),

(a; p)o := 1, a, p g,
(a; P)m :-- (a; P)m-l(1 apm-1), m >= 1.

Zero-mapping transformations.
1. Jacobi transformation.

T E rk(X)k E (--1)k(--a--m)xk(1--X)’-krk,
k=0 k=0

a>l, D=(0, oo), E=(0,1).
2. Laguerre transformation.

T re(X)k 2 rexe, D E (0, oo).
=0 k=0

3. Meixner transformation.

A>O, T Z qkxk , (--1)k(--X)k(A+X)m-kAkqk, D=(O,A), E=(O, oo).
k=0 k=0

4. Charlier transformation.

T qkxk 2 (--1)k(--X)kqk, D E (0, ).
=0 k=0

5. Krawtchouk transformation.

rl >- m, T . qexe E (-x)e(x- rl)m-kqe, D E (0, 0o).
k=0 k=0

6. Wall transformation.

T se(x; P)e E (Pro-ca; p)e(ax; p)m_eSeXe,
=0 k=0

p(0,1), a(-1,1), D=E=(0,1).

7. Llaw tranformation.

p>l, T Z (--X;p)kSk Z Skxk, D=(O, oo), E=(1, oo).
k =0 k=0

8. q-Krawtchouk transformation.

T Z (-xo N’, p)kSk Sk(p "-N-k’, O)k(O-rVX; p)m-kXk,
k=0 =0

N>-m, p(O, 1), D=(O,c), E=(O, 1).
9. Wigert transformation.

-(3/2)k k,T E tkXk(--OZp-m+lx, p)m-kP --. tex
k =0 k=0

a<l, aO, pe(O, 1), D=E=(O, oo).
10. F1 transformation.

A >0, T E rk(X)k (--1)k(--X)kAm-krk, D=E =(0,).
k=0 =0



ZEROS OF TRANSFORMED POLYNOMIALS 485

11. [’2 transformation.

a,b>0, T Z Uk(X--m)k
(--1)k

k=O k=O(a)k(b)k
u.,_(-x), D E (0, ).

12. [’3 transformation.

T r(x) (-1)(-m-+l)(-x)(x-N),_r,
=0 k=0

a>0, N, N>=m, D=E=(0, o).

13. F4 transformation.

T , rk(X)k Z (--1)k(fl--m)k(--X)k(X+a)m-krk,
k=O k=O

a, fl>O, fl:, D=(0,/3), E=(0,).

14. q F1 transformation.

a, pe(O, 1), T Wk(aXP k" p) k (a, )k=0 k=O "p
D=E =(0, 1).

15. q F2 transformation.

( X, N-mT E (--1)kpkN-k-’)k(P -N’, P)k(a’-p)k, P
k=O O

p v, E v, II (x-p),
m-k k=0 j=O

O1)p-N+I p(O, 1), m<N, N3, D=E=(O, 1)

16. q [’3 transformation.

T (x; P)k(Xp ’+k+l", P)m-kVk E p-(N+l+a)k(p-N+k., P)m-kt)k I-[ (x--PJ),
=o k=o j=o

a>0, p(0,1), m<-N, N, D=E=(0,1).

An alternative technique for generating transformations with predictable behaviour
of zeros can be developed from the work of A1-Salam and Ismail 1976] on convolution-
orthogonal polynomials: Let ff be a Laplace transform of a nonnegative function and
assume that it is analytic (this assumption can be somewhat relaxed) and with nonzero
derivatives at the origin. Then the transformation

(1.3) T qkX
k qk

,=o =o q,"(o) (-x),,

maps polynomials with real zeros into polynomials with real zeros. Full details of the
proof and examples are reported in [Iserles, N0rsett, and Satt, 1988]. Note that a
straightforward application of (1.3) generalises our Charlier transformation.

Some applications of results from the present paper feature in [Iserles and Saff,
1987]. Further mechanisms for generation of "zero-mapping" transformations are
described in [Iserles and Saff, 1989] and [Iserles, N0rsett, and Saff, 1988].

2. A mechanism for generation of transformations. We commence this section by
reviewing pertinent elements of the theory of bi-orthogonal polynomials from [Iserles
and Nrsett, 1988].
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Let rm[X] denote the set of all ruth degree polynomials. Given a one-parametric
family of distributions q(x,/z), x E,/z D, where D and E are intervals, we define
the mth bi-orthogonal polynomial pro(X; /Xl, /X2, ",/gin) as a monic member of rm[X]
that satisfies the conditions

p(x; tz,’", tz,,,) do(x, [.ILl)"-" O,
E

l- 1,2,. ., m.

Here ].gl, /L6 are distinct points in D.
We denote the moments of p by Ik, k >-0:

and define the function D,(/z,...,/z,) by Do---1:

(2.1)

io( .
Dm(/z,"""

II(/Zl),

Ii(/x,),

m-->0, /xl, Lm Do

The mth generator of q is defined as

(2.2) H. (/x; ].61,"""
E

THEOREM 1. (a) Bi-orthogonal polynomials exist and are unique for all m >- 1 and
all distinct tZl, ", Ix,, D if and only if Dm(txl, ", tXm) # O for all m >- 1 and distinct

(b) If the last condition is satisfied then

det(2.3) p,(x; tx, m)
Dm(/z,’’’ ,/Xm)

Hm(/; P,1,’’" ,/gin)
Dm+l(/-61, ", m,
Dm(l,’’-,m)

Let q be of the -form dq(x, )= to(x, Iz) da(x), where a is a distribution in x,
independent of/x. We say that q has the interpolation property if

to(x1’ t(’61)’ ’ to(Xl’ /L/’m) /F_.,,, (,,," " xm := det 0

to(Xm, ]-61), "’’, to(Xm,

for all m _-> 1, distinct Xl, X E and distinct/zl, ,/xm D.
THEOREM 2. If possesses the interpolation property then each Pro(’; tXl," ", tZm)

has m distinct zeros in the interval E.
The stage is now set for the introduction of our "zero-mapping" transformations.

Let us assume that the conditions of Theorem 1 hold, that the pin’S are known explicitly
and that cp possesses the interpolation property.
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For every distinct Ix1,"" ", Ix, D we have a unique P,(’; Ix1,"" ",/x,). This
defines a mapping from distinct m-tuples in D" into ruth-degree monic polynomials.
Let q,(x):= I-Ik=l (x- Ixk). Then, by the same token, we have a mapping

(2.4) Tqm =Pm(" ixl, ixm)

of monic mth-degree polynomials into themselves, with the property that each poly-
nomial with distinct zeros in D is mapped into a polynomial with distinct zeros in E.

Moreover, let us assume that p,(. Ixl, ",Ix,,) remain well defined even if some
IXk’S coalesce and that p, does not vanish at the endpoints of E. Then Theorem 3
follows at once.

THEOREM 3. The mapping T maps polynomials with all zeros in D into polynomials
with all zeros in E. Moreover, polynomials with distinct zeros are mapped into polynomials
with distinct zeros.

Thus, our method of constructing transformations consists of the following set
stages:

(a) Choose d(x, Ix) to(x, Ix) dry(x). Verify the existence and uniqueness condi-
tions of Theorem 1 (i.e., regularity in the terminology of Iserles and NCrsett [1988]).

(b) Verify the satisfaction of the interpolation property.
(c) Derive bi-orthogonal polynomials pm(X; IXl,’’’, Ixm) in an explicit form.
(d) Verify that the polynomials remain well defined for all Ixl,’", Ix, D,

regardless of distinctness, and that they do not vanish at the endpoints of E.
In practice, an extra stage is sometimes useful"
(e) Bring the transformation T, by standard algebraic manipulation, into a "nicer"

form.
Of the first four stages, typically only (b) and (c) present interesting problems

(nothing general can be said, of course, about stage (e)). To verify the interpolation
property we exploit its connection with total positivity [Iserles and NCrsett, 1988] and
standard results on totally positive systems, cf. [Karlin and Studden, 1966]. A formula
for an explicit form of the bi-orthogonal polynomials that correspond to a fairly general
set of distributions will be presented later in this section. First, however, we provide
an example that elucidates some familiar results.

Let be any distribution in D=(0, oo) and set (x, Ix):= (x/ix), x E =(0, oo),
Ix D. Then [Iserles and NCrsett, 1988] is regular and

qk
p,,(x; z,, m) Cm Z X,

k=O Ck

where Zk=O qkxk--I-Ik=l (X--ixk) and Ck := o xk dd/(x), k>=O, are the moments of ft.
Thus (dividing by Cm > 0),

T qkXk qk
Xk,

=0 k=O Ck

a P61ya-Schur transformation with the multiplier sequence {1/ k}k--O
Let (x) =-e-x. Then dp(x, Ix) (1/ix) exp (-x/ix) dx; hence to(x, Ix)

exp (-x/Ix) and the interpolation property follows [Karlin and Studden, 1966]. This
produces the transformation

(2.5) T 2 qkxk qkx
k=0 k=0

that maps positive zeros into positive zeros (note that the P61ya-Schur result refers to
real zeros being mapped into real zeros, but it is trivial that if the zeros of q(x) are,
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in addition, positive, then so are the zeros of Tq, where T has been defined in (1.1)
and {fig} satisfies the P61ya-Schur conditions).

Another choice of is the Stieltjes-Wigert distribution [Chihara, 1978]:

O" --O’2(Iog (X/P’))2 dx,d x, la,
la, v/-

e

where tr>0. Let a=exp (-1/(4o’2)) (0, 1). Then

-(k+1)2 k 0oCk Ol

The interpolation property is valid, since

O" --tr2((log x)2+(log/x)2)X2tr2 log/xto(x,/z)=’ e

and 3 (x,/z) := x2tr2 log p, satisfies the interpolation property.
Standard manipulation produces the transformation

{m k k,(2.6) T , qkxk a qkX
k=0 =0

that maps positive zeros into positive zeros.
Finally, let q(x)=0 ro(1-r)"dr, 0_-<x_-<l; b(x)=-n!/(fl+l),,+l, l<-_x, where

/3 >-1 and n is a nonnegative integer. It is proved in [Iserles and N0rsett, 1988] that,
although the interpolation property is invalid, the bi-orthogonal polynomial
p,(’;/Zl,"" ",/z,) has m distinct zeros in (0, ). Hence our analysis holds and the
transformation

(2.7) {m }T Z qkxk (fl +n+2)kqkxk
k=O k=O (/3+l)k

maps positive zeros into positive zeros. Note that

(fl + n + 2)k
k>-_O,ak= (/3+l)k

implies that

1 ,8+n+2;f(z):= FI[ 8+1;
k=0 ", Ol’kZk Z]

(see [Rainville, 1967] or [Slater, 1966] for exposition of hypergeometric functions).
Thus by the first Kummer identity

f(z) e -.-1;F[ ,+,; -z]
(n+l)!

(1 +fl)n+l
n+l\mZ) e,

where L is a Laguerre polynomial [Szeg/5, 1975]. Thus, f is of the form (1.2) and
{ak} is a multiplier sequence.

Mappings (2.5) and (2.6) are well known [P61ya and Schur, 1914], [P61ya and
Szeg/5, 1976],whereas the mapping (2.7) can be equivalently derived by techniques
based on the Gauss-Lucas theorem [Marden, 1966].
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We now present an explicit form of bi-orthogonal polynomials for a general family
of distributions.

Let p= {Pk}k=o be any family of monic polynomials, such that Pk "rrk(X), 0<= k.
We set

Ik(tZ, p)= _IF pk(X) dq(x, I- ), k >= O, I- D.

It is easy to see that if the Ik(/Z)’S are replaced by Ik(/X, p)’S in the definition of
Dm(tzl,’’’, I-,,,) the determinant remains intact--this follows from the monicity of
the pk’S and elementary operations on the columns of the underlying matrix. Likewise,
the Ik(/Z)’S and xl’s can be replaced by Ik(/-q p)’S and pl(x)’s in (2.3). This extra
generality will be useful in the next sections, mainly the choice pk(X)= (--1)k(--X)k,
k_>--0.

Given a real interval D, we consider two infinite families of linear functions
gk(/) ak + flktZ, hk(tX)= ")’k + ktX, 0<= k, such that hk(tX) O, k >=0, tx D, and akS--
flk’Y O, 0<= k <= I. We focus our attention on distributions with generalized moment
functions of the form

k, gj(/Z) k > 1

Io(/Z, 9)--- 1.

LEMMA 4. If such a distribution exists then it is regular.
Proof Let

k-1 m-2

Z(km)(P") := [I gj() [I hj(ld’), k 0," ", m 1.
j=0 j=k

k-1 m-2Note that Zk") 7rj_(/x), with leading coefficient I-Ij=o [3s Hj=k j" It follows that

m--2 k>O,I (a, a) II =o
1

Dm tZ tZm [im 2
,=, IIs=o Vm [. [.1.,m m_-->l,

where

Vm(/-1, ", /-/’m) := det
Zm)![l) "’’, Z(mm_)l, (1/, 1) /
gm)(Idm),

To prove regularity, it is sufficient to demonstrate that Vm(txl,’’’, tx,,,) 0 for all
m >- 1 and distinct/Zl, ,/z,, D. Note that the matrix of V,, can be brought into a
Vandermonde form by elementary column operations; thus

(2.8) Vm(j[./’l,""", [/m)"-" C H (/d,l-
l<__k<l<--m

C independent of/./.1, ,/z,,--a process that breaks down if the matrix is singular,
but then, of course, (2.8) is true with C =0.
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We will now derive explicitly the constant C. Since V,(]./,1, , ]dm-1, 1-)E
7r,-l[/x] and V,(/xl, .,/z,_,/x) O, 1,. ., m- 1, it follows that

m--1

Vm i Idl’m Cm lul, jr-I’m--I) H (J-l’m-
1=1

Moreover, by introspection,

z(om)(jt.(,1), zm)(j,l) o,

(2.9) C(1," ",-,) =det
%zm)(m-1), zm)(m-1), ’’’, ZI(m-1

m)) "’’) 1
wh>:=H2 HZ’ i, h lading omint of >.

We assume first that k0, k=0,’’’, m-2, multiply each kth column by
flk-/k- and subtract it from the (k + 1)st column. Since

m) k-I Ok-l(m) 0,
k-I

fl,-1 k-2 m-2’-l’-l--’-lY’-’ H g(,) H h(,),zm)(l -- Zk_l(/)(m)
-1 j=O

l= I, , m-l, k= I, , m-l;

zeros are inseed into the bottom row, save for the first element, and, expanding in
that row,

c(1,..., _,) (-1)-1 H
=O

det t O(,j’l), "’’)

o(-,), .’.,

k-1 m-2

k(/Z 1:= l-[ g(/Z) H h(/z).
j=0 j=k+l

Let hl)(/z) := hj+l(lJ,), l) j --> 0 and let V(m/>(b[,1, ., /-/’m) be the determinant which
is obtained by replacing hj by h)1 in the definition of V,, leaving the gjs intact. Hence
V)-- V, and

m-2 0lktk k’kCm(il) Jr’i’m--I)=== (--1)m-1 l-I v(ml)l(j[/’l, /-I’m--l)"
k =0 tk

It follows that V obeys the recurrence

m--2 Olktk kYk m-1

v0nO)(jt.gl) ") d,m) (--1)m--1 H H (m --/.’I) V2)l(jt.gl) ", -’m-1)
k=0 tk I=1

and, by induction,

V(mO>(/A,l, lA,m) (__l)ms-I/2s(s+I) Olk-lk--k-ll
I=0 k tk

X H (il- Ik) V(Sm)s(lJ’l ,’" ", [J’m-s), S 0,’" ", m 1.
l=m+l--s k=l
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In particular, setting s m- 1 yields

Vm(itl,""", It,,) (-1) 1/2("-1)" ak-16k--flk-lYl I] (itl--itk)O,
1=0 k=l 6k lk<l<--rn

since Ognk nYk 0 for all n _-< k. This proves regularity, subject to 8k 0, k >_- 0.
It is obvious from the method of proof how to allow vanishing 8k’S: if 8n 0, say,

then trk’)= 0 for all k_-< n. The elimination in (2.9) can then be carried out by using
a pivot on the bottom right corner. Although the value of C,,(itl,..., It,,) changes,
this quantity remains nonzero and the lemma is true.

Having proved existence and uniqueness of the underlying bi-orthogonal poly-
nomials, it is easy to furnish an explicit formula.

LEMMA 5. Let

Then

k-1

qm(X) := H (x-itk)-- E dkZ(km+l)(x) E dk I-[ gj(x) H hj(x).
k=l k=0 k=0 j=0 j=k

1

k dkPk(X).P (X;
--o

Proof With the above form of Pro,

1
dklk(it; p)Hm it pro(X; t.L [tim) ago(x,/1) =m =0

h-j-’(it) Y dkZ(k"+l)(it) q.,(it);
d,,, =0 k=O

hence Hm(itl) =0, 1= 1, 2,..., m, and the bi-orthogonality conditions
satisfied.

We now have the following theorem.
THEOREM 6. Let go(x, It), x E be a distribution for every It D, such that

are

kIi (m p) k=0,1,...

where p is given, gj, hj, j 0, 1,. ., are linear and gk/ hl are bounded and monotone

for all k 0,. ., I. Then, given that go possesses the interpolation property, the transfor-
mation

k=0 j=0 j=k k=0

maps polynomials whose zeros are all in D into polynomials with zeros all in cl E.
Proof The proof follows as a straightforward consequence of Theorem 3 and

Lemmata 4 and 5 upon noting that hk(it)#O, It D, ak6l--kYlO, O<--k <<- l, is
equivalent to the boundedness and monotonicity of gk/hi for all 0_-< k-</. [3

The last theorem can be typically strengthened, cl E being replaced by E, upon
showing that, under the stipulated conditions, k=O dkPk cannot vanish at the endpoints
of E.
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The main problem rests in the identification of distributions with the desired
generalised moments. Although these moments bear certain resemblance to those
connected with Hahn-type orthogonal polynomials [Andrews and Askey, 1985], a
characterisation of the underlying distributions is unknown.

Fortunately, it is frequently possible to identify such distributions. For example,
the distributions dq(x, Ix) q(x/Ix), that were introduced earlier in this section, corre-
spond to pk(X)=Xk, k>-O, go(IX)=- 1, gk(IX)=(Ck/Ck_I)IX, k >- 1, hk(U)---- 1, k>-O, where
Ck o X d,(x), k >- O.

In the next four sections we introduce many further distributions that satisfy the
conditions of Theorem 6.

3. Transformations of hypergeometric type. In this section we present five transfor-
mations that are related to distributions that induce familiar sets of orthogonal poly-
nomials. All these sets involve hypergeometric functions, motivating our classification.
The explicit form of the bi-orthogonal polynomials has been derived in the first four
cases in [Iserles and Nrsett, 1988].

Jacobi transformation. Let dp (x, IX x- (1 x) dx, a > 1, D (0, o), E
(0, 1). Thus

(t)
Ik(IX)

(a +IX + 1)k k>0’

and gk(IX)=k+IX, hk(IX)=a+k+l+IX, k>-O, gth’k-hkg=-k-l+l+a#O, O<-l<-k.
Thus Theorem 7 follows.

THEOREM 7. The transformation

(3.1) T , (X)k(a+l+k+X)m-kdk dkXk, a>--l,
h =0 k=0

maps polynomials with positive zeros into polynomials with zeros in (0, 1).
Proof. The interpolation property is valid [Iserles and Nrsett, 1988]. Thus, the

conditions of Theorem 6 are satisfied and it is only necessary to verify that no zeros
are possible at the endpoints. But let

q(x) := (X)k(a + 1 + k + X)m-kdk.
k=O

Then do=q(0), "k=0 dk is the coefficient of x in q and neither quantity may
vanish.

The transformations (3.1) can be recast in a more convenient form.
LEMMA 8. Let

(3.2) q(x) Z (X)k(a + 1 + k+ X),,-kdk Z (X)krk.
k=0 k=0

kThen dk= (1/(t + 1)m)(--1)k j=O (n_)(-m-ot)jrj, k=0,’’ ", m.

Proof It is enough to show that, with the stipulated values of do,’", dm, (3.2)
is true for m + 1 different values of x. We choose x, =-n, n 0,. ., m. Then

(-1)
q(-n) n!

k=o(n--k)!
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and

0 F[
-’+j’-2; 1 ]m--n+l;

(m- n + 1 + tz)_j
(m- n+ 1),_j

where we have used the Vandermonde theorem to sum up the hypergeometric function
with a unit argument.

We now discard the factor of ((a + 1)0,)-1 to obtain the following theorem.
THEOREM 7A. The transformation

T ., (X)krk (--1)k(--m--a)kxk(1--X)"-krk, O>--1,
k=0 --0

maps polynomials with positive zeros into polynomials with zeros in (0, 1).
Proof. The proof follows immediately from (3.1) and Lemma 8, upon noting that

(without the common factor of ((a + 1)m)-1)

X dkx , (- 1) (-m )2x
k=O k=0 j=0 k-j

(-1)J(-m-a)xJ 2 (-1 x
=o k=0

j=O

Laguerre transformation. Let d(x, ) (1/F())x- e dx, D E (0, ). The
interpolation propey holds by [Iserles and NOrsett, 1988]. Moreover,

Ik()=()k, k0;
hence gk()=k+, hk()m 1, ghk--gkh 1 for all Olk. Thus, by Theorem 6
and as migration of zeros to the boundary of E can be easily excluded, we obtain the
following theorem.

THEOREM 9. e transformation

T (X)krk rxk

=0 k=0

maps polynomials with positive zeros into polynomials with positive zeros.
Meixner transformation. Let d(x,)=(1-/A)-Xd$(x), D=(0, A), E=

(0, ), where $ is a step function with jumps of (A)k/(k!A k) at k =0, 1,. .. Here
is a positive constant. We set k(X):=(--1)k(--X)k, kO. Hence

k>0,Ik(, O) (A)k
A
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and gk (1 + k/h)/x, hk 1 --/x/A, ghk glh 1 + I/A # 0, 0=< =< k. The interpolation
property is again valid [Iserles and N0rsett, 1988].

By referring to Theorem 6, we at once have Theorem 10 below.
THEOREM 10. Let h be a positive constant. Then the transformation

(3.3) T 2 dk(A)kXk(A--X)m-k (--1)k(--X)kdk
k=0 =0

maps polynomials with zeros in (0, A) into polynomials with positive zeros.

Proof. It only remains to verify that p(x)=k=O (--1)k(--X)kdk does not vanish at
the endpoints. Let

q(x)= Z dk(A)kXk(A--X)m-k.
k=0

Then p(O)=h-mq(O)#O and, for x>>0, p(x)=dm=h-mq(h)/(h)m 0.
Transformation (3.3) can easily be reformulated.
THEOREM 10A. Let A be a positive constant. Then the transformation

T qkxk Z (--1)k(--X)k(h +X),,_khkqk
=0 k=0

maps polynomials with zeros in (0, A into polynomials with positive zeros.

Proof. Given constants qo, qm, set

dk--(A)kj= A

Then
k (m_j) Akqjxk(A_x)m_k, dk(h )kxk(A x)m-k , ,

_jk=O k=O i=o k

(3.4) / Jqjx xk(, X)m-j-k
=o k=O

lm Z qjxJ
j=0

and, by using the Vandermonde theorem [Rainville, 1967],

(3.5)

Z (-1)a Jq. (-x)i(a + X)m_j
j=o (a),/(a +j),,_j

Y’. (-1)q2aJ(-x)2(a +x),,,_j.
(/.)m j=O

The theorem now follows by comparing (3.4) and (3.5) with (3.3). D
Charlier transformation. Now do(x, Ix) e-/x d(x), D E (0, ), where

is a step function with jumps of l/k! at k 0, 1,.... Again, it is possible to prove
that all the conditions of Theorem 6 are satisfied. However, it is easier to take advantage
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of the fact that the present distribution is a limiting case of the one connected with
the Meixner transformation as

THEOREM 11. The transformation

T qkX
k (--1)kqk(--X)k

k=0 =0

maps polynomials with positive zeros into polynomials with positive zeros.
As we have already mentioned in 1, the last result can be alternatively proved

by using the convolution-orthogonality theory of A1-Salam and Ismail [1976].
Krawtchouk transformation. Let dp(x, ) (1 +/x)-’/x dp(x), D E (0, c),

where r/_-> 1 and b is a step function with jumps of (--1)k(--)k/kl at k=0, 1,’...
Note that, strictly speaking, is not a distributionthe jumps may be negative for
k > . However, as long as we confine our attention to k N the theory of 2 remains
valid.

Let k (--1)k(--X)k, k=0, 1,’’’. Then

(-)Ik(X,p)=(--1)k(l+)-n 2 (--1)l(--l)k il/=0

(-1)’=(--1)k(--n)k(l+)-" k X i’ (--nWk)l#l
/=0

(_l)k(1 + )-,k lFo[ -n+k;-; --]
=(--1)kgk(l+)-k, k=0, 1,’’’.

Thus gk =(-k)x, hk l+x, ghk-glh= -lO,/=0,’’’, k, k=0, 1,’", []- 1.
possesses the interpolation propeythe proof follows easily from [Iserles and

NCrsett, 1988]. We again use Theorem 6 to prove Theorem 12 below.
THEOREM 12. Let 1 m . en the transformation

(3.6) T Z dk(--1)k(--n)kxk(I +x)m-k dk(--1)k(--X)k
k=0 =0

maps polynomials with positive zeros into polynomials with positive zeros.

Proof It is only necessary to demonstrate that p(x)=.(--1)kdk(--X)k may not
vanish at the endpoints. Let q(x)=Z(--1)kdk(--rl)kXk(1 + X)m-k. Then

p(O)=do=q(O)O, p(x)-d,,xm-(-1)mq(x)/(-rl)mO, x>>0

and the theorem is true.
Transformation (3.6) can be recast as below.
THEOREM 12A. Let 1 m . en the transformation

r qx
k=0 k=0

maps polynomials with positive zeros into polynomials with positive zeros.

Proof Set

Z dk(--1)k(--rl)kxk(I+x)’-k= Z qkxk.
k--O k=O

Changing the variable into y- x(1 + x) yields

X dk(--1)k(--n)kYk= E qkyk(1--Y)"-k
k=0 k=0

(k ,l(m_l) ) kZ (--1) k E (--1 q, y
k=0 /=0 k
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hence

d-(-r) = k
k=0,’.’,q,

Consequently,

Y’. d,(-1)’(-x), X (:) (-x) (-1) q
=o =o =o k

Z q,
(-x), 2Fl[_m+l,_x+l;

,=o (=); _,+,; 11

1 q(-x)(x- )_;,
(-n) =o

where, as before, the Vandermonde theorem has been used to sum the hypergeometric
series with unit argument.

Comparison with (3.6) furnishes the proof.

4. Transformations of q-hypergeometrie pe. As notation for q-hypergeometric
functions varies (cf. [Andrews and Askey, 1985], [Exton, 1983], [Slater, 1966]), we
wish to clarify that, throughout this paper,

(a;p)(a:;p)..-(av;p) x
pq[al,’",%;b,..,b; P, X] :=

[] := (; )., n =o, ,...,
:=
[o][o]-’

n =0,..., m.

Wall transformation. Let be any number in (-1, 1). We set

a(x, )=
(; o) xO,/lo a(x), = (o, ),

where O e (0, 1) and 0 is a step function with jumps of (; 0)/[0] at 0, k =0, 1,. .
We note at once that the interpolation propey is valid: d(x, )/dO(x)= (x, )=
C()xog"/og o, where C 0 is independent of x. But

XI X1
det 0

X X X

for all distinct x,...,x>O and distinct ,...e, hence possesses the
interpolation propey.

The moments of can be evaluated by summing the o function with the Heine
formula [Slater, 1966]:

(;o
2 o’ (;

Ik()
(a; p) ,=o [p],

(z; p) ]--(ff;p)l*O[p,p (;, k=0,1,’’’.

Hence g 1 px, h 1 apex, gh-gh p p 0 (since a (-1, 1), p (0, 1))
for all l=0,..., k, k=0, 1,.... We are within the conditions of Theorem 6, and
consequently, Theorem 13 follows.
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THEOREM 13. Let t e (-1, 1), p e (0, 1). The transformation

(4.1) T E dk(X; P)k(Olxpk; P)m-k E dkxk
k=0 k=0

maps polynomials with zeros in (0, 1) into polynomials with zeros in (0, 1).
Proof. Again, it is enough to demonstrate that p(x)= dkXk does not vanish at

the endpoints. But

1
p(O)

(t; p)
q(1), p(1) q(O),

where q(x) =Z dk(X’, p)k(Otxpk; fl)m-k and the theorem follows. [3

As in 3, the main effort is in recasting the transformation (4.1) into an equivalent
form.

LEMMA 14. Let

q(x)= E dk(X; p)k(aXp k’, p).,-k ., Sk(X’, P)k.
k=0 k=0

Then

dk 1 )k-I 1/2(k-l)(k-l-1) ISl
k=0,1," .,m.

=o k-l P (a; p),_

Proof. With the above values of do,’", d,,,- --l__m.Sl -1/2((n+l)n-(l+l)l)q(P )=(--1)n[P].(c;P)m-. L, (--1)
’[p]m

/=0 (O; P)m-I P

x E (-1) k (PLY; O)n-k l/2(k2-k-21)

=, [o]_,[o]_,[o]._

n-lsl-n+(1/2)l( l+ )-nl

=[P]n(; P)m-n (-1)’
t:o loin-, [P]m--n(a;P)m--,

(_1)
n-l (0/;0) -m--;l; ;] o(l/2)k(k+l)-(n

=o k (p

=[p],(a;p),_, (-1)’[m-l] an-lslp-n+(1/2)l(l+l)-nl
:o n (a;p)_

x 2[-"+’/";
-..+.+,; p, p]

=[p],(e; p)_, (-1)’[ m-l] an-lSlp-n+(1/2)l(l+l)-nl
/=o n (a; p)-l

(ep-,. P).-I n-l-.+lx
(p_,+. p

P).-

(-1)
[P]"

/=o [].-/

Sl(p-";p)l, n=O, 1,’.’, m.
/=0

Note the use of the q-analogue of the Vandermonde theorem [Slater, 1966], [Exton,
1983] to sum up the 251 function with argument p.
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Since two mth degree polynomials that coincide at m + 1 distinct points must be
identical, the lemma follows.

THEOREM 13A. Let a e (-1, 1), p e (0, 1). The transformation

T Sk(X; P)k E Sk(apm-k; p)kxk(ax; P)m-k
=0 k=0

maps polynomials with zeros in (0, 1) into polynomials with zeros in (0, 1).
Proof. We substitute do," , d, from the last lemma into (4.1) and use the Heine

theorem [Slater, 1966]"

)k-! k-lxkpl/2(k-l)(k-I-1)(oz" p),, , dxk (ap’-’ p),s, X (-1 a
k=O 1=0 k=! k-

m-I p),sx o[ -; "p, pm-*ax]

X (opm-’; P)’S’xl (OIX; p)oo
=o axpm-, p

X s,(p "-’., p),x’(x;

and the theorem follows.
Llaw transformation. The present transformation is, in a sense, a "reverse" Wall

transformationmhence the name. Let p > 1 and

f(z) := oo[-; P, z].

f is an entire function and

(;)z.
Hence f(z) (1 -z/p)f(z/p) and, by induction,

p p-z), s O.

Let s oo. Since p > 1, p-Sz - O, thus f(O) 1 implies that

(4.2) f(z) p-’

Now let

1
X
lglz/lgp dO(x) D= (0,dq(x,/z) (_p_l/d, p_l)o

where is a step function with the positive jumps of (--1)k/[p]k at pk, k =0, 1,’’"
We have by (4.2)

1
Ik(IZ)--(__p_ly,; p_l)ooOdPO[-i p,--Izpk]=(--la.; p)k, k=0,1,....

Thus gk 1 + pkx, hk 1, ghk gih pt 0, 0, , k, k 0, 1, .
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THEOREM 15. Let p > 1. The transformation

T Sk(--x;p)k SkX
k

k=0 =0

maps polynomials with positive zeros into polynomials with zeros in (1, ).
Proof As the interpolation property is valid by an argument identical to that for

the Wall transformation, we are within the conditions of Theorem 6. The polynomial
p(x) Y SkX

k cannot vanish at 1 or :

p(1) Y Sk q(O),

p(x) SmX O-1/2("-l)"q(x),

where q(x) Sk(--X P)u" Hence zeros of p cannot migrate to the endpoints of E and
the proof is complete. []

q-Krawtchouk transformation. Let integer N >_-1 be given. Like the Krawtchouk
transformation, the q-analogue is valid only for a limited range of m, namely m-< N.
We set

dq(x,/x)
(-/zPN" p)

x’g/’gp db(x), p e (0, 1), D (0, c), E (0, 1),
(-,; p)

where p is a step function with jumps of (--1)kp/oN (p-N P)k/[P]k at pk, k =0, 1,. N.
Note that the jumps are positive for all k 0,..., N. The interpolation property is
again valid. The moments are obtained by exploiting the Heine formula [Slater, 1966]"

(a)
(-p"-,

(--tzP N’, P)k

p--N. N+k]1o[-; P,--tzP

k=0, 1,.".

--p 0, l=O,.--,k, k=O,kx,, hk 1 -t- p kx, ghk gjh’k PTherefore gk l + pN+
1," ", N, and all the conditions of Theorem 6 hold.

THEOREM 16. Let p e (0, 1). The transformation

m<_N

N+k

{m }(4.3) T E dk(--xP N’, P)k(--P ‘x’, P)m-k E dkXk,
k=0 k=0

maps polynomials with positive zeros into polynomials with zeros in (0, 1).
Proof. The proof follows by demonstrating, similarly to past proofs, that zeros

cannot migrate to the endpoints of E. I]

To reformulate (4.3), we note the similarity with (4.1). By setting y:=-xp N,
-Na p we obtain

d(y; p)(aYp k’, P)m-k sk(y; P)k,
k=0 k=0

where do," ", dm are given in Lemma 14. An immediate consequence of the method
of proof of Theorem 13A is Theorem 16A below.

THEOREM 16A. Let p (0, 1). The transformation

T Sk(--xP N’, P)k Sk(pm-N-k;p)kxk(p-NX; P)m-k
=0 k=0

maps polynomials with positive zeros into polynomials with zeros in (0, 1).
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Wigert transformation. The distribution

p 1/2(1+)2 (Ol l/2; ) xlel/2((logx)2/logp)dx(-at,"" p) p- pdq(x,/z) / 2r log p x

u E , E (0, oo), p E (0, 1), a < 1, features (with/z 0) in the definition of Stieltjes-
Wigert polynomials [Chihara, 1978].

Let

G(o’) 1-" X el/2((log x)2/log o) dx.

Changing the variable log x yields

G((r) exp ((r+ 1)t+2 log p

-/-2 log p p-1/2((r+1)2 I_oo e

x/L-2r log p p-1/2(tr+l)2.

Next, let

IoF(v) := x g-l/2;/9 e1/2((lgx)2/lg) dx,

Since

E (-1)"
p(1/2)"("-2)

.=o
Z (P-1/2Z; P)oo,

[Slater, 1966], it follows that

Thus,

v->O.

)np(1/2)n(n-2)Ot G(v n)F(v)= X (-1
.:o [p].

(_p.).
p 1/2(v+ 1)2x/_2,rr log p .:o [p].

p-l/2(v+l)2x/L-27r log p oo[-; p, -p"a]

1p-1/2(v+l)2x/--2"rr log p
(-p"a; p)oo"

/k(/.(,)-- p 1/2(l+’)u (-P"; p)oo
/ 27r log p

F(l + k) (-p’a; p)kp-k-(1/2)k(k+2)

=(--’riot; p)k’l"l-kp -(1/2)k(k+2) k =0, 1,...

where r/:= p’. Henceforth we will use r/, rather than/--thus, D (0, o). As a function
k-1 k+3/2of 7, Ik is of the form I-Is--o (gs(rt)/hg(rl)), where gk 1 +apkrl, hk=p rl, ghk--

__pk+3/2(gth’k 1 ap t) # 0, 0," ", k, k 0, 1,. (since a < 1, p 6 (0, 1)).
The interpolation property holds, since

de(x, Iz)= C,(x)C2(la,)x" dx;
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all that matters for the interpolation property is xC Thus, all the conditions of Theorem
6 are satisfied and we have Theorem 17.

THEOREM 17. Let a < 1, pc (0, 1). The transformations

(4.4) T{k=0 dkxm-k(--OtX; tO )ktO1/2(m-k)(m+k-2)} k=0 dkXk’

(4.5) r tkxk(--Otp-m+lx;p)m_kP-(1/2)k2 -- tkXk
k=O k=O

map polynomials with positive zeros into polynomials with positive zeros.

Proof. Equation (4.4) is a straightforward consequence of Theorem 6again it is
easy to verify that zeros do not migrate to the endpoints. Equation (4.5) follows from
(4.4) by reversing the summation and replacing x by pm-lx. ["]

5. Trsfarmstias afgmm type. The theme common to all four transformations
in this section is the appearance of the gamma function in the distribution .

F transformation. Let a e (0, 1) and

r(x+)
dcp(x, tz (1 a )" d@(x), D E (0, oo),

r()

where the step function has jumps of ak/k! at k 0, 1,. ..
LEMMA 18. The distribution q possesses the interpolation property.
Proof. It is enough to show that F(x +/z) is strictly totally positive [Karlin and

Studden, 1966]:

d(x, ) c()r(x+) de(x),

where C and q make no difference to interpolation property.
Letf(x, t), g(t, y), x (al, hi), (c, d), y (a2, b2), be two strictly totally positive

functions and let q(t), (c, d), be a distribution. Then also

(5.1) h(x,y):= f(x,t)g(t,y)d(t), xe(a,b), ye(a2, b2)

is strictly totally positive [P61ya and Szeg6, 1976].
We set al a2 c=0, bl bE d =o, f(x, t) x, g(t, y) y, th(t) (1/t) e- dr.

Thus,

Ioh(x, 3’) e-’t+- dt r(x + y)

is strictly totally positive and, consequently, o possesses the interpolation property.
Let p=(-1)(-x), k=O, 1,.... Then

Ik(la’,O)=(--1)k(1--a)" E l. (--l)k(la’)ia
/=0

(1-- a)’()kak-,-or-;r’+k;a]= i--aa (/z)k=Xk(/z)k, k=0,1,’’’,

where A := a/(1- a > O. Thus, gk A k + x hk l ghk glh ’ =- A > O, /=0,...,k,
k =0, 1,. .. We are within the conditions of Theorem 6; consequently Theorem 19
follows.
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THEOREM 19. Let A > O. The transformation

(52) T , rk(X)k Z (--1)k(--X)kA’--krk
k=0 k=0

maps polynomials with positive zeros into polynomials with positive zeros.

Proof The statement of the theorem is true for

T dkAk(X)k , (--1)kdk(--X)k;
=0 k=0

it is trivial that zeros cannot migrate to the endpoints of E. Form (5.2) follows when
we set rk , kdk, k O, , m. [3

F2 transformation. Let a, b > 0 and

r(- a)r(- b)
d(x, Ix) dO(x), D (a + b, oo), E (0, oo),

F(Ix a b)F(Ix + x)

where is a step function with jumps of (a)k(b)k/k! at k 0, 1,. . We assume for
the time being that Ix-a- b is not an integer--this assumption will be lifted later.

LEMMA 20. tp possesses the interpolation property.
Proofi It is enough to demonstrate that the beta function B(x, Ix) is strictly totally

positive"

d(x,)=
r( a)r(z b) 1

r(- a- b)r()
d,(x)= c,()C(x)S(x, ) d,(x).

This follows easily from (5.1) by setting f(x, t)= x-l, g( t, y) (1- t)y-l, (t)= t,
al=0, bl =oo, a2=a+b, b2=oo, c=0, d=l, since

B(x, y)= tx-l(1- t)y-1 dt

[Rainville, 1967]. [3

Next we evaluate Ik(Ix, I), where Pk "--(--1)k(--X)k, k-0, 1,’". To this purpose
we use a standard formula [Rainville, 1967] to sum up 2El with the unit argument

i(,)=(_l)r(-a)r(-b) (-l)k(a)l(b),
r(-a-b)r() ,=o l!(Ix),

r(- a)r(- b)
r(t a b)r( + k)

(a)k(b)k 2El[ a+k’b+k;E+k; 1]

(--1)k(a)k(b)k
(-Ix+a+b+ 1)’

k--0, 1,....

To simplify matters, we change the parameter: Ix’ :=Ix-a- b, D’= (0, 00). Hence

Ik(Ix, I)) (-1)k (a)k(b)k
k=0, 1,...

(use of an identical symbol Ik should cause no confusion). Note that Ix is not allowed,
for the time being, to be an integer.
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We have gk=(a+k)(b+k), hk=x-k-1, ghk-gth’=-(a+l)(b+l)O, l=
0,...,k, k=0, 1,....

THEOREM 21. Let a, b > O. The transformation

(5.3)

maps polynomials with positive zeros into polynomials with positive zeros.

Proof. First, we note that may attain all values in (0, c)--our restriction to
noninteger values is hereby lifted. This is permissible, since bi-orthogonal polynomials
exist, by continuity, for all choice of distinct 1," ,/x, > 0. Thus, all the conditions
of Theorem 6 hold and the transformation

(5.4) T 2 dk(a)k(b)k(X--m)m-k --2 (--1)kdk(--X)k
k=0 k=0

maps polynomials with positive zeros into polynomials with positive zeros" migration
of zeros to the endpoints of E is excluded in what should be by now a standard way.

To obtain (5.3) we set

Uk := dm-k(a),-k(b),-k, k=0, 1," ", m,

in (5.4). D
F3 transformation. Let a be a positive constant and N be a natural number. We set

r(x+.)
dq(x,/z) dO(x),

where the step function jumps (l)(Ot)N_k at k=0, 1,’.., N. As in the case of the
Krawtchouk and the q-Krawtchouk transformations, we confine our attention to
m-1,...,N.

The interpolation property holds, by a proof identical to that of Lemma 18.
Let Ok :- (--1)k(--X)k, k=0, 1,. ..

N! (___(a)N-I
a + l l, ’k (1

N! (lZ )k(Ce + k + lx )N-k
(a + tz)c(N- k)!

N! ()k
k=0,1,. ., N.

(S- k)! (a +/X)k’

Again, all the conditions of Theorem 6 are satisfied: gk =(N-k)(x+ k), hk
a+k+x,ghk-glh’k=a(N-k)#O, /=0,...,k, k-0,...,N-1.

THEOREM 22. Let ct > O, N , Ar>- 1. The transformation

k=0 (N- k)*.
(X)k(X + a + k),-k k=OE (--1)kdk(--X)k, m <= N,

maps polynomials with positive zeros into polynomials with positive zeros.



504 A. ISERLES AND S. P. NIRSETT

By using Lemma 8, we can recast (5.5) into a different form.
THEOREM 22A. Let a > O, N , N >- 1. The transformation

T rk(X)k , (--1)rk(--m--a+l)k(--X)k(X--N)m-k,
k=0 k=0

m-<_N,

maps polynomials with positive zeros into polynomials with positive zeros.
Proof As a consequence of Lemma 8,

(X)k(X + a + k),.-k Y rk(X)k
k=O

holds with

dk (_l)k (N- k)’
(),,, -o k-j

(-m-+l), k=O,...,m.

Thus, by the Vandermonde theorem,

1
Y (-m-a+ 1)jrj Y (N-k)! (-x)’ (--1)kdk(--X)k--

()mj=O k=j k-jk=O

Y N -j)l(-m. a + 1)(-x) 2F,[ -m+j’-x+j’_N+j; 1]
(,),.:o

(N- m)t
(- 1)m , (--1)Jt)(--m--a + 1)j(--X)j(X-- N)m-j

()m j=O

and the proof follows.
F4 transformation. Let a, fl > O, with fl a noninteger. We set

r(fl)r( + g)r(x +)
d,(x, ) d(x), (0, fl), e (0, ),

r(-)r(+)r()

where the step function has jumps of (a)g/(k (a +)) at k 0, 1,. ..
The interpolation propey follows easily from Lemma 18, whereas the moments

are obtained by using the Vandermonde theorem:

:= (-1)(-x), k=0, 1,. .,
(..)=(_)r()r(+-.) (-) (),(.),

r()r(+-) ()() r+,+;
r( g)r( + (a + ) " ’ +’+ 1]

()() r(,)r(+-) r( +, + g)r(,-- g)
(+) r(-)r(+) r()r( +,-)

=(-1)
()(g)

g=0,1,....
(-++1)’

Thus gk (a + k)(k + x), hk fl k- 1 -x, g}hk--gh’k (a + l)(fl k- 1 + l) 0 (since
/3 is not an integer), 0,. ., k, k 0, 1,. .. All the conditions of Theorem 6 hold,
migration of zeros to the boundary of E is prevented, and we have the following
theorem.
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THEOREM 23. Let c, /3 > 0, fl a noninteger. The transformation

(5.6) T 2 dk(a)k(X)k( m--X)m-k E (--1)’dk(--X)k
k=0 k=0

maps polynomials with zeros in (0, fl into polynomials with positive zeros.
To reformulate (5.6) we require the following lemma, which bears much similarity

to Lemma 8.
LEMMA 24. Let "y be neither zero nor a negative integer. Then

(5.7) ek.(X),( y X),,,_, ., rk(X)k
k=0 k=0

implies that

(5.8) ek ,
= k (y+ l),,,_t

Proof. Let

k=0, 1,. , m.

q(x) := Y ek(X)k(’)’ X),.,,,-k, q2(x) := Y rk(X)k..
k =0 k=0

To prove (5.7), it is enough to demonstrate that q(-n)=q2(-n), n=0, 1,..., m,
where the coefficients of ql and q2 are linked via (5.8). But

nV
ql(-n) (-1)k ek

k=0 (n k)!
(y+ n)m-k

Thus, as

(’y + n m-(-’y n + 1),_/= (y+ l)m-l(-’Y n m + l+ 1)n-t, /=0,. .,n,

we have

q(-n)=n! (-1) rt =q2(-n), n=0,1,...,m,
1--0 (n l)!

and the proof follows.
THEOREM 23A. Let ct, fl > O, fl a noninteger. The transformation

T E rk(X)k (--1)k(/3--m)krk(--X)k(a+X)m-k
k=0 =0

maps polynomials with zeros in (0, fl) into polynomials with positive zeros.
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Proof. We set ek:=(a)kdk, k=0,...,m, y=/3-m in (5.7). Note that y is a
noninteger. Thus, by (5.7), if

(5.9) E dk(Ce)k(X)k(fl--m--X)m-k ., rk(X)k,
k=0 k=0

then do,’", dm and to,’", rm are linked via (5.8). Moreover,

y. (_l)kdk(_X) (_1)k (--X)k m rl

k=O k:O (Ce)k 1=0 k (/3-m+l)_,

E (-1)’ (-x)lrl 2Fl[_m+l,_x+ I.
a+l; 1]

t=o (/3 m + l)._(c )
(5.10)

E (-)’ (-x),r, ( + x)_,
,=o ( m + l)m_,(t), (t +

1
Z (-1)1(/3 m),rl(--X)l(z + X)m-,.

(t)m(fi m), I:O

The proof follows when we compare (5.9) and (5.10) with (5.6). []

6. Transformations of q-gamma type. There are several q-analogues of the gamma
function [Exton, 1983]. In this section we consider distributions that include the
function

(6.1) F(z) :=
(z; p)oo’

p, z C.

q-F1 transformation. Let p, ce (0, 1),

(; p)(; p)
d(x,/z) dtp(x),

(; p)(x; p)

where @ jumps k/[p]k at pk, k=O, 1,’’’. Thus,

Ik(

(;p) (;p), ,= (;

We sum the o series by the Heine theorem [Slater, 1966]"

D=E =(0, 1),

(;p) (p;p) (;p)
k=O, 1,.’..Ik(/z)

(a/z; p) (ap k’, p)o (a/z’, P)k

Thus, gk(X)=-- 1--ap k, hk(X)= 1--apkx, ghk--glh’k apk(1--ap l) 50, /=0,’’’, k, k=
O, 1,’".

LEMMA 25. For every p (0, 1) the function Fp (x/z) is strictly totally positivefor all
0<x, /z <oo.

Proof Since ]p] < 1, the Euler theorem [Slater, 1966] and (6.1) imply that

(x)
(6.23 rp(x/z) o*o[-; p, x/z] k=O
Let

f(x,t)=xgt/g, g(t,y)=ygt/g, 0<x,y<oo, 0<t<l.
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Clearly, both f and g are strictly totally positive. Moreover, let b be a step function
with jumps of 1/[p]k at pk, k =0, 1,. .. Thus, by (6.2),

Fp(xix) f(x, t)g(t, Ix) ddp(t)

and strict total positivity follows from (5.1). [3

THEOREM 26. Let a, p (0, 1). The transformation

(6.3) T Wk(axpk; p),,_k
--0 =0 (C; p)

maps polynomials with zeros in (0, 1) into polynomials with zeros in (0, 1).
Proof. Since all the conditions of Theorem 6 are satisfied, the transformation

{m }T , dk(a;p)k(apkx;p)m_k Y dkXk

k =0 k=O

maps polynomials with zeros in (0, 1) into polynomials with zeros in (0, 1)nit is again
trivial that zeros cannot migrate to the boundary.

Form (6.3) follows when we set Wk --(a; p)kdk, k=0, 1,.’., m. [3

An alternative form of (6.3) can be obtained by changing the basis of moments:- (x-p) xLet pk(X)--I-Ii=o (1/x’,p)k, k=0, 1,.... Then by the Heine theorem
[Slater, 1966],

k; ]Ik(Ix;P)
(Ix p)(a p)o(--1)ka k

(; p)(p’, p) o[; p,

(-1)kp’/2(-’)a (Ix; P)
k=0, 1,....(;p)’

Thus gk(X)=--apk(1--pkx), hk(x)=l--apkX, hgk--hlgk=--apl(apk--pl)#o, l=
0," , k, k 0, 1," , all the conditions of Theorem 6 are valid, and we have Theorem
26A.

THEOREM 26A. Let a, p (0, 1). The transformation

T (--1)P’/2(k-’)kd(x; P)(aPX; P),,-k Z d (x-p l)
k =0 k =0 /=0

maps polynomials with zeros in (0, 1) into polynomials with zeros in (0, 1).
q-F2 transformation. Let p (0, 1), N be a natural number, a > p-N/l, and

,-’(-ox; p)oo
d(x, Ix) N d4,(x), D (0, oo), E (O, 1),

(--IxP P)oo(--(IX/0"); P)N

where q jumps (p-N., p)k(a’, p)kpk/[p]k>O at pk, k=0, 1, N.
LEMMA 27. p possesses the interpolation property.
Proof. It is sufficient to prove that (-Ixx; p) is strictly totally positive for all

x, Ix (0, 1). By (4.2),

(-Ixx; p)o oo[-; p -1
IxxP -I] Z (--1)k (Ixxp-I) k

The proof now proceeds along the lines of the proof of Lemma 25, the distribution



508 A. ISERLES AND S. P. NRSETT

being replaced by a step function withjumps of (--1)k/[p-1]k > 0 ([P-]k --(/9-1, P-)k),
k =0, 1,. ., at p-k and the interval of integration being (1, oo). [3

k-1Let pk(X)=I-it=0 (X--Pt), k=O, 1,’’’. Then for all k=0,..., N

y p(-p., p)(-(/); p)., ,= [p],_

=(--1)kpI/2(k+l)k a-V(_ppk., p)oo(P-q., p)k(O’, p)
(--P", P)oo(--(/); p),

We sum the 2(I) series up with the Vandermonde q-analogue [Slater, 1966]"
N-kpk(N-k)lk(l,p)=(_l)kp,/2(k+,)k

a tq(--tzpk; p)oo(p-N,p)k(; p)k (--(/); p)N_ka
(--#pw; p)(--(#/a); P)N (--#P;

(--1)ka-kP-1/2(k-’)k+Nk (p-N., p)(a’, p)
(-(/a)p-k’, P)

=(--1)kp (p-N.,p)k(a.,p)k
k=O, 1 N.k -N+I(-(/)p ;p)

Hence gk(X) --p(1 p-U+k)(1 apk), hk(X) ap-+k+’ + X, ghk-- glh # O,
0,"" ", k, k =0, 1,"" ", N-1. All the conditions of Theorem 6 are satisfied, leading
to Theorem 28.

THEOREM 28. Let p (0, 1), a > p-+, m 1, 2, , N. e transformation

r 2 (-1)do-/(--(,O)(O- 0)
x
_

---p ;p
k=0 m-k

k-1

d. (x-p’)
k=0 /=0

maps polynomials with positive zeros into polynomials with zeros in (0, 1).
Note that, in the last theorem, we were unable to exclude migration of zeros to

the endpoints of E.
q-F3 transformation. Let N be a natural number, p e (0, 1), and > p-+a. We set

-N(-; )(#; )#
de(x, #) de(x), (0, 1),

((/#); p)(#x;

where has jumps of (p-; p)kpk/([p]k(a;p)k)>O at pk, k=0, 1,’" ",N. Again
"-a (x p), k 0, 1 Hence,p.(x) := R=o

I.(#, #)
("; p)(#; p)#- (p-

((/#). p)
(-1)’/=-’" p),p

,=. [p],_.(#p". p)=(-’, p),

(-1)%-%’/="+’(.; p)(p-, p).(#; ). .-+.=[,"; p, P ]
((-/#); p)(; p).

(-1)%-%{,/="{"+,(.; p)(p-., p).(#;
((/#); p)(; p).

((./#); p)_#-"p"{-"
X

(ap ’, p)u-
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Consequently, gk(x)=p(1--p-V+k)(1--xpk), hk(X)- a(1--(X/a)p-V+k+l), g;hk--
gh’k # O, =0,"" ", k, k =0,"" ", N-1, and, since it follows from Lemma 25 that o
possesses the interpolation property, all the conditions of Theorem 6 hold. This
furnishes our last transformation.

THEOREM 29. Let p (0, 1), a > p--N+l, m 1, 2, N. The transformation

T E dkpk(P-m; p)k(X; p)kot m-k p-N+k+l; P X dk H (x-p1)
k=o m-k k=O =0

maps polynomials with zeros in (0, 1) into polynomials with zeros in (0, 1).
Note that, again, the last theorem does not prevent zeros being mapped to the

endpoints of E.
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Abstract. An analogue of Bailey’s 6116 summation theorem is proved for basic hypergeometric series
that are very well poised on the Lie algebra G2. As a limiting case, a new proof of the Macdonald identity
associated to the affine root system oftype G2 is obtained. A summation theorem for ordinary hypergeometric
series that are very well poised on G2 is proved by Carlson’s theorem.
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1. Introduction and statement of results. This paper is a sequel to the paper [10]
entitled "The Macdonald identities for affine root systems of classical type and hyper-
geometric series very-well-poised on semisimple Lie algebras." We will prove an
analogue of Bailey’s 66 summation theorem [5] for very-well-poised series on the
complex Lie algebra G2 [10] associated to the full co-root lattice of G2 and to the
seven-dimensional irreducible representation of G of highest weight A1, where A1 is
the first fundamental weight [7, App.]. A limiting case of this summation theorem is
the Macdonald identity 15] associated to the affine root system of type G. The method
is similar to that used by Andrews [1] to deduce the Jacobi triple product identity as
a limit of the 6ff6 summation theorem and by Milne 17] in his proof of the Macdonald
identities for the affine root systems of type Al.

Before stating the main theorem, we need to define some notation. For convenience,
let q be a real number, 0 < q < 1. If c C and n is a positive integer, then the q-rising
factorial is defined by

[C]n=(1--C)(1--cq) (1--cqn-1),

For n c Z, define

We have

[c], =[c]/[cq’]o.

c]o H (1 cqk).
k=O

(_l)"q(’+l)’/
[c]_. [qc-1],c"

for all n e 7/.

Similarly, the ordinary rising factorial is defined by

(c).=r(c+,)/r(c)

for neT/and ceC.
In 2 we will prove the following fundamental theorem.
THEOREM 1.1. Let z (zl, z, z3) eC3 and ai, bieC for i= 1, 2. Let q

ei-(el + e2+ e) for i= 1, 2, 3, where eeC is the standard triple with 1 in the ith entry

* Received by the editors May 23, 1988; accepted for publication February 13, 1989. This work was
partially supported by National Science Foundation grant INT-8713472.

" Department of Mathematics, Texas A&M University, College Station, Texas 77843 and Indian
Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India.
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and zero in the other entries. Let L be the lattice in C generated by (1, (2, (3, i.e.,
L =1 Zoi. Note that Ol + cp2 + (3 O. Finally, let

ai for 1, 2,
(1.2) c, qb7,2 for 3, 4.

Then we have

(1.3)

(tl,t2,t3)L

q cicj )- ]o I-I q c,CjCk)- ]oo
l<=i<j<k<=4i=1 li<-j4

q c-2 [qc-l] 1-[
i= i=1 i=1 lj,k--<3

j#k

N {[ql+3z’--Zl--Z2--z3]oo[ql--3z’+zl+z2+z3]O)

I-I [ql+-Zk]oo,
l<=j,k<=3

jya k

c-l ql+-zk]oo

where Iq-31-I= (bl a)21 < 1 for convergence and none of the denominators on both sides

of (1.3) vanish.
Remark 1.4. We may assume that Zl + z2 + z3 0 in Theorem 1.1 as this case implies

the general result. With this restriction and in the notation of [10], the series on the
left-hand side of (1.3) is denoted by

z; q; (1, ,1)212 G2; A1; L;
bl bE’

where L is the full co-root lattice for G2.
COROLLARY 1.5 (Macdonald [15]). With notation as in Theorem 1.1, we have

_2Zl --2tl+z2+ t2+z3+ t3)
qil+2t2__3t (1 q

,. (1 --q -2zl+z2+z3)
(1 qZ’+t’-2z2-2’2+z3+’3)(1 q-z,-t,-z2-t2+2z3+2t3)

(l_qZ,-2z2+z3)(l_q-Z,-Z2+2z3)
(1 qZ,+t,-z2-’2)(1 q-Z’-q+z3+’3)(1 q -z2-’2+z3+’3)

(1.6) (1-qZl-Z:)(1-q-Z,+Z3)(1-q-Z+z3)

q.lj<k3{4(--Zk)(--tk)+2(tj--tk)2})
=[q]2oo I-I [q’+3z’-=’-z-z3]oo[q’-3z’+z’+z=+z3]o I-I

i=1 l<-j,k<-3
j#k
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Proof. Let a, oo and b,- 0 for i= 1, 2 in (1.3). Then the argument in Theorem
7.1 of [10] shows that (1.6) is equivalent to the Macdonald identity (Theorem 8.7 of
[15]) for G2.

In 3 we will prove the limiting case (q 1) of Theorem 1.1.
THEOREM 1.7. Let z (2"1,2’2, 2’3) E (3 and a,, fl, C for 1, 2. Let L be defined

as in Theorem 1.1. Let

ol for 1, 2,
(1.8) 7,=

1-fl,_2 fori=3,4.

Then we have

t=(tl,t2,t3)L {(--2Z1--2tl+2"2+ t2+2"3 + t3)-2zl + z2 -- 2"3

.(2"l+t1-22"2-2t2+2"3+t3)(-2"l-tl-2"2-t2-1-22"3+2t3)Zl 22"2 + 2"3 -2"1 z2 -" 22’3

(1.9)

.(z+tl-z2-t2)(-zl-tl+Z3+t3)(-z2-t2+z3+t3)Z1 2"2 --2"1 dr- 2"3 --2"2 dr- 2"3

jk

F 1-2
i=1 i=1 i=1 j,k3

jk

i<--j<=4 i<j<k<--4

1-[ F(1 + 32", 2" 2"- 2"3)
i=1

r(1 + 2"j- Zk)} -1F(1 3Zi + 2"1+ Z2+ Z3) 1-I
l<=j,k<=3
jya k

where Re (2= (fl,- a,))> 3 for convergence and the poles of both sides of (1.9) are
avoided.

We hope that Theorem 1.1 will have application in the theory of partitions of
multidimensional analogues (see [1], [2]). It seems likely that families of orthogonal
polynomials in two variables will be associated to these summation theorems (see [3],
[4], [8], and [19]).

The results of this paper provide evidence that there may be summation theorems
for very-well-poised hypergeometric series associated to the exceptional simple Lie
algebras over C or, alternatively, to affine root systems of exceptional type. Limiting
cases of these summation theorems should give the Macdonald identities for affine
root systems of exceptional type.

There is a problem in extending the methods of this paper to the other exceptional
Lie algebras (or affine root systems). In order to findthe corresponding difference
equations there need to be sufficiently large numbers of numerator and denominator
parameters ai and bi. For these other exceptional Lie algebras (or affine root systems)
there does not appear to be a sufficient number of parameters to produce the required
difference equation.
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2. Proof of Theorem 1.1. We begin the proof of identity (1.3) by first showing
that the series on the left-hand side of (1.3) converges whenever ]q-3 2

I]i=l (bi/a,):zl < 1
and none of the denominators vanish. With notation as in Theorem 1.1, let be the
root system of type G2 (see [7, App.]) with a partial ordering and W the Weyl group
of G2, Wfi6, the dihedral group of order 12. Let p=1/2>o a. Using the Weyl
denominator formula for G2 (see [12]), the left-hand side of (1.3) can be rewritten as

,L {q-( I-I (1 -q-(2+/--)) I 1-I [aiq-Z]’-5)
>o (1-q(z)) ,=1 l.k3

jk

-(

0 tL W

e(w)q_O(+ [a,q

= ,3 [biq-]-
jk

where e(w) is the sign of the Weyl group element we W and t=(h, t, t3) and
(, , ) in the notation of Theorem 1.1.
Let e L and n+n;+ n33 for some choice of n, n, n3. Suppose

( n(l n(3,

where is a permutation of {1,2,3}. Let l n(-n( and l= n(-n(3l. Since
(1 -" (2 " (3 0, then we have

(2.2)

with 11, 12--> 0. It follows that

1-I
i=1 lj,k<=3 [biqZ-Zk]tj-’k

jk

(2.3)

=/lP(1) + 12(-q9o.(3))

From (2.1)-(2.3) we see that the left-hand side of (1.3) converges absolutely if we
can show for all tr e $3 and w e W the absolute convergence of the following series"

(2.4)

E
11 q,(1 )-- 12tPr(3)

11,120

(1) (2) a (2) (1){-I ([aiq.." - ’’]It[ !q ’-’’ ]-llq-W,(,+z)
i=1 ([biqZ"(’)-z’(E)]l,[b,qZ’(:)-z"(’)]-l,

aiqZo(3>-zo,:,]_l [ aiqZo,)-z,,O,]l,+h aiqZoo,-zo,l,]_ll_121
[ b,qZo(,-Zo(2,]_t_ b,qZo,,-Zo-(,],l+h b,qZ,.()-:,,)]_ll_i:J"

We will use the ratio test to show the convergence of (2.4).
Let d be the u term in the series (2.4). Consider

(2.5)

dt ,=, 1 biqz’(i)-z’(2)+,] 1 aiq-’tz, -’t,, -l-’--7]
+1 +i / ]1--aiq’(l)-’(3)1 2 1-biq,(3)-,(1)-l-2-
+! +l1] 1 =/-]
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where

2

q-wpl)) M(ll,/2),
\ala2/

i=1 1 biqzl)-z2+l 1 a:,lqZ,-z2

1 biqzO)-z’3)+] 1 a?qz(’)-z(3)+l’+12+l]
There is a similar formula for

By choosing ll and 12 sufficiently large, we can make [M(/1, 12)[ as close to 1 as
desired, with a corresponding statement for d,_<,)/dt. Hence by the ratio test for
multiple series, the series (2.4) will converge if

Now p=-e-2ez+3e3, where e is the standard basis vector in C and wp=
(-e,<)- 2e<2) + 3e,)) for some permutation r $3. It follows that for all w W and
s $3 we have

Hence the original series on the left-hand side of identity (1.3) will converge whenever

Iq-3(bb)/(aa) < 1

and denominators do not vanish.
To prove Theorem 1.1 we will show that both sides of (1.3) satisfy a q-difference

equation in the parameters c, 1 i4. If for some j, cc equals 1, we will show
that (1.3) reduces to an identity equivalent to a special case of the summation theorem
for multilateral hypergeometric series that are very well poised on the Lie algebra of
type A1 [9], [10]. By means of this special evaluation of (1.3) and the q-difference
equation, the general result follows by induction and analytic continuation of the
parameters c.

DEFINITION 2.6. If f(c) is a function of the variable c, then

Rf)(c) f(cq).
LEMMA 2.7. Let f(c,. c4, z)=f be the left-hand side of the right-hand side of

(1.3). enfsatisfies the q-difference equation (where we assume that i<34 (c- q) x
(c,c- 1) 0):

4 4 Ci
1 Clq(2.8) E

i=1 i=-- (Cl- Ci)(ClCi- 1) lj,kN3
i#l j#k

Proof That the left-hand side of (1.3) satisfies the q-difference equation (2.8) is
essentially the same proof as in Lemmas 5.3. and 6.3 of 10]. We give the proof below.

For any i, 1 N N 4, we define
6--m(2.9a) d(m) ci + c for 0N m <3,

3(2.9b) d,(3) c,.

Consider the determinant

(210, e() d,+)(i):( c) (i)
S =0 ,t)$4T
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where T= {(tl,. ", t4)l ti {1, --1} for 1 -< --<4 and E/4=l ti 0 (mod 4)}. From the Weyl
denominator formula for the root system of type D4 12], we find that the right hand
side of (2.10) equals

4

N C3i H [((Ci/Cj)I/2--(Cj/Ci)I/2)((CiCj)I/2--(CiCj)-I/2)]
i=1 1<=i<j<-4

(2.11)
H (ci-cj)(c,c-l).

1--<_i<j_--<4

More generally, we have that the determinant

(2.12) {e(tr)d(1)(m) d(,+l)(i)}o-eS4 i=

vanishes unless m 0, in which case it equals 1-I_-<<j-<_4 (ci-cj)(cic- 1). By expanding
the determinant (2.12) along the first column and using the Weyl denominator formula
for the root system of type D3, we find (2.12) equals

4 4

(2.13) , (--1)l-ldl(m) H (c) 1-I (ci-c)(cicj-1).
/=1 i=1 1-<i<j_-<4

i#l i,j#!

Dividing (2.13) by ]-I<_-<<-4 (c-cj)(ccj-1), we obtain the identity
4 4 Ci 0 if 1 -< m _--< 3,

(2.14) E dl(m) H
I= i= (Cl Ci)(ClCi 1) [ 1 if m 0.

i#l

Now let ff denote the left-hand side of (1.3). For any l, 1 _-< -< 4, consider

R(tp) , 1-I (1 Clq+-zk-tk
teL l<=j.k<=3 1 Clq-zk

j#k

(2.15)

,>o 1-q<(z) } i=1 l<--ij, k<--_3 [biq z
j#k

with notation as in (2.1)"

R,($)= E { (-1)"[d(m)e,,,(q’v+5-zk-t)]/ rI (1-ctq-z)
teL m=O l<--_j,k<--3

jk

q-O(t) I-I
o 1 q,(z) i= l<=j.k<-3 [biq-Z]t-tk

j#k

where e.(q+-z’-t’) is the elementary symmetric function of degree m in the variables
q+-,-t,, 1 -<j k<=3. Note that e,(q+5-z,-t,,) e6_m(q+t-z-t) for 0=< m -<3 and
eo(qb+-z-tk) =-- 1.

It follows that

/=1 i=1 (Cl--C,)(ClCi 1)lNj,kN3
il jk

{dl(m) I ci

teL m:O ,:1 i:1 (C,--Ci)(C,Ci-- 1)
(--1) em(q+-z-’<)

i#l
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( 1 q,,,,z+,), I [a’qZ-Zq"-’-z )(2.16) q ’ I. 1-I
o 1 qa(Z) ] i=1 lj,k3 [biq ],-t

j

[1--q(z+t) [aiq
>o 1-q() =, 1,3

j

=
by (2.14). Thus the left-hand side of (1.3) satisfies the q-difference equation (2.8).

Let Q denote the right-hand side of (1.3). For any l, 1 4, consider
4

R(Q) Q. (1--q-lc2) H (1-- CC)
i=l

(2.17)
4

H (1 c-ilcf’c-)(1 H C? 1)
j,kr l,l <-j<k<--4 i=

4 4

(1--c-l)(1--q-1 H c-2)( 1- ]-I c:, 2) I-[ (1-c-’qz-z’)
<.j,k<-3,j k

Thus, to show that Q satisfies the q-difference equation (2.8), we are reduced to

(1 q-1 C-2) (1 + c;1) H (1 c-’ cf’ c-’)
1--<j<k--<_4
j,kl

verifying the identity
4 cE

1=1
l-I (Cl-- Ci)

i=l,i#i
(2.18)

4

1-q- II c-2 1 + H C
i=1 i=1

If {X1,’’’, X,,} is a set of variables, then

e(X,, X.) E X,X= X
l<i<i2<...<ik <=n

is the elementary symmetric function of degree k. We have

(2.19) H (1--c-lcflc-) (--1)mc’f’mem(cflc’l),
l<_--j<k<4 =0
j,k#l

where e,,(c]lc-1) is the elementary symmetric function of degree m in the variables
{ cf cl 1 _-<j < k _-< 4; j, k r 1}. We can also write

eo(cf’c-l)= l,

el(cfc-)= e2(cf),
4

e2(clcI)--el(C1) 1-I (Ci) -1,
i=1
il

4

e3(cfl-l) [I (ci) -2,
i=1
il

where the elementary symmetric functions on the right-hand sides of (2.20) are in the
variables {cfll<=j<-4,jl}. Note that e3(cfl)=I-I4i=;il(Ci)- and e(cf)=O. We
also have

(2.21) c-lem(cfl) em+l(C-( Cf C cl)--em+l(Cl),
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where 0-< rn-<3, and e=(cj-1) and e=+l(cj-1) are functions in the variables {cj-ll 1 -<j-<
4, j l}. It follows that

(2.22)
3

2e2 c-fie24E (-1)mcTme,,(cIc-l)=l-e3+cte4+e2e4 ce3e4+ 4-
m-----0

where the symmetric functions on the right-hand side of (2.22) are in the variables
c- c c-1 c- and on the left-hand side of (2.22) are in the variables {cflc- 1 -<j <
k-<4;j, k# l}.

To calculate the left-hand side of (2.18), we will need an important lemma due
to Louck and Biedenharn [14] (see also [11]).

LEMMA 2.23. Let X1," ", X, be arbitrary distinct complex numbers, of any non-
negative integer, and h(X) the Ith homogeneous symmetricfunction ofXI,’’" X We
then have

(X)q (X-X)-I=(-1)"-lhq_,,+,(X).
i=1 s=l

si

Note that hk(X) =-- 0 if k < 0 and ho(X) =- 1.
Using the identity

(2.24) C H (CI--Ci)-1---
i=1 i=1 71- C71
il il

we substitute identities (2.19) and (2.22) into the left-hand side of (2.18). Thus the
left-hand side of (2.18) equals

1=1 H
i=l;i=l

C C

2 2(1-q-lc72)(1 + c-fl){1-e3+ cle4-+-e2e4 cle3e4+ cle4}

4

4

II (c,-c,)
i=l,i#l

4 (_q-lc-f3)e34(1 + c7 q-c-i2)c7 e+ E 7,11=1H?=,,il (C7

(2.25) 1 e3(c71) + hl(Ci)e4(cT1)+ e4(c7’) + e2(cTi)e4(c7)

h1(ci)e3(c71)e4(c71) e3(cT1)e4(cT1)+ h2(ci)e(c71

+ h,(c,)e24(cT’) q-1 e2(c71) q- e34(c71),

where the symmetric functions ek on the left-hand side of (2.25) are in the variables
--1

ci 1 -< -<4, and on the right-hand side of (2.25) the symmetric functions hk(Ci) and
ek(C:,) are in the variables c and c7, 1 < i<4,= respectively.

Note that h(ci)e4(c7) --e3(cTX), with notation as above. A simple case of the
Jacobi-Trudi identity [16] is h2(c)=el(Ci)-e2(c). Since hl(Ci)=e(c) and
e2(ci)e4(c7) e2(cT, ), this implies h(ci)e24(cT) e(cT)-e2(cT)e(cT), with nota-
tion as above. Hence, the right-hand side of (2.25) equals

(2.26)
1 e3 + e3 + e4 d- e2e4- e- e3e4+ e- e2e4+ e3e4- q-le_ q-le34

1 q- e4- q-1 e24_ q- e34,
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where all symmetric functions are in the variables C7-1 1 <_-i<-4. The right-hand side
of (2.26) equals the right-hand side of (2.18). This completes the proof of (2.18), and
also the proof of Lemma 2.7. In other words, both sides of (1.3) satisfy the same
q-difference equation (2.8).

To complete the proof of (1.3) we need to consider a special evaluation of the
series on the left-hand side of (1.3).

LEMMA 2.27. Assume Iq -3 I-I 2i=1 (bi/ai)21 < 1 and none of the denominators on both
sides of (1.3) vanish; then (1.3) is valid whenever cicj 1 for some j, 1 _<- i, j _<-4.

Proof. Let pj:C3-C, 1_-<j_-<3, be linear functionals such that for all X=
(X1,X2, X3)C we have pl(X)=X1-X2, pE(X)-XE-X3, and pa(X)=X3-X1.
For z (Zl, z2, z3) as in (1.3), define pl(z) Zl- z2 Ul, p(z) z- z3 u, and pa(z)
z3 zl u3. Similarly, for (tl, t, t3) L, define pl(t) tl t2 Yl, P.(t) t2- t3 Y2,
and P3(t)--t Y3. For the generators Pl, , (3 of L, we have the following:

pl(tPl)-- 1, pl(qa)=--l, p((#3)=0,

P2((1) 0, p(p) 1, P2((3) 1,

P3(Pl) 1, P3(2) 0, P3(3) 1.

Hence for L and nl + n22 + n33, we have

p(t)=n-n2=y, p2(t)=n2-n3=Y2, p3(t)=n3-nl=y3

If nlt#l + n_tP2 + ntP3, then n nz n n_ y,, n2-- n3 n_- n Y2, and n3 n,
n n Y3. Conversely, given any triple (Yl, Y2, Y3) G 773 such that yl +y+ Y3 0, let
t---y3ql + Yq2. Then we have p(t)=-Y3-Y Yl, p2(t)= y, and p3(t)= Y3. It fol-
lows that there is a one-to-one correspondence between elements L and triples
(Y, Y2, Y3) 773 such that Yl +Y2+Y3--0.

Consequently, in the above notation we may rewrite the left-hand side of (1.3) as
follows:

Yl,Y2,Y3
yl+Y2+Y3 =0

qy,+3Y2( 1 qu3+Y3--ul--Yl

1- qu3-u, )
(2.28) (1- qU’+y’-u2-Y2 ( 1 _qU3+___Y3-u2-Y2 -+’Yl

1- qU’-2 ]\ 1 q’

i-_-- ] iS--7 ] ,=,,=,1-4Iii [qcT,q,5]y

Now let us assume for some i#j, 1 <-i, j-<_4, that ci cjl=q ’. Suppose that
c4--c---q u3. The proof is similar in the other cases. Then (2.28) reduces to the
following:

(2.29)
Y ,Y2
y+y2=O

q"-qU2 ] i.j= ]y,

Expression (2.29) is a basic hypergeometric series that is very well poised on A1 (or
SU(2)), i.e., a classical 61//6 series. Its sum is evaluated as a special case of theorem
1.15 of [9]. (This case is simply a reformulation of Bailey’s 61//6 sum [5].) We find that
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(2.29) equals

(2.30)
[q]o[q’+",-"][q’+"-’,] 1-I k= qc
[q(12)-2] I-I2 -1 -u

ik=l [qc q’]oo[qc7, q

[ql+U,+U(l2)-l]o[ql-U,-U2(l2)-l]oo.

Expression (2.30) equals the right-hand side of (1.3) in the case C4--C-1= qU3.
We will now eliminate the restriction that c4 c1= qU3 and simply require that

c4 c-1. Let and Q be the left- and right-hand sides, respectively, of (1.3). Define
(z)= Q-lff as a function of z (Zl, z2, z3), where zl +z2+z3 0. We have the follow-
ing lemma.

LEMMA 2.31 [10, Lemma 3.15]. (z) is a constantfor all z such that Zl + z2+ z3 =0.

Proof. This lemma is an immediate consequence of Lemma 3.15 of [10]. It is only
necessary to verify that

H a(z)2:2 2 (z--Zk)2

a>O lj,k<=3
jk

with notation as in (2.1). This can be done without much difficulty.
As a consequence ofLemma 2.31, it follows that since (1.3) is valid for c4 c-1 q,

it must also be valid for Ca c regardless of u3. More generally, (1.3) is valid whenever
cicj 1 for some j, 1 _-< i, j < 4. This completes the proof of Lemma 2.27.

Using the special evaluation in Lemma 2.27 as a starting point, we will prove (1.3)
by induction. Assume that ClC q-k and c2c4 q -k2, where k and k2 are nonnegative
integers. Furthermore, assume temporarily that cic-f ql for any integer and all i, j
such that 1 _-< # j _-< 4. Let k kl d- k2. The assumption k _-> 0 guarantees the convergence
of the series on the left-hand side of (1.3). Now assume that (1.3) is valid for all such
ci with 0 _-< k =< N for some integer N. Consider the case k N+ 1. If kl 0 or k2 0,
then (1.3) is a consequence of Lemma 2.27. If both kl and k2 are positive, then (1.3)
follows from the induction hypothesis and Lemma 2.7. By induction this proves that
(1.3) is valid whenever CiCi+2---q-k,, i--1,2, for all nonnegative integers ki (assuming
no denominators vanish).

Both sides of (1.3) are analytic functions in the variables c-, 1 =<i<4.= In each
variable c-, (1.3) is satisfied on a set of points with a limit point in the domain of
convergence. By analytic continuation, (1.3) is valid for all c, 1 =< =< 4, in the domain
of convergence [q-3 H2 )2= (b/a 1< 1. We also eliminate the assumption that ccf # q
by analytic continuation. This completes the proof of Theorem 1.1.

Remark 2.32. It should be mentioned that the analytic continuation argument
used here is related to one used by Ismail [13] in an elementary proof of Ramanujan’s
lql summation theorem. Milne [18] gives a generalization of Ismail’s argument for
basic hypergeometric series in U(n).

3. Proof of Theorem 1.7. In this section we will prove Theorem 1.7 We first prove
the convergence condition Re(2

__
(fl-ai))> 3 for the series in (1.9). Then we will

prove (1.9) by taking the limit as q 1 of a terminating case of Theorem 1.1. An
application of Carlson’s theorem [6, p. 39] gives the general result.

To show the convergence of the series in (1.9), we follow an argument similar to
the proof of the convergence of the series in (1.3). Given tL such that t=

nao+n202+ n3(o with r/l, n2, n3 r, then there is a permutation tr of {1,2,3} such
that =/101)-/2qgr(3), where ll na)- tier(E) and 12 n2)- tl,r(3) with ll, 12 -> 0. As in
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(2.3), it follows that

(3.1)

With as above, also observe that

(3.2a)
I(Zl + tl- z2- t2)(-zl- t, + z3 + t3)(-z2- t2 + z3 + t3)l

<= kl(/1 d- 1)(/2 + 1)(/1 d-/2+ 1),

(3.2b)
1(-2zl 2fi + z2+ t2 + z3 + t3)(z1 -[- tl 2z2 2t2 + z3 + t3)

(--Z t z2 t2 + 2Z3 + 2t3)1 <- k2(11 + 12 + 1)3
for some constants k, k2 => 0.

From (3.1) and (3.2a, b) we see that the series in identity (1.9) converges absolutely
if, for all tr $3, the following series converges absolutely:
(3.5)

(l + 1)(/2+ 1)(/1 +/2+ 1)4
!1,/20

2 {(Oli4l. Ztr(1)__Ztr(2))l
= (13 + z,<)- z=<:))

(3.3)
(1 -#, +z-z)(a! +z: z3)!1 -/, +z: z)
(1 a, + z,(1)- Z(E))t(fli + z,2- Za)t2(1 a, + z2- z3)12

(a +z-z)t//,_(1 -/3 +z-
(i "]" Zo’(1)- Zo’(3))t+12(1 Ol + Ztr(1 Zo.(a))tl+12J[

Using the classical identity

nXr(n)
(3.4) ,,-,lim F(n + X) 1,

then the series (3.3) converges absolutely if and only if the following series converges
absolutely:

(11 + 1)(/2+ 1)(/a +/2+ 1)4 2
/1,12OE (ll -t- 12 q- 1)2(t+t-,-,,:) i=lll

(O + Ztr(1 Ztr(2))/l (1 --/3, + Z,(1) Z,(2)),,(a, + Z,(2) Z,(3)),(1 --fl, + Z,(2 Z,(3))/:
t (/3, + z,- z2),, (1 a, +z-z),(/3, +z:-z)(1 a, +z-z)"
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Assuming that Re(2 2
i=1 (/3i-a))>3 and using (3.4) again, then the series (3.5)

converges absolutely if the following series converges absolutely"

{ (11+1)2 "[ { (12+1)2 /
/t0 /2>--0

The convergence of (3.6) is implied by the assumption Re (2 ,2.= (/3- a)) > 3. There-
fore under the same assumption the series in (1.9) converges absolutely.

We will now prove Theorem 1.7. The proof is quite similar to that of Theorems
8.3 and 8.9 of [10]. Set

(3.7a) Ol --Ol

(3.7b) i 1 + ’i "- zi- Zi+l

for 1, 2. We will assume that

(3.8a) Re (a), Re (fl) => 0
for 1, 2 and

(3.8b) zjeR, 0-<zj<1/4
for 1 =<j _-< 4. Then for a nonnegative integer r and 1 <-j, k-< 3, j k, we have

(3.9) -’ + zi + +Zi+ Zj Zk r

1 + a- z + gi+ "" Zj Zk "Jr- r
<1

for 1, 2 and a similar relation for/3. It follows that

(3.10) I-[
j,k--<__3
jk

I(-a + zi zi+ + z Zk)t-tkl < 1

for 1 2 and e L, with a similar relation for /3’ Hence if we choose some a’i" i,

1 < --<_ 2, and fix all other parameters a, j # i, and/3, fl_, z, z2, and z3, then we have

(3.11) Re (2(/31 +/32- %)) Re (4+ 2(fl + fl + aJ)) > 3.

By a slight modification of the argument above showing convergence of the series in
(1.9), it follows that the series in (1.9) is uniformly and absolutely convergent for
Re (a’i) >_-0 and is regular and bounded in the variable a’ for Re

Using Stirling’s formula

F(a + s) s’+s-/2e-S( l + 0())
as s oo in So {s: larg sl < 0}, 0 < 0 < m and a, s C, we can show that under condi-
tions (3.8a, b) the right-hand side of (1.9) is regular and of polynomial growth in the
region Re (cl) >- 0 as a function of the variable a. There is a similar statement if we
choose the parameter fl’ 1 < < 2, and fix the other parameters/3 j i, and a c
z, z, and z3. Subject to (3.8a, b), the series on the left-hand of (1.9) will be regular
and bounded in the region Re (/3’i)>0= as a function of the variable /3’. Also the
right-hand side of (1.9), as a function of fl, will be regular and of polynomial growth
in this region.

Now set

a] q-k+z-+,, b ql+5+-z/

for j 1, 2 in (1.3), where the kj and n are nonnegative integers. Then the left-hand
side of (1.3) reduces to a finite sum of nonzero terms as the series terminates in both
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directions in all summation indices. Similarly, the right-hand side of (1.3) reduces to
a quotient of finite products. Taking the limit of (1.3) as q- 1 with these assumptions,
we obtain the special case.of (1.9), where a kj and flj nj forj 1, 2 and nonnegative
integers kg and ng.

With assumptions as in (3.8a, b), we choose a parameter t’i, 1 < <- 2, and fix the
other parameters, subject to the conditions a-kg for j i and fl =ng for j-1, 2,
where the kj and ng are nonnegative integers. Let F be the difference between the left-
and right-hand sides of (1.9). (The choice of sign is unimportant.) We view F as a
function of a’i, as regular in the region Re(a)>0,- and as vanishing when a’-
0, 1, 2,. .. By Carlson’s theorem [6, p. 39], F is identically zero as a function of t’i.
Repeating this procedure for the parameters a and fl successively, we remove the
restrictions that a k and fl-n for nonnegative integers k and nj. Finally, by
analytic continuation the restrictions on the parameters zg, 1 <_-j <_-l, are removed. It
follows that F vanishes identically as a function of all the parameters tg, fl, and
when it is defined and converges. This completes the proof of Theorem 1.7.
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ERROR BOUNDS FOR A UNIFORM ASYMPTOTIC EXPANSION
OF THE LEGENDRE FUNCTION Q/(cosh z)*

C. L. FRENZEN

Abstract. For fixed m with rn + 1/2 > 0, an asymptotic expansion for large n is obtained for the Legendre
function Q"(cosh z) that is uniformly valid for z in the unbounded interval [0, ). This method is based
on an integral representation of the function. The coefficients in the expansion satisfy a recurrence relation,
and simple computable bounds are provided for the error terms associated with the expansion.

Key words, error bound, uniform asymptotic expansion, Legendre function

AMS(MOS) subject classifications, primary 41A60, 33A45

1. Introduction. Recently several authors have obtained asymptotic expansions of
Legendre functions directly from their integral representations. The derivation of these
expansions provides an alternative to Olver’s differential equation approach, which
gives asymptotic expansions of P"(cosh z) and Q’(cosh z) for large n and fixed
rn -> 0 that are uniformly valid for z in a complex domain containing the interval [0, )
[3, Chap. 12, 12, 13]. Olver also provides numerical bounds for the error terms
associated with these expansions.

Ursell [7] has given an alternative derivation of these expansions from integral
representations of the Legendre functions, and has presented a new method for
constructing error bounds. His bounds, though, are not computable and are valid only
for bounded complex z. Starting from an integral representation Shivakumar and Wong
[6] give an asymptotic expansion of P"(cosh z) for real z and fixed m, m +1/2 > 0, and
construct error bounds comparable to those given by Olver, computable and uniformly
valid for z in the infinite interval [0, ). Although it is capable of deriving an asymptotic
expansion for the other Legendre function Q"(cosh z), their method could not provide
error bounds.

In this paper, we provide computable error bounds for an asymptotic expansion
of Q"(cosh z) obtained from an integral representation. These bounds are uniformly
valid for z in the infinite interval [0, ). Our expansion differs from, but is equivalent
to, those given by Olver [3, p. 465] and Ursell [7]. More precisely, we show that for
m + 1/2 > 0, n m + 1 > 0, and for any positive integer p

d(z) lm+r,
3I- Ep(Z U)(1 1) emiQ-m(cosh z) sinh z

where u n+1/2 and K(z) is the modified Bessel function. The coefficients d(z) are
analytic functions of z, and can be obtained recursively. The first three are given by

(1.2) d0(z)=l d(z) r(m+)( )zcothz-1F(rn + 1/2)
rn

2z

dz(z)
F(m +){_( )[ 3 3 ] 1( )( )((1 z coth z):Z)}"JI-

Z2 Z Z
2F(m+) m 1 m--cothz + m- m-

The error term ep (z, u) satisfies the inequality

(2z) K.,+,(uz)F(m+p+1/2) P

(1.3) leP(z’ u)l<- r(m+) 2+z
Mp u.,+,
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for -1/2 < m =< 1/2, and

(1.4) lep(Z, U)l<F(m+p+1/2)(22z )P K,,, ([u-(m-1/2)]z)
F(m +1/2) + Z

Mp e-(m-1/2)z +P

[u -(m 1/2)]m+v

for m > 1/2, where 0 =< z < oo and n > -1/2. Note that since n m + 1 > O, u (m -1/2) > O.
Mv is a computable constant independent of u and z, and the first three are

(1.5)

Im-1/21 Im-1/211m-lM=lm-1/2l, M2- -2 2

Im-1/21 Im-1/21 Im- l Im-1/21 Im -11m -1M3_q -6 2 6

Regarding the form of the bound in (1.4), later we show that for m > 1/2,

(1.6) l<e-(m-1/2)zKp+m([U-(m-1/2)]z)[u]p+m

Kp+m(UZ) u-(m-1/2)

for z in [0, oo). Equation (1.6) implies that

(1.7) e-m-/2)ZKp+m([U-(m-1/2)]z) gp+m(tlz)(1 + o(1))

uniformly for z in [0, oo) as u c.
Expansion (1.1) can be rearranged to agree with those obtained by Olver and

Ursell, but, in doing so, the simple estimate for the remainder given in (1.3) and (1.4)
is lost. A comparison of our results with those of Olver and a discussion of our bounds
is given in the final section of this paper.

2. Derivation of the expansion. For m + 1/2 > 0 and u m + 1/2 > 0 we have the integral
representation [1, 3.7]

()’/2 (sinh z)-’ I(2.1) emiQm(cosh z)=
F(m +1/2) e-Ut(cosh t-cosh z) m-l/2 dt

where u n +1/2. As in [6], we first obtain a series expansion for the integrand in (2.1).
Beginning with the result [8, Form. (3), p. 140]

cos 4z2- 2zO Z Jm-1/2(Z)(2.2)
m=0

valid for all complex 0 and z, we replace z by iz and 0 by iO in (2.2) to obtain

cosh 0 2
(-. m

I-/()"

Here J(z) and/(z) are the Bessel functions of the first kind and the modified Bessel
function, respectively, and J(iz) ei/2L(z). Putting z2- 2zO 2 in (2.3) and recalling
that

cosh , I/2() sinh

then yields

sinh z t2 2(2.4) cosh t-cosh z-
2z

g2) Z )v(g)(-g2)
,---0
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where Co(Z) 1 and

1 L+/(z)
,>-1.(2.5) (z) =2(+ )! z%/(z)’

Note from (2.5) and the asymptotic behavior of Iv(z) as z-> (see [3, p. 251)] that

(2.6) (z) O(z-) (z ).

The expression

(2.7) (cosh t-cosh z)-/= (sinh z)
k 2z / (t2- z2)-’/ =oE (z)(t- z)

now follows immediately for sufficiently close to z, where the coefficients ,(z) satisfy
the recurrence relation

(2.8, +,(z)= [(m-) j (m+)]+,_(z,(z),=o +1

u=0, 1, 2,..., with o(Z)= 1 (see [4]). As in [6],

( ),-z cot z
(2.9) (z) m z

(.0)
1 coth Z)32

Note from (2.6) and (2.8) that

(. (

We now introduce the remainder (, t) defined by

(2.12) (cosht-coshz2)z sinh E (z)(t:- z:)+(t-z)vap(z, t),
0

Inseaing (2.12) into (2.1) and using the formula (see [8, 6.3, p. 185])

(2.13) K(uz)
F(+) z

e-’(t- z)-/ dr,

then yields

(2.14) e’Q-m(cosh z) ih z
d(z) u+, + ep(Z, u)

where

(2.15) (z, u)=
7r
/2 fz e-"t(t2- z2)’+m-1/:Av(z, t) dt.(2z)"r(m+1/2)

The coefficient d(z) is given explicitly by

r(m+ u+1/2)
(2.16) d(z)

r(m +1/2)
(2z)"q’"(z)

t>--_z.
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(see (1.2)) Note from (2.1) and (2.12) that when m=1/2, dj(z) and ej(z, u) are both
zero for all j => 1.

In the following sections we will show that, for -1/2 < m _-< 1/2,

M, > z,(2.17) lAp(Z, t)l--<
(2 + z)-7’

while for rn > 1/2

Mp -1/2)(2.18) lAp(z, t)l =<
(2 + z)-7 e’-z)< >- z

where Mp is a computable constant independent of u and z explicitly given in (4.10).
The first three are given in (1.5), the desired estimates in (1.3) and (1.4) now follow
from (2.13), (2.15), (2.17), and (2.18).

3. Some preliminary results. To establish the estimates in (2.17) and (2.18) we
will study the function

(3.1) o’(z, t)
2z (cosh t- cosh z)sinh z 2- Z

2

for => z, with o-(z, z)= 1.
LEMMA 1. For >--_ z,

(3.2)
(tr(z, t))m-1/2<--__ 1, -1/2< rn <--_1/2,

(O’(Z, t))m-1/2< e(t-z)(m-1/2) m > 1/2

Proof. From the identity

(3.3)
cosh cosh z 1

2- z2 2

sinh (t-----z) sinh(-)

it follows that

z sinh(--)l sinh()/(3.4) cr(z,t)=
sinhz (t+ I (t2z) ].

Each term in parentheses in (3.4) is greater than or equal to one for => z, yielding the
first inequality in (3.2). For the second, we again use (3.3) to conclude

(3.5) o-(z,t)=(e)
inhz t+z t-

Since the function (1- e-)/0 decreases monotonically from one for 0 in [0, oo), for
_-> z (3.5) implies

(3.6) o-(z, t) N (e)
sinh 2

and this gives the second inequality in (3.2).
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From (2.4) it follows that tr is a function of 2- 2’2. Denoting this function by G
and putting x 2- z2 with x >-0 for _>-z, we have

(z, t)= G(x)=- E 6.(z)x
v=0

(3.7)
2z cosh x/z2 + x- cosh z

sinh z x

In what follows it will be convenient to temporarily replace z by x/ in studying G.
Consequently, x becomes t2-z, where t_-> x/. After we have obtained the required
results we will again replace x/ by z. So, from (3.7) we will study the function

2x/ cosh /z + x- cosh
E (,/)x, x -> 0.(3.8) G(x)

sinh x/ x --o

Equation (3.8) implies that

2x/ xk

E h(k+’)(z)(3.9) G(x)
sinh x/ k=o (k + 1)

where h(z) coshv and the Maclaurin series expansion of cosh v/z + x has been used.
LEMMA 2. With h (z) cosh v/, r 0, 1, 2,. , and z >-_ O,

(3.10)

Proof. With

h(r+l)(z)h(r+l)(z) > h(r)(z)h(r+2)(z).

zk
(3.11) h(z) cosh x/= k=EO (2k)
and

d r(k+l)
Z
k k-r(3.12)

d2" -F(k-r+l) z

we have

F(k+ 1) zk-h()(z) k_- r(k- r+ 1) r(1)

(3.13) E
F(r+j+ 1) z

=o r(j + 1) F(2(r +j) + 1)

,/T
1/2 zjg22 22Jj,F(r+j+)j=

where the duplication formula for the gamma function has been used in the last equality
in (3.13). From the latter equation it follows that h(0)>0, while

h()(0) h(+l)(0) [ 1 1 ](3.14) h(*+)(0) h(+2)(0)=24+’F(r+)F(r+) r+ r+ <0

for r=0, 1, 2,..., where the veical lines in (3.14) indicate a determinant. These
results can be combined by writing

h()(0).., h(r+k)(O
(3.5) e h+)(O).., h+2)(O) > O, k O, 1, r O, 1, 2, 3,.
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where eo 1, e1=-1. We now employ the following result from Theorem 8.4 of
[2, p. 84].

LEMMA. Supposef(z) has apower series expansion about the origin that is convergent
for zl . Iff(z) satisfies

f(t)(O) f+l(o) fr+k(o
f(r+l)(0 f(r+k+’)(O

ek

f("+k)(O) f(r+;k>(O)
>0

for r=0, 1,2,..., k=0, 1,2,..., n, where eo, e, en is a prescribed sequence of
plus or minus signs, then

f(r)(z) f(r+l)(Z f(r+k)(z
f(r+’)(Z f(r+k+l)(z

>0ek

f(r+k)(z) f(r+2k)(z)
for O <--_ z < p, k O, 1, 2, n, r O, 1, 2,

With p=c, n= 1, f(z)= h(z)=coshx/, eo 1, el=-l, the above lemma and
(3.15) allow us to conclude that

h(r)(g)
(3.16) h/(z)
for z=>0, r=0, 1,2,..., and this is (3.10).

Inequality (3.10) implies

h/:(z)
h(r+l)(2)

forz--O, r=O, 1,2,...,sothat

h(r+l)(g)
h(r+2)(z) >0

h(r+l)(g)
h(r)(z)

(3.17)
h(r+k+l)(z)

for z >_- 0, r > 0, and k >_- 1. In (3.17) the product of the first k terms on the left (setting
r+ 1) is strictly less than the product of the last k terms on the right (setting k).

Canceling numerators and denominators and admitting the possibility that r 0 or
k 0 then implies

(3 18)
h(r+k+l)(z)

<
h(k+i)(z)

h(r+l)(z)-- h(1)(z)
for z>=O, r>=O, and k>_-O.

Let

(3.19) Ar(z) (r+ 1)b(v/)
where Ct is defined in (2.5). The inequality in (3.18) now gives the following result
for G defined in (3.8).

LEMMA 3. For all z > O, >- 0 and r O, 1, 2,

G(r)(s)
=at(z)(3.20)

r! G()

where At z is given in (3.19).
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Proof. From (3.9) and (3.12),

h(r+k+l)(z) k(3.21) G(r)(:)
k=O r+k+l kl’

while from (3.8) and (3.9) it follows that, since h(l(z) sinh v//2x/,

(3.22)
h(+l>(z)
=(r+1) br(X/) rlAr(z).

Therefore

(3.23)

By (3.18) the series in the denominator on the right-hand side of (3.23) is a majorant
of the series in the numerator, and this gives (3.20).

Finally, we establish some upper bounds for A(z). From (3.19) and (2.5)

(3.24) A(z) (r+ l)b(x/)
r (2x/)’I,/E(X/)

Because L+l/2(x/) -< I1/2(x/) (see [3, p. 251]), it follows from (3.24) that

(3.25) A,(z) _<-
r!(2x/)’"

From the power series definition of Iv(z) [3, p. 60] and the result

F(r+l) 1

for r=0, 1,2,..., s=0, 1,2,..., an argument similar to that for (3.23) applied to
(3.24) yields the following inequality:

1
(3.26) A,(z) -<_

22,(r!)2.

For 0 -< x/_<- 2, 2 + x/-< 4 and (3.26) implies

(3.27) A,(z) <-
(2 + x/)’(r !)2"

For v/_-> 2, 2x/-> 2 +x/ and (3.25) implies

(3.28) A,(z)_-<

Together, (3.27) and (3.28) give

(2 + x/)’r !"

(3.29) A,(z) <_-

for all z _-> 0, r 0, 1, 2, .
(2 + x/)’r !’
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4. Proof of (2.17) aatl (2.18). Changing z to x/ in (2.12) and recalling the definition
of G in (3.8) gives

p-1

(4.1) (G(x)) m-1/2--

,=o

where

(4.2) rp(x/, x) Ap(V, x/x + z).

We now use di Bruno’s formula for the nth derivative of a composite function (see,
for example, [5, p. 34])"

d p p

(4.3) xpf(g(x)) E fk)(g(x))Apk(gl)(x), g2)(X), ", gP)(x)), p >= 1
k=l

where f(k) denotes the kth derivative of f and the coefficients Apk (which do not
depend on f) are given by the formula

p (g(1)(X) mt.. (g(P)(x) mp
(4.4) Apk(g()(X), g(P)(X)) =E

ml m2 !’’" mp "li / p! /

The summation in (4.4) extends over all nonnegative integers m, m2, mp satisfying

(4.5) m+ m:+. +mp k, m+ 2m2+" + prop p.

Taylor’s theorem applied to (4.1) now implies that there exists a : between zero
and x such that

(4.6)

1 d p

r(q, x) (( G(s))-/)
p! dsp

_1_ r(m+1/2)
p’ F(m +1/2 k)

where (4.3) and (3.12) have been employed. From (4.4) and (4.5), (4.6) can be written
as

(4.7) rp(v/, X) (G()) m-l/2

k=l

r(m+1/2) ,( \i
r(m+1/2-k) ’ m, !m2!

where, for each k, the inner sum in (4.7) sums over the solutions of (4.5). From (3.20)
and (3.29)

(G(r)()) "r 1 1
< (Ar(z))"r<(4.8)

\r!G()] -(r!)

Using (4.8) and (4.5) in the inner sum in (4.7) and taking absolute values then implies

(4.9) IrP(x/’ x)l--<
(2 +vc) p Mp
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where

r(m+1/2)
(4.10) Mp , , ;-.

k---1 F(m +1/2- k) ml m2. mp

with, as before, the inner sum satisfying (4.5). The first three Mp’s are given in (1.5).
Noting that 0_<- sc-<x in (4.9) and that x t2-z, there exists some tl, x/ -<- tl-< t, so
that s= t-z. With (3.7) and (4.2), (4.9) becomes

(o-(x/, tl)) "-’/2
(4.11) lap(v, t)l--<

(2 /4)p Mp.

Now replace by z. If-1/2< m-<1/2, then (3.2) in Lemma 1 gives (2.17). On the other
hand, if m > 1/2, the fact that => t implies

(4.12) r(z, tl) G( tl- z) _-< G( - z) or(z, t),

since G is an increasing function by (3.8). Lemma 1, (4.11), and (4.12) then yield (2.18).

5. Proof of (1.6) and comparison with Olver’s result. From [8, p. 206], with x > 0,

(-f-x) ’/ e-X fo (-x)(5 1) K(x)
7r e-’t-1/ 1+ dr,r(+1/2)

so that, for z > 0,

(5.2) /(uz)=
r

while

F(p+ m+1/2)
e-’tp+’-/ 1+ dr,

e-(m-’/2)zgp+m u- m- z
2[u-(m-1/2)]z F(p+m+1/2)

(5.3)
p+m-/

e-’t+’-1/ 1 +2[u-(m-1/2)]z dr.

From (5.2) and (5.3) it follows that for m >1/2

(5.4 < e__/ +([u-(m-1
+(uz)

Since, for v O,

(s.s) K(z)r()(z) (z

[3, p. 252], (5.4) holds for z in [0, ). Multiplying both sides of (5.2) by (uz) p+ and
both sides of (5.3) by [u-(m-)]v+ implies

(5.6) (uz)V+mKp+m(UZ) ([u-(m-)]z)v+m e-(m-1/2)ZKp+m([u -(m-)]z),
or

(5.7)
e-(m-1/2)ZKp+m([U-(m-1/2)]z) ( u p+m

Kv+,(UZ)
<

u-(m-1/2)]

As z0/, the inequality in (5.7) becomes an equality (see (5.5)). When we take this
possibility into account, (5.4) and (5.7) give (1.6) for m>1/2 and z in [0, c).
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It is difficult to compare our result to earlier ones. Ursell’s bounds [7] break down
when zbecomes unbounded. Olver [3, p. 465] provides a uniform asymptotic expansion
with error bounds for Q’(cosh z) for large n, fixed m >-0, and z in a complex domain
containing [0, o), whereas we have provided a uniform asymptotic expansion with
error bounds for Qm(cosh z) for large n, fixed m +1/2> 0, and z in [0, m). Although
the connection formula (see [3, p. 178])

-2mi F(n m + 1)
(5.8) Q"(cosh z) e Q"(cosh z)

F(n+m+l)

relates Qm(cosh z) and Qm(cosh z) the presence of the gamma function ratio makes
it difficult to compare our bound with Olver’s. Additionally, Olver’s expansion involves
only two Besssel functions, Km and K,/I, while our expansion involves all the Bessel
functions K+p, p 0, 1, 2, . Our expansion can be rearranged to agree with Olver’s,
but the simplicity of the error estimates (1.3), (1.4) is then lost. As in [6], our coecients
d(z) (given in (2.16)) are simple to calculate, and because d(z)= O(z), (z 0), our
expansion is useful for small z.

Perhaps the best we can do to compare the two expansions is to take the one-term
approximation that each gives when, in our expansion, -m 0. This occurs when

-< m 0, so if we substitute -m into Olver’s expansion, with 0-m <, we can
compare the two (see [6] for a similar comparison). In this case, the one-term approxi-
mation obtained from our expansion is (see (1.1) and (1.3) with p 1)

+e(, u)(5.9) eQ(cosh z)=
sinh z u

where

2z,(5.10) [el(Z, u)[--< 2 4- z
mE 1 K+,(uz)

U
m+l

Substituting -m -> 0 into the one-term approximation obtained from Olver’s expansion
gives (see [3, eqs. (12.13)-(12.15), with p =0, p. 465])

(5.11) emiQm(cosh z)=
1 + 1 u u

where we have used the fact that K_m(UZ)=Km(uZ) [3, p. 252]. In (5.11) 81 is a
constant satisfying

[ Im - lq(5 12) I1 --<hl(-m) Im 1/41 exp hl(-m)
2, 2. J

and

(5.13) 1’01’2(1/’U. z2)[--<_ a,(-m)K,.(uz)exp [al(-m)u Vz’{zB-"(z2)}] Vz’{zBa"(z2)}l,/m+l
where

(5.14)

(5.15)

X,(-m)= sup {2xI_.,(x)K.,(x)},
x(O,m)

zBm(z2)=-(m2-1/4)(cothz_)2
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and

(5.16) Vz,o{zB’(z2)}

Note that - -(sinh t)2
at.

(5.17) Vo,,:x){izn’m(g2)} IMP-1/41
2

Olver assumes that u n +1/2 is large enough so that [311 < 1. To ensure this, from (5.12)
it is sufficient to require that

rn
(5.18) hl(-m) <0.567.

2u

Since Vz,{gBm(g2)} Vo,{zBm(z2)}, from (5.17) and (5.18) it follows that

(5.19) exp[h(-m)u Vz’{zBm(z2)}] <2"

With (5.19), (5.13) may be written as

(5.20) IV"(U’ Z2)l
2Xl(-m)Km(uZ)

Vz,{zn(z)}
U m+l

Because of the presence of the variational operator (5.16) in Olver’s bound (5.20),
and the presence of the factor 2z/2+ z in our bound (5.10), Olver’s bound is more
effective for large z while our bound is more effective for small z. To see this, note
that for fixed m with -<m0, A(m) and (1 + 8)-1 are constants. First, suppose
uz > 1. From [3, p. 250],

e K(u) 0

Since m-l>O, (5.16) and (5.17) imply that

2

Consequently, for small enough z, the bound in (5.10) is better than the bound in
(5.20). However, when z is large, Vz.{zBff’(z2)} O(1/z) while 2z/(2+ z)= O(1) and
the situation is reversed. Now suppose that uz<= 1. If z is small, from (5.5) with
(m+l)>O,

1)2z
Km+,(uz)= 0 -i-" ](5.23)

2+z

For small z the variational operator (5.16) is O(1), and for -m>0 (5.5) again gives

(5.24) Vz,{zBm(z2)}Km(uZ) O(2-m-lF(-m),)(Ug)-m

while if-m =0 (from [3, p. 252]),

(5.25) Vz,{zn’ffm(z2)}Km(uZ O(-ln (uz)).

Because m+ 1 >-m (since m>-1/2), and -m=> m (since m-<0), comparing (5.23),
(5.24), and (5.25) reveals that for small z the bound in (5.10) is more effective than
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the bound in (5.20). On the other hand, if z is large and uz-<_ 1 (which is possible since
u n +> 0 is all we require), then

(5.26)

When -m > 0,

2z
2+z

(2mF(m +1))Km+l(Ug 0
\ iU---Z)--m+-q

(5.27) Vzo{zB-,,,(z2)}K.,(uz)= O(2-m-F(-rn))(Uz)-mz

while if-m 0, then

(-lnuz))Vz,{zB-" z)}Cm UZ o

Since uz<-l, (m+ 1)>-m and z is large, (5.26)-(5.28) indicate that for large z the
bound in (5.20) is better than the bound in (5.10).

To conclude, as in [6] we can assess the bounds in (1.3) and (1.4) for all rn by
examining the ratio R-"(z,u) of these bounds to the first neglected term

dp(z)K,,,+p(uz)/u "/p. If m =1/2 the expansion truncates after the first term and all the
rest are zero; see the remark following (2.16). If-1/2<m <1/2, using (1.3) and canceling
a common factor gives

(5.29) R;m(z, u)
Mp(2Z)’/(2 + z)’

(2z)Pp(Z)
where q,p(z) is defined recursively in (2.8), ql(z) and q2(z) being given in (2.9) and
(2.10). The above ratio is interesting because it leads to a comparison between the
maximum absolute value of the error bound for z in [0, ) and the maximum absolute
value of the first neglected term for z in [0, c); bounded z poses no problems. For
any specific rn satisfying -1/2<m <1/2 the maximum value of (2z)PIp(Z)[ in [0, ) can
be computed numerically. Since dip(Z) is analytic in [0, oo) and dip(z) O(z-p) as z -,this value is a finite nonzero number. On the other hand, the maximum value of
(2z)P/(2+ z)p in [0, c) is 2 p. Letting Rp denote the ratio ofthe maxima ofthe absolute

’--mvalues of the numerator and the denominator in (5.29) over [0, o), it follows that Rp
is finite for each p-> 1. It is also evident from (5.29) that the error bound in (1.3)
mimics the behavior of the first neglected term near both z 0 and z .

For m > , the ratio of the bound in (1.4) to the first neglected term is

(5.30)

( Mp(2z)P/_(__2_ +___z)P) ( e-(m-1/2)Zgp+m([U m 1/2)]z))R-m(z, u)
\ (2z)Pp(Z) Kp+m(UZ)

-(m-By (1.6) the middle factor in (5.30) is finite for all z in [0, o) and all p => 1 and the
same is also true for the last factor. By the previous argument, the ratio of the maxima
of the absolute values of the numerator and denominator in the first factor in (5.30)
over [0, c) is also finite for each p>- 1. Furthermore, from (5.30) and (1.6) it follows
that the error bound in (1.4) mimics the behavior of the first neglected term near both
z=0 and z=.

Finally, we remark that the presence of factors like u- (m -1/2)]-’/P) in the error
bound (1.4) frequently occurs in asymptotics (see [3, p. 89, (9.02)], for example), and
serves here as a reminder that two competing exponential factors appear in the integrand
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of the integral representation (2.1), one growing like e(m-1/2)t for rn >1/2, the other
decaying like e -u’.
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FUNCTIONAL INEQUALITIES FOR COMPLETE ELLIPTIC INTEGRALS
AND THEIR RATIOS*
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Abstract. Some functional inequalities satisfied by complete elliptic integrals of the first kind are
obtained. These inequalities are sharp and generalize the functional identity of Landen. A related inequality
is given for certain quotients of such integrals.
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GriStzsch ring
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1. Introduction. For 0 < r < 1 the functions

(1.2) E’(r) E(r’), r’=.,/1- r2

/2

(1.1) K(r)= (1-r-sinEt)-’/dt, K’(r)=K(r’), r’=/i-r2,

E(r) (1 1.2 sin2 t) 1/2 dt,
d0

are known as complete elliptic integrals of the first and second kind, respectively
[BF], [Bo], [BB2], and their values are listed in standard tables (e.g., [AS], [Fr]). The
special combinations

7r K r 2 zr 1
(1.3) /z(r)-

2 K(r)’
y(s)- r--

/x(r) s

are particularly important in quasiconformal analysis (cf. [LV]).
The elliptic integral K(r) satisfies the following basic identities due to Landen

[BF, = 163.01,164.02] (cf. [WW, p. 507]):

( 2x/ (i-r) 1
,((1.4) K\l+r]=(l+r)K(r), K =(l+r)K r),

while the function/z(r) satisfies the identities
2

/x(r,/z (l-r) r2

kc(r)---2/z (2x//x(r)/z(/1-r2)=’ r =--’ l+r/
(1.5)

(cf. [LV, Forms. (2.7), (2.9), (2.3), pp. 60, 61]). The first identity in (1.5) follows directly
from definition (1.1), while the other two follow from (1.4). It is also well known that

(1.6) log
1 4
</x (r) < log

/" r

for 0< r < 1 [LV, Form. (2.10), p. 61].
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In this paper we study some properties of the functions K(r) and /z(r). These
special functions are important in the theory of quasiconformal mappings in the plane
[LV] and in n-space [AVV1]-[AVV4], [Vu2]. In the present paper we prove certain
functional inequalities for K(r) and/x(r) by analytic arguments (mainly well-known
properties of K (r)). Our work is motivated in part by certain functional inequalities,
valid for higher-dimensional analogues of /z(r), which were proved in [Vul] by
geometric arguments. Our main results are as follows.

THEOREM 1.7. For r, a, b (0, 1), the functions K (r), K’(r) satisfy the functional
inequalities

(1.8) K(x/) < l + r)K r),

(1.9) (1 + r) K’(r) < 2K’(x/),

(1.10)
2v ) < 1 + x/-a-)K (x/-a-)K x/(l+a)(l+b)=

(1.11) 2K’
4(1 + a)(1 + b) -> (1 + x/-)K’(a-).

There is equality in (1.10) and (1.11) /f and only if a= b, while (1.8) and (1.9) hold
with equality at r O, 1, respectively, and (1.9) is asymptotically sharp at r O.

THEOREM 1.12. For a, b (0, 1),

( ob ) <_- 2u(4-).(a)+lx(b)<=lx
(1 +x/1 a:)(1 +x/1 b2)

In each case equality holds if and only if a b.
Throughout this paper, for t, [0, 1], t’ will denote x/l-t2, as in (1.1) and (1.2).

When the argument of the function is clear, we will frequently write K, K’ and E, E’
instead of K(r), K’(r) and E(r), E’(r). We will follow the relatively standard notation
of [LV].

2. Properties of the function K(r). The following differentiation formulas will be
useful in our work.

LEMMA 2.1. For 0 < r < 1,

(1)
d K’(r)
dr K(r) 2rr’2K(r)2’

2

(2) tx’(r) =4rr,2K(r)2,
where K (r), tz (r) are as in (1.1) and (1.3), respectively.

Proof. Formula (1) appears in [C, p. 217] and [E, p. 445]. It may also be obtained
from the differentiation formula for K(r) ([BF, 710.00], [Bo, p. 21]) and Legendre’s
relation ([BF, 4 110.10], [Bo, p. 25]). Formula (2) follows immediately from (1) and
(1.3). V1

THEOREM 2.2. As a function of r,
(1) K(r) is strictly increasing from (0,1) onto (7r/2, c). Moreover, fl(r)-=

K (r) + c log r is increasing if and only if c >- 0; there is no cfor which fl (r) is decreasing.
(2) K(r)+logr’ is strictly decreasing from (0, 1) onto (log4, 7r/2), and K(r)+

GG(Tr/4) log r’ is strictly increasing from (0, 1) onto (7r/2, o). Moreover, fE(r)-=
K(r)+ c log r’ is increasing if and only if c <- 7r/4 and decreasing if and only if c >-1.

(3) r’K(r) is strictly decreasing from [0, 1) onto (0, 7r/4].
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(4) Let f(r)--r’ exp(r2K/(E-r’ZK)), 0<r<l, and f(O)=eZ, f(1)-4. Then f is

strictly decreasing from [0, 1 onto [4, e2]. In particular, for 0 < r < 1,

4 < r’ exp (r2K/(E r’2K)) < e2,

and these bounds are sharp as r tends to one, zero, respectively.
(5) K(r)/log(4/r’) is strictly decreasing from (0,1) onto (1, 7r/log16), and

K(r)/log(e2/r’) is strictly increasing from (0,1) onto (r/4,1). Moreover, f3(r)=
K (r)/log (c/r’) is strictly decreasing ifand only if 0 < c <-4 and strictly increasing ifand
only if c >= e2. In particular, for 0 < r < 1,

log (4/r’)<-K(r)<-(Tr/log 16) log (4/r’),

(7r/4) log (e2/r’) <- K(r) <=log (e2/r’).

(6) r exp (TrK’/2K) is strictly decreasing from (0, 1) onto (1, 4).
(7) r-2(E-r’2K) is strictly increasing from (0, 1) onto (7r/4, 1).
(8) K(r)K’(r) is strictly decreasing on (0, 1/,/] and strictly increasing on [1/,/, 1).
(9) K(r)-2+ K’(r) -2 has its absolute maximum on (0, 1) at 1/,f.
Proof The first statement in part (1) follows directly from definition (1.1). For

the stronger statement we note by [BF, :710.00] that f(r) is increasing on (0, 1)

:> (E r’2K)/(rr’2) + c/r >= O, 0<r<l

:>-c <= inf {(E r’2K)/r’2:0 < r < 1} 0

:> c->_ O.

Similarly, fl(r) cannot be decreasing since this would require c <=-sup {(E- r’2K)/r’2:
0< r< 1}=-co.

The first monotonicity property in (2) was proved in [AV, Form. (2)], and from
this the limits f2(0+) and fi(1-) when c r/4 are clear. For the rest of (2) we note
that f(r) >= 0 on (0, 1)

:> E r’2K / rr’2) cr/ r’2 >= O, 0<r<l

:> c =< inf {(E r’2K)/r2:0 < r < 1} 7r/4

and f(r) <= 0

:c>=sup{(E-r’ZK)/r2: 0<r<l}= 1 [AV, Form. (1)].

For (3), letf(r) r’K(r)2. By [BF, 710.00] we may write f’(r) K(r)g(r)/(rr’),
where g(r)=(E-r’2K)+(E-K). But it is easy to see that g(0)=0 and g’(r)=
rK-rE/r’2<Oon (0, 1) [BF, 4710.04, 710.05], hencef’(r) < 0 on (0, 1). Clearlyf(0)
7r2/4 and f( 1 -) 0.

In part (4), if we let g(r)=logf(r) we get, after simplification [BF], g’(r)=
rK (E r’2K -2[(E r’2K (K E ]. Since E r’2K 0 (K E when r 0 and
since (d/dr)[(E-r’2K)-(K-E)]=r’-2(r’2K-E)<O, it follows that g’(r)<0 on
(0, 1) and that f is decreasing. The limit f(0+) e2 follows from [AV, Form. (1)]. For
f(1-)=4 it is sufficient to prove that limr_l[r2/(E-r’2K)-l]K=O, since by [BF,
4 112.01] we know that limr_l r’ er 4. First, as r tends to 1,

h(r)
E r’2K 1 K

E r’2K 1
E r’2K1-r- .] K r E + r’2K]K
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by [AV, p. 62, line 1]. But r’2K2O as r 1 by (3). So h(r)---(r--E)K as r- 1. Then,
by l’H6pital’s rule, [BF, #710], [AV, Form. (1)], and (3) we have

r2-E 2r-(E-K)/r [2-(E-K)/r]r’K(r- E)K
1/K -K-(E-r’2K)/(rr’2) -(E-r’2K)/r2

---[(E-K)/r 2](r’K)2 -r’2K (r’K2)2

K

Parts (6) and (7) and the first monotonicity property in (5) were proved in (1), (3),
and (4), respectively, of [AV]. The assertions about K(r)/log(e2/r’) in (5) follow
from the properties of K(r)/log (4/r’). The remainder of (5) follows from (4) since
f(r) =< 0 on (0, 1)

:>(log(c/r’))2f(r)=(log(c/r’))(E-r’2K)/(rr’2)-rK/r’2<-O, 0<r<l

:> c_-< inf{r exp ((r2K)/(E r’2K)): 0< r< 1}=4,
and

f(r)>=O, O<r<lCz>c>=sup{r exp(rK/(E-r’K))’O<r<l}=e2.
For (8), by [BF, #710.00] we have

d 1
d--r (K(r)K’(r)) =r [F(r)- F(r’)],

where
r/2 COS

2

F(r)=K’(E-r’2K)=r2K
o x/i r2 sin2

dt.

It follows from (3) that r’K(r) is strictly decreasing on [0, 1), and hence that r2K’(r)
is strictly increasing there. Thus F(r), as the product of two positive strictly increasing
functions, is strictly increasing on (0, 1). Hence F(r)- F(r’) is negative when 0 < r <
1/x/ and positive when 1/x/ < r < 1.

Finally, for (9), let G(r)= K(r)-2+K’(r) -, 0< r< 1. Then by [BF, #710.00] we
have

-2 [E- r’2K E’- r2K ’]O’(r) r- K------T--- K ’3

which is zero when r= 1/x/. It is easy to see that G’(r)=0 if and only if

r2K,3 /2 ((cos t)//1- r’2 sin t) dt

r’K / ((cos t)/x/1- r sin2 t) dt"
But the right side of this last equation is obviously decreasing for r (0, 1), while by
(3) the left side is increasing there. Since G(O+)=G(1-)=4/Tr2-0.4053<0.5818
2/K(1/x/)= G(1/x/), we have maXo<r<l G(r)= G(1/x/).

COROLLARY 2.3. For 0<r<l, K(r)<-(Tr/2) log(e/r’).
Proof From 2.2(5) we have

K(r)-log 7 --<log161ogs-log?=
or log (1/r’)

(l-log 4) <0. [3
log 16

Remarks 2.4. (1) Theorem 2.2(3) is a best possible result, in the sense that if c > 0
then f(r)= r’K(r)+c is not monotone on [0, 1). For we can then show that f’(r)
Kl+Cg(r)/(rr’), where g(r)=--r2K+(2+c)(E-r’K). Moreover, g’(r)=rh(r)/r’,
where h(r) =- (c+ 1)r’2K E. Then h(0) c7r/2> 0 and h(1) -1 < 0. Thus there exists
6 > 0 such that f’(r) > 0 on (0, 6) and f’(r) < 0 on (1 6, 1).
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(2) By combining Theorem 2.2(5) with the first transformation in (1.4) we may
easily show that K satisfies the inequality

(2.5) K(r) _-> --r log 4_r],
0<r<l.

This procedure may be repeated; the second time, for example, it leads to the inequality

(2.6) K(r) >=
(1 +/) log 2

1 -/]’
0< r < 1.

2.7. Proof of eorem 1.7. First we note that < 2/(1 + r) for r (0, 1). Then
since K is strictly increasing on [0, 1), (1.8) follows from the first identity in (1.4).
Since K’ is strictly decreasing on (0, 1], the second identity in (1.4) implies (1.9). The
equality statements for (1.8) and (1.9) follow from the fact that K(0)= /2 K’(1),
while the asseion about asymptotic sharpness is a consequence of [BF, 112.01].

For (1.10) we first observe that (l+a)(l+b)(l+) for a, b>0. Then it
follows from the first identity in (1.4) that

(.8 +]=(+(.

Again, since K’ is decreasing and (1 + a)(1 + b)(1+) for a, b >0, we have
by (1.4)

Since K is strictly increasing, there is equality in (1.10) if and only if the first two
arguments in (2.8) are equal, and it is easy to show that this occurs if and only if a b.
Similarly, there is equality in (1.11) if and only if a b.
CooA 2.9. For a, b (0, 1),

(1 + a’)(1 + b’) K(ab/((1 + a’)(1 + b’)))
< <1.

2(1 + a’b’) g(ab/(1 + a’b’))

Proo The upper bound is trivial since (1 + a’)(1 + b’) > 1 + a’b’. For the lower
bound, we have

K (l+a’)(l+b’)=K a’ ; >K
b’+ (+ (+a’(+

and the second identity in (1.4) yields

( a ( b’l -(a + b’l/( +
(l+a’)(l+; =K

l+(a’+b’)/(l+a

_! +
’
,

’’- +

2 l+a’b’
K

+a’b’

3. Properties f e fet . In [A3] we obtained some propeies of the
n-dimensional analogue of for all n 2. Now, using the explicit formula for (r)
in (1.3), we obtain some stronger propeies for the case n 2.
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3.1. Proof of Theorem 1.12. The second inequality is a special case of [AVV3,
Form. (1.24)]. Next, by [AVV3, Form. (1.22)] and the third identity in (1.5) we have

/Z\l+r/+/x l+s/<--_p(v/-).
Setting a 2x//(1 + r) and b 2x//(1 + s) then gives the first inequality.

Since this argument shows that the theorem is equivalent to [AVV3, Form. (1.22)]
when n 2, it is sufficient to prove the equality statement for [AVV3, Form. (1.22)]
with n 2. But by the third identity in (1.5) we have, with a cos (2x), b cos (2y),
x, y e [0, 7r/4],

/z(a) +/z(b) 2/z(,):> v/(1 + a’)(1 + b’) + x/(1 a’)(1 b’) 2

cos (x-y) l: x y c:> a b.

Remark 3.2. Alternatively, we could prove Theorem 1.12 by using derivatives of
elliptic integrals.

THEOREM 3.3. For 0 < r < 1,

,2

and for each integer k >- 2,

((1-;) 2k) < 22k_lTr2(3.5) 2k-17r2 </x (r2k)/x
1 +

The first bound in (3.5) is asymptotically sharp as r tends either to zero or to one.

Proof First, by the third and second identities in (1.5),

/z(r2)/z =2/z(r2)/z i+r2 7r2"

Next, suppose k 2. Then by (1.5), (3.4), and the fact that is strictly decreasing we
have

1-r 4 (1_r2)2 _r2 2

/x(r4)z ((l+r))=2/x(r4)/, (1 +,5],,/> 2/x(r4)/x ((ll+rZ)) =27rZ"

Next, for the upper bound, from Theorem 1.12 and (3.4) we get

((1,1,+--;)4) (1-r( )2)
Now suppose that n 2k, where k_->2 is an integer for which (3.5) is true. Then by
the third identity in (1.5)

since

(7)
for 0 <- l_-< n with equality only if 0 or n. The first inequality in (3.5) now follows
by the second identity in (1.5) and by mathematical induction.



542 G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN

Finally, for the upper bound in (3.5) we again use induction:

-< 4 22k-17r2

22(k+l)-l,rr2.
The asymptotic limits are a consequence of [AVV3, Lemma 2.6(2), (4)].

THEOREM 3.6. If 0 < r < 1 and m 2k, where k >= 2 is an integer, then

m </x(((1 r)/(1 + r))’)
< m2"

tz((1-- rm)/(l + rm))

Proof. The proof follows by (3.5) and the second identity in (1.5).
THEOREM 3.7. For 0<r<l, r’ log (4/r) < tx(r) <log (4/r). These estimates are

sharp as r tends to zero.

Proof. The second estimate is contained in (1.6). The first follows from Theorem
2.2(3),(5), which says that

Ix(r) 7r K’(r)
r’ log (4/r) 2r’K (r) log (4/r)

is strictly increasing from (0, 1) onto (1, o).
COROLLARY 3.8. For a, b (0, 1),

(3.9) /x (a) < 2/z (x/-d),

(3.10) / (x/-) <_- 2 v/(l+a)(l+b)
There is equality in (3.10) if and only if a b.

Proof For (3.9), divide (1.9) by (1.8). For (3.10), divide (1.11) by (1.10). The
equality in (3.10) follows from the third identity in (1.5).

4. Properties of the graph of/. The following lemma will be needed in this section.
LEMMA 4.1. Let g: [0, 1] [0, c) be continuous and (strictly) convex with g(O) =0,

and let g be differentiable on (0, 1). Then g(r)/r is (strictly) increasing on (0, 1].
Proof By the Mean Value Theorem,

dr r
g’(r)- ((r) g rl)) >0,

r

where 0 < r < r. [-]

The function introduced in the next lemma behaves very much like/x (cf. [AVV3,
Lemma 2.6, Cor. 2.8] as well as Theorem 4.3 below) and will be useful in the study
of

LEMMA 4.2. For 0<r<l let m(r)=-(2/Tr)r’K(r)K’(r). Then:
(1) m(r)/log r is a strictly decreasing concave function from (0, 1) onto (0, log 4).
(2) m(r)/log (1/r) is strictly increasing from (0, 1) onto (1, c).
(3) m(r)/log (4/r) is strictly decreasing from (0, 1) onto (0, 1).
(4) (log (4/r)- m(r))/r is strictly increasing from (0, 1) onto (0, o).
(5) log(1/r)<m(r)<r’log(4/r)<tx(r)<log(4/r).
Proof For (1) let f(r)= m(r)+log r. Then by differentiation [BF, 4710.00] and

by Legendre’s relation [BF, 4 110.10] we have
r/2 sin2

--f’(r) 4 K’(K E)- _4 rK’ dt,
7rr 7r o x/1 rE sinE
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which is positive and increasing on (0, 1), while f(1-)=0 by Theorem 2.2 and [BF,
# 111.02]. Moreover, by [BF, # 112.01] or [Bo, p. 21, Form. (20)] and the fact that

2 r,2K_ 1 -r2+ O(r)

([BF, #900.00], [Bo, p. 21]), we have

f(O+)=21imr’2K(K’+lgr)+l}mo(lg)(r-O 1) log 4.

For part (2), setting g(r)= m(r)/log (I/r), differentiating, and using Legendre’s
relation [BF, # 110.10] we get

7r
g’ ’K--r log (r)= 2E F(r),

2

where

F(r) log r +
r,2KK

2E’K -7r/2
Similarly, by [BF, #710.00, 710.02, 110.10],

2KK’ (K E)E’- r2KK
F’(r)

r (2E’K-Tr/2)2

where

(K E)E’- r2KK ’<- r2K(E’- K’) < 0

since K-E <r2K and E’<K’ on (0, 1) [BF, #110.06, 110.07]. Thus F’(r) <0, so that
F(r)> F(1) =0 for 0< r< 1. Since 2E’K> m this implies that g’(r)> 0 on (0, 1). The
limit as r tends to zero follows from [BF, # 111.02, 112.01]; the limit as r tends to one
follows from l’H6pital’s rule.

From (1) it follows that log (4/r) m(r) is a strictly increasing and convex function
from (0, 1) onto (0, log 4). Then (3) follows when we divide by log (4/r), and (4)
follows from Lemma 4.1.

Finally, because of (2), (1.6), and Theorem 3.7, we need only prove the second
inequality in (5). For this we define f(r)= log (4/r)-(2/Tr)r’KK’. Then writing

f(r) -(K’- log (4/r)) + K’(1 r’)+ r’K’(1 (2/r)K)
and using Theorem 2.2(2) and [BF, #900.00] gives f(0+)-0, while

1 1 2K’
f’(r) --+--+ [(K E)-(E r’EK)]

r rr’ rrr’
by [BF, #710.00] and Legendre’s relation. With g(r)=-(K-E)-(E-r’K), we have
g(0) 0 and

r r r,2Kg’(r) =-75- rK =-75 E )>0.

Thus g(r)>O on (0, 1), hence f’(r)>0 on (0, 1), and (5) follows. [3

THEOREM 4.3. (1) Thefunction I(r) is strictly decreasing, has exactly one inflection
point on (0, 1) and satisfies tz O+ -o (1 -).

(2) The function g(r) =/z(r) +log r is strictly decreasing and concave on (0, 1) and
satisfies g’(O+) O, g’( 1 -) -.

(3) The function h(r)=-/x(r)+log (r/r’) is strictly increasing and convex on (0, 1)
and satisfies h’(O+) O, h’(1 -) .
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(4) Thefunction tx r)/log (1/r) is strictly increasing but is neither convex nor concave
on (0, 1).

(5) The function/x(r)/log (4/r) is strictly decreasing and concave on (0, 1).
(6) The function 1//z(r) is strictly increasing and has exactly one inflection point

on (0,1).
Proof. The monotonicity in parts (1), (2), and (6) is well known ([LV, Lemma

6.3], [G1, Lemma 6], [A, 8,9]; cf. [AVV3, Proof of Lemma 2.6(1)]), and in the
others it follows from [AVV3, Lemma 2.6]. The limits /z’(0+) =-=/x’(1-) follow
immediately from Lemma 2.1 and Theorem 2.2. Next, let f(r)- r(1- r)K(r) be the
denominator function in the formula for/x’(r) in Lemma 2.1. By [BF, #710.00],

f’(r) K(r)[-(1 + r2)K(r)+EE(r)],
where E is as in (1.2). Then by [BF, # 111.02, 111.03, 111.05] or [Bo, p. 20] we have
f’(0/)- 7r/4 and f’(1-)--a3. The intermediate value theorem implies that there
exists at least one ro (0, 1) such that f’(ro)- 0-/z"(ro), and there is at most one such
ro because f’(r)/K(r) is strictly decreasing. Thus/z is convex on (0, ro] and concave
on [ro, 1).

For part (2), using Lemma 2.1 and [BF, 4 112.01] (cf. [Bo, p. 21]), we see that
g’(1-) -o, while Lemma 2.1, [BF, 710.00], l’HBpital’s rule, and [BF, 4 710.05] give

lim g’(r)=lim
4 (E(r)-K(r))=lim-4rE(r)

ro0 ro0 q].2-’ r0 7rr
t2 0.

Then by Lemma 2.1, [BF, #710.00], and the fact that K(r)>= 7r/2,
2

q]"

r2g"(r) <-4rr,K3 [(-2+ r4)K + 2E].

Let F(r) (-2 + r2 r4)K + 2E. Then F(0) 0 by [BF, 4 111.02], while

r’2F’(r) =-r[E- r’2K + r2(E + 3r’2K)] < 0

by [AV, Form. (1) ].
The limits in part (3) follow from part (2). Next, by Lemma 2.1,

h’(r)=r- 4K(r+l >0, o<r<l,

since K(r) > ’/2. For convexity it is sufficient to show that G(r) =- (1 ’2/(4K(r)2))/r
is increasing. It is easy to show that G’(r)>0 if and only if (2(r)-r’2K(r))
4K(r)3r’2/r2> 0. But this follows from Theorem 2.2 and the fact that

d
rrr (2E(r)- r’2K(r)) E(r)- r’2K(r) > 0

for 0<r<l [BF, #710.04, 710.02]. Hence part (3) follows.
Next, for part (4),

d (i(r) ) r2((2/r)r’2KK’-log (l/r))

By Lemma 4.2(1) this has limit as r tends to zero, while Lemma 4.2(2) and Theorem
2.2 show that it tends to as r tends to one; thus pa (4) follows.

For pa (5) we write

d[ (r) 1 log(4/r)-(2/)rr’2KK
-d Jlog(4/r) = r’2KE(log (4/r))2" r

which is increasing by Theorem 2.2 and Lemma 4.2(4).
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Finally, for part (6), by Lemma 2.1 and [BF, 4710.00] we have

d2 1 27r
dr (r) r2r’4K’(r)3 [2E’(r)- r’2K’(r)].

Since 2E ’( r) r’2K ’( r) is a strictly increasing function from (0, 1) onto (-oo, 7r), part
(6) follows by the intermediate value theorem.

Remarks 4.4. (1) The monotonicity of the function in Theorem 4.3(3) is stated
by Gehring in [G2].

(2) Although/x(r) has been shown above to be neither convex nor concave on
(0, 1), we now establish the interesting fact that the function/x(1/s) is concave and
its reciprocal is convex on (1,

THEOREM 4.5. As functions of s on (1,
(1) tx (1/ s) is concave;
(2) g(s)=- iz(1/s)/log s is convex;
(3) h(s)m ix(1/s)/log (4s) is concave.

Proof. For part (1), let f(s) =/x(r), where s 1/r. Then by Lemma 2.1,
,/T2r

f’(s) =4r,2K(r)2;
by Theorem 2.2 this is an increasing function of r, hence a decreasing function of s.

For part (2), set r= 1/s and F(r)= g(s). Then
dr 7r2r((2/r)r’2KK’-log (l/r))

-g’(s) -F’(r)
ds 4r’2K2(log (l/r))2

r [(2/)r’KK’ J-4r’2Kig(1/r.) log(l/r)
-1

which, by Lemma 4.2(2), is increasing as a function of r, and hence is decreasing as
a function of s.

For part (3), set r 1 / s and G(r) h (s). Then
dr 7r2r(log (4/r)-(2/r)r’2KK ’)

h’(s)=G’(r)
ds 4r’2K2(log (4/r))2

which, by Theorem 2.2 and Lemma 4.2(1), is increasing as a function of r and hence
decreasing as a function of s.

LEMMA 4.6. Let f: I (0, oo) be twice differentiable and concave on some interval
I c R 1. Then 1If is convex on L

Proof. Let g(x)= 1If(x). Then

g"(x)
2(f’(x))Z f"(x)
f(x)3 (f(x))2>=0

since f"(x) <- O.
COROLLARY 4.7. The function y(s) is decreasing and strictly convex on (1,
Proof The proof is an immediate consequence of Theorem 4.5(1) and Lemma

4.6.
Next we obtain estimates for/z(r) that improve on the inequalities

(4.8) log((l+v/-)2/r)<lx(r)<log(2(l+r’)/r)
due to Lehto and Virtanen [LV, p. 62].

THEOREM 4.9. For 0 < r < 1,

1
log

1 +v/+2x5 1 1 +v/+ x/2(1 + r’)
1-s/ </x(r)< log l_v/



546 G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN

Proof By means of a M6bius transformation we may map the plane Gr6tzsch
ring B2\[0, r] onto the symmetric ring D= B2(R)\[-1, 1], where R =(1 + r’)/r, and
by conformal invariance we have /x(r)=modD. Next, the function w=1/2(’+l/sr)
maps the circular annulus A {r. 1 < [’[ < p} conformally onto the elliptical ring E(p)
consisting of the set {w= u+ iv" u2/(p+ 1/p)2+v2/(p-1/p)2< 1/4} minus a slit [-1, 1]
in the u-axis. If we take pl+1/p1=2R=p2-1/p2, we have E(pl)c Dc E(p2), and
hence mod E(pl)<tx(r)<mod E(p2). Solving for Pl and p2 in terms of R and using
conformal invariance we obtain

1 + r’+ q’2r’(1 + r’) 1 + r’+ q’2(1 + r’)
(4.10) log </x(r) < log

As in [LV] we may improve (4.10) by combining these inequalities with the third
identity in (1.5), which is equivalent to/x(r) 1/2/x((1-r’)/(1 + r’)). In doing this we
obtain the desired estimates. It follows from the elementary inequalities (1 +x)2<
2(1 + x2) and (1 + x2) < (1 + x)(1 + x4) for all x (0, 1) that the upper and lower
estimates, respectively, in the theorem are better than those in (4.8).

4.11. Figures. To illustrate some of the results in this paper, we computed
numerically for 0< r < 1, using the recursive method of Gauss [BB2], [To] (cf. [Tr],
[As]). Figures 1-3 show graphs of several functions related to/x that illustrate Theorems
4.3 and 4.5.

FIG. 1. /x(r), 0<r--<_l, and/z(1/r), r> 1.

0,0

g

O,i

FIG. 2. f(r)=tx(r)/log(1/r), g(r)=tz(r)/log(4/r), 0<r<l.
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0. 0.6 0.8

FIG. 3. f(r)= tx(r)+log r, g(r)= tx(r)+log (r/r’ ).

5. Properties of the Teichmiiller capacity. The conformal capacity ofthe Teichmiil-
ler extremal ring is denoted here by -(t), > 0. It is related to the capacity of the plane
Gr/Stzsch ring (see (1.3)) by the functional identity [G1, 18]

(5.1) y(s)=2’(s2-1).

In this section we study inequalities and limits for ratios of such Teichmiiller capacities.
THEOREM 5.2. For 1 < A <c let f(s) ’(s)/z(As) for all s (0, c). Then f is

strictly increasing on (0, 1/x/-] and strictly decreasing on 1 /f-, c) with lim_of(s)
1 lims_,f(s). Consequently, 1 <-f(s)<-_f(1/x/) for all s(O, c).

Proof. If we set a 1//s+ 1, b-11, then by (5.1) and the fact that/z is
strictly decreasing we have f(s) tx(b)/tx(a) > 1.

Next, it follows easily from Lemma 2.1 that

/x2(a)f’(s)
16(1 a2)K(a)K2(b) [K(a)K’(a)- K(b)K’(b)].

In the case where 0 < s < l/A, i.e., 1/x/ < b < a, it follows from Theorem 2.2(8) that
f’(s) > 0, so that f increases. If 1 < s <, i.e., 0 < b < a < 1/,,/, then by the same
theorem we have f’(s)< 0, so that f is decreasing on [1, o).

Finally, we consider the interval l/A, 1 ]. We note first that, by the definition of
f and the first identity in (1.5),

/. (1/v/) /x(1/x/A + 1)
f(1/A) tx(x/A/(A+ 1)) /z(1/x/) =f(1).

Hence by the Mean Value Theorem there exists So (l/A, 1) such that f’(so)- 0. Since
A> 1, f’(so) =0 if and only if K(a)K’(a)=K(b)K’(b) if and only if b=a’ if and
only if So- 1/x/. Thus f has a unique critical point So 1/x/ (l/A, 1), and hence
f(so) is either the maximum or minimum of f(s) for s 1/A, 1].

We need only compare f(so) with f(1)-f(1/A). Setting x= v/-> 1, by (1.5) we
have

f(so)=f() =tx(1/x/x+l)
tz(4x(x + l))

4 ): 42=-(ix(1/x/X+ 1) =(/x(y))2,
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where y 1/x/x + 1 e (0, 1/x/). Next,

f(1)
/z(1/x/A+l) 2/z(1/x/X2,+1)= 2

(z)
/x (1/x/) 7r r

where z 1/x/X2 + 1. We let

g(xl=tX2(1/x/x+ 1) _/x2(Y),
/x (1//X-+ 1) /x(z)

noting that 0 < z <- y -< 1/d for x e 1, 00). Clearly g(1) 7r/2, and we need only prove
that g is increasing on [1, 00). Differentiating and simplifying, we get

i.:(z)g,(z)=’rr K’(y)
[K(z)K’(z)-K(y)K’(y)],

8 xEK3(y)K2(z)
which is positive since O<z<y<l/x/ for all x(1, 00). Hence g is increasing on
[1, 00), g(x)> g(1)= r/2 for all x(1, 0o), and we conclude that f(1/.,f-)>f(1)=
f(1/A). Iff’ were negative at some point of (l/A, 1/v), then by continuity f’ would
have another zero in this interval. This contradiction shows that f is strictly increasing
on 1/ A, 1/x/-]. Similarly, f is strictly decreasing on [ 1 //-, 1 ].

Finally, the limit as s tends to zero follows from (5.1) and lAW3, Lemma 2.6(4)],
and the limit as s tends to 00 follows from (5.1) and [AVV3, Lemma 2.6(2)]. l]

Remark 5.3. Theorem 5.2 enables us to replace the numerical bound 1.172 in
[LeVu, 1.2] by the exact constant z(1/x/)/’(x/)=(4/TrE)l.t2(x/v-l) 1.1712"..

6. Concluding remarks. Complete elliptic integrals have been tabulated and com-
pared to other functions during the past century (cf. [LF, pp. 208-213]). The usual
comparison function for K(r) is log (4/x/I-rE), and we relate our results to some
earlier recent work on this topic.

In 1984 Borwein and Borwein [BB1, p. 356, Prop. 2] proved that

4
(6.1) K(r)-log x/1--- _-<4(1 rE)K(r).

In 1985 Carlson and Gustafson [CG, p. 1072, Form. (1.1)] went on to show that

K(r) 4
(6.2) 1 < <

log (4/x/- r2) (3 + r2)
for r (0, 1). Note that the quantity between the absolute value bars in (6.1) is positive
by Theorem 2.2(2) and that (6.2) yields the following improved upper bound for it:

4 1- r2 4 1- r2
(6.3) 0< K(r)-log

x/1 r2-3 + r: log,,/1 r2=3 + r2
K(r).

Remarks 6.4. (1) Theorem 2.2(5) strengthens the Carlson-Gustafson inequality
(6.2) for 0-< r<x/(4/r) log 16-3=0.728....

(2) Some computational work that we have done supports the validity of the
following conjecture, which is motivated by (6.2):

9 K(r) 9.2

8+rE log(4/x/1-rE 8+r:
for 0<r<l.

(3) For 0 < r < 1, the double inequality

r2( 1 rE) K (r) 10.2
1+ < <

12 2r2 9 + r2log (4//i- r2)
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is true. The upper bound is due to J. S. Frame IF] in private communication, and the
lower bound is contained in the referee’s report of this paper.

Acknowledgements. The authors wish to express appreciation to Mr. John Pember-
ton of the University of Auckland for the computer-drawn graphs in this paper. We
thank the referee for bringing reference [CG] to our attention.
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT*

I. BABUKAt AND J. PITKRANTA*

Abstract. This paper studies the plate-bending problem with hard and soft simple support. It shows
that in the case of hard support, the plate paradox, which is known to occur in the Kirchhoff model, is also
present in the three-dimensional model and the Reissner-Mindlin model. The paradox consists of the fact
that, on a sequence of convex polygonal domains converging to a circle, the solutions of the corresponding
plate-bending problems with a fixed uniform load do not converge to the solution of the limit problem. The
paper also shows that the paradox is not present when soft simple support is assumed. Some practical
aspects are briefly discussed.

Key words, plates, Kirchhoff model, Reissner-Mindlin model, simply supported plate, plate paradox
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1. Introduction. The Kirchhoff model of a plate is usually accepted as a good
approximation to the three-dimensional model for thin plates. In the case of simply
supported polygonal plates, however, the Kirchhoff model"is known to suffer from
unphysical phenomena that can lead to a large error of the model in some situations.
In particular, the following paradox, referred to below as the plate paradox, occurs
[2], [4]. Consider a sequence {ton} of convex polygonal domains approaching a circle.
For each n, let wn be the transverse deflection corresponding to the Kirchhoff model
of the plate-bending problem, where the plate occupying the region tan is simply
supported on 0ton and is subject to a uniform load p(x)-1. Furthermore, let wc be
the solution to the limit problem, i.e., that on the circle. Then as n-> oo, the sequence
{wn} converges pointwise, but the limit woo is different from we. For example, at the
center of the circle the error of woo is about 40 percent. Some other related plate
paradoxes are given in [14], [15]. Practical implications occur, for example, in the
finite-element method when the domain is approximated by a polygon with sidelength
h->0. For further aspects see also [8], [18], [21], [23], and [25].

It is often assumed that the plate paradox is caused by the assumption of vanishing
vertical shear strains that is implicit in the Kirchhoff model. This has been supported,
e.g., by a note (see [3]) that the paradox is not present when the Reissner-Mindlin
model instead of the Kirchhoff model is used. The aim of this paper is to locate the
source ofthe paradox more precisely. We show that it is the way the boundary conditions
are imposed in the Kirchhoff model that causes the paradox, and not the overall
assumption of vanishing shear strains.

In the three-dimensional model of the plate, the boundary condition of simple
support is typically imposed by requiring that the vertical component of the displace-
ment (or at least its average in the vertical direction) vanish on the edge of the plate.
On the other hand, the Kirchhoff model effectively imposes the more restrictive
condition that all tangential displacements must vanish on the edge. Of course, it is
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also possible to impose such "hard" boundary conditions in other plate models, e.g.,
in the Reissner-Mindlin model (cf. [22]) or in the three-dimensional model itself. We
show that in such a case, the plate paradox occurs in both the Reissner-Mindlin model
and in the three-dimensional model. On the other hand, we also show that the paradox
does not occur in these models in case of "soft" support, where only the vertical
displacements are restricted on the edge ofthe plate. Hence, we are led to the conclusion
that the paradox is caused by the hard boundary conditions that are intrinsic in the
Kirchhoff model.

Our results are based on energy estimates relating the three-dimensional model
and the Reissner-Mindlin model to the Kirchhoff model. Such estimates can be derived
by combining the energy and complementary energy principles associated to the
plate-bending problem. They were, in fact, applied early by Morgenstern 16], 17] to
prove that the Kirchhoff model is the correct asymptotic limit of the three-dimensional
model as the thickness of the plate tends to zero. Although the assumption of a smooth
domain is implicit in Morgenstern’s work, we can easily extend the analysis techniques
of [16] to more general situations. In particular, we show here that in a sequence of
convex polygonal domains converging to a circle, the relative error of the Kirchhoff
model, when compared to the three-dimensional model with hard support, is uniformly
of order (h/2) in the energy norm, where h is the thickness of the plate. Moreover,
by similar techniques we show that the gap between Reissner-Mindlin and Kirchhoff
models is uniformly of order (h) under the same assumptions. Finally, we show that
on a smooth domain, the three models are at most (h/:) apart. Hence we conclude
that the plate paradox must occur in the hard-support models if h is fixed and sufficiently
small.

Let us mention that our results are in parallel with recent benchmark calculations
[7]. These calculations confirm, in particular, that the error of the Kirchhoff model
with respect to the three-dimensional model is primarily due to the assumed hard
boundary conditions on simply supported polygonal plates. For example, in the case
of a uniformly loaded square plate of thickness h -side length/100, the relative error
of the Kirchhoff model in energy norm is approximately 11 percent when compared
to the three-dimensional model with soft support, and approximately 2 percent when
compared to the hard-support model [7]. This example also shows that the error of
the Kirchhoff model may be quite large even for relatively thin plates of simple shape.

The results above show that imposing various boundary conditions that are
seemingly close, such as hard and soft simple support, can influence the solution in
the entire domain and not only in the boundary layer. Very likely such effects also
occur for other boundary conditions for both plates and shells. Therefore, since any
boundary condition is an idealization of reality, finding the "correct" boundary condi-
tions is an important and sometimes difficult part of building a dimensionally reduced
model. For example, both soft and hard simple support can be poor approximations
of the real "simple" support.

The plan of the paper is as follows. Section 2 gives the preliminaries and basic
formulations of the plate problems. Section 3 elaborates on the variational formulations
of the plate problems and presents various energy estimates. Section 4 addresses the
problem of the plate paradox. Finally, Appendices A, B, and C present some auxiliary
results needed in 3 and 4.

2. Preliminaries. Consider an elastic plate of thickness h that occupies the region
gl-to x (-h/2, h/2), where to RE is a Lipschitz bounded domain. We assume that
the plate is subject to given normal tractions p (i.e., the load) on to x {-h/2} and
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to x {h/2} and that it is simply supported on 0to x (-h/2, h/2) in such a way that if
_u (ul, u2, u3) is the displacement field, then

(2.1) u3(x) O, xeOtox --,
and the other two conditions are natural boundary conditions describing homogenous
(zero) components of tractions. Later this condition will be called the soft simple
support. If we assume for the moment that no other geometric boundary conditions
other than (2.1) are imposed, the plate-bending problem can be formulated as follows.
Find the displacement field _Uo that minimizes the quadratic functional ofthe total energy

F(_u) = h(div _)2__ ]’ [Eij(_)]2 dx1 dx2 dx3
i,j=

1

in the Sobolev space [HI(I-)] under the boundary condition (2.1). Here e {eij} i,j=l,

eij =1/2((Oui/Oxj)+(Ou/Oxi)) is the strain tensor, and A and/x are the Lam6 coefficients
of the material, i.e.,

Ev E
l+it

where E is the Young modulus and v is the Poisson ratio, 0_-< v_-< 1/2. We also assume
that the surface traction p is symmetrically distributed with regard to the planar surfaces
of the plate, i.e., we consider a pure bending problem.

So far we have assumed a special model of simple support based on simple
geometric constraint (2.1). Of course there are many other possibilities. Later we will
discuss another model--of hard simple supportuand will discuss the effects of these
models of simple support on the solution.

It is well known that if h/diam (to) is small, the three-dimensional plate-bending
problem can be formulated in various dimensionally reduced forms (see, e.g., 1], 11],
[22]). Here we consider two representatives of such formulations that are used in
practice: the Kirchhoff model and the Reissner-Mindlin model (cf. [22] and the
references therein).

In general, when to is fixed and h- 0, the three-dimensional formulation and the
dimensionally reduced models converge to the same limit, provided that the load p is
appropriately scaled (see below). Hence for sufficiently thin plates the models give
practically the same solutions. However, as will be seen later, what is "sufficiently
thin" can depend strongly on to, i.e., the convergence can be very slow in some situations.

In the Kirchhoff model, we approximate the three-dimensional solution as

OWK OWK )Uo(Xl, X2, X3) --X3 (Xl, X2) --X (Xl, X2), WK(Xl, X2)
0X 0X2

where wK minimizes the energy

(2.3) FK(w) = u(Aw)2+ (1- It)
i,j=l k’OXiOXj] dXl dx- fw dxa dx2

in the Sobolev space H2(w) under the boundary condition

(2.4) w 0 on
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Here f is related to p as

P--- D
Eh3

(2.5) f-D’ 12(1- ,2)"

When comparing different plate models with fixed to and variable h we will assume
below that f (and not p) is fixed. This ensures that the different models have the same
(nontrivial) limit as h- 0. For example, defining the average transverse deflection in
the three-dimensional model as

1 f hi2

U3(. X3) dx3,Wo - ,I-hi2

we can show (under fairly general assumptions on to (see [10], [11], [16], [17], and
3 below) that Wo- 0 as h 0.

In the Reissner-Mindlin model, we approximate _Uo by

_l’/o(Xl, X2, X3) (--X3OR,I(X1, X2), --X3OR,2(X1, X2), WR(X1,

where (we, _Oe) minimizes the energy

FR(W,_O) = ,(div_0 +(1- u) [e,j(_0) dx1 dx2
i,j

(2.6)

p I_0- wl axe-
in the Sobolev space [I--/(to)] under the boundary condition (2.4). Here =6(1
where o O(1) is an additional shear correction factor that may take various values
in practice.

We point out that the Kirchhott approximation to _uo satisfies, in addition to (2.1),
the boundary condition

(2.7) (/,/1 tl + lg2t2)(X) 0, X e 0to X --,
where _t (tl, t2) denotes the tangent to 0to. This suggests that we should also consider
the original plate-bending problem under such more restrictive geometric boundary
conditions. Below we refer to the boundary conditions (2.1) and (2.7) and their
counterpart in the Reissner-Mindlin model, i.e., (2.4) together with

(2.8) Olt d- Ozt2 --0 on Oto,

as hard simple support in contrast to conditions (2.1) and (2.4), which we refer to as
soft simple support. Hence, when using the Kirchhoff model we have in mind hard
(not soft) simple support. Later we will show that the incapacity of the Kirchhoff
model to represent soft simple support can be a severe deficiency of the model on
polygonal domains.

3. Variational formulations of the plate-bending problem. Energy estimates. In
3.1-3.3 and in the related Appendix A, we summarize first some basic characteristics

ofvariational formalisms and energy principles associated to the plate-bending problem
in its various forms. These results are basically known, but we present them here for
the reader’s convenience. In 3.4 we prove some energy estimates relating the Kirchhoff
model to both the Reissner-Mindlin model and the three-dimensional model, using
the results of the previous subsections.
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We assume that the plate occupies the region o x (-h/2, h/2), where o is a
Lipschitz bounded domain. Our particular interest is in the cases where o is either a
convex polygon or a smooth domain.

We denote by HS(o), respectively, HS(f), the usual Sobolev spaces with index
s > 0. The seminorm and norm of the spaces [H (o)] or [H (0)]k are denoted by
[. 1, and II" I1,, respectively, [. [,, and I1" ,,. By (.,.) we mean the inner product
of [L()] or [L()]g, and by (., .) the pairing of a space and its dual. The dual
space of H() will often be needed below and is denoted by H-().

3.1. The three-dimensional model. Let us denote by N the space of horizontal
rigid displacements of the plate

N={(lXl+3x2,x2-3Xl,O), i, i=1,2,3}.

We define the space of (geometrically) admissible displacements in the case of soft
simple suppo as

(3.1a) U= e[H(a)]3"u3=OonOx -, (,f)=0 VeN

and in the case of hard simple suppo as

(3.1b) U= ge[H(a)]3"u3=tu+tu=OonOx
2’ (u,v)=O VveN

(For simplicity, here we also remove all the horizontal rigid displacements in case of
hard suppo.) Fuhermore, we let stand for the space of stress or strain tensors
defined as

= {e ()
and introduce a linear mapping S" representing a scaled stress-strain relation-
ship of a linear elastic material:

(). D-[I tr ()+],
where I and are the Lam coecients and the scaling factor D is as in (2.5). Then
S is one to one and

D
(3.2) (S-),. [(1 +) tr ()].

Moreover, S and S- are self-adjoint if is supplied with the natural inner product

i,j=l

Let us fuher define the bilinear forms

(, ((), (fl), , f e u,

and the linear functional

Q()= f v3 ", + v ",- dx dx,

where it is assumed thatf L(), to imply that Q is a bounded linear functional on
U (by standard trace inequalities).
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In the notation above, the energy principle states that the displacement field _Uo
due to the load f=(p/D)L2(o) is determined as the solution to the following
minimization problem. Find _Uo U that minimizes in U the functional

(_u) 1/2(_u, _u)- Q(_u).

The existence and uniqueness of go is due to the following coercivity inequality,
known as the Korn inequality (cf. [19]).
LMM 3.1. If U is defined by (3.1a), there is a positive constant c such that

(3.3) (u,u)>cllull.... 1,a, u_U.

We point out that the constant in (3.3) depends on o (and h), although it is
positive for any given Lipschitz domain. In Appendix B we show that the constant in
(3.3) remains uniformly positive over a certain family of domains, a result needed in
5 below.

Given f and the corresponding displacement field _Uo, let Vo S_Uo be the corre-
sponding (scaled) stress field. The pair (_u, V)= (_Uo, fro) is then the solution to the
following variational problem. Find (_u, V) U x X such that

(3.4a) (g, _z)- (_e(_u), _z)e 0, _re g(,

(3.4b) (g, _e(_v))= Q(_v), _v U.

It can be easily verified following [5] and [9] (see Appendix A) that the solution to
(3.4) exists and is unique.

Finally, we mention that according to the complementary energy principle, go is
found alternatively as the solution to the following minimization problem [19]. Find
go e X that minimizes in X the functional

(e) 1/2(_, _)

under the constraint (3.4b).
In 4 below we need the following corollary of the two energy principles (cf. 16]).
LZMMA 3.2. For any (_u, g) U x 2(such that g satisfies (3.4b), thefollowing identity

holds"

(_Uo-_, _Uo- _)+1/2(eo- e, _o- e) (_u)+ (_).

Proof. It follows from the energy principle that

(U_o, v)= O(v), v_ e u,
and from the complementary energy principle that

(_o, _.) 0, _r e : (z, _e(_v))e O(_v) V_v e u.
Therefore, in particular, M(_Uo, _u)= Q(_u) and (go, g)= (_O’o, go), and hence

-s(_Uo-u,_ _Uo- u) + (_eo-_e,_ _eo-_e)= [1/2 se(u,_ _u) se(_Uo ,_u) +- (, ,)]_

+ [1/2(_o, _o)+}(_o, _o)-(_o, e)]

[(_u)+ (_)] + [-(_Uo, _Uo)-}(_o, _o)]

(_u)+ (_).

3.2. The Reissner-Mindlin model. In the Reissner-Mindlin model geometrically
admissible displacements (w, _0) span the space H(o) V, where either

(3.5a) V= [Hi(o))]2
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or

(3.5b) V={_0 [H’(o)]2: tlO1+t202=O on 00}

corresponding to soft and hard boundary conditions, respectively. We let ff( stand for
the space of momentum and curvature tensors:

{ { m_ mo) i.s=, m0 L(w ), m12 m21},

and supply Y{ with the natural inner product
2

(W, )c E (mo, ko).
i,j

Fuhermore, we introduce the linear mapping T" Y[ Y{ as defined by

)0 tr ()30 +(1 )k0, YL

The inverse of T is given by

1
k0 tr ()30,(3.6) (T-)-

1- v l+v

and obviously T and T- are self-adjoint.
Finally we introduce the bilinear forms

(,0;,=((0,(+ (0-,-gl, ,ze(l, 0,e v,

where (0) (eo(0))i= and are as in (2.6).
In the notation above, the Reissner-Mindlin formulation of the plate-bending

problem, as stated according to the energy principle, is to find the pair (w, 0)e
H() x V that minimizes in H()x V the functional

(, 01 =d(, 0; , 0I-(X )

for a given fe H-().
The existence and uniqueness of (w, 0) is the consequence of the following

lemma, which is proved in Appendix B in slightly more general form (see Lemma B.2
of Appendix B).

LEMMA 3.3. ere is a positive constant c such that

((0) r(0+ll0-ll c(ll011o,= ,,+llwll,),
[H()], w H().

Remark 3.1. Regarding the validity of Lemma 3.3 uniformly over a sequence of
domains, see Appendix B. (Such a result is needed in 5 below.)

The analogy of the variational formulation (3.4) is stated for the Reissner-Mindlin
model as follows. Find (w, #, , )H()x Vx ff/x [L()] such that

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(_m, T-l_k)c (_8 (_0), _k)c 0, _kff{,

(h2/K)(3,, r)-(_0-w, ’) 0, sr [L2(to)]2,
(_m,_())+ (r, )=o, v,
-(% V_ z) (f, z), z H(-).
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The (unique; see Appendix A) solution to this problem is (WR, O_R, -mR, YR), where
_mR T_e (_0R) and YR --(K/hE)(_0R--V_WR) have the physical meaning of momentum and
(vertical) shear stress field, respectively, both being scaled by a factor D-1.

Finally we note that the pair (_mR,)’R) can be obtained alternatively as the solution
to the following minimization problem (the complementary energy principle). Find
(_mR, YR) Y( X LE(tO) ]2 that minimizes in Y( x LE(tO) ]2 the functional

(w, v)=1/2(w, v; _m, v)
under the constraints (3.7c, d).

Upon combining the two energy principles we obtain, in analogy with Lemma
3.2, the following lemma.

LEMMA 3.4. For any (w, 0) H(tO) x Vandfor any (_m, ),) Y{x [L2(to)]2 satisfy-
ing (3.7c, d) the following identity holds:

1/2 w, w, 0, 0 w, w, o_ , o_ + 1/2 N, w, m_ "r, / w, m_
,(w, O_)+ ,(m_, ).

3.3. The Kirchhoff model. Upon introducing the space

W= (z H2(to): z=0 on 0to},

we formulate the plate-bending problem according to the Kirchhoff model as follows.
Given fe W’ (=dual space of W), find WK W that minimizes in W the energy
functional

,(w) 1/2(_(v_ w), (v_w))-(f, w>,
where T and (.,.) are the same as in the Reissner-Mindlin model. The existence
and uniqueness of wx in the consequence of the coercivity inequality

(_, (v_ w), (v_w)) > cllwll 2,to, We W
which itself is an easy consequence of Lemma 3.3. Note that w: is uniquely defined,
in particular, iff H-l(to), and note also that the pair (w/(, _0/(), where _0/( =V_w/(,
minimizes the Reissner functional R over the subspace Z c H(to)x V defined by

z={(w, o_) wx v. o=v_w}.

For the Kirchhott model, the analogy of the mixed variational formulation (3.7)
is the following. Givenf W’, find (w, _0, _m, y) W V x Y/" x V’ (where V’ is the dual
space of V) such that

(3.8a) (_m, T-_k)x-(_e(_O),_k)x=O,
(3.8b) (_0 V_ w, sr) 0, " e V’,
(3.8c) (_m, _e()):+(y, q) O, q e V,

(3.8d) -( y, V_ z) (f, z), z e W.

LEMMA 3.5. The variational problem (3.8) is well posed and the unique solution is
(w, _0, _m, y)= (w/(, 0_/(, _m/(, y/(), where 0_/( V_w/(, _m/( Te_(O_/(), and y/( is defined by
(3.8c), i.e.,

(3.9) Yr o -(_mr, _e o x, o V.

Proof. If (w, _0, _m, 7)= (WK, 0_/(, _m/(, Yr), (3.8a-c) hold trivially. Moreover, since
w/( minimizes /( in W, we have (_m/(,e_(V_z))or=(e_(V_w/(), T_e(V_z))c=(f, z) for all
z W; so, by (3.9), (3.8d) holds as well. The well-posedness is proved in Appendix
A.
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Remark 3.2. Note that although wr, _0r, and _mr obviously do not depend on the
way the space V is defined in (3.5), yr certainly does (see below). Hence in this
(somewhat weak) sense the "soft" and "hard" formulations are still separate even in
the Kirchhoff model.

We need below the following specific result related to the case where to is a convex
polygon.

LEMMA 3.6. Let wr be defined as above assuming that to is a convex polygon and
that f H-l(to). Furthermore, let p H(to) and d/ H(to) be such that

(3.10a) (V_p, V_ :)= (, :), : H(to),

(3.10b) (V_, V_ :) (f, :), : H(to).
Then p wr and =-Awr.

Proof. From (3.10a, b) it is obvious that =-Ap /-/(to), so it suffices to show
that/9- wr. First, since H(to) and since to is a convex polygon, it follows from
(3.10a) that p HE(to) and p H3(o3), t 03-UA,, A, being the vertices of to; i.e.,
p W (cf. [13]). Moreover, since/9 Ap =0 almost everywhere on 0to and since
consists of straight-line segments only, it follows that 02p/otE--oEp/on2=O almost
everywhere on 0to. Therefore, and noting also that Oz/Ot- 0 almost everywhere on
if z W, integrating by pas shows that

Hence, by (3.10b), ((70), (V))={ }, for all e W, so 0 minimizes in W
and accordingly, 0 w.

We can now prove the following result that will be needed in the next subsection.
LEMMA 3.7. Let be eicher a convex polygon or a smooth domain, and

(w, 0, , )=(w, 0,, )e Wx VxYgx V’ be the solution to (3.8) for a given

fe H-(), and with V defined by (3.5b). en =-7(w)e [L()] and
(w, O, ,) is a solution to (3.7) with h =0 in (3.7b). Moreover, if is a convex
polygon, then 7 o, IIf -1., where

<X z>llfll_,,.= sup ,
a. f a mooth oma., he. llzllo,. Cllfll-,,., where C aeee.a o. .

Prooy If r e [L()]= andf H-’(), it follows from a simple closure argument
that (3.8) remains valid if W is replaced by V and if <.,. on the leR side is replaced
by (.,.). To prove that T =-[(Aw), we integrate by pas in (3.9) to obtain

L L[<, >=- (aw) ax, ax=+ .aw +(- .)

0 02WK

Here the first boundary integral vanishes because yaw+(1- p)(oEw/on2) =0 on 0 is
the natural boundary condition associated to the problem of minimizing , and the
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second boundary integral vanishes since ’! 0, V, assuming that V is defined
by (3.5b). Hence ’r -V_(Awr). On the other hand, from (3.10) we have Yr [L2(to)]2,
and from the well-posedness of (3.8) we see that indeed yr =-V_(Awr).

Having verified that 3’r =-V_(AWr), we conclude from Lemma 3.6 that 7r =V_,
where , H(to) satisfies (3.10b), so I1,11o,--Ilfll-, as asserted. Finally, if to is a
smooth domain, a standard elliptic regularity estimate implies that _Yr o, --< c w , -<-
cllfll-,.

Remark 3.3. It is essential for our results in the next section that when to is a
convex polygon, [13’r IIo, is bounded by Ilfll-, independently of to, in contrast to the
smooth domain, where the constant depends on to.

3.4. Energy estimates in case of hard support. Let us define the energy norms

[llw, _o, =m, yl[l- (w, _o; w, _o)/ (=m, ; =m,
(w,_0, _m, 3,) e H(to) x Vx?ICx[L2(to)]2,

where the bilinear forms are as defined in 3.1 and 3.2. Then by Lemma 3.2 we have
the identity

(3.11) IIl_uo-_U, o- 111= -Ill_u, l[I=- 2Q(_u)

whenever _u U and _tr satisfies the constraint (3.4b). Similarly, by Lemma 3.4,

(3.12) [llw w, _0 -_0, __m __m, _r _rlll -IIIw, _0, __m, _rlll 2<f, w>,
where (w, _0) H(to) x V and (_m, ,) 5’{x [L2(to)]2 satisfies constraints (3.7c, d).

Let us first apply (3.12) to estimate the gap between the Reissner "quadruple"
(WR, O_R, m_R, YR) and the Kirchhoff "quadruple" (Wr, _0r, _mr, Yr)- By Lemma 3.7, the
choice (w, _0, _m, y)= (Wr, _0r, _mr, ’r) is legitimate in (3.12) under the assumptions
that to is either a convex polygon or a smooth domain; f H-l(to); and V is defined
by (3.5b), i.e., the case of hard support. Upon simplifying the right side of (3.12), in
this case we obtain the identity

IIIw w,, 0 0,, :m :m,, y y,lll (h2/)II y, =
which together with Lemma 3.7 leads to the following theorem.

THEOREM 3.1. Let to be either (a) a convex polygon or (b) a smooth domain, let
f H-l(to), and let (WR, O_R, _mR, 3’R) and (Wr, O_r, _mr, )’r) be the solution to (3.7) and
(3.8), respectively, where V is defined by (3.5b). Then in case (a) we have the identity

IIIw w,, 0 0,, _m _m,, r r,lll (h=/)llfll =
--1,o,

where Ilfll-, is defined as in Lemma 3.7, and in case (b) the estimate

IIIw-w, 0-0, _m-_m,, r-r,lllN- c(h2/)llfll --1,to

where C depends on to.

Remark 3.4. It is easy to verify that

IIIw w,, _0 _0,, _m _m,, r r, II1 -> Er ER,

where En and Er stand for the total energy of the plate in the Kirchhoff and
Reissner-Mindlin models, respectively, i.e.,

El,: :R Wr, O_r -1/2(f, Wr ), ER R WR, O_R) --1/2(f, WR).
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In particular, if to is a convex polygon, Theorem 3.1 and Lemma 3.6 lead to the relative
estimate

(EI, .,,)1,<. <- C(,o, f, v)h:/r,o,
where Ko is the shear correction factor, and

1 o> A wrfdXl dx2C(to, f, u)= -6(1- ,- ,o wrffdXl aXE
For example, if to is the unit square and f(x)-- 1, then C(to, f, l,) 3.440428/(1- ,).

Remark 3.5. In case of soft boundary conditions, constraint (3.7c) is more restric-
tive and rules out the choice (_m, y)=(_mr, Yr) in (3.12). It is still possible to find
_r, 3r) YE x [LE(to)]2, which is close to (r, Yr away from the boundary and

satisfies all the required constraints [16]. With such a construction, it is possible to
show that if both f and to are sufficiently smooth, then

IIIw. w,,, _0 _0,,, _m ,,, v :7,, II1 <- c(,o, f)h.

For other estimates of this type see also [11], the references therein, and [20].
Next, we apply (3.11) to bound the difference between the three-dimensional

solution and the Kirchhoff solution. To this end, we need to construct a three-
dimensional extension (_ur, _-or) Ux Y( of the Kirchhott solution (Wr, _0K, _mr, yr).
Following 16] we define _Ur 6 U as

(3.13)

and _or as

-K (--X3OK,1, --X30K,2, WK +1/2X ),

trK, ij --OtX3mK,ij i, j 1, 2,

(3.14) trr.,3 a(1/2x-h2)yr.,, i= 1, 2,

,,,,. < (-x3 +h%)f,
where a 12/h and H(to) is so far unspecified. It is easy to check that _oK satisfies
(3.4b) as far as U is defined by (3.1b), so (3.11) applies with the choice (_u, _o) (_ur, _oK

in this case. After a short computation, the right side of (3.11) can then be expressed
as

II1,, -o,, Ill- 20(_ur
(1- ,)2 ’ Awr dXl dx21-2u q+]- u

+3(1- vi) hE
160

1
+h2

17 h4 IfE dxl dX
l hE f+1680(1- v2) - @fdXl dx2.

Now if to is a convex polygon, the choice q=(,/(1-u))Awr is legitimate and
leads--recall also that ]]yrl[ 2

o,o., =-- AwKfdx1 dx2--]]fil 2
--1,to (see Lemmas 3.6 and

3.7)to the identity

Ill_u,,, " !11 2 Q(-u")
32 + 8 u + 3 u2
160(1- v)

h2 IIf - ,.<o + 1680(171 ,2 h4 I,,, f2 dxl dx2.
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On the other hand, if to is a smooth domain, we can still find for any 6 > 0 a q, H(to)
so that

t;

AWK dx, dx2 < C3V21I/kWK 2(3.15a) q 1--- 1,,

(3 lSb) I,o Ivq’l= dx dx <

Since Ilawlll,f()llfll-,, we obtain in this case, choosing 6=(i-2v h, the
estimate

t,2h 2 17h4
2
0,60[[[_uu‘, =o’u‘[[I2 2Q(_uu‘) C(to) 11/112_1,,o+1680(1 u2 Ilfl[

We thus conclude the following theorem.
THEOREM 3.2. Assume that to is either (a) a convexpolygon or (b) a smooth domain.

Letf Lz(to) let (U_o, go) U x Y( be the solution to (3.4) with U defined by (3.1b), and
let (u_u., flu‘) be defined by (3.13)-(3.14), where (wu‘, O_u‘, re_u‘, yu‘) Wx VxYdx V’ is
the solution to (3.8) with V defined by (3.5b), and either q,= (u/(1- u))Awu‘ (case (a))
orq, satisfies (3.15a, b) with 6 /1-2u h (case (b)). Then in case (a) we have the identity

IIl_uo-_,,_o-_,lll= Cl(u)h=llfll-i / C_(u)h4llfll
and in case (b) the estimate

IIl_uo _u,,, _o _,, III- < c(to)[c3(u)h/hZ]llfll-l,o, / C2(/2) h4 Ilfll =
0,o,

where Ilfll-. is aefinea as in Lemma 3.7 and

Cl(z,)
32+8u+3u 17

C3(u)
z’

60( )
c_()=

680( ’)’ ,/1-Remark 3.6. In the case of soft boundary conditions it is possible to show that,
if to is smooth and f is sufficiently smooth, then

III _Uo _u,,, _o _,, III2 =< c ,o, f)[ 1 + C3 ’ h,

where _du‘ is close to _o-u‘ away from the boundary strip 0to x (-hi2, hi2) [11], [16].

4. The llate paradox. Let too c R2 be the unit circular domain with the center at
the origin, i.e.,

to[0]__ {(X1 X2): rZ= Xl
z +x < 1}.

Furthermore, let to t"l, n 1, 2,. ., be the sequence of regular .(n + 3)-polygons such
that

/[n] Z to[n+l] C t[n+l] CS to[0]

in the sense that for any x toto] there is n(x)> 0 such that x tot-3 for all n > n(x).
Finally, let l’t"l to,t"l x (-hi2, hi2) and ft1 totl x (-hi2, hi2).

Assume now that the unit load is imposed, i.e., f=p/D= 1 (see 2). Then for
nxe thickness h there exist the unique solutions _Uto"3, (wt"1, _0t-l), and w, n
0, 1, 2,. ., corresponding, respectively, to the three-dimensional, Reissner-Mindlin,
and .Kirchhoff formulations of the plate-bending problem with either hard or soft
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simple support. In 4.1 we will show that w w] # w and give explicit expressions
for wt] and w]. This is the plate paradox in the Kirchhoff model pointed out in [7]
and [3]. In 4.2 we will show that this paradox also occurs in the Reissner-Mindlin
model and in the three-dimensional formulation in case of hard simple support. Finally,
in 4.3 we show that the paradox does not occur in the Reissner-Mindlin and three-
dimensional formulations where soft simple support is imposed. This has been briefly
noted in [3].

The results clearly show that seemingly minor changes in the boundary conditions
can lead to a significant change of the solution on 12 t"], respectively, to In], when n is
large. In fact, we will see that there can be significant changes already when n 1.

The main question we will address below in this section is whether, as n ,
_ut"]_ut] for the three-dimensional formulation,

(w["], _0["]) --> (w], _0]) for the Reissner-Mindlin model,

wig"I--> w[] for the Kirchhoff model.

4.1. The plate paradox for the Kirchhotf model. We have shown in Lemma 3.6 that
for n 1, 2,. , Wtk"]= pt,], and --AWk"]= qt-], where ptn] and pt-] satisfy (3.10a, b).

THEOREM 4.1. Let p[], []e H(w[]) be such that

(4.1a) (V_p[], V_:)= (q[o], :), sc H(w[o]),

(4.1b) (V_q[], V_ so) <f :>, sc H(to[])

with f 1. Then as n -
Here we understand that q["] and q["] extend by zero from to

["] to w [].
Proof Let P, denote the orthogonal projection of H(wt]) onto the subspace

H’n(w[]) defined by

Hl’n(to[]) {U e Ho(Wt3) u 0 on wt]- to t"]}

and let qt" and fitn] denote the extension of qtn] and pt-], respectively, by zero onto
wt. Then q["] P,qr by (4.1b). From Theorem C.1 in Appendix C, it then follows
immediately that t, __> q[] in H(w[]). From (4.1a) we then see that pt"]- p,pt] ._> 0
in H(w[]), and therefore, by the same argument, that t3["] p[] in Ho(W[]). [3

Let us now characterize t3t]= w and pill= w] more explicitly. To this end,
note first that p[O] is the solution to the problem

(4.2a) AAp[]= 1 on w[],

(4.2b) p[] Ap[] 0 on aw[].

On the other hand, it is easy to see that p[O] is the solution of the problem

(4.3a) AAp[]= 1 on w[],

(4.3b) p[O] 0 on Ow [],

(4.3c) ,Ap[] + (1 u)
o2pt]

O.On2
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Here (4.3c) is the standard boundary condition for the simply supported circular plate
(see, e.g., [24, p. 554]). Solutions (4.2) and (4.3) show that

[oo].2 C[3Oo] p[o] 0] C[20]r2 ..{_ C [30]r4,p[o]=CO]+C2 + r4, =C

where r2 x+ x,
1

64’
and C1, C2 are determined from the boundary conditions. By simple computation we
get

1 5+u
(4.4a) pt(0, 0)= wJ(0, 0)-

64 l+u’

3
(4.4b) pt(O, O)= w(O, O)

64

and hence for v 0.3 we have

o)
1.36,

0)

i.e., the gap between w and w is 36 percent at the origin. Analogously, for v 0.3,

0.287.

Remark 4.1. We have assumed that wt" were regular polygons. As the proof
shows, (4.5b) also holds when {wt"l} is an arbitrary sequence of convex polygons such
that wr"l--> wro in the sense described above.

It is essential, however, that wt" are convex polygons. If we replace wr" by
where a3 t"l are nonconvex polygons as shown in Fig. 4.1, then [15] shows that

)3/4

FIG. 4.1. A nonconvex polygon oo ’q.
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satisfies

and hence

AZa3t]= 1 in toto]

[] O[]

0 in Oto [],
On

(4.4c) a3 t](0, 0)
1

64

4.2. The plate paradox for the three-dimensional and Reissner-Mindlin models. We
will analyze in detail the case of Reissner-Mindlin model only. The case of the
three-dimensional formulation can be dealt with analogously.

TIqEOREM 4.2. Let h be fixed and sufficiently small, and let WtR"] be the Reissner-
Mindlin solution on to

t"] corresponding to unit loadf 1 on tot"] and hard simple support
on ato t"], n O, 1, 2,.... Then if WtR] is extended by zero onto toto], we have

wt"-,oll,,o-> >0,

dx, dx > 0(w"-W])
[o]

for all n no, no large enough.
Proo By Theorem 3.1 we have

IIIw" w #" #,m"] W],r"] rlll<hlllfll--1,win]
iiiwa_ wa, Oa_ 0a, a_a, 7a_ 7alll Ch/ iif ,,o.

Note that Ilfll-l,t- Co independently of n. Using Lemma 3.3 and Theorem B.3, we
see that

[11w- wll,+ I1-11,’3 Ch=,
[llw- wllo+ II0-11 = o3< Ch=,1,w

where C is independent of n and h. On the other hand, we have by Theorem 4.1,

w- wll,o 0 as n ,
This shows that for sumciently small h there is a > 0 such that w- wll 1, > o
for all n > no.

Realizing that (in our case for f= 1)

-r
-rE=

we also have

(o- WtR) dx, dx2 >= a > 0 as n > no.

Using Theorem 3.2 and analogous arguments, we get Theorem 4.3.
THEOR;EM 4.3. Let h be fixed and suciently small and let "]= (U01

be the three-dimensional solution of the plate.bending problem on Ot, corresponding to
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the load p D and hard simple support, n O, 1, 2,. . Then if Uo’ is extended by zero
onto 1) t], we have

[o]I1’.’o- ,.,o ,.o_ , > o,

I ((1, 1,) +. o( ))"03 Xl, X2, dx dx2 a > 0
[o]

for all n no, no sufficiently large.
Theorems 4.2 and 4.3 show that hard simple suppo leads not only to the paradox

in the rchhoff model but also to those in the three-dimensional formulation and the
Reissner-Mindlin model. (In 4.3 we will show that the paradox occurs neither in the
three-dimensional formulation nor in the Reissner-Mindlin model when the simple
soft suppo is imposed.)

The proof employs the fact that the Kirchhoff model approximates very well the
Reissner-Mindlin and three-dimensional formulations for the hard suppo. This shows
that the circular plate and polygonal plate solutions are far apa in the entire region
and not only in the area close to the boundary, where boundary layer effects occur.

The results above show that plausibly unimpoant changes in the boundary
conditions could lead to significant changes in the solution through the entire region
even if the three-dimensional linear elasticity model is used. We expect that the paradox
will also occur in nonlinear formulations. For engineering implications of effects of
this type we refer to [6].

4.3. The "nonparadox" in case of soft simple support. In this section we will prove
that, in contrast to hard simple suppo, the solution on w" converges to the solution
on wo for both the Reissner-Mindlin and the three-dimensional plate model. This is
in obvious contrast to hard simple suppo. We will elaborate in detail on the case of
the Reissner-Mindlin model. The analysis of the three-dimensional model is analogous.

Let us denote

SO,, w[’+1- w["] n 1, 2,

o
o, wtol_ w’, n 1, 2,.

(see Fig. 4.2).
Let L (Lz(w)3, _u (w, _0) L and

So {_u L: w H(ot), _0 (H(wt:l))2},
5e,, {u L: w n(wt]), w =0 on o., _0 (n’(wt])2)},
if,, {u e L: w e H(ot), _0 e (Hl(wt"l))2, _0 e (H’(,,))2, m n, n + 1,.. },..., {u e L: w e H(ot), w 0 on o.,

_0 6 (HI(o[]))2, _0 (HI(j))2, j m, rn+ 1,...}.

We have Se,, c Seo, Seo c ,,, and

All the spaces are embedded in ff. Furthermore, let

z. {u e L: w e H(ot"), _0 e (Hl(,ot")=},
2. {,, e Z." w e H(,ot")},

s,(w, _0; z, )= E s,(_u, _v),
i=0
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colo

FIG. 4.2. The configuration of the domains ., 90, .
where M, is given in 3.2 for the region to and MR’ has the same form but is integrated
only over . Analogously we define s, etc. Finally, we supply 1 with the norm

II_ull == X ,(_u,_u).
i=O

To see that I1" is indeed a norm, assume that _u (w, _0) E ffl and [I-u o. Then, since
the first term in the expression for M# is the same as in the case of plane elasticity
(where 01, 02 play the role of the displacements), we have on s, 01 =as+csx2,
02 bs-csxl, and because II_0-Wllo,- 0 we get cs =0. Hence w ds + asxl + bsx2 on
fis, and so, because w E H(tot]) we get w 0 and a bs 0, j 0, 1, 2,. (see also
Appendix B). Hence _u 0 and accordingly, I1" is a norm on ;3-1.

For u E Z, let u 2
R,,o-= Mt"J(_U, _U). Then by Theorem B.1 in Appendix B,

(4.5a) inf
abe

(4.5b) inf w d + ax, + bx2 + CX X2)II, - c u ,-.
abcd

Here C, depends in general on tot-].
Assume now that for an no > 0

(4.6a) f has compact support in tot-o],

(4.6b) I,ot.ofdxl dx2 fx dx dx2= Iot.ofX2 dx dx2= Iot.ofX’ x2 dx dx2=O

and that n > no, m > no. Then for _u E ft,, n => no,

EO]
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Hence for n, m _-> no there exist unique

such that

t0n(_U(n), _V) | fz dxl dx: Vv
_

(z, q)
[o]

and analogously for u(9-), U(.,m), U(.). Obviously _u(Seo)= _ut and _u(,)=
and _u(W,.,)= _u(.) on w[] and is zero on

Using Theorem C.1 we get

(4.7a) _ut]= _u (9o)= _u(Se.) + p (5eo,

(4.7b) _u (6e0) [12 11_/./(o,gn)1[2-[ p(o,90, o,09n) 2,
(4.7c) Ile(o,.)ll-,o as noo;

(4.8a) _u(ff,) _u(5o) + p(ff,, 5o),

(4.8b) ll-u(-n)ll-- II-(o)II=/ II_P(-., o)II =,
(4.8c) lie(., :eo)ll-, o as n -(4.9a) _u (..m) _u (Sf.)+ _P (..m,
(4.9b) [[_u(.,m)[[2= [[_U(ofn)[]2-[ [[_p(ogn, o,09n) 2,
(4.9c) Ile(eo,, en)ll-0 as

(4.10a) _u (3-,.) _u (w...,) + p (3-m, ...),
(4.10b) II_u(3-.,) := II_u(f..m)ll2+ lip(f-.,, ...,) 2,
(4.10c) 118(3-m, ..m)[I-* 0 as n-

Now let e > 0 and n > max (n(e), no). Then we have

ll_p(Seo, se.) < , ll_p(-., o)II < .
Using (4.7)-(4.10) we get

II_(o) = / II_p(-m, o)II = -ll-(-m) 2 II_ (.,,.) = / IIe(-,., .,,.)
-ll_(se.)ll/ ll_p(..,., .)II/ ll_p(o, .-.)II
--II_(o) =- ll_p(o, se)ll=/ ll_p(...,, )II =
/ ll_p(-,., ,.,)

and hence for n, m ->max (n(e), no)

ll_p(,, Seo)II =/ ll_p(o, 6en)ll--ll_p(.,,., .)II=/ ll_P(-m, ,,,m) 2e,
which yields

Therefore

_u (eo) _u (.,.)= _u (eo) _u (e) + _u(e)- _u(..)= (eo, e.) p (e.,.,
and hence

11_.(9o)-_.(.,.) ’/+,/__< c,/.

Because, as above, _u(W...) _u"] on w ["], and zero on 9., _u"- _u in the space
or in any 3-m for m fixed.
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Remark 4.2. Note that until now we have not used Theorem B.3 (Appendix B),
but only Theorem B.1.

So far we have assumed that f satisfies (4.6). Let us now study the general case.
Assume that f L2(wtl).

Let us first note that if _u (w, 0) n,n, then w H(o)l) and

(4.11) Ilwll 1,---Ilwll 1,- CIl_ull
with C independent of n because of Theorem B.3.

For 0 < A < 1/2 we denote

Then

Now let

Ri= {(Xl, X2): xl-f-x> l-A},

01 {(x, x). x, +x

Wllo, cll wll,,o cllull,
wllo,o CA1/2llwll,,o CA1/ZlluII.

fa
f{f on Ra,
0 on w[l-Ra,

ga =(a + bx -f- CX2 "-t" dxl /2)A,

where a is the Dirac function concentrated on ORa and a, b, c, d are such that fa +
satisfies (4.6).

For n > nl,a such that/-a c wr"l.J, let _ua(...) and _ua(SPo) be the solutions when
instead of f the function fa is used. Then we get

II_(e.,.)-
_
(e.,.)II =< ca’/,

II_(:eo)-
_
(eo)II--< ca’/,

where C is independent of n and A but, in general, depends on f Hence we can select
A so that CA/2< e. Furthermore, we have shown

I1_(,)-_(Oo) <

for all n _-> na (e) and therefore

[[_u(.,.) _u(Oo) < 3

for all n >= nl(e). Since _u(Seo) _u and _u(Sf,,,) _u", we get

II_tg-_tll- 0 as

Here _ut"l (wt", _0t") is understood to be extended by zero on 9, and II" is the
norm in -1 (note that wt"eHo(OOt), but O_t"C_Ha(oo) although 0t"lc H(wt")).
Because the functions in H(ot) with compact support are dense in H(w), there
is #t"eHo(wt") such that [Iwt-wt"ll-<_e for all n>=n(e). Hence with
(#t-l, _0t-) we get

II_at-_uall- 0 as n-

Hence, using Theorem B.2 (Appendix B), we have

Ilw%- w[[,(o)/ II_0t-_0ll,,(o)-,0 as n

In summary, we have proved Theorem 4.4 below.
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THEOREM 4.4. Let fL2(to[1) and let UtRn?=(WRnl, O_tR"), respectively, UtOR=
(Wt, O_tl), be the Reissner-Mindlin solution on to, respectively, oo, for soft simple
support and fixed h. Then

+ IIO 0 as n -We see that in contrast to the hard support there is no plate paradox when the
soft support is imposed. Hence soft simple support is physically more natural than
hard simple support.

[o]Remark 4.3. In Theorem 4.2 we assumed that fe Lz(tO []) while the solutions _u
and _u" were defined for anyfe H-l(w?), respectively,fe H-(ooc"7). Iff has compact
support, then Theorem 4.4 also holds forf H-(wc). We can weaken the assumptions
on f in Theorem 4.4, e.g., so that fe H(w7), a > -1/2, but the proof will not hold for
f6 H-l(to[]).

Remark 4.4. We have assumed that to is the sequence of regular polygons. This
assumption was used only when we were using Theorem B.3. Hence Theorem 4.4 holds
for any regular family of domains (see Appendix B). If f satisfies (4.6), then there is
no need for regularity (see Remark 4.2) of the family of domains under consideration
and Theorem 4.4 holds in the full generality.

Remark 4.5. We have assumed in Theorem 4.5 that h > 0 is fixed (i.e., independent
of n). We could also consider a two-parameter family of problems where both n and
h vary. Then, for n fixed and h 0, _UR1-- _U (and hence for h 0 the difference
between soft and hard support disappears). Hence, combining the results of this section
with 4.2, we see that

(n)lim lim _U(R lim lim _u R
n-oo h-0 h-0 n-oo

In a way analogous to the proof of Theorem 4.4, we can prove Theorem 4.5.
THEOREM 4.5. Let h be fixed and u_, respectively u_], be the solution of the

three-dimensional plate problem on 1) [], respectively, , with soft simple support.
Assume that the load p L2(w). Then

0

aS.
Remark 4.6. Remarks 4.3-4.5 are also valid for the three-dimensional plate model.

4.4. Some aitional considerations. As we have seen, the Kirchhoff model (bi-
harmonic equation) leads to paradoxical behavior for hard simple suppo. The same
mathematical formulation also describes other problems and hence leads to the
same paradoxical behavior.

As an example, we mention the problem of a reinforced tube shown in Fig. 4.3a, b.
The reinforcement is attached by an unextendable tape to the exterior surface. Here
we have the paradox that the stress caused by hydrostatic pressure is different for the
polygonal and circular outer surfaces.

Analogous examples can very likely be found in fields other than elasticity where
the problem reduces to the biharmonic (or polyharmonic) equation.

We have shown the paradoxical behavior for n m and h relatively large compared
with 1/n (see Remark 4.5). Hence the question arises of how large will be the difference
between hard and soft suppo in three-dimensi0nal formulation for n fixed and h 0.
To this end we consider a square plate with sidelength equal to 1. In Table 4.1 we
give the values of

INOFTI n(h), IEnARD (h).
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(a) (b)

FIG. 4.3. Reinforced polygonal and circular tubes.

TABLE 4.1

Percent h 0.1 h 0.01

34.68 11.69
20.21 2.03

Here by Esovr and EHARD we denote the (three-dimensional) plate energy for soft and
hard support, and by EK, the plate energy of the Kirchhoit model for the Poisson ratio
u 0 (see also [7]).

Appendix A. Well-posedness of variational problems (3.4), (3.7), and (3.8). We use
the following basic theorem (see [18]).

THEOREM A.1. Let H be a Hilbert space and be a bilinear form on H H that
satisfies

(AO) (u, v)= (v, u), u, v H,

(A1) I(u. v)l <- Cllull.llvll.. u. H.
(A2) sup (u, v)_-> cllull. Vu . H,

IIvlIu--1

where C and c are positive constants. Then if F is any bounded linear functional on H,
there is a unique u H satisfying

(A3) (u, v)= F(v), v H.

In applying Theorem A.1 to problems (3.4), (3.7), and (3.8), we choose the
following notation.

(a) The three-dimensional model (3.4)"

H=Ux,

F(_v, Z) -Q(_v).
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(b) The Reissner-Mindlin model (3.7)"
H= H() x Vx {x [L2()]=,

H= Wx VxY{x V’,
(w, _0, _m, y; z, , _k, )

(m_, T-lk_)c -(__e(_0), _k):c-(_e(qg), m_)yc-(O_-Tw )-(q9-Tz, T),

F(z, o, k_, )=-<f z>.
Then in each case, is symmetric, F is a bounded linear functional on H, and

the variational problem takes the general form (A3). Thus it suffices to show that (A1)
and (A2) hold.

THEOREM A.2. Assume that to is a bounded Lipschitz domain and that theparameters
u, h, and K satisfy

where h > 0 and g > 0 are given. Then in each of the three cases above there are constants
C C(h, g) and c c(to, h, g) such that (A1) and (A2) hold.

Proof In view of (3.2) and (3.6) the mappings S-1" Y(--> Y{ and T-1" Y{--> Y{ are
uniformly bounded in the assumed range of u. It then follows easily that the assertion
concerning (A1) holds, so let us concentrate on showing that (A2) is true.

(a) The three-dimensional model. Let (_u, if) U x Y{ be given and let

(=O’o)ij tr (=o’)30, i, j 1, 2, 3.
2Then II__crlle Ilff-__crolle+lltr (ff)llo,a and it follows from (3.2) that

(A4)

D
(_or, S-’ _er) {(1 + )11 o11%+(1 2) oll}

h
--I1- o11 (o < <

12

We use the following lemma, which is related to the well-posedness of the Stokes
problem. For the proof see [12].

LEMMA A.1. There exists V_o U and a constant C depending on to and h such that
the following inequalities hold"

II_voll 1,D, Glltr (_o) o,.,

(div _Vo, tr ()) > Iltr ()ll 2

With _Vo as in Lemma A.1 we now set (_v, z)= (-_u- 3_Vo, -32_e(_u)), where 8 is
a constant to be specified shortly. Then by (A4), the inequality (r,ra)<_-
(s/2)llr, lla+(1/2s)llrall (s> 0), and Lemma 3.1, we have that

(_U, _0"; _V, Z) (_0", s-l_o’)y( --1/2 6(tr (_o’), div _Vo)

+ (:-:o, (_Vo) + ll(_ull- (ff, s-l(_u)
-->(lfi3-c2a-c3a2)llcr-ffoll/(a-C4ae)lltr()ll2:o,. -[- C 12 _. 11,2
->min {_:/3 C2a- C3a2, 1/2a 3C4a2, c16=}(11 u2_1,. + I1__o11).
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Thus, choosing to be a sufficiently small positive number, we have found (_v, _z)
such that II_v, zll, --< CIl_u, 11, and (_u, _o-; _v, z)->- ell_u, 11,, where C and-c depend
only on to and h. Hence (A2) is true in case (a) with c depending on to and h.

(b) The Reissner-Mindlin model. Given (w, _0, _m, 7) H(to) x V x 7" x [L2(to)]2,
let (z,o,k_,)=(-w,-O_,m_-e_(O_),7-(O_-V__w)), where 8 is a constant to be
specified. Then noting that by (3.6), _m, T-1 _m) -> _m /(1 / ), and recalling Lemma
3.3, we have

(w, _0, m,= _7; z, o, _k, ,)=(m,_ T-lm)x+(h---),,7_,]2=o.,o + t,, e (_0)]]c-(_m,_ T-le(O_))c=

o,- (_%_O-w

> ,-c [Imll/ 11(_0)11 ll0-Vwll =
0tol+v 2

0,to

{ h2( -)}=>min l+vl fig Cl(,--

Thus if B is small enough we have found (z, o, _k, ’) H such that ]]z, , =k, ]IH =<
CIIw. _0. =m. _ll, and (w, 0_, m=; z, o, k_, )>=cllw o_, m=, _3,11, where the constants depend
only on to, h, and ft. These prove the assertion in case (b).

(c) The Kirchhoff model. Given (w, _0, _m, y) H, let (z, o, _k, ’)= (-w, -_0-8Oo,
_m- B_e(_0), Y- ’o), where Oo V and sro V’ are defined so as to satisfy

I1_oll ,- It_rtl,, <% o>--Ilyll,,
oll ,- 0 vw 1, <0 v w, fro>

which obviously is possible. As in case (b), we then find that for a sufficiently small. IIz. . _. 11. <= CIIw. _0. _m. 11- and (w, _0, _m, y; z, q, _k, ’)>_- cllw. _o. _m. 11. where
C and c depend only on to, and so the assertion follows in case (c).

Appendix B. The Korn inequality. Let to be a bounded Lipschitz domain and
define the seminorm

{Io }1/2,(_o)1 = dx dx2 0 (81(o)))2,

where e(_0)=1/2(O0/Oxj +OOj/Ox), and let

lul = H,=lol<+llo-Vwll =o,, u=(w,_0), w (o), 0(/-/1
THEOREM B.1. There is a constant C depending only on to such that for any

_0 [H’(o)]

(B 1) inf {11 o a bx2 =, + 0=- c + bxlll 1,) < Cl_01 =
E(o),

abc

(B2) inf IIw-(a + bx + CX2 + dXl x2) HI(,) < CIU_ IR,
abcd

Proof. Inequality (B1) follows immediately from the Korn inequality for plane
elasticity (see [19]). Inequality (B2) follows from (B1).
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LEMMA B.1. There exists a constant C depending on to such that for any (w, 0_)
[Hi(to)]

Proof. We apply the standard contradiction argument. If the assertion is not true,
there is a sequence {w,, _0, such that

IIw,_0ll,-- 1,

2II_0.-w.llo,- 0, w.a-o
as n. Then by Theorem B.1, {_0,} contains a subsequence (which we denote
once more by {_0,}) such that O_,(a-bx2, c+bXl) in [Hl(to)]2. Furthermore, since
II0-Vwllo,-,0, there is another subsequence (once more denoted by {_0,, w,}) so

2that w, w in Hi(to). Hence b=0 and w=axl+cX2+d. Because w, dsO we get
a c d 0, contradicting the assumption w, _0 , 1.

We immediately get Theorem B.2.
THEOREM B.2. There exists a constant C depending only on to such that for any

_u (w, _0) H(to)x [nl(to)]2

(B3) Ilwll - <Clul
Let us now consider a family {to} of Lipschitz bounded domains. The family

will be called regular if there is a (uniform) constant C so that (B3) holds for all to .
Let us now consider a special family of domains. Let toto] be a unit circle and

tot-] be a sequence of regular n + 3-polygons such that

.[n] [n+l] C [n+l] [0]

[.] [0] as

in the sense that for any x [o there is n(x)> 0 such that x m["] for all n > n(x).
We let o {m[o], m[l, [2,... }.

THEOREM B.3. efamily o is a regularfamily of domains and hence there exists
C > 0 such that

IIwll .+01, 1," < C[g[,"
for any =(w,O)H([n])x[Hl(o["])], n=0,1,2,....

Proof For n > no the ["] are star-shaped domains and

am["= {(Xl, x)" Xl p,(O) cos 0, x2 p,(O) sin 0, 0 0 2},

where p,(0) o I and p(0) 0 uniformly. Let Q, be the one-to-one map of " onto
o[] defined by

Q,(p(o) cos 0, p(o) sin 0)= (p(O) cos 0, p(O) sin 0)

=( p(O)-(1/2)
p.(O)-(1/2)

( p(o)-(1/2)
p.(O)-(1/2)

COS 0

sinO foro(O)>-.
2
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If Qn(x1, x2)"- (1, 2) then we have , t"(x,, x2), :t2" 2(Xl, x2), Xl Xn](l, 2):
X2 Xn](l, 2), and"x,, (O/Oxj) o, x", (Ox,/O) 6ij i,j 1, 2 as n ,
uniformly with respect to (x,x2)wt" and (,)wto. Let y=(w,O) a
H(wt") x (H(w"))2 and let

a= (, 0), 0(1, 2)= (Xl(l, 2), X2(l, 2))"

Then O H(wt) x (H(wta)) and by Theorem B.2 we have

and also

1 1,o[] W 1,o[n](1 + o(1)),

_111,o[] I1_0 1,[n]( 1 + o( 1 )),

I-ill R.,otJ I-ul R.,ot"J + o(1)(11 wll ,o/ I1_0
as n . Hence

Ilwl[ =,,-J(1 + o(1))+ 0,o(1_ +o(1))
_
c[l_u ,o/ o(1)(11 w ,o/,Ilull

From this we see that for n > no the family is a regular one. Using Theorem B.2, we
then see that the whole family o is regular.

Appendix C. A lrojection theorem.
THEOREM C.1. Let H be a Hilbert space, let {H,} and {K,} be sequences of closed

subspaces ofH such that Hn c Hn+l and K,
_
K,+I, n 1, 2, , and let

Ho=UH, and Ko=fqK,.

Furthermore, let P. and Q,, respectively, Po, Qo, be orthogonal projections onto H, and
K,, respectively, Ho, Ko. Then for any u H

Pu Pou - 0, Qu Qou - 0

as 11---)o(3.

Proof First observe that Q/lU Q/Qu --< Q.u II, so Qu - q->- 0
monotonically. Furthermore,

IIQu Q/ju IIQulI2-2(Qu, Q/ju)/
so {Q.u} is a Cauchy sequence. So Q,u- v and v K, for all n. Hence v Ko and
since (v, w) lim,_ (Q,u, w) lim,_ (u, Q,w) (u, w) for all we Ko, it follows that
/3 Qolg.

Let us now consider the projection operator I- P, (,. Then (, projects H onto
H1, and Hlw H ( So P,u v Ho and by the,+1. Hence ,u u P,u u v f’) H,.
same argument as before, v Pou. I’l
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A BIDIMENSIONAL ELECTROMAGNETIC PROBLEM*
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Abstract. Electric alternating currents running in a system of infinite cylindrical parallel conductors
generate an electromagnetic field, which is defined by a potential p"2C. p is harmonic in the exterior
domain and satisfies a Helmholtz equation in the cross sections of the conductors. The asymptotic properties
of p as the frequency tends to infinity, in particular the boundary layers due to the skin effect, are studied.
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1. Introduction. This paper has been motivated by the numerical simulation of
the electromagnetic casting process (EMC). When the ingot is sufficiently long, the
electromagnetic part of the problem reduces to the search of a complex potential
in [2, of class C, with logarithmic behaviour at infinity, satisfying the conditions

(1.1) Ap+2ia2(q+Ck)=O infk, 1 <-k<-N, Aq=0 in

here ’k C 2, 1 <---- k <_-- N, are the cross sections in the Xl, x2 plane of cylindrical electric
conductors in which runs a current with angular frequency to; 2a2=/ZoCrto is a real
constant where/Zo is the magnetic permeability of the air and cr the conductivity; is
the imaginary unit and the Ck’S are given complex constants.

Our initial purpose was to find a fast, accurate, and reliable numerical algorithm
for solving problem (1.1). We have been led to a theoretical study of problem (1.1),
partly independent of our original aim, which is the subject of this paper. We shall
report on the numerical aspects in a forthcoming paper.

Maybe because ofthe problem’s particular character, we have found few references
in the literature relative to problem (1.1). All of them [2], [4] are essentially concerned
with numerical, practical, or theoretical questions.

In 2, we introduce some notation and recall a few basic mathematical tools and
results. We feel it is necessary to construct with some detail our mathematical model;
this is the object of 3. In 4, because of their physical and mathematical relevance,
we define two specific problems, closely related to (1.1), which are studied in the
remaining parts of the paper.

For many applications, in particular for the EMC process, the coefficient a is
large and we can observe a very pronounced skin effect in the conductors, i.e., the
electric current j 2ia2(q+ Ck) almost vanishes in ’k except in a thin layer in the
neighborhood of Orig. This is a serious difficulty for numerical computations, in
particular, since we are specially interested in the fields (current, induction, Laplace
forces) in the conductors. For this reason in 5-7 we analyse the behaviour of for
large c. Section 5 gives some global estimates for the rate of convergence of to a
limit function , as a tends to infinity. Section 6 contains more refined local estimates.
In 7 we construct a simple and accurate boundary layer approximation of in the
neighborhood of smooth parts of 012k. All these results are rather satisfactory and
complete except in the neighborhoods of corners of tg’k for which many improvements

* Received by the editors February 29, 1988; accepted for publication (in revised form) May 26, 1989.
t Math6matiques, Institut de Recherche en Informatique et Systmes Al6atoires, Universit6 de Rennes,

Campus de Beaulieu, 35042 Rennes Cedex, France.
$ D6partement de Math6matiques, Ecole Polytechnique F6d6rale de Lausanne, 1015 Lausanne,

Switzerland.

577



578 M. CROUZEIX AND J. DESCLOUX

remain to be done; in particular, we have not succeeded in getting a simple picture
of the singularity of q at a corner for large a.

As a consequence of Proposition 7.2, it follows that, along regular parts of OIlk,
q satisfies approximatively a Robin-type boundary condition. In 8 we show how this
property can be used, in the case where the Oflk’S have no corner, for defining an
approximation of q, which can be computed easily.

2. Notation and some basic tools. An element of 2 is denoted by x (x1, x2);
Ix[= x21+x2. B(x, 6) is the open ball with center x and radius 6. 191 and 02 are the
partial derivatives with respect to Xl and x2 and (0, 02). For rn =>0, 0’ and
are the rnth derivatives with respect to x and x. For A , _

is the closure of A,
0A is the boundary of A and XA is the characteristic set of A. For a function v’A-* C,
3 is the complex conjugate of v, and Or denotes the exterior normal derivative.
For A[2 open, the symbols LP(A), Hm(A), W"P(A) (Sobolev spaces), C’(A),
C’(A), C"(A) (the rnth derivatives are /3 H61der continuous, 0</3 <1) and the
corresponding norms 11. [[(A),"" ", have their usual meanings for complex-valued
functions. We will also use the spaces L’o(A), and LP(OA)

For an open set A , 0A is piecewise C if 0A is composed of a finite number
of closed arcs that are C and if for each interior angle y at corners we have 0 < 3’ < 2r;
furthermore, we impose the condition 0A 0A.

Let A - be an open connected set such that A is bounded and let # be
an open bounded subset of A. We define

(2.1) W(A) v" A C
(1 + Ixl) In (2 + Ixl)

e L(A)" Ov L(A), 1, 2

2 2 2 2(2.2) IIIIoA)--IIvlI2<(R)/IIO,vlI2A)/IIO2vlI=A.
For a study of the space W(A), we can consult, for example, [6]. In particular,

we have the following proposition.
PROPOSITION 2.1. (a) Wo(A) is a complete space for the norm I1" A).
(b) C(a) is dense in W(2).
(c) If OA is piecewise C, then W(A)= {via v W(2)}.
(d) 1 W(A), In (1 + Ixl)
The following result of potential theory is classical.
PROPOSITION 2.2. Let v be an harmonic complexfunction on the open domain A c

with bounded complement. We suppose that v(x)= O(ln Ixl) as Ixl- . Then there exist
complex constants d and e such that

v(x) d In Ixl / e + O(Ixl-),
kO,Ozv(x) d oo ln lxl/ O(Ixl-(++)),

The next trace estimate will play an important role in 5.
PROPOSTIOy 2.3. Let Ac be an open domain such that OA is piecewise C.

Then there exists a constant c independent of v Ha(A) such that

(2.3) v 2 < v =A)"

Proof. By a classical imbedding theorem (see, for example, 1 ]), for any w e L(A)
such that 8w L(A), l= 1,2, we have wll ,()-< c(ll wll ,()/ IIwll =()/
where c is some generic constant. We apply this result to w v and by Schwarz’s
inequality we obtain

(11 vii =(A))2--< c{ll v 2(A)/ 11 2(A)( II0, VII =()/ II0=v
<-- clIvlI=<A)IIvlI,’A).
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3. Mathematical model. In R we consider a system of N cylindrical conductors
parallel to the x3 axis in an alternating electromagnetic field. We denote by
1, I2,’’’, fN c R2 their cross sections, which we suppose are bounded in the
x2 plane, and set 12 U fk. Let j, E, and H be, respectively, the tridimensional complex
current, the electric field, and the magnetic field. We introduce the following assump-
tions"

(3.1) (a)

(3.2) (b)

(3.3) (c)

(3.4) (d)

(3.5) (e)

(3.6) (f)

/(xl, x2, x3, t)= E(x, x2) e-i’’ 3 in the conductors,

/(Xl, X2, X3, t)= nl(Xl, X2) e-i’’ , + n2(x,, xz) e -i’" z
j =trE in the conductors, j 0 outside the conductors,

0,H + 1/0 rot E 0 in the conductors,

ro---/ f in N3,
div/=0 inN3.

in 3,

Let us be precise and comment on these hypotheses, is the complex unit; to is
the angular frequency; is the time; /Xo is the magnetic permeability in the vacuum;
Y, Y2, 3 are the unit vectors along the coordinate axis. Assumption (3.1) is assumed
to be valid only in the conductors; supposing (3.1) is valid in 3 is physically not
realistic (see Sommerfeld [7]) and would lead to mathematical contradictions. In (3.3),
we suppose that the electric conductivity cr is the same positive constant for all
conductors; in fact, all results contained in this paper can be extended without difficulty
to the case where the conductivity is constant in each conductor but different from
one to another. Assumptions (3.4)-(3.6) are standard Maxwell’s equations where in
(3.5) we have neglected the displacement currents, which is legitimate for moderate
frequencies. Finally, we observe that all fields are x3 independent and can be considered
as mapping from [2 into C or C2.

From (3.1), (3.3), there exists j’2C such that

(3.7)
f(xl, x2, x3, t)=j(Xl, x2) e-i’ e3, and

j(x) erE(x) for x , j(x) =0 for x f/c,

where x (xl, x2) 2. From (3.6) and (3.2) follows the existence of a potential p in
2 such that

(3.8) (Hl(X), H(x)) =t cp(x) (Ozqg(x), -OlO(x)), X e 2

where ro--- denotes here the bidimensional vector curl. By using in particular (3.1),
(3.4), (3.7), and (3.8), we obtain

ro--i (ito/zocrq -j) 0 in fk, k 1, 2," , N;

this implies the existence of constants Ck C such that

(3.9) j itotxotr(q + Ck) in ’k, k 1, 2,. , N.

By (3.2), (3.5), (3.7), and (3.8), we have

(3.10) -Atp =j in 2;
finally, with (3.7), (3.9), we obtain

(3.11) -Aq itoloO’Xq +f in !2

where X is the characteristic function of fl and f= itotXotrCk in ’k, f 0 in fc.
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For physical reasons, it is natural to impose on q a behaviour at most logarithmic
at infinity. By Proposition 2.2 there exist constants d and e c C such that

(3.12) q(x) d In Ixl + e + O(Ixl-) as Ixl- .
Without restriction of generality, we can further impose the constraint e 0 since

the physical fields are independent of e.
On the basis of equations (3.11), (3.12) with the condition e =0, we are now in

the position of formulating the mathematical problem we will study.
Let f/= U k ’k C R2; we suppose

(3.13)

(3.14)

(a) k is a bounded connected open set, 1 <-k<-_ N;

(b) l)k f’) fil Q for k 1; O is piecewise C.
For given constants Ck C, k 1, 2, , N, our basic mathematical problem will

be to find q L12oc(R2) such that

(3.15) -Aq 2ia2xo +f in distribution in R2,
(3.16) q(x) d In Ixl + O([x1-1) as Ixl-,
where X is the characteristic function of fI, f=2ia2Ck in Ok, f=0 in fl and
32= tO/Zotr/2>0; in (3.16) d C is an unknown constant.

From potential theory (see, for example, Nedelec [6]), it follows that problem
(3.15), (3.16) is equivalent to the following integral problem. For given constants
Ck C C_,, find q c L2() such that

(317) q(x)-ic2I
a 117r
In Is- xlq(: d:-- In Is- xlf(:) d:.

Our first basic result is contained in the following.
PROPOSITION 3.1. Problem (3.15), (3.16) has one and only one solution. Furthermore,
2p 2

(C Wlc( ),for any l<_--p<, ( C1’/3(2) for any 0</3<1, and q c C(I)Uc).
Proof. For proving the existence and uniqueness of the solution, it suffices, by the

Fredholm alternative, to verify that, for f= 0, (3.17) admits only the trivial solution;
we multiply (3.17) by qS(x) and integrate over f; we then remark that the left member
ofthe resulting equation is real, whereas the right member is purely imaginary. Standard
regularity results for the Laplacian operator show that c C(Ufc) and c
W;cp(R2); therefore q c clg(R-); Proposition 2.2 implies that, in fact, o e C1’(R2),
0</3<1. [3

For a solution of (3.15), (3.16), we introduce the notion of total current defined by

(3.18) J= It j(x) dx.

Since 2ce2= W/Zo0", we obtain by (3.9)

(3.19) J 2azi I. (q + Ck)(X) dx.
k=l

Furthermore, we have the following relation.
PROPOSITION 3.2. Let be the solution of (3.15), (3.16). Then

J -2"rrd.

Proof. By Proposition 2.2, we have dq/dn d/R + O(R-2). Integrating relation
(3.10) on B(O,R), we obtain the desired result by using Green’s formula and
(3.18). [3
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Remark 3.1. In our model, we have neglected the displacement currents, which
supposes a is not too large. On another side, most of the results of this paper concern
asymptotic relations as a->oo. Besides their intrinsic mathematical interest, these
asymptotic relations are physically relevant in many concrete situations for a large
range of values of a.

4. Two particular cases of physical importance. In simulating the industrial process
of electromagnetic casting (EMC), we have encountered the following particular case
of the situation described in the preceding section. For each 1 _-< k_-< N, there exists
1 _-< _<- N such that ’k and l)t are symmetric with respect to the axis Ox2; furthermore
Ck--Ct; k may be equal to in which case Ck 0. The constants Ck are obtained
from the specifications of the EMC installation. By uniqueness of the solution of
problem (3.15), (3.16), it follows that tC(-Xl, x2) -(xl, x2) for all (Xl, x2) 2, which
implies that d =0 in (3.16). As a consequence of Propositions 2.1, 2.2, and 3.1,
q e W(2), so that by (3.15) satisfies the variational equation

For mathematical convenience, we generalize the above situation somewhat and
consider the following problem. For given sets fk satisfying (3.13), (3.14) and for
given constants Ck C, 1 <- k <- N, find 0 W(2) such that

where f U v= fk, f 2is 2Ck on fk, f 0 in fc.
We will study problem (4.2) in detail in the next sections. However, we immediately

remark that, by Propositions 2.1 and 2.2, a solution tp of (4.2) will behave at infinity
as e+ O(]xl-1), and consequently will be a solution of the original problem (3.15),
(3.16) if and only if the constant e- 0.

Another situation of interest is the case of a single conductor so that I1 I11. In
this context, however, the total current J defined in (3.18) appears as a data and the
constant C1 as an unknown. By Proposition 3.2, the relevant problem then reads as
follows. For given J C, find L2oc(2) and : C such that

(4.3) -A 2ia2xa(p + ) in distribution in

J
(4.4) (x) In Ixl + O([x1-1) as Ixl-,

In (4.4), the constant J is immaterial; furthermore, from a mathematical point of
view, the number of conductors is of little importance. In the next sections we will
consider the following problem. For given fk, 1 _--< k_-< N satisfying (3.13), (3.14), find

Li2oc(2) and sr C such that

(4.5) -Ap 2ia2xa(p + ) in distribution in 2,

(4.6) o(x) In Ixl + O(Ix1-1) as Ixl- oo.

We conclude this section by two remarks.
Remark 4.1. The single conductor problem (4.3), (4.4) can be generalized in a

natural way for the case of several conductors: we prescribe the current Jk for each
of them. By (3.5), this leads to the following problem.
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For given Jk C, 1 <= k <= N, find Loc(2) and the constants Ck C, 1 -<_ k -< N,
such that (3.15), (3.16) are satisfied under the constraint

f (q+Ck)(X) dX=Jk, l<=k<=N.2ia 2

Clearly, by (3.15), the total current J will be the sum of the Jk. This problem,
which is mentioned in the literature [2], possesses one and only one solution. To a
large extent its study, in particular the convergence when a--> o, can be reduced to
that of problems (4.2) and (4.5), (4.6). For the sake of simplicity, we will not consider
it in the following.

The problems of solving (3.15), (3.16) for given constants Ck on one side and for
given Jk on another are strongly related. Suppose we have solved (3.15), (3.16) for
Cs 1, Ct =0 if j, 1 <=j <= N; then the problem for given Jk reduces to a linear system
of N equations that can be proved to possess a unique solution.

Remark 4.2. We can object that the problem introduced in Remark 4.1 is not
physical if the total current J does not vanish; in particular, this will always be the
case for the situation of the single conductor. The following argument shows that this
difficulty can be overcome. To this end, we add to the system an auxiliary conductor
fIN+I for which we prescribe a current equal to -J; we then translate it in a given
direction. Let b denote the distance between the origin and the center of gravity of
f N+I, and let qb and p be the solutions of the auxiliary and of the original problems,
respectively. It is then possible to show that, for any fixed a and for any fixed bounded
domain A, we have O(1/b).. Global asymptotic estimates. As mentioned in the Introduction, we are inter-
ested in situations with pronounced skin effect in the conductors. It is then natural to
consider what happens if we let the angular frequency o tend to infinity; since
2a2=/zoro, this amounts to letting the parameter a . Unfortunately, in problem
(3.15), (3.16), for exceptional domains f/, d may become unbounded as a tends to
infinity; see Remark 5.2 below. For this reason, we will treat problems (4.2) and (4.5),
(4.6). To insist on the dependence on a, we will sometimes use the notation o, :,.
instead of o, :,. . We begin with problem (4.2).

PROPOSITION 5.1. Problem (4.2) has one and only one solution. Furthermore,, C’() Iq ’PWoc (2), for all 0 < < 1, 1 < p <, and there exists a constant e C
such that

(x) e + o(Ixl -’) as Ixl-" .
Proof Multiplying (4.2) by (1 + i), we see that the left member then defines a

continuous and coercive form on W(2) defined in 2; existence and uniqueness
follows by the Lax-Milgram Lemma. Regularity follows from the fact that q satisfies
(3.15). The asymptotic relation as Ixl- can be deduced from Propositions 2.1 and
2.2. [3

We now introduce the function q, candidate for the limit of when a-.
LZMMA 5.1. In connection with problem (4.2), there exists a unique function

W(2) such that q=-Ck in ’k and Aq=0 in (l. Furthermore, dqo/dn L2(0[-),
where dqo/ dn is the normal derivative, exterior to 12, of the restriction of q to fl.

Proof It suffices to find q W(I)) such that Aq 0 and q =--Ck on OIlk. This
problem can be reduced to a problem of the following form. Find cr G such that
Ja Vo-. V t7 gt3 for all v G, where g is a bounded function with bounded support
and G-{v W(l)l v-0 on 01l}; we remark that the Dirichlet form is coercive on
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G and apply the Lax-Milgram Lemma. That dq/dn L2(OI) is a consequence of the
fact that Of/is piecewise C (see Grisvard [3]).

PROPOSITION 5.2. Let q be the solution ofproblem (4.2), and let poo be defined by
Lemma 5.1. Then asymptotically, as a oo, we have

(b) II-11(.

oofi Set ,-. We have

(5.1) --2ia==O in, -=0 in.
By Proposition 5.1 and Lemma 5.1, W(

has a jump that is equal to d=/dn. We multiply both equations of (5.1) by , integrate,
respectively, on and , use Green’s formula, and add the resulting relations; we get

Let us take the modulus in (5.2). The left member is bounded from below by

if a 1 and if we set A R, O in (2.2). As far as the right member is concerned,
by Propositions 2.3 and Lemma 5.1 we can write

where c is a generic constant independent of a; parts (a) and (b) follow immediately.
By Proposition 2.3, part (c) is a consequence of parts (a) and (b). By (5.1) and part
(b) we obtain that Ilan =.)= o(’/=), and consequently lIAr. == O(’/=); since
(part (a)) I111 w(=)-o(1), we conclude by standard elliptic regularity results that
I111,,=)= o(’/=). Consider a particular fk and set ’= q, + Ck; from the above
results we have Ilffll.=(,,)= o(’/=) and I111.’(..)- o(-/=); applying Proposition
2.3 to 0sr, we obtain IIo,11o-o(1). I= 1.2; this proves part (d) of Proposition
5.2.

Next we consider problem (4.5), (4.6). Let r C(R2 such that st(x) 0 for Ixl--< a
and st(x) 1 for ]xl > a+ 1; a is a fixed number chosen in such awaythat c B(0, a- 1).
g(x) A(’(x) In Ixl) is then a Coo(R2) function, with bounded support and vanishing
on . By using variational methods as in the proofs of Proposition 5.1 and Lemma
5.1, we define uniquely w, and w W(2) by the requirements

(5.3) -Aw, 2ia2x,w, + g in distribution in R2,
(5.4) woo=O in f, -Awo=g in distribution in

By Propositions 2.1 and 2.2, there exist :, and s C such that

(5.5) w=(x)--#=+O(lxl-1), wo(x) #oo + O(Ixl-’).
Now set

(5.6) q " In Ixl + w, :,, q " In Ix + woo- :.
PROPOSITION 5.3. (a) Problem (4.5), (4.6) possesses a unique solution (p,, so,); q,

belongs to C 1.t (z) f) 2.pWoc (R2), for any fl, p with 0 < fl < 1, 1 < p < +oo.
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(b) There exist a unique function q and a unique constant s C satisfying the
properties:
as Ixl .

(c) (, s%) and (,) are given by (5.5), (5.6).
Proof. We only check part (a). Direct calculations show that (#, s), as defined

by (5.5), (5.6), is the solution of problem (4.5), (4.6). Suppose it has two solutions
and denote their difference by (v, ,/). Then, by Propositions 2.1 and 2.2, v W(R2)
and satisfies the equation -Av=2ia2(v+rl), which implies v=-r/ on R2; since
v(x)--O(Ix1-1) as Ixl-,oo, we get r/=0. Regularity results follow as in the proof of
Proposition 3.1.

We now study the convergence of toward . The arguments of the proof of
Proposition 5.2 apply to w and w; in fact, as is easily checked, Proposition 5.2 is
valid when we replace and by w and w, respectively. By (5.6), it remains to
estimate the term (s-s). To this aim, consider the domain B(0, r)\f for r large
enough. By Green’s formula, we obtain

w w -.n dn
(5.7)

fo{ do d(w-w)}(wo-w---
B(O,r) dn

where the normal is exterior to f and B(0, r). We use the asymptotic behaviours of, w and w as Ixl, Standard arguments show that 0a d(w-w)/dn-oa d(w- w)/dn =0; fuhermore, as r, the right-hand side of (5.7) conver-
ges to 2(-). It follows from above that

1
(w-w)

Summarizing this discussion, we have Proposition 5.4.
PROPOSITION 5.4. Let , and ,) be given by Proposition 5.3. en
(a) I1 11=
(c) I1-11=0.
(d) I1 =0. O(1),
(e) I 1 O(-’).
Remark 5.1. The estimates of Propositions 5.2 and 5.4 are identical except for

pa (b).
The next result, which is probably not optimal, will not be used later; we quote

it without proof.
PROPOSITION 5.5. Let and be defined either by Proposition 5.2 or Proposition

5.3. en
, ooll =<=) o(-112).

The following estimate, difficult and certainly not optimal, concerns the conver-
gence of the normal derivative as a - oo. We will prove it at the end of 6.

PROPOSItiON 5.6. Let q and qo be defined either by Proposition 5.2 or Proposition
5.3. Then 11 (q, q)11 t’(oa) O((a/In a )-1/2).

We conclude this section by an example and a remark.
Example 5.1. The system consists of one conductor with circular section, i.e.,

ll B(0, R). For the nonphysical problem (4.2) we obtain the trivial solution q q

-C1 on 2. More interesting is problem (4.5), (4.6) which we now consider. Here
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q.(x) o(x) In Ixl for Ixl >- R and o(x) -s= In R for Ixl -< R, whereas, for
Ix] =< R, o is of the form

(5.8) (p, (x)= -, + a,Jo((1 + i)alxl).
In (5.8), Jo denotes the Bessel function of order zero; the complex constants

and a,, are determined by imposing the continuity of o and of its normal derivative
on 012. Explicit calculations using the asymptotic expansions of Bessel functions show
that all estimates of Proposition 5.4 are optimal.

Remark 5.2. For 1)= B(0, R), let (o, :) be the solution of problem (4.5), (4.6)
and q be the solution of the initial problem (3.15), (3.16) with C1 1. Clearly,
q (1/)q. By Proposition 5.4 and the above discussion of Example 5.1, lim_.oo :
sc=-ln R and q(x)= (1/:)ln[xl for [xl>=R. If R= 1, there is no possible conver-
gence of qS as a co on any subset of 1) c. In fact, for any lI, there exists one and
only one domain homothetic to lI for which the same phenomenon occurs with Ck 1,
k=l,2,..-,N.

6. Some local estimates. In this section 0 and o will denote the functions defined
either in Proposition 5.2 or in Proposition 5.3.

We first note that if A c 2 is a bounded open set such that does not contain
any corner of 01), then for any m we have that o,, and o belong to H"(A f’l 1)) and
to Hm(A("lc). Loosely speaking, the restrictions of o,, and o to 1) or to 1) are C
except at the corners of 012. These properties are consequences of standard regularity
results for elliptic equations. To investigate properties in the neighborhood of 01I, we
introduce the following local transformation of coordinates. Let F c 011 be a smooth
arc. One of its endpoints, say P, can be a corner of 0lI. F admits the parametrization
(3’1(t), 3’2(t)) where is the arclength parameter such that P corresponds to 0. With

(nl(t), n2(t)) denoting, as usual, the unit normal exterior to 1), we set

(6.1) (xl, x2)= (3q(:2), y2(:2)) + :(n(:2), n2(:2)).
As is well known, (:1, :2) defines a local orthogonal curvilinear system of coordinates,
the metric of which is given by the quadratic form

(6.2) dsCl+ $2(1, 2) d22 S(I, :2)= 1 +
R(:2)’_

R(so2) is the radius of curvature of F, where R(:2) > 0 if f is "convex" at the point of
F with parameter 2. We will denote by DI1 and D/ the/th partial derivatives with
respect to SOl and so2, respectively, so that, for example, the scalar product of two
gradients is given by

(6.3) u" t--DlU" D1/)+ D2u" D2v/s2.
To P, endpoint of F, or to any Q interior point of F, we associate an open rectangle
T as shown in Figs. 6.1 and 6.2. In particular we suppose the following"

(a) The system of coordinates (sc, so2) is defined and regular in T.
(b) T f-I {x T sol < 0} and T f-I fc {x T[ 1 > 0} are nonempty and satisfy

the cone condition.
(c) PTor QT.
LEMMA 6.1. Let T be a rectangle as defined above and let O" 2_+ be a function

such that O, 01 O, and 020 belong to L(2) and 0 0 in T. Then for any m 1, 2, 3, ,
we have as a tends to infinity"

(a) IlomDT(o-ooo)ll w(u:) 0(--1/2),
(b) IIo"D’(,.-)II() 0(0--3/2),
(c) ]lO’D’z"(q,,--(oO)llL2(0,) 0(--1).
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FIG. 6.1.

FIG. 6.2

Proof. We will prove Lemma 6.1 only for m 1 and for p, p defined by
Proposition 5.2. The estimates relative to m => 2 can be obtained with similar arguments
by an induction process. The situation corresponding to Proposition 5.3 is treated
easily by considering the function ,- + sc- %; see Proposition 5.4(b). We start
as in the proof of Proposition 5.2 with r/= p-p. Multiplying (5.1) by v C(T),
we obtain after integration by parts

(6.4) V 7 V v 2ia 2 nv v.

In the coordinates (:1, so2), by using in particular (6.3), (6.4) becomes

(6.5) f(sDrtDv+s-DqDv)-2ia2fsrtv=-ID,,coo(O,2)v(O,2)d2
where f is the image of Tfqf/in the (:1, :2) plane. We set v =-D2w in (6.5), where
w C(’) and is the image of T in the (, :2) plane; after integration by parts,
we obtain

In (sDD2qDlW+ s-lDrlD2w)-2ia2 fh sD2qw
(6.6) =-Ia D1D2q(0, :2)w(0, :2) d

Ia2 (D2sD,qD,w+ D2(s-’)D2D2w) + 2ia2 Ih D2srlw.



A BIDIMENSIONAL ELECTROMAGNETIC PROBLEM 587

In a first step, we assume that 0 c C(T), therefore we can set w Oz with z C();
after some elementary calculations, with D2r/= D2(o- q), we get

=-Q OD,D(O, 2)z(0, 2) d
(6.7)

In (DsD,D,(Oz)+ D(s-’)DD(Oz))+2ia2 fh DsOz
+ f, {sDO(Dz zD)+ s-D20 (Dz zDz)}.

From classical results of regularity ODDz(O,) C(0); therefore it follows from
(6.7) that

(0) -[O(sD) + D2(s-D2)](O) H-();
since 0 has a compact suppo included in , we deduce from the hypoellipticity of

that 0 H(). Then by density we can set z 0 in (6.7). In the last term of
the right member, we replace OD by D(O)-DO; we use Proposition 2.3
and Proposition 5.2(a),(b) and obtain the estimate

III 011(=)-2i=110 =

where C is a generic constant independent of a and 0.
From results of Grisvard [3], 6DD L(OO), where 6(x) denotes the distance

from x to the corners of 0; clearly, Io(x)[(x)lloll()and
cIl0[l(=). After a convenient treatment of the terms 0 in (6.8) and by using
classical inequalities, we obtain for C independent of a and 0

(6.9) 011(= c-/=ll011 (=, II011 =(.) c-/=ll011 (=);
this proves pas (a) and (b) of Lemma 6.1 when 0 C(T); paa (c) follows from
Proposition 2.3.

Now we consider the case where O(x) g(x) distance from x to 0T if x T and
O(x) 0 if x T; then we can find a sequence of 0, C(T) such that

0, converges to g everywhere, and

We obtain (6.9) for 0 g as the limit for 0 0, by using the Lebesgue Theorem. The
general situation is treated easily by noting that IO(x)lg(x)lloll().

LZMMa 6.2. Let A be an open bounded set. en

I1- 11 =() o(-).

Proof Set - and let w W() satisfy the relations

(6.10) w=xh in , w=0 on 0,
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where XA is the characteristic function of A. By Grisvard’s regularity results [3], there
exists a constant c, independent of r/, such that Ildw/dnllom<-c[l[l,). Let ro be
such that f U A c B(0, ro). By Green’s formula, we have for r > ro

(6.11) Ilnll = haw=- n/ -wL2(A)
cf’)B(O,r) n B(O,r)

r/ and w belong to W(R2) and are harmonic in (/(0, ro))L By Propositions 2.1 and
2.2, these functions and their normal derivatives behave, respectively, as do O(1) and
O([x1-2) as Ix tends to infinity; we conclude that the second term of the right-hand
side of (6.11) vanishes. Lemma 6.2 then follows from (6.11) and from Proposition
5.2(c) or Proposition 5.4(c).

PROPOSITION 6.1. Let A 1) be an open bounded set such that A contains no corner

of 012. Then for any m O, 1, 2,..., we have

Proof. We remark that by Lemma 6.1(c) we have the estimate
O(a -1) for any m 0, 1, 2,. and any F c 0f such that P contains no corner of 0f.
Together with standard regularity results and Lemma 6.2, this implies Proposition
6.1.

As an immediate consequence of the important Proposition 6.1, we have, for
example, the following corollary.

COROLLARY 6.1. For F Of such that F contains no corner of Of and for any
m O, 1, 2, we have

(,,,,,,- o) I1.o() o(,-’).

We conclude this section with the proof of Proposition 5.6. By Corollary 6.1, it
suffices to prove Proposition 5.6 when we replace 0f by a small arc F one endpoint
of which is a corner; we can assume that F T f-101I, where T is a rectangle as shown
in Fig. 6.1. We use Proposition 5.2(a), Proposition 5.4(a), and Lemma 6.1(a) with
m 1 and 0 =g, where g(x)=0 if x T and g(x) is the distance from x to 0T if
x eT. We immediately deduce the relations IlgDiDn[]()-O(o-’/2) and
IIgDwll) o(-/); from this last estimate and the fact that 7 is harmonic in f,-
we obtain that IlgD,wll(m) o(-/2); then we can conclude that

(6.12) IlgOlnll,_,,.nr=O(o,-1/), l= 1,2.

Setting w Off/and A T f’112, we have by a classical imbedding theorem and Schwarz’s
inequality

[[g[wIaIIL’(oA) <- C { IIgIwI2IIL(A) + []Oj(gIwI2)llL’(A)}
j=l

(6.13)
f

< c / g )IIw =

j=l

Since Ilwll.= o(-’/=), it follows by (6.12) that the right-hand side of (6.13) is
O(a-); fuhermore, we observe that along F, the arclength parameter 2 is O(g);
consequently, we have obtained the estimate

(6.14) IIg/wll e.,)= o(-’/b.
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For 0< 3’ < 1, we can write Iwl -/=[/=lwl]-lwl so that by H/51der’s inequality
we obtain

(6.15)
By Propositions 5.2(d) and 5.4(d), we know that Ilwll =r) is uniformly bounded with
respect to a; from (6.15) with y l/In a, we readily obtain the final estimate:

I]Ol(- )11 ’) Ilwll ’) O((a/ln a)-/2), l= 1,2. U

7. A bounda layer approximation. As in the previous section, will denote
here the function defined either in Proposition 5.2 or Proposition 5.3. Our purpose is
to study the behaviour of for large a in a conductor section Ok. We fix k, 1 k N
and set A k. Fuhermore, we set + Ck for problem (4.2) and

+ for problem (4.5), (4.6).
We first remark that satisfies in A the following Helmholtz homogeneous

equation"
(7.1) +2ia2=0 inA.

It is well known that F(x, y)=(1/4i)H((1 + i)lx-yl) is a fundamental solution of
this Helmholtz equation where H is a Hankel function. It follows that admits for
x A the representation

(7. n(x n(l e(x,- F(x, a.(y.

Then, by Propositions 5.2, 5.4, and by the asymptotic expansion formulae of the Hankel
functions (see, for example, [5]), we immediately deduce the following proposition.
Pooso 7.1. Let x A and d be the distance ofx to OA. ere exists a conscant

C such that for 1/d we have

Ioon(x)l c+ e, m, n=0, 1,2,. ..
Now consider a smooth arc F c 0A such that the endpoints of F are not corners

of 0A. With the system of coordinates (1, ) introduced by (6.1), F is the set of points
(0, ), 0 N N o. Fuhermore, there exists > 0 such that g {xl - < < 0, 0 <
< 0}

to 0A is equal to . We define in V an approximate u of by the relation

e n(0, ),(7.3) u(, )=s(, )
where s is given by (6.2). We remark that u on F.

As in
and , whereas R R() is the radius of curvature of F.
Pooso 7.2. For any m 0, 1, 2,... we have
(a) [IDr(n U)IIL()= O(-3),
(b) IIDTD,(-)il(= O(-=).
Proo We consider only the case m 0, since the treatment of the general situation

needs essentially the same tools. We use the expression of the Laplace operator in the
(,, 2) system of coordinates and write (7.1) in A, image of A in the (,, 2) plane.
Setting w -u, after some calculations we obtain

(7.4) DI(SD1 w) + 2ia2sw z,

(7.5) z(,, :)=-D



590 M. CROUZEIX AND J. DESCLOUX

From Lemma 6.1(b) and Proposition 6.1, we easily deduce that we have, uniformly
with respect to 0 =< so2 =< :02,

(7.6) IID/gr/( ., =)11_,o= o(-/=), l= 1, 2, It/(0, =)1 o(-’).
Then (7.5) and (7.6) imply that

(7.7) IIz(’, uniformly for 0 _-< s2 -<_ 02"
For s2 fixed, we multiply (7.4) by if; after an integration by parts, since w(0, 2)---0,
we obtain

(7.8) slD1 wl2 d:l + 2ia 2 s wl2 d:l

by (7.3), (7.6), and Proposition 7.1, the second term of the right-hand member of (7.8)
is O(e-S). Then (7.7) and (7.8)imply the estimate and

with (7.4)and (7.7)we have, furthermore, IID wlle_ ,o =
0(a-3/2). We conclude by standard arguments. [3

Remark 7.1. Results similar to those of Proposition 7.1 can be derived by directly
using the Helmholtz equation (7.1) instead of the integral representation (7.2). This
method is more complicated but can be generalized to the situation where a is variable,
i.e., the conductivity is not constant.

Remark 7.2. Suppose that in the definition (7.3) of us we replace S(I, 2) by 1;
then in Proposition 7.2 we lose one order, i.e., O(a -3) and O(a -2) are replaced,
respectively, by O(a -2) and O(a-).

Remark 7.3. Because of the exponential decay of r/s and us in the boundary
layer, L2 estimates are better than those for L. From the proof of Proposition 7.2 we
obtain, for example,

(7.9) u,, u,,

8. An approximation of p,, in 1 satisfying a Robin boundary condition. Our
purpose is to define a "cheap" approximation of qs. For the sake of briefness, we will
consider only problem (4.2); problem (4.5), (4.6) can be treated in a similar way. To
insure the validity of this approximation we must introduce a severe restriction on the
regularity of 12; in fact, we will suppose that

(8.1) 012 is of class C.
Let qs be the solution of problem (4.2). Suppose we know os or an approximation

s of os on 012. Then, because of hypothesis (8.1), the results of 7 allow us to define
an explicit and simple approximation of os in f.

Consider Proposition 7.2(b) with m 1 and V being replaced by V fq 012. Since
qs qs + Ck, by (7.3) we immediately obtain the following proposition.

PROPOSITION 8.1. Let qs be the solution ofproblem (4.2) and assume hypothesis
(8.1). Then

O(a -2), 1 < k < N,

where zs (1- i)a- 1/(2R) and R is the radius of curvature of aflk. [3

Proposition 8.1 shows that qs satisfies approximately a Robin boundary condition
on 0II. This leads us to introduce the following exterior problem. Find s e W(Ic)
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such that

(8.2) A=0 in fc, --z(,+Ck) on Ofk, l<--k<--N,
dn

where the unit normal on 0f is exterior to .
PROPOSITION 8.2. Let , be the solution of problem (4.2) and assume hypothesis

(8.1). Then
(a) Problem (8.2) has one and onl one solution,

Proofi Problem (8.2) admits the following variational formulation:

k=l k

Point (a) follows from (8.3) as an application of the Lax-Milgram Lemma. Set
w SinceW( and is harmonic in -, from 8.3 we obtain

(a.4) .v+ zv= k (+c) v ve w(fi).
O k=

We set v= # in (8.4) and recall that =(1-i)-l/(2R); we take the imaginary
pa of this relation and obtain the estimate (c) by Proposition 8.1; replacing (8.4)
with v # we conclude that Vw n o(-/); together with pa (c), this proves
pa (b).

Remark 8.1. In addition to those shown in Proposition 8.2, other estimates can
be obtained. For example, with some extra calculations, we can prove that

(8.5) [l-* o.) o(-).

Fuhermore, it is possible to extend , to 2 by the boundary layer approximation
introduced in } 7 and produce estimates relative to . We will not pursue this. On one
hand, these estimates are direct corollaries of the preceding ones or can be obtained
by using the same tools; on the other hand, due to the very restrictive hypothesis (8.1),
they are of limited interest.

Remark 8.2. Numerical tests show that for many practical applications, , gives
a very satisfactory approximation of , if0 is regular. If 0O has corners, the definition
(8.2) of is still meaningful; however, we get only very poor theoretical error
estimates, which are confirmed by numerical experiments.

Remark 8.3. If 0 has corners, Proposition 8.1 is still valid when we replace
L2(O) by L(F) where F is a closed pa of0 without singularities. In a fohcoming
paper, we shall present successful numerical computations obtained with a method
that takes advantage of this fact.
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CONJECTURE ON THE STRUCTURE OF SOLUTIONS OF THE
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GAS DYNAMICS SYSTEMS*
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Abstract. Two-dimensional flow of polytropic gas with initial data being constant in each quadrant is
considered. Under the assumption that each jump in initial data outside of the origin projects exactly one
planar wave of shocks, centered rarefaction waves, or slip planes, it is proved that only 16 combinations of
initial data are reasonable. For each combination, a conjecture on the structure of the solution in the whole
space > 0 is given.

Key words. Riemann problem, shock, rarefaction waves, slip plane, selfsimilar solution, rarefactive
pseudostationary flow
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1. Introduction. Using the experiences of researching the Riemann problem and
interactions of waves for one-dimensional gas dynamics systems [1]-[7], two-
dimensional scalar conservation laws [8], two-dimensional steady flows [9], [10], and
the regular reflection and Mach reflection [12], we consider the Riemann problem of
two-dimensional gas dynamic systems. Both isentropic and adiabatic flow are
considered.

The isentropic flow is modeled by the following system"

pt+(pu),+(pv)y=O,
1.1 (pu)t + (PU2 +P ),, + (put;)y O,

(pv), + (puv),, + (avE +p)y 0

and adiabatic flow,

p=Ap’, 7>1, A>0,

p, + (pu), + (pv), o,
(pu + (puE +p + (puv y O,

where p, (u, v), p denote density, velocity and pressure, respectively, and y and A are
constants.

The Riemann problems are defined, respectively, as follows:

(1.2)’ (p, p, u, v)[,=o (p,, p,, ui, vi)--(,
or in the ith quadrant of (x, y) plane (i 1, 2, 3, 4),
(1.2)’ (p, p, u, v)l,=o (p,, p,, u,, v,)-= (),
where 6) are constant states.
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Let us consider the selfsimilar solutions (p, u, v)= (p(:, r/), u(, r/), v(:, r/)) or
(p, p, u, v) (p(s, r/), p(s, r/), u(s, r/), v(s, r/)) (so= x t, rl y t), called pseudostation-
ary flow; then (1.1) or (1.1)’ changes, respectively, to

(1.3)

or

&+ (pu) np. + (or), o,
-(pu)+(pu:+p)-n(pu). +(puv). =o,
-I(pv) + (puv) q(pv). + (pv +p). O,

p e+
2 n

and the Riemann problems change to boundary value problems at the infinity, i.e.,

(p, u, v) or (p, p, u, v)-

>0,

as
<0,
>0,

r/>0,
r/>0,
r/<0,
r/<0.

We seek the solution in the whole (s, r/) plane.
It is easy to show that the pseudostationary flow is transonic and must be

supersonic at the infinity for bounded solutions. Considering the infinity as a Cauchy
support, we construct the solution from infinity. The data at infinity are four constant
states with four jumps. Solving these four jumps in the neighborhood of infinity, we
obtain four planar waves, parallel to the coordinate axis, each of which consists,
generally speaking, of three planar waves" a backward rarefaction wave R or shock
S, a slip line J, and a forward rarefaction wave R or shock S. For simplicity, we assume
that each jump of the data can be connected by exactly one planar wave of R, S, or
J. Thus, in the neighborhood of infinity, the solution consists of four planar waves of
R, S, and J, besides the four constant states. The problem will be classified according
to the different combinations of these four waves. In 3 we prove that only 16 cases
of combinations are needed to be considered; six cases do not involve J, and 10 do
involve J. Then we discuss the problem case by case in 4-6. After some analysis,
calculation, and demonstration, we get a conjecture on the structure of the solution
in the whole (s, r/) plane for each case.

We extend the supersonic planar flows coming from infinity along the stream
lines. They should stop at a boundary of supersonic flow if they do not interact;
otherwise they stop at the point where they interact. For the latter case, we solve the
interaction of planar waves up to the boundary of supersonic flow, which consists of
sonic curves, shocks, and slip lines. The boundary bounds a bounded domain of
subsonic flow. Many beautiful structures appear in the solutions. When we solve the
interaction of planar rarefaction waves, we must seek the global continuous solution
of a Goursat problem with sonic points as the ends of its support, a problem of
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degenerate hyperbolic system. When we solve the interaction of shocks, we meet the
problem of reflection of an oblique shock, and the regular reflection and Mach reflection
appear. To determine the subsonic flow we need to deal with a problem of a degenerate
elliptic system with free boundary. Slip lines are more fascinating. They should end
with a spiral [13]-[15] as they enter into the subsonic flow. In summary, the two-
dimensional Riemann problem gathers many interesting open problems. Maybe there
is a long way to go to solve all of these problems using pure analytical methods, but
it is possible to check them by computation first.

DEFINITION. The pseudostationary flow is called rarefactive if the density is
nonincreasing along the stream lines in the flow.

In summary, our conjecture on the solutions can be described as follows. The
solutions are piecewise smooth except for a spiral of slip lines, and they consist of
constant states, continuous rarefaction waves, shocks, and slip lines. There are no
compressive continuous waves. These properties are similar to those of the one-
dimensional case.

However, shocks may have bifurcation points and may vanish somewhere con-
tinuously. There is a subsonic domain in the flow, the boundary of which consists of
sonic curves, slip lines, and/or shocks. The stream lines must go into the subsonic
domain and focus at a node if there is no slip line in the domain; otherwise they may
end with a spiral. All these features are substantially different from those of the
one-dimensional case.

In addition, we have two conjectures for general pseudostationary flow as follows.
(1) The pseudostationary flow is continuous on the whole plane if and only if it is
continuous and rarefactive in a neighborhood of infinity. (2) The pseudostationary
flow is smooth (i.e., C 1) on the whole plane if. and only if it is a constant state.

2. Preliminaries.
2.1. Characteristics and standard forms. After simple calculation, the systems (1.3)

and (1.3)’ can, for smooth solutions, be reduced to

(2.1) p’/p U Ue + V U, + =0,
0 0 V \pip 0 V,

and

U O p p V O 0 Pn 2p
0 1 pU p +

0 0 pV p. + pU
=0.(2.1)’

0 0 0 pU U 0 1 0 pV U, pV
0 U yp 0 Ve 0 V 0 yp V, 2yp

where (U, V)=(u-, v-q), which is called pseudovelocity. Their characteristic
equations are

V- A U)[( V- A U)2- c2(1 + A 2)] 0,

V- A U):z[( V- A U)2- c2(1 + A 2)] O,

where c= /p’(p) (isentropic) or x/’r,p/p (adiabatic), which is called sound speed. So,

It is symmetric when p p3/3.
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either

or

(2.3

V-,U =0,
V

i.e. X Xo-- (pseudoflow characteristic),
U

(V-AU)=c(I+A),

UV: ,/c2( U + V c2)
U2_ c2

(pseudowave or A characteristics),

V2 c2
(2.4)

VU : ,/c( U + V c)

which are

real and distinct if and only if U2+ 1/’2> c2 (supersonic),
real and the same if and only if U2+ V2= c2 (sonic),
complex conjugate if and only if U2+ V2< c2 (subsonic).

Obviously, bounded solutions (p, u, v) must be pseudosupersonic in the neighbor-
hood of infinity.

There are three families of characteristic lines defined by

dn
as h,(p, U,V) (i 0,+,-),

which are called flow or h+ characteristic lines, respectively, in the supersonic domain
for a given solution (p(s, r/), u(sc, r/), v(sc, r/)). The flow characteristic lines, which are
called stream lines also, can be oriented so that they come from the infinity. The h+
characteristic lines can never be tangent to the stream lines.

There are only stream lines in the subsonic flow.
The more interesting thing is the sonic curve. The h+ characteristic lines are tangent

to each other at and only at sonic points and are perpendicular to the stream line
there. What is the relation between the sonic curve and the h+ characteristic lines? In
which cases will they coincide, contact, be perpendicular, or only intersect?

Let us deduce system (2.1) and (2.1)’ to characteristic form. The left eigenvectors
corresponding to )to, h+ are, respectively,

loft(o, u, v),

l,//(c2, 0, O, -1),

l’o://(O, U, V, 0),

The characteristic forms are

(2.5)

(2.6)

I+//( V- A+ U, A+p, -p),

l. //(O, Ac2, -c:z, V- A+/- U).

(c/p, u, v)
o + ;to + u+ Xo v) 0,

+ ,-v, u +x +(x+/-u- v)=0;
p
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(2.5)’ (0-+ Ao 0-) (pp-V) 0 (i.e., the smooth wave must be isentropic
along each stream line),

1 (0+A0-) (0+ 0-)( U2+ V2’)p+ ho +(U+aoV) =0,
p 2

( ’c2(U2+V2-C2) )( )P(2.6)’ -V, U +A +(AU- V)=0.
pc2

The first-order system (2.5)-(2.6) consists of a quasilinear equation (2.5) and a mixed-
type system of quasilinear equations (2.6). System (2.5)’-(2.6)’ is a hyperbolic system
(2.5)’ coupled with a mixed-type system (2.6)’. It is well known that systems (2.5)-(2.6)
and (2.5)’-(2.6)’ are both linearly degenerate for the flow characteristic and convex
(genuinely nonlinear) for wave characteristic families.

2.2. Discontinuities. It is well known that along the discontinuity line (),
the Rankine-Hugoniot condition should be true, i.e.,

[U] d [pV] d,

(2.7) [pU2 +p] d [pUV]

[pUV]

[pu]

(2.7)’
[pU2+p] dn [pUV] d,

[pUV] dn =[pV +p] d,

[pU(h+ U2 :[pV(h+ 22 V2)] d +V2)] de,

where [Q] Q-Qo, i.e., the jump of Q across the discontinuity. Solving (2.7), we
obtain either the linear discontinuity

dn v Vo
0d U Uo

(2.8) (slip line)
[p] =0

or nonlinear discontinuity

an oVo e( + v e) o(2.9)
d U- e2 V- V0 ’

(2.10) Po( Uog Vo)( V- Vo) p -Po,

where 2= (p/po)([P]/[p]). For the case of adiabatic flow, the only difference is that
(2.8) is replaced by [p] =0 and the following equation should be added to (2.9) and
(2.10):

(2.11) Z= (+ 1)0- (- 1)0> O.

It is easy to show that the nonlinear discontinuity can never be tangent to the stream
line or the I characteristic lines. We call the compressive nonlinear discontinuity a
shock or a shock wave.
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2.3. Planar elementary waves and their sonic curve and characteristic lines. Planar
elementary waves (p(s), u(), v(s)) or (p(s), p(), u(s), v(s)) involve:

(i) Constant states: (p, u, v)= const, or (p, p, u, v)= const.
(ii) Backward and forward rarefaction waves:

= du c
R )" -p -,p

dv 0,

or
du c

d(pp-’) =0

(iii) Backward and forward shock waves:

Iv] Iv]

(i.e.,/(:) must be isentropic).

[v]=o,

Pl Pr (entropy condition),

or

(iv) Slip lines"

j().{(-’u=tlr,p]=0,
or

Let us consider their sonic curve and characteristic lines.
(i) Constant state (p, u, v)= (po, Uo, Vo) or (p, p, u, v)= (po, Po, Uo, Vo). Their

sonic curve is a circle:

(- Uo) + (n Vo)= co.
The flow is subsonic inside the circle and supersonic outside the circle. The stream
lines satisfy

dr/ /- Vo

d - Uo

This is equivalent to u, zgx/(pr/pt)([p]/[p])= U x/(p,ip)([p]/[p]).
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Integrating it, we obtain

const.,

which are all rays starting from infinity and focusing at the center of the sonic circle.
The wave characteristic lines satisfy

where h+/- satisfy

dr/

[( r/- Vo) h+/-(:- Uo)]2 c(1 + h2).
Differentiating them along their own characteristic lines, we obtain

dh+/- dh+
-2[(r/ -v)-X+/-(- u)l(- u)-- 2A+c2 d--;

SO

dA_,_

which means the wave characteristic lines are straight lines. Because they are perpen-
dicular to the stream lines at the sonic circle, they must be the tangent lines of the

subsonic

supersonic

FIG. 2.1

/[0
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circle. It is easy to establish that the clockwise rays correspond to A_ and the counter-
clockwise rays correspond to A+. We can orient them so that they come from infinity
and end at the sonic circle (Fig. 2.1).

(ii) /(sc)2,1 connecting () and 0) (Figs. 2.2 and 2.3)"

u + ,/p’(p ), (_ u+ c u + c ),

The sonic curve is a straight segment

which we call the sonic stem.
The stream lines satisfy

’o v, (:: <_- <- ,),

and we have

dr/
d ",/p’(t,)

as du 1 p"(p /- 1 p"(p

do do 2/p’(p) p 2/P’(p) 2
(y + 1)p(-3)/2,

p2 -"0

A

R2,1 ()

2+ 2+ 2- A+ 2+

";o/ I/ o

A+ (’1) sonic -stem

u()2+

/

(i)=-(i,ui) (i= 1, 2)

2 2- 2- 2+ 2- 2-

FIG. 2.2
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4o
R2,1 (:)

4+ +/ 4+ 4+ 40
/

stem

FIG. 2.3

4o

so

d7 (3,+ 1)(/
do 2p

Integrating them, we get- "’ "/-7P-’/+"/ ’+, ’ a (p-’/’-
P-’/)’

T--D p(,+1)/2( (:_ U2)(,+1)/(,-1) if p2 0),

where c is an arbitrary constant. The sonic stem is located on the stream line 0
and is perpendicular to the A+ characteristic lines there. Here the situation is totally
different from that of constant states where the sonic curve is tangent to the A+
characteristic lines. The other stream lines are symmetric about it and all intersect at
point (u2, v2). (Figure 2.2 is for P2--0, Fig. 2.3 is for p=> 0. We use (i) to denote the
point (ui, vi).)

The A characteristic lines satisfy
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where

(’q --/)1)2--p
A+ oo, A_

2"=-4p’(r/- vl)
(r/>

(/-- t1)2--p
/_ o0, (’1" </)1)

We need only to consider

drt (’/--/91)2--p

As ds:= ((2p’+p")/(2pp’)) dp, we have

d(’r/- tl)2 y+l
[(,7 v,)

dp 20
Integrating it, we get

)2 )/2((r/- vl p(7+1 c-y(y+l)
7-3

0(7-3)/2 (3’# 3)

or

(rl-vl)2=p2(c-lnp) (3,=3).

All of the A+ characteristic lines focus at (u2, v2) (see Fig. 2.2).
If () is not a vacuum (p2> 0), then the sonic curves and characteristic lines of

), /2,1(sc), and () are as pictured in Fig. 2.3. Figure 2.3 can be made by combining
Figs. 2.1 and 2.2. The sonic curve is made of the sonic circle of and the sonic stem
of ,(). The sonic circle of is located in ; therefore it is an imaginary one.

(iii) ,() connecting and (Fig. 2.4)"

=+=U2+ Plp2=Ul+ 02p2,

D2

or

0"+ lg2 -dr" Pl
P12 I’ll "4- P2,

I)2 I)17

P2= (3,+ 1)02- (3’- 1)01> 0,
Pl (3,+1)01-(3,-1)02

p2>Pl z> 02 > 01 z> //2 > //1,

where P2---- (P2-Pl)/(P2-
Obviously, U2-" C2

is located in s < tr+ (so, it is an imaginary one), and the sonic circle of () is divided
into two parts by the shock (so, it is partly imaginary). The characteristic lines of
and () are determined by these two sonic circles, respectively.
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/t+

/t0

/t+

/t+

/tO

supersonic
/tO

/tO

FIG. 2.4

(iv) J2,1(;) connecting () and (i) (Fig. 2.5):

J2,1(:)’{ :=u2=ul’ or I
p2 p, tP2 p.

It seems that we cut the constant states along the stream line sc u u2 into two
parts, and slip them up or down.

Completely analogously, we can deal with the remaining planar elementary waves
along the other directions.

3. Classification. Under our assumptions, there are only four planar elementary
waves besides the constant states in a neighborhood of infinity.

We now analyze which combinations of these four waves are possible.
We consider the combination where J does not appear first. Thus pi # pj (i # j, i, j

1, 2, 3, 4). It is easy to show that there are only the following three combinations of pi’s"

P2 < Pl P2 < Pl P2 < Pl
V V A V V V

P3 < P4 P3 > P4 ]92 > P4

and that all other combinations of p’s can be reduced to the three above by coordinate
transformations.



604 T. ZHANG AND Y. ZHENG

( (1)

superson

(2)

supersonic

FIG. 2.5

For each of the above three possible combinations of pi’s, there are only two
further possibilities:

P2 < Pl, /’/2 < Ul" /(),

It is easy to show that (:, ) (i) -= (ui, v) (i 1, 2, 3, 4) must be located on the
four corners of a rectangle, and there are only four possibilities as follows:

(2) (1) (4) (3) (3) (4) (1) (2)

(3) (4) (1) (2) (2) (1) (4) (3)

Combining all facts mentioned above, we have the following table:

(2) (1) (4) (3) (3) (4) (1) (2)

V V

P3 < P4

P2Pl
A V

P3 > P4

(3) (4) (1) (2) (2) (1) (4) (3)

R S R S
R R S S S S R R
R S R S

R S R S
R R S S S S R R
R S R S
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p2<pl R S R S
v v R R S S S S R R
/9 /94 R S R S

But the bottom set of combinations are impossible. In fact, taking as an example,

/R/, we have

vl v2, v:z- v3 dp, v3 I.)4, I)4- 1)1 dp
P ,1 P

thus
/94 4’ alp’-- --dp,

P P

which is obviously impossible.

For S, we have

1)1 1)2, 1)2- 1)3 P3(P2-/93),

thus

1)3 1)4, 1)4--1)1--" P4(Pl P4);

fpl2p3 P’23(P2-P3)= Pl4p4(/91 p4)’

which is also easily shown to be impossible.
Analogously, the remaining cases are impossible. [3

Obviously, the two columns to the right of the table are similar (i.e., coordinate
rotations can transform one to the other); therefore there are only six cases that do
not involve J: two for four R’s, two for four S’s, and two for two R’s and two S’s.

Now, we consider cases involving J.
(1) Four J’s. There are only four subcases (Fig. 3.1). The two rows are similar in

the figure. Therefore there are only two subcases.

J34

Jx: Jx

Ja4 Ja4

FIG. 3.1
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(2) Three J’s. From three J’s we know that p =/92 ---/93 --/94 (isentropic) or Pl P2
P3--P4 (adiabatic), which contradicts the fourth wave.

(3) Two J’s.
(i) Two J’s are neighbors. Without loss of generality, we assume that the two

J’s are in the directions of-: and -r/. We need to find out the wave types in the other
two directions.

Observe the following table:

R or S v2 v v vR orS:
p2 p P P

v2 v3 R or S" ul u4 J" v2 v3 R or S" ul u4
J.

P2-- P3 Pl P4 P2 "-P3 Pl P4

j: u3 u4 j:
/’/3 U4

P3 P4 P3 P4

(isentropic) (adiabatic)

We have (1)= (3), and p2 P3 P4 (isentropic) or P2 P3--P4 (adiabatic). Thus

(2) (1) (4) (1) (2) (4)

(4) (1) (2) (4) (2) (1)

]92-" P4 < Pl (isentropic) / 67 g /
or J / J g J / J g

P P4 <P (adiabatic) J J J J

P2 P4 > Pl (isentropic) g g
or J J g J J

P P4>P (adiabatic) J J J J

The two columns to the right are similar, so there are only six cases.
(ii) Two J’s are not neighbors. It is easy to show that there are only three cases"

(4) One J:

J J J
R R S S S R
J J J

R orS:
J" /,/2-- Ul

u2 u3 R or S"
R orS: u3u4.

/’/1 U4

It is obviously impossible
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In sum, we have 16 cases that need to be considered as follows"

R

R

R

S S
4S

S_ S S S
S

R R
s s, s

R R

4J J J

R R J
2J+2R J I’R J R R 1’ I’R

J J J

S S J
2J+2S J 1’ S J ,l, S S 1’ ’I’ S

J J J

R R J
2J+R+S J $S J S R’ S

J J J

We discuss them case by case in the forthcoming sections.

4. Four rarefaction waves. These must be isentropic. There are two cases.
(1) Four /’s. The sonic circles and the sonic stems of/’s are pictured in Fig.

4.1. The inequalities of pi are

From

/92

/94

//2- /’/3 0,

P3
U 1.,/4 (X/7//19 d,

,o4

U4 U 0,

/’)1 /’)2 O,

40,

V3 V4 0,

/)4- /)I (7/) dp,



608 T. ZHANG AND V. ZHENG



TWO-DIMENSIONAL RIEMANN PROBLEM 609

we have

P447 dp= dp, dp=
P P P P

Obviously, they are equivalent, and we call them compatibility conditions.
The system is strictly hyperbolic at infinity. We consider infinity as a Cauchy

support. The data at the support are four constant states with four jumps. Solving
them, we obtain a continuous rarefactive solution consisting of four constant states
and four R’s in the neighborhood of infinity. Extending the solution along stream
lines, we should stop at either point P where two/’s meet as/1,2(), () and 4,1(T]),
or the sonic curves as /,3(r/), and/4,3(:) (Fig. 4.1). /,2(:) and/4,(7) meet at
P before they reach their sonic curves. The boundary of/1,2() should be the A_

characteristic line extending from P. It penetrates/,2(:) and goes into ) with positive
slope, and therefore it goes into /2,3(r/) without intersecting its sonic stem and then
goes into ) (Fig. 4.2). Analogously, we can extend the A+ characteristic line from P
to go through/4,(7), (g) and/3,4(), and into ).

supersonic

supersomc

R

FIG. 4.2

There are two cases:
(a) These two characteristic lines extending from P become tangent to the sonic

circle of) at Q and R, respectively, before they interact (Fig. 4.2). The A_ characteristic
line ffand the A/ characteristic line --’form a Goursat problem. Q and R, the ends
of the supports, are sonic points. We conjecture that this Goursat problem has a unique
supersonic rarefactive continuous solution up to a sonic curve connecting Q and R
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supersonic

FIG. 4.3

There is an internal boundary, outside which the flow is supersonic and rarefactive.
The boundary is the envelope of the X characteristic lines. Inside the boundary, the
flow is subsonic and rarefactive with a node of stream lines.

(2) Two R’s and two R’s. It is pictured in Fig. 4.4. The inequalities of Pi are

/92

/94

The compatibility conditions are
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t U2 "+" U3 P3 p

l2 H3

U3 134

FIG. 4.4

It is easy to know from them that p2 P4, /91 P3; then ul u2 V V4. Thus Fig. 4.4
is symmetric to r/- : -Ul + Vl and + r/= u2 + v2. /1,2 and/1,4 meet at P./_,3 and
/4,3 meet at P’. Extend the following"

A_ characteristic line from P to go through/1,2 and into @,
A/ characteristic line from P to go through R1 4 and into @,
h_ characteristic line from P’ to go through R,2,3 and into @,
A+ characteristic line from P’ to go through R4, and into (.

The A+ characteristic lines from P and P’ in () are either tangent to the sonic circle
of () before they meet, or they meet before they are tangent to the sonic circle of @.
The situation is analogous to @. The configuration of solutions are conjectured as
shown in Figs. 4.5 and 4.6.

There is a simple correspondence between two-dimensional pseudostationary flow
and one-dimensional unstationary flow as follows. The stream line corresponds to
x constant in the one-dimensional case where x is a Lagrangian coordinate. Infinity
corresponds to 0 in the one-dimensional case, and the node of stream lines corre-
sponds to o in the one-dimensional case.

In addition, we have two conjectures for general pseudostationary flow as follows"
(1) The pseudostationary flow is continuous on the whole plane if and only if it is
continuous and rarefactive in a neighborhood of infinity. (2) The pseudostationary
flow is smooth on the whole plane if and only if it is a constant state.
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FIG. 4.5

R/l+

J,/\ ._- sup,erson!c --_

:.. .’. ,,, .,,., %

FIG. 4.6

5. Four shocks. There are two cases.
(1) Four $’s (Fig. 5.1). The entropy conditions are

P2
/93> >/31

The compatibility conditions are

i2i2(02 01 4i4(03 04),

1
P4,(P4- P)

1

P3P
P(P3-P).

They are not equivalent.
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We can prove that

O’1,2 ( 0"3,4, 0"1,4 0"2,3-

In fact, it is equivalent to proving that

1191 1194 Pl 1192el2 < P;4, el4 <-- P3"
P2 P3 P4 P3

Making use of the compatibility conditions, we see this is equivalent to proving that

PiP3 <
Put

P3 Xpl 1)2 Ypl ,o4--

then our problem reduces to proving that

under entropy conditions

and compatibility conditions

(x-z)(x-z)
XZ

or

with

(x-z):’ (2’+ 1)z- (2’- 1)
xz (2"+ 1)z- (2’- 1)x

x<yz

Yx> >1
Z

(yV 1)(y 1)
(isentropic)

(y-l)2 (2’+1)-(2’-1)z
y (2’+ 1)- (2’- 1)y

(adiabatic)

(2’+ 1)- (2’- 1)y > 0, (2’+ 1)- (2’- 1)z > 0.

For isentropic flow, put

f(x) =- (x "r z’)(x z)y xz(yv 1)(y 1).

It is easy to check that

F(z)<0,

f(yz) y(yV 1)(y 1 )z2(zy-1 1) > O,

j’(x) yyxV-:’[(y + 1)x- (y- 1)z]> O.

So, when f(x)= O, we have x < yz.
For adiabatic flow, put

f(x) =- (x-z)2[(y + 1)z- (y- 1)]y[(y + 1)-(y- 1)y]

xz[(y + 1)z-(y- 1)x](y- 1)2[(2,+ 1)-(2,- 1)z].
It is easy to check that

f(z) <0,

f(yz) yz:’(y- 1):’[(2,+ 1)-(2"- 1)y](2’- 1)(z:’- 1) > 0,

f"(x) (2’- 1)z(y- 1)2[(3,+ 1)-(2’- 1)z]

+ 2[(2’+ 1)z- (2’- 1)]y[(2’ + 1)-(2,- 1)y]> O.

So, when f(x)= 0, we have x < yz.
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Thus, g2,3(r/)_.intersects the sonic circle of () before it meets other shocks. The
same is true for $3,4(7). g2,3(’), @ and g3,4(s) should stop at the sonic circle of ()
(Fig. 5.2). Across the circle, the flow should be subsonic and the shocks should be

FIG. 5.2

bent to intersect the other two shocks S-’2,1() and gl,4(T]), respectively. The curved
shock with ) on one side must be convex with respect to (u_, v:). The intersection
points T of shocks should have a triple shock configuration. The shocks from two
triple points T will match together smoothly. The flow behind them should be subsonic
and, in front of them, supersonic. The slip lines coming from the T’s are linear jumps.
There are no entropy conditions for slip lines. They should end with spirals in the
subsonic flow. The subsonic flow and its free boundary of shocks as well as the triple
points should be determined simultaneously.

(2) Two g’s and two ,’s (Fig. 5.3). The entropy conditions are

f12
Pl < >/93.

P4

The compatibility conditions are

iOip2 P2(PI- P2)’- P4(P3 P4), P3(I03- P2)’- P4(Pl P4)

from which we know that/91 --/93,/92 -"/94; then u2 U /)3 /)2 and Fig. 5.3 is symmetric
to --’l--" U2"I-/)2 and -rl=ul-vl.

Obviously, trl,: > tr3,4 and trl,4 > tr2,3, so we consider the intersection point P of
,2 and ,4. Both () and () may be subsonic, sonic, or supersonic with respect to P.
If () and () are subsonic at P, we should go back to their sonic circle, and g,2
and S1,4 should be bent from there. We conjecture the structure of the solution as in
Fig. 5.4.
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+
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FIG. 5.4 FIG. 5.5

If ) and () are sonic at P, the structure of the solution should be as shown in
Fig. 5.5.

If ) and () are supersonic at P, the problem is just the same as the reflection of
an oblique shock in steady flow at P, since the straight line through P and Q is a
stream line. But it is not the diffraction of a planar shock around a compressive corner
because the two symmetric axes, two stream lines, are perpendicular to each other. By
the way, it is easy to prove that () and (g) are supersonic at P when 1 < 3’--< 3.

There are two possibilities as follows.
In the case of adiabatic flow, if

(,) --q+ +P-+ q
2 27 -+ --+---< 2,

4 27
where

3ac b2 2b 9abc + 27a2d
p= 3a:Z <0, q= 27a3 <0, a=sr2>O,

b -sr{(3sr-2)+ (y- 1)(" 1)[(y + 1)(" 1)+ 2]} < 0,

e= -(sr- 1)[2(y+ 1)’(r- 1) + (st+ 1)] < 0,

d= -(st- 1)2<0, =P./Pa,

the structure of the solution is regular reflection [12] (Fig. 5.6).
If the state (denoted by )) behind the reflection shock at P is subsonic or sonic,

there is a curved reflection shock that connects the supersonic flow and subsonic flow,
otherwise the reflection shock is a straight line until it reaches the sonic circle of
constant state ). Then the subsonic flow should be bounded by the sonic circle of (),
the curved reflection shock S, as well as the two perpendicular stream lines.

If condition (.) is violated, the structure of the solution should be Mach reflections
as shown in Fig. 5.7. There are several subcases" simple Mach reflection if () is sonic
or subsonic; complex Math reflection if @ is supersonic and the sonic circle of ()
intersects with J; and double Mach reflection if () is supersonic but the sonic circle
of ) does not intersect with J. It seems that there is no spiral because of symmetry,
but the spiral should appear after perturbation [13]-[15] (Fig. 5.8).

This phenomenon reflects the instability of two-dimensional flow.
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FIG. 5.6

FiG. 5.7

SMR CMR DMR

FIG. 5.8
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6. Two rarefaction waves and two shocks.

(1) , , (Fig. 6.1). We have
R

and

P2
P3 < <P

P4

" x/ dp dp, P2(p2- p3) P;4(,01- P4).
P /9 P2

S2,3 must meet the sonic circle of@ first; then it is bent to continue on to penetrate
R34, go through R43 to intersect $14 and form a triple point. The boundary of the
supersonic flow of 12 coming from infinity is the A_ characteristic line (denoted by
in Fig. 6.1) through the end of the sonic stem of/12. The shock from the triple

point should go through /12 above line l, then into @ and be tangent to the sonic
circle of ) somewhere (Fig. 6.2).

FG. 6.2

(2) ,
R

(Fig. 6.3). We have

and

P2
/93> </91

P,

 dO,
P P p P;2(P3- P2) P4(Pl- P4).

The shock S-’2,3 must meet the sonic circle of @ first; then it penetrates /, and
goes into q) to intersect .q, and forms a triple point. The new shock coming from the
triple point continues on to penetrate /3,4..and enters @ to intersect ,:,3 and forms
another triple point. This triple point on S2, may not be the sonic point we started
with, so we modify the structure by starting at a (triple) point that is also the end point
ofthe shock coming from S,4. Therefore we conjecture that the structure ofthe solution
is as shown in Fig. 6.4.
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(ii) S,_S
R

FIG. 6.3

FIG. 6.4

7. The cases involving slip lines.
(1) Four J’s. There are only two subcases (Fig. 7.1). For both we have

Pl --/92 P3 P4 (isentropic) or Pl --P2 =P3 --P3 (adiabatic).

In the first subcase (Fig. 7.2), J41, @, and J34 should stop at the sonic circle of
@. It is easy to see that the slip line having constant state () at one side must be a
straight line through point (3). So J34 cannot be bent to be a boundary between () and
a subsonic flow. We conjecture that there is a free boundary of shock that starts
tangentially to the A-characteristic at the intersection point of J3,4 and the sonic circle
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J3

1J34
FIG. 7.1

FIG. 7.2 FIG. 7.3

(i)

T] U2 V3

p2 =p3 or P2 P3
(2) ]

(3) (I)

:Z+C

d...._v ,o
d (,o_r p O

V2 Vl

02<.01

FIG. 7.4

7 V+C

dv _p

p4 ,O1
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of ) and ends tangentially to the A+ characteristic at the intersection point of J3,2 and
the sonic circle of ). This shock wave connects () to a nonconstant supersonic flow,
which becomes subsonic in the central region gradually by itself or through the slip
lines. The structure is similar in the upper right region. The slip lines end with spirals
in the subsonic region.

In the second subcase, as the undetermined shocks should be out of their corre-
sponding sonic circles and end tangentially at the circles, we conjecture that the solution
is as shown in Fig. 7.3.

(2) Two J’s.
(a) Two J’s are neighbors.

(i) _Jt/ (Fig. 7.4). Figure 7.4 is symmetric to so-r/= ul- vl. It is a combination

of Figs. 4.4 and 7.1. Our conjecture of the solution is shown in Fig. 7.5.

supersonic

FIG. 7.5

(ii) J/ (Fig. 7.6). Figure 7.6 is symmetric to :-r/= u- v. We have p < P2

P3 P4, (u, v) (u3, v3). Solve/12, (3), and g14 tb AT through p:, (3) to Q_"Q+. These
curves and undetermined shock P_P/ bound a domain inside which there is a subsonic
domain as shown in Fig. 7.7.

(iii) Jj; (Fig. 7.8). We have pl p2 P4 > P3, Figure 7.8 is symmetric to :-r/=

u- Vl, and it is a combination of the upper right part of Fig. 5.3 and the lower left
part of the first part of Fig. 7.1. The solutions are combinations of parts of Figs. 5.4-5.7
and 7.2.

(iv) Jj (Fig. 7.9). We have p >/92 P3 P4. It is a combination of parts of Figs.

5.1 and 7.1. The solution is a combination of parts of Figs. 5.2 and 7.2.



624 T. ZHANG AND Y. ZHENG

FIG. 7.6

(v) Jj (Fig. 7.10). We have p2--P3---p4<Pl and (ul, vl)=(u3, v3). It is a

combination of parts of Figs. 6.1 and 7.1. The solution is a combination of parts of
Figs. 6.2 and 7.2 (Fig. 7.11).

(vi) Jj/ (Fig. 7.12). We have p < p2 P3 p4. It is a combination of parts of

Figs. 6.3 and 7.1. The solution (Fig. 7.13) is a combination of parts of Figs. 6.4 and 7.2.
(b) Two J’s are not neighbors.

FIG. 7.7
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(iii) j

\\\\
/

/

J3,4

FIG. 7.8

(i) /J-jR (Fig. 7.14). Cut the / along the sonic stem into two parts, then slip

them up or down. () should stop at point P. A shook should start from P continuously
at the side of () and be tangent to the A_ characteristic there. The shook should be
convex with respect to point (2), so it will go into/23 and then penetrate 123 into ();
then it will be tangent to the sonic circle of () and will vanish there continuously (Fig.
7.15). Analogously, () should stop at point Q. A shook should start from Q continuously

(iv) J S Sx,2

FIG. 7.9
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(V) J S

(4)

/l+

2-

54
(1) (3) ’-l-’i/

FIG. 7.10

FIG. 7.11

\

---- supersonic/..<.,....
S ,’/.".’"! :’: x supersonic
,z.’..’ d .’.’,,. ../..’.." .’. ":" .’...’ ,....\

__;_ __...;...j... :.... ]......\
supersonic :.’.;.>

,_N- .’].\\ \;’.’.’./subsonic,’: ,".’;.’.
s’\’\ ;"t t:t!..","..:.#.’//.... "i\ :\’ ,.,,....’... ,, ..,\\ \.’. ,’.<-’.. "- ." ’. L_

\,-’4.’.".’.’ S ./
supersonic J "." ." ,’. ’."//

supersonic

FIG. 7.12 FIG. 7.13
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J

R. 7 =v+v/7r-t-

///2 --//3

U2 /33
p /l-

P3 "P2 *’-*/33

@

(1)
/l-

(2)

A+(Q3)

J3
--/-/3 --/4

/93 =P4 or

FIG. 7.14

/+

R14
=v+/p’

pl

Vl V4i--" .dp
p4 p

/94 <p V4 < Vl

R23

//-2-
// supersonic

/
supersonic /. 7:..."

l: " ""’7i/’//’..i -1 supersonic
/:subsonic.:.)//

R14

FIG. 7.15
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P3 -’/94

7)3 U4

FIG. 7.16

at the side of (g) and be tangent to the A+ characteristic there. The shock should be
convex with respect to point (4), be tangent to the sonic curve somewhere, and vanish
there continuously. There is a subsonic region inside these two shocks and the J’s end
with spirals in this region (Fig. 7.15).

IJ

FIG. 7.17
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(iii) S R J

(4)

(3)

FIG. 7.18

(ii) Sq (Fig. 7.16). Divide along the vertical stream line into two parts, then

slip them apart (Fig. 7.16).
We conjecture that the solution is as shown in Fig. 7.17.

(iii) j/ (Fig. 7.18). Take a half of (i) and half of (ii), and piece them together

along the slip line (Fig. 7.18).
We conjecture that the solution is as shown in Fig. 7.19.

I

subsonic ’/ /’"
/

I .". ,,l+

.,:’/subs;n/ /
"1" ".’i."."o supersonic

supersoni2/

J

FIG. 7.19
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ON THE ENSKOG EQUATION WITH LARGE INITIAL DATA*

LEIF ARKERYDt

Abstract. This paper is concerned with the Enskog equation with large initial data in L1, where the
high density factor is constant. As a preliminary step, existence and uniqueness is first studied in full physical
space and in a box with periodic boundary conditions under the restriction of bounded velocities, by the
use of a priori estimates in the norm (supo__<t__<-f(x + tv, v, t)[) dx dr. Global existence and uniqueness for
small data and unbounded velocities is an easy consequence of this step. The rest of the paper is devoted
to the central topic: global existence, regularity, and uniqueness for large initial data in full physical space
for the case of unbounded velocities, provided all v-moments are initially finite. Here the more detailed
structure of the collision operator is exploited in the a priori estimates.

Key words. Enskog equation, global results, well-posedness, regularity

AMS(MOS) subject classification. 76P05

1. Introduction. The Enskog equation [8] is a quite successful model of transport
phenomena in moderately dense gases [9]. This paper studies the initial value problem
for the Enskog equation with large L initial data. Previous large data results include
global existence in L for one space dimension [5] and two space dimensions [1].
Existence in arbitrary dimension for small data was also obtained in [6], and for large
data in [2], [7], and [10]. The averaging argument used there gives no information
about, e.g., uniqueness or regularity. The present paper, on the other hand, uses a
contraction mapping suitable for extracting detailed information about the solutions.

be the velocities after collision of two molecules having precollisionalLet v, v,
also depending on the directional variable u belongingvelocities v, v,, and with v, v,

to the unit sphere OB. In a suitable coordinate system the Enskog collision operator
can be written

with

Q(f,f) 0.2 fB)<R (f’f’,x--ff,x+)S(v, v,, u) dv, du,

(v-v,, u)+= S(v, v,, u)=max (0, (v-v,, u)).

The arguments of f’, f, f, f, are (x, v’), (x-0.u, v’,), (x, v), and (x + 0.u, v,), where
v’= v-u(v-v,, u) and v, v,+u(v-v,, u). The Enskog equation, depending on
the variables (x, v, t) R R R+, is

(1.1) f+ v. V,f Q(f,f).

The high-density factors X in the original Enskog paper [8] are functions of the
local density f (., v, dv at (x + 0.u/2, t). A later modification that formally satisfies
some entropy bound takes X as a function of the local density at (x, t) and (x + 0.u, t).
The present paper considers only the simplified case ofX constant, commonly known
as the Enskog-Boltzmann equation, and for which a strict proof of an H-theorem is
known ([7]; see also (1.4) below). The extension to the case of a variable high-density

* Received by the editors June 27, 1988; accepted for publication (in revised form) April 5, 1989.
f Department of Mathematics, Chalmers University of Technology, G6teborg, Sweden, and University

of G/Steborg, S-41296 G6teborg, Sweden.
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factor must await a strict proof of an H-theorem in that case. For further information
on the various forms of the Enskog equation as well as an extensive bibliography, see
[3].

This paper starts with a study of existence and uniqueness in the case of bounded
velocities by contraction mappings and by conservation properties. For this, mass and
moments of second order are assumed to exist initially. The symmetry properties of
the collision operator then imply that these quantities are bounded on any bounded
time interval. This can be used to control the higher moments of interest in estimates
of the type

[[/[I -< cll/ll /,%

Here 0< c < 1, and the smallness of 8 is controlled independently of the velocity
bounds. From such estimates, a priori bounds and local convergence of the approxima-
tions with respect to the I1" [I-norm are obtained in the unbounded velocity case. Certain
uniformity features of the estimates, together with entropy estimates in the unbounded
case, lead to the global results. The following regularity discussion depends on similar
estimates and bases its control of the moments of the derivatives on the control of the
moments of f.

The plan of the paper is as follows. The Introduction continues with a description
of the problem. Section 2 is a preliminary study of the case of bounded velocities.
Global small-data existence and uniqueness for unbounded velocities is a simple
consequence. Section 3 contains some useful estimates independent of the velocity
cutoffs. In 4 the global existence and uniqueness theorem for unbounded velocities
is proved. Finally, the regularity properties of those solutions are studied in 5.

Denote by L the space of measurable functions f on 1)= R3x R with (1 +
[v[")f(x, v) Ll(f). Set [vlt =max (Iv[, 1). The norm IRa[I)IrM[f(x, t)[ dxdv is written

11" 11, and the positive cone in L is L+. Let Lr, r be the space of measurable functions
on f x [0, T] with

ess sup If(x + vt, v, t)[ e L,

and denote the II" lit-norm of this ess sup by I1" II,. The us o such norms was
introduced into nonlinear kinetic theory by Toscani in a discrete velocity setting 11 ].

Consider (1.1) for 0 and regard the left-hand side as a directional derivative
Dtf# along f#(x, v, t) =f(x + vt, v, t). Take fo =f(0+) as initial condition with fo L+
for all r R. The aim of the paper is to study (1.1) with such initial conditions globally
in time also for large fo.

Starting with the Caflisch paper [4], the different influences of the low and high
velocities on the evolution have sometimes been analysed by a corresponding splitting
of the density function. Here we will use one such splitting well adapted to the present
problem and similar ones in kinetic theory. For that purpose set

fo(X, v) min (fo(x, v), w) for Ixl =_-< w2, Ivl =_-< w=,
and set fo(x, v)= 0 otherwise. Introduce

fi(x, v, t)=fo(x, v), fe =f--f, feo=fo--fo,

and # as w times the characteristic function of supp fo. The equation for fe is

Dtfe Q(f +fe,fi +fe) #, > O,

with initial condition fe(O+ =feO" Throughout the paper C denotes various constants.
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The proofs will use the energy bound

(1.2) I v2f(x’ v, t)dxdv<= f /gZfo(X, /9)dxdv,

a bound of the second x-moment due to J. Polewczak [10]:

(1.3) I (x-tv)2f(x, v, t) dxdv-<- I x2fo(x, v) dxdv,

and an entropy bound due to Cercignani [7]:

v, t) logf(x, v, t) dvdx

(1.4)
<- fo(x, v)logf0(x, v) dx dr+- fo(x, v) dx dv

2

(I am grateful to C. Cercignani for giving me access to this result before its publication.)
The proofs of (1.2)-(1.4) hold in a formal sense for solutions of (1.1) provided that

(l+v2+x)fo, fologfoL1.

Estimates (1.2) and (1.3) can be carried out strictly on various approximations of
(1.1) and follow in that way in the limit for the solutions of (1.1) to be constructed
below in this paper. The case of (1.4) is treated in the proof of Theorem 4.1. By
straightforward computation (1.2)-(1.4) imply

(1.5) I xZf(x, v, t) dxdv<=2 I xfo(x, v) dxdv+4t2 I v2fodxdv,

(1.6)

f(x, v, t) dx dv
>w

v) logfo(x, v) dx dv+- fo(x, v) clx dv

+(4t2+l) Iv2fo(x,v)dxdv+Iexp(-v2-x2)dxdv
+2Ix2fo(x,v) dxdv).

2. Existence and uniqueness in the case of bounded velocities. This section contains
a preliminary analysis of the Enskog equation for bounded velocities, i.e., with the
collision operator

oJ(f g) cr2 In3 IoB (f’f’,-ff,) WS dv, du,

2 < 22J, and W 0 otherwise. The relevant Enskog equation inwhere W 1 if v2 + v,
integral form is AJf f, where

(f =fo+ (f,f(s as.
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In view of 4, consider for a fixed (large) time interval [0, T1] in the case where 2 > 2w,
w being such that the right-hand side in (1.6) with T1 is bounded from above by
(512) -1 That implies

f Ivlfo(x, v) dx dv < 256-1, Ilfeoll < 128-1.(2.1)

(The powers of 1/2 introduced here and below are chosen for convenience instead of
the usual cumbersome statements of the type "there is a small enough constant
independent of... such that the following estimate holds," where.., usually stands
for a couple of lines describing what particular variables and expressions the constant
should be independent of.)

Denote by M(6) the set of all measurable subsets M R6 such that for almost
every v R the set M of those x for which (x, v) M has measure less than 6. Define

(6, F)= sup f IF(x, v)] dx dv.
()

Integrals of the following type will appear in the estimates of the collision operator:

(2.2) ds F(y+s(v-v,)+u, v,)(v-v,, u)+gdv, du.
B

Since the Jacobian of the change of variables g2(v-v,, u)+ ds du dx equals 1, they
can be bounded by (6, F) for 8 T2+lg2.

An estimate concerning the function f of 1 will be needed.
LEMMA 2.1.

2 as Ivl rf,(x, v, s)f(x+s(v -v,)+ u, v,, s)Sdxdvdv, du

T, I1 o11 .
Proof Use (2.2) and note that v-v,I N 2w on the suppo of the integrand.
LEMMA 2.2. If g Lrr and T> O, then

Proo The proof follows from

dr. 2 du dsg(x+s(v-v,) +u,

THEOREM 2.3. Suppose fo(1 + v2 + x2) L, fo log fo Lo. en, locally in time, the
equation Af fhas a unique solutionf L that conserves mass, first v-moments, and
energy, and satisfies (1.3).

Proof The following approximations will be shown to converge to a solution of
Af=f on some open neighborhood of 0. With fo 0 and

Lf( t) ds f(x + vs + u, v,, s)Sdv, du,

define inductively for n N:
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Then

f,+l(t) =fo exp (-Ljf,(t))+ ds exp (-Ljf,(t)+ Ljf,(s))

x I (f"f"*)#(s)tr2WSdv* du.

#f,+l(t)=fo+ ds (f,fn.-fn+lf,.)#(s)tr2WSdv, du.

In particular, the perturbation

elan+ --fn+l
satisfies

efn( t) =Lo+ ds (f fi* +f,ef,*+ef fi*+ ef ef,*

Here ," ", 8 are the eight terms of the collision operator in the given order. This
expression gives an I1" IIo.r-estimate for

By Lemma 2.1 the integral of 11+151 is bounded from above by
2(2w=T, o)I1oll o.

The corresponding integral of 141 + 18[ is, by Lemma 2.2, bounded by

(2.4) II& IIo,(llf IIo, + II&+ IIo,).
After a change of variables in lYI, lYI, each of the integrals of lY=I, lY[, lY6I can
be bounded by

s (x + vs, v, s)lf(x + vs + u, v,, s)lSvv, x u.

As in the proof of Lemma 2.1, this in turn is bounded by

(2+’=T, o)II& o,.

In the same way the integral of 171 is bounded by

(2j+12To)[I eL+ o,.

It follows that

+ <ll& IIo, + Ilef+ I1o, + 3<2+ = T, o))II ef II0,

Choose T so that (2+2T, ) < 16-, and 2(2wT, )11 IIo < 128-, it follows
that IILilo, 6-’ for n N. Moreover, for the same value of T,

II&+- ef+ IIo, 3(2+’= o) ef= ef II0,
+ (2+1=T, o)IIeL+- efm+llo,
+ <tt& tto, + ef IIo, + [[ef+llo,)lleL efml[O,
+ [leL II0, eL+- ef+ II0,
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Hence (efn)c is Cauchy in the I1" IIo, r-norm. Denote the limit by f. It follows that the
equation A;f=f has a unique, nonnegative solution f; =f +f on [0, T] with the

I1" IIo,-norm bounded. The time-integrated gain and loss terms

ds f;’f.’o.2 WS dv. du, ds f;f.tr2WS dv. du

each belong to Lo, so on [0, T] it follows that the usual change of variable proof can
be applied to prove that the mass, v-moments, and energy of fo are conserved by
and that (1.3) holds.

Remark. (i) In fact, the proof does not require v2fo L1.
(ii) The proof implies stability. If (fOk)N converges to fo in L1, and if

(I X2fok dx dV)N is uniformly bounded, then (f(., t))v converges to f;(., t) in L on
[0,

(iii) The theorem holds with the same proof for a periodic x-domain, and for
both types of domain for the symmetrized Enskog equation. (The symmetrized equation

for +u together withuses the whole 0B as a u-domain in Q and the same v, v.
S(v,v,,u)=l(v-v,,u)l.) Just as in the Boltzmann equation, the H-function
f; (x, v, t) log f; (x, v, t) dx dv is nonincreasing for the symmetrized Enskog equation,
which in turn implies existence for all > 0.

(iv) If IIfo[Io is small enough (e.g., less than 128-1), then a shortened version of
the proof above, using only the term (2.4) and the physical space R3, shows that
the full Enskog equation (1.1) without velocity cutoff has a global, unique solution
conserving mass and v-moments, and having nonincreasing energy.

3. Bounds for the moments of the collision term. Let f (depending on fo) be as
defined in 1.

LEMMA 3 1 Suppose that w2-k < t << r/<< 1 and that g L+,.,r. Then the following
estimate holds:

Sdv. dudx0
.2 dt dvlvl (fg’. + g 7i.)#

vl_>_2k+l

_--< C{(1 8)-rr/2 + (1 + r/2 a=)-/} IIg r,.

Here C depends on w but not on fo, k, or T.
Proof. This is the first of several computations using a splitting of the domain of

integration into parts related to the relevant properties of the integrand. The flg’. and
g’f.-terms can be treated analogously so only the flg-term is discussed. Under the
present hypotheses,

Iv’l--< w-< 82 < alvl
if (x, v’) suppf’i. Set X;(v) 1 for 2;-<_[v1<_-2;+1 and X;(V) =0 otherwise

For j > k consider first the part of the domain of integration where v supp X;
and Iv.I < r/Ivl. From the conservation of first moments and energy for the mapping
(v, v.)-> (v, v.), it follows that

Recall that

If/(x/ tv, v’, t)l w if Ix+ t(v-v’)l w,

and f 0 otherwise. If

Gr(x, v)= sup Ig#(x, v, t)l,

19’1 < W,
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then

Ig(x ru + tv, v,, t)l < Gr(x ru + t(v v,), v,).
This together with a change of variables x - x ru + t(v v,), followed by an integra-
tion with respect to t, x, v, u, and v’ in that order, gives an upper bound for the
present pa of the integral, namely,

(3.1) C(1 )-rn2 (Xj_ + Xj + Xj+l)gllr, T"
Here : comes from the angular contribution, and C depends linearly on w but does
not depend on j or

Consider next for v supp X the remaining pa of the integral, i.e., the pa with
Iv, > nlvl. Then

and if v, supp g+, with n 2, in addition

Ivl
It follows that this pa of the integral can be bounded by

(3.2)
+ E 2-( 1)r3-123Ws2 GT(X, U.)l[ Xn.(V.) dx du d.
n2

Finally, sum (3.1) and (3.2) for j > k, and note that

Z 2-" C(1 + n2- 2)-r/2.
nl

The lemma follows from here.
When we keep the notation of Lemma 3.1, the remaining integral will be estimated

next.
LEMMA 3.2.

2 dt dvlvlb (f:g + gy:.)S dv. du dx
vl2k+

2/>1(T2+=, Elvl)llgll, + 2-+111 IIo, g r,>

Proof As in Lemma 3.1 it is enough to consider the fg-term. Split the domain
of integration into two subdomains, Ivl <2+= and Ivl2+2, As in the proof of
Lemma 2.1 the first integral gives a contribution bounded by

2r/2( T2+3 2,
Substitute [vlv by v,/2 in the second integral and argue as in the proof of Lemma
2.2 to get the bound

2-rllfl[o,T]lgl[r,T
LEMMA 3.3. For g,pL and 0<8<< 1, set G=suptg(t), P=supp(t).

efollowing estimate holds"

dt g’pvlS dr, dv du dx

where T2e-.
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Proof. The proof uses a splitting of the domain of integration. By the proof of
Lemma 2.2 the integral over that part of the domain where

Iv’l_->[vl or Ivl=lvl
can be bounded by

(IIglI,’,IIPlIo,T + IlPllr, TllgllO, T)"
In the same way the integral over the set where

can be bounded by

( )-(llgll, p IIo, / I111o, p I1,),
Also, the integral over the set where

lvl<lv’l<lvl, lvl<lv’,l<lvl, Ivl>
can be bounded by

Finally, in the remaining domain Ivl -=, and Iv’l, Ivl Ivl. Analogously to the
proof of Lemma 2.1 this paa can be bounded by

This completes the proof of the lemma.
LEMMA 3.4. Suppose g, p L, and 0 < << 1. en the following estimates hold"

dt g’pg(Ivl+lv,l)Sdv, dudvdx

(3.3) 2r/=+=llgll+,llPll,+211gllo,llPllr,
+ 2(1 )-rllgllo,llPll, + -=-r2/=+(-,

de ,(I vl +lv, S dr, dv du dx

(3.4)
2e211gll+l,TllPllr,T + 28-2r(, GT)IIPlI,T + 211gllo, TllPllr,"

Here T2e-22.
Proo First consider (3.3) for vl. As in the proof of the previous lemmas, the

integral over that paa of the domain where lv’l e- or Ivl Ivl can be bounded by

(3.5) 2/=211glI+,,TIIPlIr,T + IlglIo, TIIPlIr, T"
In the rest of the domain Iv’l -2 and Ivl Ivl. If Iv’l < lvl, then
and the integral can be bounded by

(3.6) (1 )-IIglIo, TIIPlIr, T"
--2 --1Iflv’l > all andlv’le-,lv,llvl, thenlv,I and the integral can be bounded

by

(3.7) e-28-2/2+(8-1, )ll pll,.
Now (3.3) for [v[ follows from (3.5)-(3.7). The proof of (3.3) for {v,[ and of (3.4)
is similar.
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4. Global existence and uniqueness in the case of unbounded velocities. In this
section the solution f of the full Enskog equation of 1 will be obtained as a strong
Ll-limit of the solutions fJ from Theorem 2.3 when the physical space is R3. The main
result is Theorem 4.1.

THEOREM 4.1. Suppose that (1 /lvl)7o belongs to L- for all r >-O, and that X2fo,
fo log fo belong to Lo. Then the Enskog equation has a unique solution f on R+ with
[Ifll,< for r, T>0, with mass and first v-moments conserved, and satisfying (1.2)-
(1.4).

Let [0, T1] be a (large) time interval and choose w, so that (2.1) holds. Set

(Ajf)#(t)=foexp(-Ljf(t))+ exp(-Lf(t)+Lf(s))

"((Q(fi+f,f+f)#(s)+f o’2(ff.)#(s)WSdudv)ds.
The function ffe=ff--fi satisfies f{= Ajffe for t> 0.

LEMMA 4.2. For any f L2,T with

sup f lf(x, v, t)llvl2M dxdv<-4 f f(x, v)lvl2M

the following estimate holds:

IIAjfll,w<-- Ilfeollr+46f(2wrro’-T,fo)llfoll+411fllo,wllfll,r+ crllfoll_, 0=<r=<l,

Here the constant C is independent ofj and depends only on w.

Proof. The collision operator in Aj is

(4.1)

Q(f+f,f+f) + f tr2(ff*)WSdudv*

f {f’f.-f. +f’f’. +f’f’.-ff. +f’f’. -ff,}tr2 WS dv, du

where 1,. , ’-7 are the seven terms of the collision operator in the given order. The
exponential factor in A is bounded from above by 1.

By Lemma 2.1 the resulting integral of 151 +1521 is bounded from above by

(4.2) 49(2wrcr2 T, fo)II f/o

By Lemma 2.2 the corresponding integral of 1561 + 1571 is bounded by

(4.3) 4 fll o, Ilfll , T.
It is easy to see that the integrals of 131, 141, and IdsI--after a change of variables in
the first two--can be bounded by

2 dt Ivllv,l(x+ vt, v, t)[f(x + vt + u, v,, t)[S dv dr, dx du

2W62423-1 f If(x, V,, t)l lV.I dx dr, dt.
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By hypothesis this is bounded by

(4.4) O’2W62623-1T I fo(x, v)lvl2 dx dv CTIIfoll,

where C depends only on w. The lemma follows from (4.2)-(4.4).
Next choose T< 1 so that

CTllfoll=<256-, (2wrtr2 T, )(4ll 11, / 1)<256-1.

Note that this condition on T depends on w but not on j. It is an easy consequence
of Lemma 4.2 that the solution fJ of Theorem 2.3 exists on [0, T] for every j, and that

IIflll,r_-< 32-
The same results then hold when fo is replaced by any function g such that (1.2)-(1.4)
are satisfied by f(., t) g, T1.

Set F,=suptr,f(t), Fr,=supt, lf(t)l.
LEMMA 4.3. Given > O, there are T T and > 0 depending on w and fo, but

not on j, such that

(, Fr,) , T’

Proo Evidently the lemma holds if F is replaced by . Also Fr, + F,.
So it is enough to consider F,:

, fo+ (f’f’ sav,

fo+ ds{f,f,.+lf.l+,.l+ ’} Sdv. du=Y+...+YIJe Je*

Evidently the j-independent terms and satisfy the lemma. By the proof of
(4.4), and with small enough, the lemma holds for +. Finally, for 2k+2g2,

dx dv r,.r, 2Sdx dv dv. du ds

2-*11/11,,11/11o, + sup
( dM

Integrating the inequality shown above for Fr, over M, taking the supremum over all
M e (), and moving the last term to the left-hand side gives

sup 2-/ Fer, dx dv sup o dx dv
() ()

(4.5)
+sup (+d+d+d) dx dv+ 2 -k-8.
() dM

For > 0 given, , k, and T can be so chosen that for T’ each of the six terms
to the right in (4.5) can be bounded by /12. This implies the statement of the lemma.
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Remark. If 0 - t T1 and (1.2)-(1.4) are satisfied by f(., t)= g, then fo can be
replaced by g in Lemma 4.3, and T can be chosen independently ofg and for 0 T1.

LEMMA 4.4. Let f Lr,T and set FT suptrf(t). The following estimate holds"

IlAjf llr,r <= Ilfeollr + 2/2+2(2w:T, )llollr
+ C{(1 6)-rn z + (1 + n=- 2)--r/2 + 2r/=+=(2+ZT, lvl)

+ 2-rff+ 2/=+*(2e-Z2 T, Fr)}ll/ll,r
+(3+2(1-6)-+e6-/2/+)llfll,/=,rllfllr,r rl.

Here w2- 6 << << 1, ff w7z29-25, and the constant C depends only on w.

Proof As in the proof of Lemma 4.2 the exponential factor in A is bounded by
1, and the integral of Il+{Nz[ is bounded by

(4.6) 2r/2+(2w=Zo)IIoll
The integral of IN31 + [41 can, by Lemmas 3.1 and 3.2, be bounded by

(4.7) C{(1-a)-rnz+(l+n-6)-/+2r/+(2+aT,fo[Vlb)+z-r}[lf[l.r.
Here C depends only on w, and w2- 8 << << 1.

The domain of integration for[ can be split into two pas, Iv.[ 2 and Iv.I > 2,
and the integral bounded by

(4.8) {(2+3=T, folVl)+ w2-r}llfll,r.
By Lemma 3.3 the integral of 16} can be bounded by

(4.9) {(2+ 2(1- 6) + ea-’/=2/=+*)lfl[1/=,+2/=+’(, F)Illfllr,,
where T2e-2. Finally, the integral of l71 can be bounded by

(4.10) Ilfll.r Ilfllo.r.
The lemma follows from (4.6)-(4.10), since foN N, and w2- < 2-1.

A final lemma, which follows next, requires some fuher w-dependent conditions
on T, which are needed for estimates of JAjfe in the equation f{ Ajf{ using Lemma
4.4. Namely, in Lemma 4.4 choose in turn suitabl small, r ro suitably large, 6
suitably small, k suitably large, e suitably small, and T from Lemma 4.3 (all choices
only depending on w), so that for TN

0.5 II/g o, IlLoll o + 256-,
with ro and depending only on w and not on j. Moreover, ro and can be chosen
so that also

llf{llo-,,rN 2(1o11 o- + 256-),
with ro and T depending only on w. In the same wy, note that for r > ro, T depending
only on w and r can be chosen so that for Tr T

[[f{[l,rr 2([101 + 256-)-
As above, T and Tr can be chosen independent of and of fo g, when (1.2)-(1.4)
are satisfied by f(., t) g, 0 N N T1.

Lepta 4.5. lim supj, l[AjfJ’- J’aYe I1-,,, 0.
Proof Take U- w and j’> j. Then

[exp (-L(t))- exp (-Lf(t))l
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equals zero, if Iv[2< 22j- W2o Otherwise it is bounded by 1. It follows that

ajfe r-l,Ajfe- T,.

=< feo(X, v)lv[ r--’ dxdv+ dv ds [v["-llQJ’(fJ’,fJ’)#(s)[
vl>2j-1 vl>2

+ o- (fe’fi.)#(S)

Ifefe.I)lt) Wj,- Wj)So.- du dv dr, dx.Je Je*

Evidently the limit when j--> oe is zero for the first term and the ff,-terms. The other
terms are bounded by

2-J//=/211fJe’ll ,z=( fi llo,r / fe’ llo, rr) <-- 2-J//=/a( feOllr / 256-)(2 II70110 / 32-1)"
This tends to zero when j-->

Proof of Theorem 4.1. The values of ro and T given before Lemma 4.5 will be
used. First th.e C.auchy property of the sequence (fJ) will be proved in L-l,ar for some

with 0 < T_-< T when r ro. Consider for j’ >j

IlfJe’-fJellr-l,T IlAj,f Ajf 1, T’
(4.12)

m,f r-,T’Ajfe / AfeAjYe r-l,T"

It is enough to estimate the right side of (4.12) by a term equal to a small multiple
(less than 1) of Ilfi’-fill-l,, plus a term tending to zero when j-+ oo.

By the same reasoning as in the proof of Lemma 4.4, the term mjfe’j’ mile’ -,T’

can be bounded by

(4.13)

c{(1- )-=/ (1 / ,2-,S2)-/2/2r/=/=(2k/3.,,-o-2T, alvl)/2-r/llf’-fill,._l,,.,

Io’ I+ o.2 ds rl cJ’rcj’
"tlJe Je* --fJe’f"e*’l + fie’fie’* }#fef e*[ Wj,S du do,

r-l,T’

Here the constants k, r/, and 6 have the values given before Lemma 4.5. By Lemma
3.4 the last term in (4.13) can be bounded by

IO r/2+22( r,IIfe’--fJellr-,’"
(4.14) + (4 / 2(1 )l-r)( IIf;’llo,, / II/i IIo,’)

+ (9(-’., ;’,) + Sr(-’., },Fer,))2r/2+2 --2r6--r
where /x T’27re-2o.2. The factor 2//2(llfJ’llr,,/ IIf;ll,’) can be made arbitrarily
small by a suitable choice of e.

Note that if we construct a solution f successively on small subintervals with the
same length ro and in [0, T1], then (4.11) gives a uniform upper bound when T_-< T1
of II/l[,r, and of IlfJll,z= when fJ has initial value f(T). This upper bound can be
inserted instead of II/i’ll,,, II/illr,’, and e can be chosen once and for all on [0, T1].
Then by Lemma 4.3 for a small enough T’= T> 0 depending only on w, the factor

F_. -2rt-r2r/2+2(,_]09(-I ].1,, FJe’.) ._l_ ,.]o9(- ].lb, PeT)

can be made suitably small, again uniformly on [0, T1] with respect to fJ with initial
value f(T), ON T <- T1. Therefore the estimates (4.13), (4.14) imply

J’ < f/2ajfAjfe l,
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which inserted into (4.12) gives

Ilfe’-fellr-,,< Ilfg’-fgll _,,/2+ ’ ’Aj,fe ,.Ajfellr-1
By Lemma 4.5 this implies that the sequence (f) is Cauchy in the I1" liT-l-norm for
t=< . It follows that the limit fe has (1 + IVI-I)Te(X, V, t) in Ll(fl) for <- , and that
the sum f=f +fe is the unique solution in /Lr_ of

(f +fe)#(t) =fo+ Q(f +fe,fi "k’fe)#(S) ds, t<--_ .
Moreover,f conserves mass and v-moments and satisfies (1.2) and (1.3) for t< " o-

Next, given r_-> To, f(’, t) has finite ][. liT-norm for 0_-< t_-< r by (4.11). It follows
from the local part of the regularity proof below in Theorem 5.2 that locally around
t- 0 and for r large enough, the solution conserves the x-differentiability of the initial
value with respect to the r-norm. By this x-differentiability, the same type of argument
implies that the solution conserves the v-differentiability of the initial value locally
around -0. From here the formal argument in the proof of the entropy bound (1.4)
holds in a strict sense for sufficiently smooth initial values. The initial value fo of the
present theorem can be approximated by smooth ones, so the continuous dependence
of the solution on the initial value in any [1. r.T-norm then implies (1.4) for the solution
f with initial value fo on [0, .r]. From here, since f(., "r) satisfies (1.2)-(1.4), the same
estimate now applies on IT 2’r], and by induction on [0, o]. Also, [If(’, ro)[lr is
finite for all r., and.f(., Tro) satisfies (1.2)-(1.4). The whole construction can now be
repeated on Tro, 2 Tr0], and by induction on [0, T1]. Hence there exists a unique solution
with all the desired properties on [0, T1]. But T is arbitrary, so the solution exists on
R/. This completes the proof of the theorem.

5. Regularity. The solutions of the Enskog equation shown above retain the
regularity properties of the initial value fo.

THEOREM 5.1. Iffa f-) r>=O Co(R+, Lr), with Ilfl[r,T < o for r, T> O, is the solution
of the Enskog equation with initial value fo, where D’fo f’)r>=O Lr for [a <= k, then
Df CI rO Co(R+, Lr) for la] <= k.

To prove this final result the following technical lemma is needed.
LEMMA 5.2. Suppose that f6 f’l r_O Co(R+, Lr), with Ilfllr, r < o for r, T> O. Take

T > 0 and define

Wg(x, v, t)= f g(x + tv+ ru, v,, t)S dv, du.

There is rl > To, such that for r >-_ rl, 0 <= to <- T1, and g f’l r>=o Co([0, Ta], Lr) with
g , < for r, T > 0, the mapping

I’ (Ig g(x, v, z) drf(x, v, to)exp f(x, v, r) dz ds g(x, v, ) dr
to to to

(5.1) -exp f(x, v, z) dr (f’f’,)#So" du dv,

+ ds exp gf(x, v, z) dr (fig’, + g’f’,)#Scr du dr,

is strictly contracting (constant of contraction

$ SUpa,o Ig#(x, V, s)l IriS, dx dr, for some Tto > O. Here
less than 1) in the norm

A,o= [to- Tto, to+ Tto] (’1 [0, T1].
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Proof. Set GT-(’)=supto,rlg#( ", t)l, F-=supto,7-f( ., t). The following
estimates hold for the various terms of the mapping (5.1) with to=0. For

ds Ivlfo(x, v)lg#(x/s(v-v,)/ru, v,, t)lo-2Sdxdvdv, du

estimate separately the part of the domain of integration where max (I vl, Iv, I) <-- 2, and
the rest of the domain. With/z 2k+ltr2zrT this gives an upper bound

(5.2) 2-+(llgl11, Ilfoll / IIg llo, Ilfoll+l) / 5(,folvlr)llgllo,"

For

(5.3)
as (IvlT+lv,17)f(x, v’, s)

Ig#(x+s(v’-v’,)-tru, v’,,s)lr-Sdxdvdv, du,

consider first the Ivl -term. The integral over the subdomain where max (Iv’[, Ivl) 2k

can be bounded from above by

(5.4) 2r/2(, Flvl)llgllr,.

The subdomain where v’l > 2k gives the upper bound

(5.5) 2r/2+=-kllfll +,,llg r, T"

Finally, as in the proof of Lemmas 3.1 and 3.2, the subdomain where Iv’l 2, Ivl > 2k

gives the upper bound

C((1 )--r2 + (1 + =- =)-r/2)llfllo,llgllr,
(.6)

+ (2/=(2+=T, Fl vl)+ 2-+llfllo,)llgllr,.

Here 2k- << << 1. The following upper bound for the same term can be obtained
similarly:

(5.7)
+ 2/=(2+=T,

The v, L-term gives the same contributions, so an upper bound for (5.3) is

2/=(, Fl vl) + 2/=+=- Ilfll r+1, + C ((1 )-=+ (1 + = =)-/=)Ilfllo,
(5.8)

+ (2r/=(2+’=T, Flvl)+ 2-r+llfllo,))llgll,.

Next consider the term

(5.9)

ds g#(x + z(v ,) + o-O, ,, z)o-2S dr dO d,

s)cr2Slv[ dx dv dv, du.f(x +( v’), v; )f(x+ (v v’,) ,,, v,;

Here

(5.10) f f g#(x+z(v-,)+tru, v,, z)tr2SdzdOd,<= Ilgllo,.
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Arguing as in the proof of (5.8) but using (5.7) instead of (5.6), we get the following
bound for (5.9):

Ilgllo, T{2r/=5(, Frlvlr)llfllr,T + 2r/=+2-kllfllr+,,rllfllr,,r

(5.11) /C(1-)-rrl2l]f}}o,Tllf]]r,T/C(1 /2-2)-/22-llfllr+1,Tllfl[o,T
/ 2/2se(2+=T, FTIvlr)IIflI,T.

The terms in (5.1) can be bounded by (5.2), (5.8), or (5.11). In (5.2) with r given
choosing k large and then T sufficiently small, the coefficient of Ilgll,,r can be made
less than . Note that this also can be made to hold if IIflI/,T and Ilfoll are replaced
by lifil+,,T, and Ilgllo, T and Ilglll,T is replaced by Ilgllr, T. Moreover, se(tz, folvl) can
be replaced by 5e(tz, f#(to)lVlTw) for T= T sufficiently small.

In (5.8) choose, in turn, r/ suitably small, r >= r with rl suitably large, suitably
small, k suitably large, v suitably large (for (5.6)), and T suitably small to make the
coefficient of Ilgll, ess than 1/4. Again this can be made to hold if Ilfll+, and Ilfllo,
are replaced by Ilfll+,,,, Ilfllo,, and 6e(... FT’" ") by 6e(... Pz...), where P,o
SUpa,of(t) for a small enough T,o. In the same way, given r, Tz can be chosen so
small that in (5.11) the coefficient of Ilgllo, can be made less than . From here the
lemma follows.

Proof of Theorem 5.1. Given T1 > 0 it is enough to find rk > 0 SO that the theorem
holds on [0, T1] for r >= rk and lal--< k. Consider first the case k 1, and take D" 0x,,
D= 0x2, or D 0x3. It follows by the contraction properties of Lemma 5.2 that, for
some Tr > 0 depending on r, the equation

g#(x,v,t)

=(Dfo-fo I[ g(x, v, ’) d’) exp (- f[ f(x, v, ’) d")
(5.12) + ds exp &f(x, v, r) dr (f’g’, + g’f’,)#trS dx dv dv, du

ds g(x, v, ) dr exp f(x, v, r) dr f’f’.tr2S dx dv dv. du

has a unique solution with Ilgll, < belonging to Co([0, T1], Lr) for r >= r1.
Similarly, the difference quotient A’f/Ax,, which solves an equation related to

(5.12), can be shown to converge to g in the [[’]]r,T-norm when Axe->0. Hence
D’fe Co([0, T1], Lr) and IID’fllr, Tr < a3. From here, by the same argument, kth-order
differentiability holds locally around 0. In this part of the proof, given r, only the
bounds on Ilfll+,T were used to obtain the contracting properties of Lemma 5.2. For
that reason this part of the proof can be used as part of the proof of Theorem 4.5.

Next use Lemma 5.1 in its full force and repeat the argument above with Tr T1
and k 1. It follows that D’fe Co([0, T1], Lr) for ]a[ 1. Since T1 > 0 is arbitrary the
theorem is proved for k= 1. Provided the theorem holds for derivatives of order
less than or equal to k-1, repeating the argument gives the theorem for kth-order
derivatives.

Acknowledgment. The author thanks J. Polewczak for pointing out a mistake in
an earlier version of the paper.
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EXISTENCE OF STEADY-STATE SOLUTIONS
FOR A ONE-PREDATOR-TWO-PREY SYSTEM*

NELA LAKOf

Abstract. This paper discusses the existence of strictly positive solutions (in all three components) of
the three-dimensional system of elliptic partial differential equations subject to Dirichlet boundary conditions,
and models the situation in which a predator feeds on two-prey species. Results are obtained by the use of
degree theory in cones, positive operators, and sub- and supersolution techniques.

Key words, predator-prey, competing species, system, bifurcation, degree, positive solutions, existence
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0. Introduction. In this paper we study the three-dimensional system

Au u(a u cv dz),

Av v(e+fu v+ gz),
(0.1)

-Az=z(a-flu-yv-z) inf,,

u=v=z=0 on0f,

whose solutions are in fact steady-state (time-independent) solutions of a parabolic
system. Here, f is a domain in 9, with a smooth boundary, u, v, and z represent the
population densities of certain species that co-inhabit the region f. u and z compete
for the same food and are prey for the predator species v. All the parameters in (0.1)
are assumed to be positive constants, except for e, which is also allowed to be negative.
In the absence of one of the species, (0.1) reduces to a two-dimensional subsystem,
either of competing species type (v 0) or of predator-prey type (u 0 or z-= 0).
Solutions of either two-dimensional system are called extinction-state solutions of
(0.1). Our goal is to establish sufficient conditions for the existence of componentwise
strictly positive solutions of (0.1) (which we simply call positive solutions).

In 2, we review some results obtained by various authors, of whom we mention
a fewmLeung ILl], Blat and Brown [BB], Dancer [D2],[D3]--who consider the
existence of positive solutions of two-dimensional systems of both types. We also
review (in modified form) results obtained by Cosner and Lazer [CL], Cantrell and
Cosner [CC], McKenna and Walter [MW], and Leung [L2], regarding the uniqueness
of positive solutions for competing species systems, and we obtain similar results for
the predator-prey situation.

In 3 we assume conditions under which the predator-prey subsystem (z 0) has
a unique positive solution (tT, ), and obtain a connected set (as a is varied) of positive
solutions of (0.1) bifurcating from the branch {(a, (, , 0)), a _->0}.

In 4, we assume conditions under which the competing species subsystem has
a unique positive solution (fi, ) and, using e as a bifurcation parameter, we obtain a
connected set of positive solutions of (0.1) bifurcating from the set {(e, (a, 0, )), e ->_ ,}.
As a consequence, we obtain our main result, Theorem 4.8.

Our main tool is degree theory with respect to cones and positive operator
techniques, which were used by Dancer for the two-dimensional systems. We also use

* Received by the editors May 31, 1988; accepted for publication (in revised form) April 6, 1989.
t Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174.
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sub- and supersolution techniques and variational characterization of eigenvalues,
which are main tools in [CL].

The referee has informed us that some existence results for three species models
were obtained by Korman and Leung [KL].

1. Preliminaries. Let A1 be the principle eigenvalue of

A,$, Xb in
(1.1) , 0 on

Let m(x) C(fl) be such that m(xo) > 0, for some Xo fl. Then, by Theorem 1 of [HK],
the boundary value problem

-Ab Amb infI,
(1.2)

b=O on

has a principal eigenvalue, Al(m)> 0 and it is the only positive eigenvalue of (1.2)
with a positive eigenfunction.

For every p > 0 such that m /p > 0 in f, define an operator Lp := (-A +p)-l(m / p).
Here m /p denotes the Nemytskii operator associated with a function m +p; (-A +p)-i
denotes an inverse under Dirichlet boundary conditions; and (-A+p) -1" Co()-
Co(f) is a compact positive linear operator. Hence, Lp is the positive compact operator
on Co(f) and is irreducible (see [Sc, p. 269]), and therefore the spectral radius r(Lp)
is positive, r(Lp) is also the only eigenvalue of Lp with a positive eigenfunction, by
Theorem 3.2 of [Sc] (Krein-Rutman).

LEMMA 1.1. If A (m) 1, then r(Lp) 1.

Proof. If Al(m)= 1, then there exists th >0 such that (1.2) holds for A 1. This
implies that b Lpb. Therefore, r(Lv) 1. D

Let m,nC((l) be such that m<n. Let L,=(-A+p)-l(m+p) and L,=
(-a+p)-l(n+p).

LEMMA 1.2. r(L,,) < r(Ln).
Proof. It is easy to show that r(L,) <- r(Ln). Assume that r(L,,)= r(L,)= r. By

the Krein-Rutman Theorem there exist o > 0 and 6 > 0 such that Lm rq and L,, r,
in fI, and q 0 on 0fI. This implies that

(1.3)

(1.4)

-Arq+prc=(m+p)q in fl,

Artp +prd/= (n +p)d/ in .
Multiplying (1.3) by and (1.4) by p, then integrating over f and subtracting them,
we obtain

0= In (m- n)d/ dx < O,

a contradiction. [3

Consider the boundary value problem

(1.5)
-Ab=b(a-b) inD,,

b 0 on Of.

LEMMA 1.3. (i) If a =< hi, then (1.5) has no nontrivial positive solution.
(ii) Ifa > A 1, then there exists a unique positive solution qba of (1.5) and 0 < dpa < a.

Also, a < b implies that dp < $b.
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Proof See [BB, pp. 22-23] for the proof.
For a > h and 0 < k(< 1), consider

A4 b(a + kba b) in
(1.6)

0 on

LEMMA 1.4. (1 + k)dpa is a unique positive solution of (1.6).
Proof. The existence part is obvious. Assume there exists u > 0 such that (1.6)

holds and u # (1 + k). Let (u -(14- k)). Then satisfies the following boun-
dary value problem

(1.7)
-A=(a-u-,) inf,,

b 0 on

Then

(1.8) A ch 4 a u ch, 4 dx O.

On the other hand, since Ca > 0 is a solution of (1.5), it follows that for the eigenvalue
problem

At (a ta) h in
(1.9)

q 0 on

zero is the lowest eigenvalue. It follows, due to variational characterization of the
lowest eigenvalue (see [CH]), that

(1.10) fa[-Ad/-(a-d)]tpdx>-O
Formula (1.10), in particular, holds for . Now, (1.8) implies that n u2 dx<=O, which
is a contradiction. [:]

2. Two-species systems. In this section, we review some results for two-species
systems. First, we consider the system modeling the one-predator-one-prey situation:

-Au=u(a-u-cv),
(2.1) -Av=v(e+fu-v) in

u=v=0 onOfl.

For the proof of the following theorem, see [BB] or [D2].
THEOREM 2.1. Assume that a> A1 and e> A1. For (2.1) there always exist two

solutions, (the, 0) and (0, dpe). Let a* be such that Al(a*-cdp)=l. If 0<c<1, then
there exists a positive solution, (u, v), such that u>0 and v>0, for all a (a*, ),
(a* (A1, e)).

Let

c2 +f2(1 +f)2
(4+2cf)(1-c(l +f))’
c2 +fZ(a +f)2 + c(l+f).

4+2cf
It is easy to see that0<K<l if and only if0<L<l.

Assume that 0<K<I, e>A1 and define _a:=inf{a[Al,e]; ta>--__Lte}, and
a := sup {a [e, oo]; K, _-< Ce}. If we also assume that a [_a, a], the following lemma
holds.



650 NELA LAKO

LEMMA 2.2. Let (u, v) be a solution of (2.1) such that u > 0 and v > O. Then u < )a
and dpe<v<(l+f)dpe. If a>=e, then u>-(1-c(l+f))cka and if a<=e, then u>=
(1-(c(l+f)/L))6,.

Proof. It has been proved in [D2] that v->_ be and u =< ba. Since v 0 on 012 and
in f we have that -Av v(e +fu v) <- v(e +fig v), it follows that v is a subsolution
for (1.6). Since any big enough constant is a supersolution, Theorem 4.1 of IS] and
Lemma 1.4 imply that v -< (1 +f)Cbe.

Assume that a >= e. Since u =0 on 012 and in f we have that -Au u(a-u-cv)>=
u(a-u-c(l+f)4,), it follows that u is a supersolution of (1.6), with k=c(l+f).
On the other hand, by the maximum principle (see [GT]) there exists an e > 0 such
that ecG<u and e<(1-c(l+f)). Since we have that -A(ecka)=ecG(a-ck)<=
ecka(a-(e+c(l+f)))cka=eck(a-c(l+f)ck-eck,) in 12 and eG=0 on 012, eba is
a subsolution of (1.6). Theorem 4.1 of[S] and Lemma 1.4 imply that u _>- (1 c(1 +f))b.
We argue similarly for the case a<=e, the only difference being that -Au=
u(a-u-cv)>u(a-u-c(l+f)be)>-u(a-u-(c(l+f)/L)ck), in 12.

THEOREM 2.3. If a [_a, ], there exists a unique positive solution (, ) of (2.1)
such that f > 0 and > O.

Proof. Assume that there exist two different solutions (Ul, Vl) and (u2, v2) of (2.1)
such that ui, vi > 0, 1, 2, for some a [_a, /]. Let p Ul u2, q Vl v2. It is easy
to check that (2.1) implies the following:

Ap p(a u CVl) u2p cu2q,

--Aq=q(e+ful-Vl)+fvp-vq in 12,

p=q=O, on 012.

Therefore,

(2.2)

(2.3)

n
[-Ap-p(a- ul-cvl)]p dx + fa (uzp+ cuq)p dx =O,

I. [-aq q(e +ful Vl)]q dx + In (v2q fv2p)q dx O.

Since (u, Vl) is a solution of (2.1), zero is the lowest eigenvalue for the following
two eigenproblems:

-Aq-b(a-ttl-CVl)--czb in f,

4 0 on 012,

q 0 on of.

Arguing as in the proof of Lemma 1.4, we get that the first terms in both (2.2) and
(2.3) are nonnegative. Therefore,

(2.4) U2p2 + Cbl2 fv2)pq + v2q2) dx =< O.

We would like to show that D’.=(cu2-fv2)2-4u2v2<O. That would prove that the
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form in (2.4) is positive definite and imply that p--- q 0. In the case a ->_ e,

D c:Zu +f:Zv:z-(4 + 2cf)u2v2 < c:Zdp] +f2( 1 +f)2b2 (4+ 2cf)(1 c( 1 +f))dpadPe

_-< [c2+f2(1 +f):z-(4+2cf)(1-c(1 +f)).K]b] 0.

In the case where a =< e,

D < c2b2 +f2(1 +f)-b 2e (4 + 2cf)(1 (c(1 +f)/L))d,,dpe

--< (c2+f2(1 +f)2-(4+2cf)(L-c(1 +f))]b 0. [-1

Next, we consider the two competing species system:

-Au=u(a-u-dz),

(2.5) -Az=z(a-u-z) in

u=z=0 on0f.

It is clear that the first part of Theorem 2.1 holds for (2.5), as well. Assume that a >
d < 1,/3 < 1, and let

dZ-k- fl :z d2+/32R= +/3, Q= +d.
(4-2 dfl)(1- d) (4-2 d/3)(1 -/3)

Assume that 0<R <1 (this, obviously, implies that 0< Q<I), and define aa:=
inf{a_>-A1, b_-> Rb}, a2:=sup{a_->A,, Qb =< b}. Assume that d(l+)/(l+d)<
(a- Aa)/a. For the proof of the following theorem, see [L].

THEOREM 2.4. Assume that a (A.l+fla, (a-A)/d). Then there exists a positive
solution u, z), of (2.5), such that u > 0 and z > O.

LEtA 2.5. Assume that a [a, a]. Then for any solution (u, z) of (2.5), such
that u > O, z > O, thefollowing holds. Ifa <= a, then 1 d ck <= u <_ ck, 1 (/ R)) ck <--
z <- ck f a >- a, then (1- d/ Q ck <- u <= ck (1-/3)4_-<z_-<b.

Proof Since -Au u(a u dz) >= u(a u debt), in the case ce _-> a we get that
-Au >-- u(a u -(d/Q)ck). In the case where a _-< a we get that -Au _--> u(a u
Since -Az z(a flu z) -> z(a -/3b z), in the case a _-> a we get that -Az_-->

z(c-/34-z); in the case where a<=a we get that -Az>--z(a-(/R)ck-z). The
rest follows, as in the proof of Lemma 2.2.

THEOREM 2.6. Ifa [C1, Ce2] (] (A1 q- fla, (a A1)/d), there exists a unique positive
solution (, ) of (2.5) such that > 0 and > O.

Proof Assume that there exist two different solutions (u, z) and (u2, z2) such
that u > 0, z > 0, 1, 2. Let p u- u, q Zl z2. Then

Ap p(a u- dz) u2p duzq,

-Aq=q(ce-flUl-Zl)-flZzp-zzq in 1,

p=q=0 on0.

As in the proof of Theorem 2.3, this implies that

(2.6) In (u2P2+(duz+ z2)Pq+ z2q2) dx<=O"

Let /3 (du2+ 22):z-4u222 Lemma 2.5 implies that/3 < 0, which then implies that
the form in (2.6) is positive definite. Therefore (2.6) can hold only for p q 0.
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3. Three-species system with a as bifurcation parameter. In this section, we study
the problem (0.1) and assume that all the parameters are fixed positive constants,
except for a, which will serve as bifurcation parameter. We will deal with two different
sets of assumptions:

1 <e<=a<--,

(3.1) B+y(l+f+g)<=K,

d+c(l+f+g)<l,

A1 <_a<=a<=e,

(3.2) + y(l +f+ g) <= L,

d+c(l+f+g)<=L.

_a, , L, K were defined in the previous section. All the results will be stated for (3.1),
and statements in parentheses will refer to (3.2). In the absence of parentheses, the
result holds for both cases.

LEMMA 3.1. Let (u, v, z) be a solution of (0.1), such that u, v, z >-O. Then
(i) u <_- bo
(ii) v -<_ (l +f+ g)4,, max {a, a, e}; /fv0,
(iii) z<-ck and ifzO and a>-a, e, then (1-[/3+y(1+f+g)])4 <=z.
Proof. We proceed as in the proof of Lemma 2.5. The crucial inequalities are"

(ii) --Av v(e +fu + gz v) <= v(e +fck, + gck, v) <= v(’rl + (f+ g)ckn v);

(iii) -Az= z(a-flu-yv-z)>- z(a-flCa-y(1 +f+g)ck,-z)

z(a-[/3 + y(1 +f+ g)]b,- z).

We now establish an appropriate setting that will enable us to transform problem
(0.1) into a fixed-point equation. To this end, let E =[Co()]3, be a Banach space
with the norm Ilull II(Ul, u2, u )ll =max (llu, llo, i= 1,2,3}. Let P-- [Co()+] be a
cone of positive functions in E. For all a > 0, define a set T c p by T := {(u, v, z) P,
u<=2a, v<-2,1(l+f+g), z<-2a}. By Lemma 3.1, all positive solutions of (0.1) lie in
the interior (with respect to relative topology on P) of T. Also, there exists a
continuous, nondecreasing function of a, p(a), such that a u cv dz +p(a) > O,
e +fu v + gz +p(a > O, a flu yv z + p(a > O, for all u, v, z) T. This enables
us to define A(a,.), an operator on T, by

A(a, (u, v, z)) := (-A +p(a))-’(u(a- u-cv-dz+p(a)), v(e+fu-v+ gz+p(a)),

(3.3) z(a flu yv- z +p(a))).

A(a, )" T -> P; it is completely continuous and Fr6chet differentiable, and fixed points
of A(a,. are solutions of (0.1). Since we are interested in positive solutions of (0.1),
we will study equations of the form

(3.4) A(a,(u,v,z))=(u,v,z)

instead of (0.1), i.e., we will study fixed points of a one-parameter family of completely
continuous maps. This family, A: T-> P, where T-LJ=>o {a} x T, T c flt+x P, is a
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completely continuous map. Therefore, the solution set S of (3.4) defined by

S := {(ce, (u, v, z)) T, A(a, (u, v, z)) (u, v, z)}

is locally compact.
Let 6= 1/d(1-[fl+y(1 +f+g)]) and let a* be such that hl(Ce*- ybe) 1.
LEMMA 3.2. If a >-- a6(a >--_ e6) or ce <-- a*, then A(tx,. has no fixed point with all

three components nontrivial.
Proof. Assume that ce-<_ ce* and that there exists (u, v, z) T, a fixed point

of A(a,.) such that u>0, v>0, and z>0. Let p=p(ce). Since z=
(-A +p)-l(a flu + yv- z +p)z, it follows that r((-A +p)-(a flu- yv- z +p)) 1.
On the other hand,

(3.5)

Also, Lemma 1.1 implies that r((-A+p)-l(a*-ydpe+p)) 1. Now, (3.5) and Lemma
1.2 imply that r((-A+p)-(ce -u-yv- z +p)) < 1, which is a contradiction.

Let a _>- a6 and let (u, v, z) T, u > 0, v > 0, z > 0, be a fixed point of A(a, ).
Since a u cv- dz +p < a u d(1 -/3 T(1 +f+ g))b +p a u 1/6b +p, and
u=(-A+p)-(a-u-cv-dz+p)u, it follows that

( 1 )(3.6) U--<(--z+p) -1 a-u--b+p u.

This implies that r((-A +p)-(a u 1./6b +p)) >= 1, by definition of spectral radius.
On the other hand,

Arguing as in the previous case, we get

r (-ZX+p)- a-u--d+p <r((-A+p)-(a-d+p))=l,

a contradiction.
In the case I< a _-< e and a => e, the crucial inequalities are

u (-+p)-(a u cv dz +p)u

(-+p)- e-u +P u,

1 1
e-u-<(e6-)<a-.

Let (/, fi) be a unique positive solution of (2.1) such that/ > 0 and > 0, guaranteed
by Theorem 2.3.

LEMMA 3.3. There exists a unique 6z > 0 such that

(3.7) r((-A +p(ci))-l(ci-tiff- y+p(a))) 1,

(a*, e)(6 (a*, a)). Also, r((-A+p(a))-l(o-fl-yF+p(ce))) is less than 1, if
and greater than 1, if 6 < a.
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Proof. If a _-< a*, then a -/35 y < a ’’te O * yte. Arguing as in Lemma 3.2,
we get that

r((-A+p(a))-l(a-flf-y+p(a)))<r((-A+p(a))-l(a*-ybe+p(a))) 1.

If a -> e, then

a- flf- y7 > a -flba-y(1 +f)be> e--(fl + y(1 +f))ba

fl+y(l+f)
>-e- eK

>= e--e-
This implies that r((-A+p(a))-l(ce-flf-y+p(a))) > 1. (In the case where A1 < a _-<

e and c-> a, the crucial inequalities are

a -tiff- y,3> a -fl, y(1 +f)e > a --(fl + y(1 +f))dpe

/3 + y(1 +f)
>a-

L

Let r(a)" 9t+ 9+ be defined by

:= re
Then Theorem 4.3.1 and 4.3.5 of [K] imply that r(a) is a continuous function. Since
r( a *) < 1 and r( e > 1 r( a > 1 ), it follows that there exists an 6 a *, e), c a *, a )),
such that r(6) 1, i.e., (3.7) holds. Assume there exists a’, a’# 6 such that r(a’) 1.
Then there exist b>0 and >0 such that (1.2) holds, respectively,
for m 6 -/35 y and n a’-/35 y. It follows that Ja- Ab. dx mOb dx
and Jn-AO. bdx=an,chdx. Subtracting these two equalities, we get that
0 (m n)bO dx # O, which is a contradiction.

Since 6 is the only value of c such that r(a)= 1, and since r(c) is a continuous
function and r(a*)< 1, r(e)> 1 (r(a)> 1), it follows that r(a)< 1 if a < 6, and that
r(a)>l if a>6.

Remark 3.4. Let L be the linearization of A(a, .) at the point (5, 3, 0) T.
((5, 3, 0) is, obviously, a fixed point of A(a,. ).) Then

L(l, k, h)=(-a+p(a))-l((a-2-ce+p(a))l-cak-dh,fel
+(e+ffi-2e+p(a))k+geh, (c -/3f- y5 +p(a))h).

Next, we would like to compute the fixed-point index of A(a,. at the point (5, , 0)
relative to the cone P. Let i(A(c,.), y) denote the fixed-point index of A(a,.) at y
with respect to the cone P.

LEMMA 3.5. i(A(c," ), (5, , 0)) is equal to zero if a > 6, and equal to +1 if a < &
Proof. We will use the notation from [D1]. Let y=(f, 3,0). Then Wy=

Co(l) x Co(fi)x Co(fi)+. First we have to show that L has no eigenvector in W
corresponding to eigenvalue 1. Assume, on the contrary, that there exists (l, k, h)e Wy
such that

(3.8) L(l,k,h)=(l,k,h).

Assume that h 0. Equation (3.8) implies that (-A +p c )-(a -/35 y5 +p c h h,
and therefore, r((-A +p(a )) -(c -/35 y5 +p(c ))) 1. This contradicts the assump-
tion that a # 6. Hence h-=0. If l0 k, then (3.8) implies that -Al-(a-2f-c)l+
cfk =0, and -Ak-f61-(e+ff-2)k =0, in , and k =0, on 011. Multiplying the
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first equality by l, and the second by k and then integrating over 1), we get

Ia [-Al" l-(a- -c)12] dx + Ia [12+ ckl] dx =O,

fa[-Ak’k-(e+f-)k2]dx+fa[k2-fIk]dx=O.
Arguing as in the proof of Lemma 2.5, we get that

[til2 nt- k2+(cO-f)lk] dx<-O.

The form above is equal to the form in (2.4), which is positive definite. Hence k 0.
Following the notation of [D1], we find that Sy Co(f)x Co(f)x {0}. Let M

{0} x {0} x Co(l)). Then M is a closed complement of Sy in E. Let II be the projection
onto M, and let Ms denote the restriction of L to M. Then IIoM=
(-A+p(a))-l(a--yO+p(a)). Now, Theorem 1 (with Remark 2) and Lemma 2
(with Remark 3) of [D1] imply that i(A(a,. ), (, , 0)) i(L, O, Sy) +1, if a < 6,
and i(A(a,. ),

Let Co {(a, (tL 5, 0)), a >_-0}. Then Co C S; it is a continuum (a closed, connected
set) in S, and therefore in +x P.

LEMMA 3.6. C is a bifurcation point for (3.4) with respect to Co. It is the only one.

Proof Assume that 6 is not a bifurcation point for Co. Then there exists an
interval [B, C] such that c [B, C] and an open set, U, U c [B, C] x P G T (in relative
topology) such that UCIS=[B,C]x{(,,O)} and OUf’IS=. Let U {(u, v, z),
(a, (u, v, z)) U}. Then, by the general homotopy invariance property ofthe fixed-point
index (see [A, Thm. 11.3]), i(A(B, .), UB) i(A(C, .), Uc). On the other hand, bythe
excision property and definition of local index (see [A, p. 659]), i(A(B, .), UB)=
i(A(B,. ), (tL 3, 0))= +1, and i(A(C,. ), Uc)= i(A(C,. ), (tL 5, 0))-0, since B < 6, and
C > 6, which is a contradiction.

Assume that there exists another bifurcation point a, a 6. Then there exists a
sequence in S\ Co, {(a., (u., v., z.)), n N} such that a. - a, u , v. , z. 0.
Also, there exists N N such that u. > 0, v. > 0, for all n >_-N.

Assume that z. =0, for some n_-> N. Then (u., v.) is a solution of (2.1) and
therefore u. fi, v. 3, and hence (a., (u., v., z.)) Co, contrary to the assumption.
So, z. > 0 for all n-> N. The following holds:

(3.9) iiz.ll- (-A)-’
N.

The sequence on the right-hand side converges for some subsequence (which we
relabel as the original one), since (-A) -1 is a compact operator and the sequence in
the parentheses is bounded. Therefore, the left-hand side of (3.9) converges also, to
some z of norm 1. Passing to the limit in (3.9), we get that z=(-h)-l(z(a--y)),
which implies that z=(-A+p(a))-l(a-fl-T+p(a))z, and by Lemma 3.3, it
follows that a c, contrary to the assumption. [3

Let ,=(S\Co)U{(8, (tL 6, 0))}. Z is a closed subset of S, by Lemma 3.6.
LEMMA 3.7. Z contains an unbounded continuum C, bifurcating from Co at .
Proof Let ( be the component of containing (c, (tL 6, 0)). Assume that t is

bounded. Then there exists/z > c such that C c [0,/z x P 71 T and C f {,} x T, .
Let X S [0,/z ] x P. X is obviously a compact topological space. Let Y C U Co f) X,
Z S ({/} x PU {0} x P)\ Y. Then Y and Z are nonempty, disjoint, closed subsets
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of X (for example (/x, (0, be, 0)) Z). By Whyburn’s Lemma (see [W]) there exist two
compact sets V and W, such that Y c V, Z c W, V fl W , V LI W X. This implies
that there exists an open set U in [0,/x] x P, such that U V Y, U fl W and
OU f’l S . Therefore, i(A(a,. ), Us) is well defined for all a [0,/x], and it is constant
(with respect to a) by the homotopy invariance principle (see [A, Thm. 11.3]). On the
other hand, i(A(ix," ), U,) i(A(tx," ), (ti, 3, 0)) =0, since > 6. Therefore,
i(A(O,.), Uo)=0. Since i(A(O,.), (ti, 3,0))=+1, it follows that Cf’l{0}xP. Let
(0, (u, v,z)) C f’) {0} x P. If z0, then (3.2) implies that -Az=-z(Clu+yv+z), in f
and z 0, on 01), which contradicts the maximum principle. Hence z 0. Therefore,
(u, v) is a solution of (2.1), different from (ti, 3). So, at least one of the components
must be zero. It cannot be v, since C is a continuum and positive v-components are
bounded away from zero. So, u 0, and v te. Since C f’) {0} x P {(0, (0, te 0))}, C
must contain the whole unbounded continuum {(a, (0, be, 0)), a -> 0}, contrary to the
assumption. [3

LEMMA 3.8. Let C be the component of f’l [0, a] x P ( f’l [0, e] x P), containing
(6, (, 3, 0)). Then

(i) u>O,v>O,z>O, forall (a,(u,v,z))C\{(6,(fi, 3,0))};
(ii) C f’l [0, a*] x P ;
(iii) C f-I {c} x P fg, for all a [6, a], ([6, el).
Proof. Part (i) must hold for some neighborhood of (6, (ti, 3, 0)) in C. Take any

(c,(u,v,z))S such that a<-a and u>0. Since -Au=u(a-u-cv-dz)>-
u(a u c(1 +f/ g)dpa d49) >- u(a u -[c(1 +f/ g)/ d]dpa), in lI and u =0 on Oil,
it follows, as in the proof of Lemma 2.2, that

(3.10) u _-> (1 -[c(1 /f/ g)/ d])ba.
Assume that (i) does not hold. Then there exists (c, (u, v, z)) C such that either

u -= 0, or v -= 0, or z 0. Assume that u -= 0. Then (3.10) implies that u -= 0, for all
(a(u, v, z)) C, since C is a continuum, which is a contradiction. Assume that v-=0.
Then v-=0, for all (a, (u, v, z)) C, since for positive v, v> the and C is a continuum.
This is, again, a contradiction. If z -= 0, then u ti, v 3 and, therefore c 6, which
proves (i). Part (ii) follows from Lemma 3.2 and (iii) follows from Lemmas 3.3
and 3.7. [3

4. Three-species system with e as bifurcation parameter. In this section we assume
that all the parameters in (0.1) are fixed positive constants, except for e. Since we
follow the approach of the previous section, we try to avoid repetition by omitting or
sketching the proofs only. We assume the following:

a>A1,

!+fl<a--A1d’ fl’ d l+ d a

(4.1) 0<R<I,

a[al, ot2] (A + 3a, a-A1)d

/3 + y(1 +f+ g) < R, d + c(1 +f+ g) < Q.
All the constants in (4.1) have been defined in 2. Let E and P be as in the previous
section. Let , A1-2a/R. Since Lemma 3.1 holds, the set Te P, defined below, for
all e e ,, oo), contains in its interior all the positive solutions of (0.1):

Te:={(u,v,z)P,u<-2a, v<=2q(l+f/g),z<--2oz}, rl=max{a,a,e}.
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Let p(e) be a continuous, nondecreasing function on u, ), such that a u cv dz +
p(e)>0, e+fu-v+gz+p(e)>O, a-u-yv-z+p(e)>O, for all (u,v,z)Te.
Define an operator A(e,. on Te by (3.3), by writing p(e) instead of p(a). We consider
a one-parameter family of fixed-point equations on T := U e>=u {e} x Te:
(4.2) A(e, (u, v, z)) (u, v, z).
A solution set S of (4.2), defined by S := {(e, (u, v, z)) T, A(e, (u, v, z)) (u, v, z)}, is
locally compact.

LEMMA 4.1. Let (u, v, z) be a solution of (4.2). Then e >= a/ y implies that z O,
and e >-a/c implies that u =-O.

Proof Let (u, v, z) be a solution of (4.2) such that e-> a/3’ and z > 0. Then
r((-A+p(e))-(a-u-yv-z+p(e)))=l. On the other hand, a-u-yv-z<
a Y4e Y(a/y- 4e) -< 3’(e be) ----< e- 4e, which implies a contradiction.

If (u, v,z) is a solution of (4.2) such that e>-_a/c and u>0, then r((-A+
p(e))-(a-u-cv-dz+p(e)))=l. On the other hand, a-u-cv-dz<a-CCbe=
c((a/c)--Ce)C(e--pe)e--pe which implies a contradiction. [3

LEMMA 4.2. Assume that e-<_min {a, a} and let (u, v, z) be a solution of (4.2) such
that u > 0 and z > O. Then

R c and u >- 1-
Q

(a.

Proof We argue as in the proof of Lemma 2.2. The main inequalities are

-Az z(a flu yv z) -->_ z(a (/3 + y( 1 +f+ g)) b, z)
>-- z(a -((/3 + y(1 +f+ g))/R)b, z),

and

--Au u(a-- u-cv-dz)> u(a- u-(d+c(l+f+
>= u(a- u-((d + c(1 +f+ g))/Q)cha). [3

Let (fi, 5) be a unique positive solution of (2.5), guaranteed by Theorem 2.6.
LEMMA 4.3. There exists a unique v, ) such that

r() := r((-a+p())-(o+fa+ge+p()))= 1.

Also, r(e) < 1 for e < , and r(e) > 1 for e > &
Proof Let e h (f/R + g)a. Then

e+fa + ge < e+fa + gcb < e+ ((fiR +g) < e+(f/R)+ g)a l

Arguing as in Lemma 3.3, we get that r((-A+p(e))-(e+fR + gS+p(e))) < 1.
On the other hand, for e= ,1 we get that r((-A+p(e))-l(e+ffi+g+p(e)))> 1.

The rest follows as in the proof of Lemma 3.3.
As in the previous section, we would like to compute the fixed-point index of

A(e,. at the point (, 0, ), relative to the cone P, as the parameter e is varied. To
prove the following, we proceed step by step as in the proof of Lemma 3.5.

LEMMA 4.4. (A(e, ), (, O, 5)) is equal to + 1 if e < , and is equal to zero if e > ..
Let Co={(e, (, 0, )), e>=v}. Coos is a continuum in S and in Iv, m) x P.
LEMMA 4.5. C" is a bifurcation point for (4.2) with respect to Co. It is the only one.

Proof Follow the proof of Lemma 3.6.
Let (S\Co) U {(, (tL 0, 5))}. Lemma 4.5 implies, that is a closed subset of S.
LEMMA 4.6. E contains an unbounded continuum C bifurcating from Co at

Proof We proceed as in the proof of Lemma 3.7. Let C be the component of
containing (, (t, 0, g)). Assume that C is bounded. Then there exists/z > e such that
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Cc[u,/x]xP and CN{/x}xP=. Let X=SN[u, tx]xP, Y=CUCoNX, Z=
S n ({/x} x PU {u} x P)\ Y. Arguing as in the proof of Lemma 3.7, we can find an open
set U in [u,/x]xP such that yc U, UNZ=), andoUns=. So, i(A(e,.), Ue) is
well defined for all e e[u,/x] and constant with respect to e. It follows that
i(A(tx," ), U,)= i(A(tz," ), (ti, 0, ))= 0, since/x > ,. Therefore, i(A(u,. ), U) 0. Since
i(A(u,.), (ti, 0,))=+l, and UNS=(CN{u}xP)U{(u, (ti, 0, ))}, it follows that
( N{u} x P Q. Let (u, (u, v, z)) d N{u} x P. If v 0, then -Av= v(u+fu-v+ gz) <-

-v in f, and v-= 0 on 0f. This contradicts the maximum principle (see [GT]). Since
v--0, it follows that (u,z) is a solution of (2.5), and therefore u--0 or z--0.
So, C N{v} x P contains either (v, (0, 0, 0)), (v, (0, 0, the)) or (v, (the, 0, 0)). In either
case, must contain a whole unbounded continuum, for example,
{(e, (0, 0, 0)), e => u}, contrary to the assumption.

LEMMA 4.7. Let C be the component of CN[u, min{a, a}]xP, containing
{(g,, (tT, 0, ))}. Then

(i) u>0, v>0, z>Oforall (e, (u, v, z)) C\{(O, (a, O,e))};
(ii) C N { e} x P for all e , min { a, a }].
Proof Part (i) must hold in some neighborhood of (, (a, 0, )) in C. Lemma 4.2

implies that u>0 and z>0 for all (e, (u, v,z)) C\{(, (a, O, ))}. Then v>0, since
(u, z) solves (2.5). Part (ii) is obvious.

Lemmas 4.7 and 3.8 imply the following theorem.
THEOREM 4.8. Assume that (3.1) or (3.2) holds. Then there exists a positive solution

of (0.1) for all a (, max {a, e}). If (4.1) holds instead, the same is true for all
e (, min {a, a}).

By Lemma 3.3, c (a*,min {a, e}) and an estimate for is provided by the
following remark.

Remark 4.9. Let to be an eigenfunction of (1.1) associated with h, such that
II,o 1, o > 0. Define K := Ia (.03 dx/Ia (02 dx. The following estimate holds:

’ < AI[1 K(a -A,)(f(Q d)+ g(R-/3))].

Proof. Let =f(Q-d)+g(R-fl). Then, there exists a unique e such that

(4.3) r((-A+p(e))-l(e+ qbo +p(e)))= 1.

We can prove this by arguing as in the proof of Lemma 3.3. Since e+f+g>
e+f(1-d/Q)d+g(1-/R)qb>e+(f(Q-d)+g(R-))Cb-e+co, it follows
that r((-A+p(e))-(e+fa+gZ+p(e)))> 1, and, therefore, that e> . Equality (4.3)
implies that there exists q>0 such that -Aq =(e+sCth,)tp, in and =0, on Of.
Arguing as in the proof of Lemma 1.4, we infer that 0 <_- a [-Ato to w2(e + scbo) dx

A to2 eto2 cPt] dx. Therefore,

(4.4) e 60
2 dx < h

On the other hand, ba hl(a-A)to (see [CL, pp. 1128-1129]). This and (4.4) imply
that

e <= A ,A a A1) ff to dx/ I to
2 dx.

Since < e, we get that , < h(1- :r(a-h)), from which it follows that , is negative,
for a big enough.
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CONTACT MAPS AND INDUCED DIFFERENTIAL EQUATIONS*

HENRY HERMES?

Abstract. The goal of this paper is to examine constructive ways of generating solutions of partial
differential equations (pde’s) by the use of associated ordinary differential equations (ode’s). Specifically,
the classical method of Cauchy characteristics for first-order pde’s is examined from the Cartan geometric
viewpoint, i.e., as a method of extension via a contact (or Cauchy-characteristic) vector field on a submanifold
determined by the equation in an appropriate jet bundle. Contact vector fields generate contact transforma-
tions, which are self maps of a jet bundle with induced cotangent space maps preserving the contact structure.
Contact maps, or immersions, from one jet bundle to another with induced maps carrying contact structures
in a specified manner are introduced. Contact transformations transform pde’s to pde’s; a contact map can
induced an ordinary differential equation from a pde. For example, a contact map that induces a sixth-order,
linear ode from the classical Burgers’ pde is constructed. The final goal is to examine extending Cauchy
data for second- or higher-order pde’s via nonautonomous "Cauchy vector fields" on the jet bundles of the
equations induced by contact maps.

Key words, contact transformations, Cauchy characteristics, geometric theory of pde’s

AMS(MOS) subject classifications. 35A30, 58G37

Introduction. Our goal is to consider constructive ways of obtaining solutions of
partial differential equations (pde’s) by use of associated ordinary differential equations
(ode’s). The usual method of solving an initial value problem for a first-order pde is
to extend the data along Cauchy characteristics, i.e., via-the flow of a "Cauchy
characteristic vector field" on the appropriate jet bundle associated with the equation.
For a first-order equation, such a vector field can be explicitly constructed and will
locally extend any (noncharacteristic) initial data to a solution. It is known that Cauchy
characteristic vector fields do not exist on the jet bundles associated with pde’s of
order 2 or more. Our goal is to extend initial data for such equations via the flows
arising from nonautonomous ode’s on the associated jet bundle.

To be more specific, let x=(xl,x2)ff2, u=(u, u,,,, ux2) and (x, u) denote
local coordinates on the jet bundle J(I2, [). Consider a first-order pde A(x, u) 0,
i.e., A Jl(I, E) I, and let Ma denote the manifold on which A 0. Typical Cauchy
data would be to prescribe a map - x(t) E2 and data u(x(t)) Uo(t), Ou(x(t))/Ox
p(t), Ou(x(t))/Ox2 p2(t) where the compatibility conditions u(t) p(t)x(t) +
p2(t)x’(t) and A(x(t), Uo(t), p(t), p2(t))= 0 must hold. In classical language this was
expressed by calling v(t) (x(t), x2(t), Uo(t), pl(t), p2(t)) M, an initial strip; in
modern language v is called a one-graph in Ma. Geometrically, we picture v as defining
a one-dimensional section of Ma. A parametric representation of a solution is obtained
by extending the one-graph - v(t) via the flow of Cauchy characteristics. Specifically,
we construct a vector field V on J(E2, E), tangent to Ma, and with solution through
q denoted (expsV)(q), such that (t,s)=(expsV)(v(t)) is a one-graph giving a
two-dimensional section of Ma from which the solution is obtained. In general, this
geometric method ofCartan no longer works for higher-order equations A:Jk(", El)
1, k_>-2.

* Received by the editors May 31, 1989; accepted for publication (in revised form) July 17, 1989. This
research was supported by National Science Foundation grant DMS-8500941 and by a visiting membership
at the Mathematical Sciences Research Institute, Berkeley, California.

f Department of Mathematics, Box 426, University of Colorado, Boulder, Colorado 80309.
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Section 1 introduces notation and summarizes basic results on k-graphs, contact
transformations, and Cartan’s geometrical viewpont of pde’s. Section 2 introduces
contact maps and their induced equations. Briefly, a kth-order pde in m independent
variables, denoted A(x, uk) 0, will be viewed as defining a submanifold Ma in the
jet bundle Jk(R",R1). A contact transformation F is a self-ditteomorphism of
jk(R,, 1) with induced cotangent space map F* preserving the contact structure (i.e.,
if k(,, R1) denotes the module of contact forms on jk(,,, 1), then F*Ok =ok).
Form F(Ma), a new submanifold that may be viewed as defining an induced equation.
Solutions of the latter are related to solutions of the former via F-1. Example 1.3 will
illustrate this classical use of contact transformations. A contact map F will be an
immersion of one jet bundle jk(m, 1) to another, say JI(RP, Rq), p <-m, such that
F.121(p, q)flk(,, 1). Again, F(MA) gives an induced equation, in particular, if
p 1 this will be an induced ordinary differential equation. If ff is a solution of the
induced equation, then F-1 of the graph of the /th prolongation of , (i.e., pr(1) )
gives a p-section (denote it t--> v(t)) of MA, which is a k-graph. Thus there exist maps
x’RP-> and w’"-> such that v( t) (x( t), prk) w(x( t))) and A(x(t),
pr(k) w(x(t)))=0. In this sense, w satisfies the pde A along the curve (submanifold)
t--> x(t). If p m-1, i.e., t-(tl,’’ ", tm-1), then t--> v(t) is a k-graph in MA with
image an (m- 1)-dimensional section, and hence serves as Cauchy data for the pde
A 0. The theory, to here, is illustrated by Example 2.2, which is Burgers’ equation
having MA j2(2, R1). We give a contact map F" j2(2, ) _> j6(l, 1) such that the
induced equation is a linear, sixth-order, ordinary differential equation. Solutions of
this linear ode readily provide appropriate Cauchy data for the pde.

Next, Theorem 1 gives conditions that, when satisfied, yield a vector field whose
flow (when transverse) extends any k-graph V’Rq’’> MA jk(m,n) to a k-graph
.q+l_.> MA. AS mentioned, if k 1, this is classical, the vector field V is a contact
vector field, indeed the Cauchy characteristic vector field. This is illustrated in Example
2.4. In general, the conditions of Theorem 1 cannot be satisfied for k->_ 2. In 3 we
consider extensions via the flow of nonautonomous ode’s. In particular, we consider
the case k 2 and a specific contact map F" J(, R1)_> j6(1, 1). Here the induced
equation associated with any second-order pde A" j2(2, 1)__> R will be (in general)
a sixth-order ode. We choose to do the extension in the jet bundle of the induced
equation. If --> v(’) MA is a two-graph in j(2, 1) and /(-)= F v(’), Theorem
2 gives conditions that, when satisfied, lead to a system of ode’s on j6([, [1) such
that their solution, denoted s -> b(s, q), b(0, q) q, satisfies F-1 b(s, ),(r)) is a two-
graph in MA, which yields a parametric solution to the equation A 0 with initial data
given by v.

Recent results in higher symmetries, conservation laws, and the Hamiltonian
structure of partial differential equations have led to a rebirth and extension (in modern
terminology) of the methods of Lie, Cartan [7], [5], and Vessiot [6]. These methods
have also been instrumental in certain aspects of control theory [2], [3]. The rapid
expansion of this subject has made much of the literature inaccessible to the non-
specialist. Our goal here is to make the exposition as self-contained as possible (at the
expense of generality) and to stress specific examples. Our notation is consistent with
that in [5]. Certainly, a large part of this paper may be regarded as expository.

1. Graph maps and contact transformations. Local coordinates for a jet bundle
jk(,,,l) will be written as (x,uk)) where x=(xl,...,x,) and uk)=

(u, u,,,..., u,,, u,,,,1,. .), i.e., subscripts to represent all partial derivatives through
order k. As a specific example, local coordinates for j2(2,) are (x, u2))
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(Xl, X2, U, Ux, Ux2 Ux,xl Ux,x2 Ux2x2), If W’ ._)1 its kth prolongation, denoted pr(k)w,
is defined as

pr(k) w(x)= (w(x), wx,(x)," ", Wx,x,(X)," "),

where here subscripts denote actual partial derivatives, and all partial derivatives
through order k appear.

Given a differential equation A(x, lg (k)) --0, XEm, we consider A" jk(m, 1) _.> 1
and if this map has Jacobian of rank 1, then

Ma ((x, u (k)) jk(.,, 1): A(x, u (k)) 0}

is a submanifold of codimension 1 in jk(m, [1).
Example 1.1 (Burgers’ equation).

1.1 A(x, u (2)) u,- uu u2
Here Ma is a seven-dimensional manifold in the eight-dimensional j:(2,1). A
necessary and sufficient condition that a smooth function w" --* 1 be a solution of
A 0 is that the graph of pr2) w lies in Ma, i.e., x (x, pr:) w(x)) (i, pr: w)(x) M/,.
On the other hand, if x - (i, y)(x) (Xl, x:, yl(x), , y6(x)) Ma we certainly cannot
conclude that yl is a solution of A 0. Indeed, x - (i, y)(x)
(xl, x2, x+ x:, 2x1+ x:, 1, 2, 0, 2xl- x) Ma but clearly y(x) pr: w(x) for any
w’2 since Oyl(x)/OXl yE(X) as is necessary.

DEFINITION. For p --< m, a map v "Ep - jk(m, 1) is a k-graph if there exist maps
x’Ep oR’, w’"E such that v(s)=(x(s),prk) w(x(s))),sp. If x is an immer-
sion, the image of v gives (locally) a p-dimensional section of jk(m,

Remark 1.1. The terminology k-graph stems from the standard case where v"m
Jk(Em,l) has the form v(x)=(x, y(x))=(i, y)(x) with the values y(x) in the fibre
above x. Here the image of v is the graph of y, and it is traditional to call y a k-graph
if there exist w "N" E such that y(x)= pr(k) w(x). This would be the nonparametric
case: the above definition includes both the parametric case and a domain NP with p -<_ m.

The conditions that partial derivatives match correctly in order that v’NP
Jk(W",N1) be a k-graph are encoded in the module of contact forms, denoted
fk(m, 1), on jk(w,

Example 1.2. The contact module f:(:, 1) is the module generated by the three
one-forms:

to ux, dx + u, dx2 du, 0)
2 dxl + dx2 du,,,X1X ’X1X

to dx + dx2 duxIX1X2 ’tX2X
over the ring of smooth, real-valued, functions on J2(:, ).

PROPOSITION 1.1 (Gardner [1, Prop. 2.4]). Let 7r denote projection of Jk(m, E1)
onto ’, p <-- m and v’p - jk(m, 1) be such that 7r v "Ep _m is an immersion. Then
a necessary and sufficient condition that v be a k-graph (locally) is that V*flk(", 1) {0}.

The proof is exactly as that given by Gardner in [1] where he considered v"

jk(m,,l) with 7r v a diffeomorphism. This was used only to ensure that 7to v is
locally one-to-one, hence his proof suffices for Proposition 1.1 as stated above.

Remark 1.2. In the nonparametric case where v’E’- Jk(m, E1) has the form
v(x) (i, y)(x) with y(x) in the fibre above x, we have r v(x) x, i.e., the condition
7r v, an immersion, is automatic.

In summary, and for convenience for later reference, we now have Proposition 1.2.
PROPOSITION 1.2. Let A. Jk(m,l)-E1 be a given differential equation with

Jacobian of rank 1 so Ma is well defined. If t)’Ep -> Mac Jk(mE1), p m, is such that
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7r v is an immersion and Vg[-k(R rn, R1) 0, then there exist maps x’p -->R m, w’R" -->

1 such that for P (locally),
(a) v(t) (x(t), pr(k) w(x(t))).
(b) A(x(t), pr(k) w(x(t))) O.
DEFINITION. A local diffeomorphism F" jk(,, 1)__> jk(R,,, ) is a contact trans-

formation if F maps k-graphs into k-graphs, or equivalently, if its induced map on
the cotangent bundle preserves the contact structure, i.e., F*flk(", )c flk(m, ).

Next we give a classical use of a contact transformation to "linearize" a nonlinear
differential equation. The example is meant to motivate the concept of contact map
and induced equation, which will follow.

Example 1.3. Consider F" jI(R1, 1)
__
j(l, 1) with (x, y, y’) local coordinates

in the domain and (t, tr, t) local coordinates in the range. Specifically, Fl(X, y, y’)-
y’, tr FE(X, y, y’) y- xy’, and t Fa(x, y, y’) -x. Then F is a contact transforma-
tion (the Legendre transformation). To verify, I(, 1) is generated by to(t, tr, t)-
(rdt-dtr, hence (in local coordinates) to(F-l(t, tr, dr))=(-x,-1, O) and F’to=
(-x, -1, 0)(0(F1, F2, F3)/O(x, y, y’)) (y’, -1, O) to(x, y, y’) as required.

Next, consider the differential equation

A(x, y, y’) x + E c,(y’)’
i=1

where Cl," ", c5 are arbitrary constants. Here Ma is a two-manifold in jI(R, 1), as
is F(Ma). Indeed, the induced (or transformed) equation is

X( t, o’, d’) -6" -I- 2 Citi
i=1

and F(Ma)= {(t, tr, t)" z =0}. Here, the induced equation is trivially integrated, i.e.,
(t)= k+Y= citi+l/(i+ 1) is its general solution. Then t-->(i, pr1 t,)(t) F(Ma) is a
one-graph in j1(1, ). Its preimage t--> v(t) F-(t, ,(t), (t)) (-(t)), O(t)
t(t), t) is a one-section of Ma, which is a one-graph. Proposition 1.2 applies when
(t) 0, in which case we have the parametric representation of a solution of A =0
given by x(t) -(t), y(t) (t) t(t). Furthermore, with --> x(t) as above, Proposi-
tion 1.2 not only assures the existence of the nonparametric solution w: R-->I (in
general difficult to find) but also gives the information that w(x(t))=O(t)-
t(t), w’(x( t)) t.

Remark 1.3. A coordinate change in m induces a contact transformation on
jk(,,) and, more generally, any self-diffeomorphism of R" x induces, by pro-
longation, a contact transformation ofjk(m, ). (See [5] for the explicit construction.)
Furthermore, a result of Bicklund shows every contact transformation of jk(m, n)
with n >_- 2 is of this form, i.e., a prolongation of a self-diffeomorphism of Rm Xn (see
[7]). Two partial differential equations that can be transformed into each other via a
local coordinate change in the underlying space should certainly be considered
equivalent. A broader equivalence is that provided by the group of contact transforma-
tions in the appropriate jet bundle, a classification problem studied by Lie at the turn
of the century.

2. Contact maps. Contact transformations are self-maps of a jet bundle, whereas
contact maps may be from one jet bundle to another.

DEFINITION. An immersion F;Jk(m,n)---Jl(P,Rq) is a contact map if
F*’(,) f(,).

The motivation is as follows. Given a differential equation A with MA
and contact map F: jk(m, Rn)_jl(p,q) we again have an induced equation
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described by F(Ma). Suppose is a solution of this induced equation, i.e., t-

(i, pr(t) )(t)F(Ma). Let v( t) F-l(( i, pr(I O)(t)); so (locally) tv(t)Ma is a p-
section of Ma. Then (i, pr(/ if)= F v and since t(i, pr(1 )(t) is an/-graph, {0}=
(i, pr(/ I]l)*’l(p,q)--v*F*’l(p,q). But F*’l(p,q)-k(m,[n), hence
V*fk={0}, i.e., t- v(t) is a k-graph in Ma to which we can, in general, apply
Proposition 1.2.

The major portion of this section will deal with specific examples. Methods for
the construction of contact transformations are well known, [7, 2.3, 2.4]. No similar
general results are known (at this time) for contact maps.

Our first goal is to construct a contact map F: j2(2, 1)._.> j6(1, 1), both jet
bundles of dimension 8. When accomplished, the induced equation associated with
any second-order pde in two independent variables, will be a sixth-order ode. The
particular contact map we will exhibit is constructed to have a linear induced equation
associated to the Burgers equation.

The generators of f/2(Ne, N1), denoted to1, toe, to3, are exhibited in Example 1.2.
Choose local coordinates for j6(1, 1) as (t, tr, 0"(1), 0"(2), 0"(3), 0"(4), 0"(5), 0"(6)). Then
generators of ’6([1, 1) are:

v cr) dt- dr, v2= cr(e) dt- do"),
v cr3) dt- dcr2), v4= cr4) dt- do"(3),
v5 0-5) dt_so-4), /6 O-(6) dt_dtr5).

A direct attempt to find F such that F*62 leads to an extremely complicated set
of partial differential equations for the components of F, aggravated by the fact that
-2 has three generators "to be covered." The construction is more tractable in the dual
setting.

For X a vector field, say on jk(m, n), and to a one-form, let (to, X) denote the
standard, bilinear pairing of the cotangent bundle T*jk(m, n) and tangent bundle
Tjk(m, "). Dual to fk(,,, ,) is a distribution (or module) sometimes called the
Vesiot distribution:

Ak(m, n) {X Tjk(m, [n): (to, X)--O,
As before, F* denotes an induced cotangent space map, whereas F, will denote the
induced tangent space map.

PROPOSITION 2.1. Let F je(2, 1)
_
j6(l, [) be an immersion and restrict atten-

tion to a neighborhood where F is one-to-one. Then 2(2, l)c F,f6(I, ) if and
only if A6(1, 1) C F,A2(e, 1).

Proof (a) Suppose fec F,126 but A6 F,Ae. Then there exist X6A6 and a
one-form v such that (i) (v,X)=0, and (ii) (v,F,A2)={0}. But (i) implies vf6,
whereas (ii) yields (F,v, As) {0} or F*v f2. But F* is one-to-one, hence v f6, a
contradiction.

(b) Suppose A6 F,A2 but -2 Z F*6. Then there exist to f2 and a vector field
Y such that (i) (o, Y)# 0, and (ii) (F*6, Y)--{0}. But (ii) implies that F,Y A6 or
Y A2, which means (to, Y)=0 contradicting (i). [3

As mentioned, the advantage of the use of Proposition 2.1 in our case is one of
dimension, i.e., A6(1, 1) has only two generators, specifically,

cgxl Ox2 X’ u2 Ux’xe Oux,xl Uxlx
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The generators of A2(R2, 1) are

0 0y1 y2 y3
00.(4) 00.(5) 00.(6)

y4 0 0.(2 0 0-(4) 19 0-(5) 19

=--+0t (90.(1)+ --19 -- 00.(3

ys 0 0 0 0
=+ 0.(3)

00.ii) + 0.(s) + 0.(6)
00. OG(2) 00-(3)"

We seek a local diffeomorphism F" J2(R2, 1) j6([l, 1) such that for smooth func-
tions al,’",asand,’",5

(2.1) iF, Y X1, 2 iF, yi X2.
i=1 i=1

We next give a solution to (2.1).
Example 2.1. A contact map F" j2(2, 1) 4 j6(l, 1).

t= FI(X u (2)) Xl, F2 _x2, (1)= F3 u, (2)= F4 Uxl- UUx2,

(2.2) (3) F5 UX1X1- UX1UX2 + UU2-- 2UUxx2+ U2UX2X2
g(4) F6 Uxz, G(5) F7 Ux,x2- UUxzx2, G

(6) F8 Ux.
For completeness, the (irrelevant) values a, i needed to verify that (2.1) holds are

2 2 + 2uu)(u,- uu)- u:(u,- UUx,)1 (X XlX

+ UX 2UUx2)( UXX2 UUxzx2) + 2UUxzx + 2UUxUXaX 2U2 + UX2X X

2 xx2x x2x2x2+ x2x 3 O, a4 1, 5 U,

I=U2, 2=U, 3=1, 4=0, 5=0.
F-1. j6(,) j6(2, ) is, locally,

(2.3)

X t, X2 --0-, [/ 0.(1), /,/x 0.(2)
__

0.(1)O.(4), ,/x 0-(4),

UXIX 0.(3) + 0.(4) 0.(2) -’F" 20.(1) 0.(5) 1

UXlX 0.(5) -’1- 0.(6) 0.(6)’X2X
Example 2.2 (Application of F, as above, to Burgers’ equation). With A(x, u (2))

u,,- uu,, u,2, the induced equation (using (2.2)) is

(2.4) 0.(6)(t) 0.(2)(t) 0.

We may readily write a basis for the solution space of the linear induced equation. If
q denotes any solution

(2.5) - v(t) F-l((i, pr(6) @)(t))

is a two-graph in Ma. Using F-1, computing shows that r v(t)= (t, -q(t)) and this
gives an immersion in , hence Proposition 1.2 applies. In particular, we know that
the map x:l-R2 is (x(t))=(t,-d/(t)) and there exists w:2-2 such that
A(x(t), pr2) w(x(t)))=0. While w may be difficult to find, from F-1 and (2.5) we do
know that w(x(t))= ql)(t), wxl(x(t))= q(2)(t)+ q(1)(t)q(4)(t), etc. In short, for any
solution q of the induced equation (2.4), v(t) as given in (2.5) defines appropriate
"Cauchy data" for an initial value problem for the Burgers equation.
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Example 2.3. A contact map F" jl([2, 1) ...> j3(l, 1). Choose (x, U (1))
(xl,x_,U, Ux,, Ux2) as local coordinates for j1(2,) and (t, or, or’, or", tr’") as local
coordinates for j3([l, 1). Then 12(2, 1) is generated by to ux, dx +ux2 dx2-du,
whereas 123( 1, [1) has v or’tit- dcr, v2 r"dt- dcr’, v r’"dt- dcr" as generators.
Since fll(2, 1) has but one generator, Proposition 2.1 should not be used, i.e., we
proceed directly to seeking a map F and smooth functions al, a2, a3 such that
to=y3 aiF, vi=F.(y3 air i) Explicitly, if the components of F are denoted as
F(x, ul)), then we require (in coordinate form)

(2.6)
(alF3 + a2F4+ a3Fs’ -al’ -a2’ -a2’ -a3’ 0)

(0(F1,""", Fs)/O(x, u(1)))= (uXl Ux2 -1, 0, 0).
A solution of (2.6) is

FI(X, u1)) x, t F2 x2, tr’= F u + Ux2,
(2.7)

The corresponding (irrelevant) values of the coefficient functions in (2.6) are al -u,,
t2 --t "--1. An easy calculation gives F-1 as

(2.8) xl t, X2 0", U

We next address the problem of extending a k-graph v’P-J(", "), p < m,
to a k-graph "m .j(m, ,), with the requirement that if the graph of v is in MA,
then this also is true for the graph of

Extensions of k-graphs. For V a vector field on J(, ") we denote its flow
map at time s, initiating from initial data q at s=0, by (exp sV)(q) and for fixed s,
let (exp sV)" jk(, ,) J(W", ") denote the flow-induced ditteomorphism. If to is
a one-form, Lvto denotes its Lie derivative with respect to V. For generality, we now
consider a system of several, say r, kth-order partial differential equations in m
independent and n dependent variables, i.e., A (A, , A)" J(W", ") -.DEFINITION. A vector field V on J(, ") is a Cauchy characteristic vectorfield
for the pde system A" J(",") if

(a) VA 0 on M, i.e., V is tangent to MA.
(b) Lvl)(", ")

_
1(", ") on MA (i.e., V is a contact vector field, see Remark

2.1).
(c) (to, V) 0 on M for to -k(m, n),
Properties show that V is a classical symmetry generator for A. Property (c) ensures

(as will be shown) that for fixed q Ma the map s(exp sV)(q) is a k-graph. The
reason for the terminology is that if A’Ja(,), i.e., is a first-order pde, a
characteristic vector field V of A determines the classical characteristic equations.

THEOREM 1 (Extension via Cauchy characteristics). Assume that A. jk(,,,
defines a system of partial differential equations with Jacobian of rank r so M

{(X, /,/(k)) jk. A --0} is (locally) a submanifold. For 6 P let -> v( t) Ma be a k-graph
with image a p-section in M, p<m, and (again) "rr’Jk([m,[n)-> is projection. If
V is a Cauchy characteristic vector field for A and if the map

(t, s)--> 5(t, s)= (exp sV)(v(t))
is such that r is an immersion (roughly speaking the orbits of V are transverse to the
graph of v), then defines a (p + 1) section ofM, which is a k-graph extension of V.

Proof Since V is tangent to M and the graph of v lies in M, it follows that
takes values in M. Also O(t, 0) v(t) showing extends v, whereas r v, an immersion,
ensures the image of is a (p + 1)-section of M when the image of v is a p-section.
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Let (expsV)* denote the cotangent space map induced by the (fixed s)
diffeomorphism p --> (exp sV)(p), let Vl denote the map --> 7(t, s) with s fixed, and let
v2 denote the map s --> (t, s) with fixed. It suffices to show that V*iflk(", Rn) {0},
i=1,2.

First, v*IIk= v*(exp sV)*flk= v*flk= {0}, which uses the fact that V is a contact
vector field, i.e., (exp sV)*lk= Ok, and that v was given as a k-graph, i.e., v*IIk= {0}.

Finally, noting that (O/Os)(exp sV)(v(t))= V((exp sV)(v(t))), we have v*2fk=
(Ok, V). But , hence also v2, takes values only on Ma and by (b), (Ok, V)= {0} on

Ma. Thus r 3 is an immersion and *flk= {0}. The conclusion now follows from
Proposition 1.1.

Remark. 2.1. V is a contact vectorfield on jk(Rr, Rn) if for small Isl, q (exp sV)(q)
is a contact transformation, i.e., (exp sV)*12k c flk or equivalently that its Lie derivative
satisfy Lvflk fl k. As will be shown in Example 2.4, an underlying key to the Cauchy
characteristics for first-order pde’s is the fact that the general form of a contact vector
field on jl(m, []1) is known. For jk(m, n), special contact vector fields, sometimes
called banal vector fields (see [7]), can be constructed as prolongations of vector fields
on ’x". Specifically,let X be a vector field on " ". Then for small Is], (exp sX)
maps the graph of a function w"" --> " to the graph of a function ff (possibly with
restricted domain). The kth prolongation of X, denoted pr(k) X, is defined as the vector
field on jk(m, n) such that (exp s(pr(k) X)) takes the graph of pr(k) w to the graph
of pr(k) ft. This shows that pr(k) X is a (local) contact vector field, i.e., its flow maps
k-graphs to k-graphs. For the explicit construction of pr(k) X see [5]. These banal
vector fields are too restrictive to have use in Theorem 1, even in the case k- 1. (See
Remark 2.3.)

Example 2.4 (Classical Cauchy characteristics as an application of Theorem
1). Consider the pde A 0 where

(2.9) A(x, U (1)) Ux, q- /,/2

Clearly, the Jacobian of A, as a map from jl([2, 1) to [1, has rank 1 so Ma is well
defined. For purposes of illustration we first construct an initial data one-graph
t v(t) Ma via the use of the induced equation generated by the contact map
F’JI(2, RI)">J3(I,1) given in Example 2.3. Since A=Fs+F3Fa+Fa+F24, the
induced equation is

(2.10)
This equation is highly nonlinear, but it is an ordinary differential equation. We may
verify, for example, that O(t)= e-t is a solution. Let , denote an arbitrary solution
of (2.10). Then

(2.11) v(t)= F-l((/, pr<3 6)(t)) (t, (t), b’( t) + 6"( t), -(ffy"(t))2, -b"(t))
and --> v(t) gives a one-section of Mac j1(2, 1), which is a one-graph. In the classical
terminology (e.g., [4, p. 39]), the image of v is called an initial strip manifold and it is
well known that we can extend v, locally, to a solution of A 0 by the method of
characteristics. The relationship between this and Theorem 1 follows.

We next extend v via Theorem 1. Let f:jl(2, 1)__>R1 be an arbitrary smooth
function. The general form of a contact vector field on j1(2, 1) is

V -f-x, 0x f"a 0x2

(i) The condition that V be tangent to Ma, i.e., V& 0 on Ma, is

f,+ u,f, + 2u2(f+ u2f, 0 when u, -u2
X2
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or

LI--afx,2Ux2--Lua_x2"--Oo
As in the calculation of symmetry generators (which is exactly this step; see [5]) this
requires fx, 0, fx2 0, fu 0 on Ma, i.e., we will consider

(2.12) f =f(u,,u).
(ii) The condition (w, V)=0 on Ma requires

(2.13) f=0 on Ma.
Conditions (2.12), (2.13) are simultaneously satisfied by the choice f= A Ux,+U2

,2

giving

o
(2.14) V= 2t/x2 x2oOxl Ox2 Ou

Finally, since V is a contact vector field, Lv-2c -2 and V, as given by (2.14), is a
Cauchy characteristic vector field.

Remark 2.2. The generalization of the above construction to A. JI(W",) is
immediate, i.e., the known form of a Cauchy characteristic vector field for A is

V ttx. + ux.
19 U 19 U 19 Ux

Continuing with Example 2.4, if 6 is a solution of the induced equation (e.g.,
6(t) e-’) and v(t) F- 6(t), then

t3(t, s) (exp sV)(v(t))

=(t-s, 6(t)+2dd"(t)s, 6’(t)+6"(t)--(tP"(t))2s, (6"(t))2, 6"(t))

gives a two-section of MA if the Jacobian 19(t s, q(t) + 2q/’(t)s)/19(t, s) is nonsingular,
which is a two-graph extension of v. Proposition 1.2 applies; the map x’22 is
explicitly given by x(t, s)= (t-s, tp(t)+ 26"(t)s), and we are assured the existence of
W’2" such that O(t, s)= (x(t, s), pr1) w(x(t, s))) with A(x(t, s), pr) w(x(t, s)))-
0. Recovering w normally requires use of the Implicit Function Theorem.

2The classical characteristic equations (e.g., see [4]) associated with
are (using p ux,) =OA/Op, ft =Y p OA/Opi, p=-OA/Ox-(OA/Ou)p, i= 1,2 which,
for A as above, gives rise to the vector field -V, with V as in (2.14). Thus, for a
first-order equation, the extension of an initial strip manifold via Theorem 1 and
Cauchy characteristics is the same.

Remark 2.3. The vector field V, given in (2.14), is not a banal contact vector field,
i.e., the prolongation of a vector field on:1. Indeed, any such prolongation would
have coefficients of 19/0x, 19/19x2, and 19/0u, which are functions only of Xl, x2, u. Thus
even in the case of a first-order equation, banal contact vector fields do not suffice.

3. Extensions in the jet bundle of the induced equation. As illustrated, and as was
classically known, Theorem 1 applies to first-order pde’s. It was also known at the
turn of the century that Cauchy characteristics (i.e., extensions via vector fields) did
not work for higher than first-order equations. This does not imply, however, that it
is impossible to extend an initial data "strip" (i.e., in the case A" je(,l)_> a
two-graph r- v(r) Ma) into a two graph giving a two-dimensional section of Ma to
which Proposition 1.2 can be applied via the flow of a (nonautonomous) differential
equation. We could attempt this in the jet bundle of the original equation. For the
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sake of exposition, and simplicity of geometry, we choose to do this in the jet bundle
of the induced equation and for the specific case of the contact map F" J2(R2, gl)
J6(R1, R1) as given in Example 2.1. Our setting for this section is, therefore, as follows:

(i) F" J2(R2, R1) - J6(R1, R1) as in Example 2.1.
(!,i) A" J2(R2, R 1) ->R is a second-order pde with Jacobian of maximal rank so

Mac j2(R2, ) is well defined (locally).
(iii) z" J6(R1, R1)-2 is the induced equation, assumed to have the form

(3.1) 0-(6)_f(0-, O.(1),..., 0.(5))__0.

(iv) F(M/,)={(t, 0-,..., 0-(6)) J6(R1, R1)" ---0}.
(3.2) (v) f36 F-’*f

Explicitly, f is generated by

)0.(4)/x (0.(2)+ 0.(1 _0.(4), -1, 0, 0, 0, 0, 0),
2__ (0.(3)

_
0.(4)0.(2) _.. 20-(1)0.(5) __(0.(1))20.(6), __0.(5) 0.(1)0.(6), __0.(4), --1, 0, __0.(1), 0, 0),

0.(1)0.(6), __0.(6)/z _(0.(5)+ O, O, -1, O, 0).

(vi) 7r" J(R-, R) --) Re is projection.
Vector fields whose flows extend arbitrary two-graphs q" --) v(z-) Ma, and therefore

vector fields whose flows extend arbitrary six-graphs -)y(z) F(Ma), cannot be
expected. Should such an extending vector field exist, the properties it must satisfy
are given in the next proposition (basically Theorem 1 restated in the jet bundle of
the induced equation), which serves to motivate the properties required for an extension
via a (nonautonomous) differential equation.

PROPOSITION 3.1 (Motivational). Let V be a vector field on J6(R1, 1) and y’Rl->
F(Ma) c J6(R1 R 1) be such that"

(a) V is tangent to F(Mzx), i.e., VA=0 on F(Ma).
(b) (f36, V)=O on F(Ma).
(c)
(d) y* {0}.

Define
(3.3) (z, s)= F-lo (exp sV)o ().

Then fi*fl(:,R1) ={0) and if zro’R2-R is an immersion, (z,s)-(z,s) is a two-
graph in M to which Proposition 1.2 applies, i.e., gives a parametric solution of A O.

The proof of Proposition 3.1 is essentially the same as that for Theorem 1 and
hence will be omitted.

Let D, denote "total derivative," i.e., Df(0.,...,0.()=(0f/00.)0.(+ .+
(0f/00.(5)0.6. We may readily show that through each point q F(MA) there is a
unique six-graph s - (exp sW)(q) F(M/,) where

(3.4) W 0. --+’’ "+ +(D,f)
Ot 00. 00.(5) 00.(6)"

With this uniqueness in mind, the hope for Proposition 3.1 stems from the fact that
although the maps z- y(z) F(MA), s-* (exp sV)(y(r)) F(Ma) must be transverse
(in order that 7r be an immersion) they need not be six-graphs. On the other hand,
their images in Ma under F- are two-graphs, and we may verify that if V exists
satisfying Proposition 3.1, then F V is an extending vector field on Ma for z- v(z)
F-a y(r), which is not to be expected.
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The method of extension is, therefore, via the flow of a (usually nonautonomous)
ode on J6(R1, R1), and this ode will not extend arbitrary maps y:RI-F(MA) with
y*lq {0) but instead it will be constructed relative to a specific such y.

3.1. Extensions via solutions of nonautonomous equations. It is convenient, in view
of hypothesis (b) of Proposition 3.1, to have a basis for the vector fields V that satisfy
(f, V)- {0}. We can, by inspection, find vector fields W1, ., W on j2(2, 1) that
form a basis for the vector fields W such that (f2, W)= {0}. Then since F-l*f2= f,
we have {0} (F*F-I*2, Wi) (1)36, F, Wi). Computing F, Wi, 1,. ., 5 and sim-
plifying via linear combinations yields a basis for the vector fields V that satisfy
(1)36, V)= {0} consisting of

vl
a

_t_ o.(1)a _i_ 0-(2). ,19
O 00- ao-(1) -’l- 0-(3)

O -- 0.(5 0

00.(2 00.(4)

o o
V2 V V4

00.(3) 00.(5) 00.(6)

V5 0
-t.- 0.(4)

0 .._ 0.(6)
oo- o(’) + (() ((4))) o o

a0-C2) a0.(4)"

Vi.Let V Y. i= a With z ofthe form given in (3.1), the requirement V 0 implies that

(3.5)
a4-- (al0.()- as) Of+00. (a0.(2) + a50.(4))

00.(1) + (a10.(3) + a50.
() a5(0.(4))2)

00.(2)

-I- a2 0:0.()-t-(10.(5) -F a50.(6)) -I- i
a0.(4) a0.(5)"

In summary, the most general V that satisfies both (1)36, V) {0} and Vz 0 is given by

O 0.(1) a 0.(2) a 0.(3)V al -+ (a, a5)
00.-+ (al + a50-(4)) 00.(1)+ (al + a,0.(5)- a5(0.(4))a)

(3.6)
O O 0

+ aa o’OL(3 + (a,0.(’)+ a50.(6)) O0.(4i-F a3
00.(’)’’’ + a4 00.(6)

with a4 given by (3.5), al, a2, a3, a5 arbitrary. In particular, if these depend on the
local coordinates (t, 0-,..., 0.(6)), then V is a vector field. We also allow, however,
that a a(s, t, 0.,..., 0.(6)), i- 1, 2, 3, 5 where s is a real variable in which case we
may view these a as "control functions" and the differential equations associated with
(3.6) will no longer be autonomous. If al 0, it can be considered a common factor
and hence with a change of independent variable, here s, this factor could be made
one. Thus we assume al 1 and (with little loss of generality) that ai a(s, 0., , 0.6),

2, 3, 5 are smooth in 0., , 0.6 for fixed s and measurable in s for fixed 0., , 0.6.
Let - T(r) e F(MA) satisfy 3’* {0}. Then explicitly, from (3.6), the differential

equations that will be used to extend this initial data are (with a4 given by (3.5))

(3.7)

t’(s) 1, t(0)= ’)tl(’/’), 0.t(S 0.(1)__ as, 0.(0) yE(’r),

0.(1)’(s) 0.(2) + a50.(4), 0.(1)(0)-- //3(,/-),

0-(2)t(s) 0-(3)-+- a50-(4) a5(0-(4)) 2, 0.(2)(0)-- T4(’r),

0.(3)t(S) a, 0.(3)(0)-- ’)/5(’/’), 0.(4)t(S 0.(5)+ a0.(6), 0.(4)(0 //6(),

0.(5)’(s) a3, 0.(5)(0)--- //7(7"), 0.(6)t(S) a4, 0.(6)(0) /8(T).
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Let s--> 4(s, y(r), a) denote the solution of this initial value problem for (3.7) for some
choice a =(a2, a3, as) and b*(s, q, a) denote the cotangent space map induced by
q b(s, q, a). Then

(3.8) b(s, y(z), a) e F(Mx), (b’(s, y(z), a), f)= {0}.

This means that if we now define

(3.9) O(z, s)= F-’o b(s, y(z), a),

then (z, s) Ma, and if V is the map 3 with r fixed, i.e., s--> iT(r, s)= Vl(S), then
v*fl2= {0}. What remains is that if v2 is the map 3 with s fixed, i.e., r --> fi(z, s) v(r),
then we would need v*fz {0}. Computing gives v2*f v2*F*1236 3’*b’1, which
yields the desired condition b*fc ker y*. We summarize these calculations as
Theorem 2.

THEOREM 2. Let " v( ’) Ma be a given two-graph and y( -) F v( r). (Note
that this implies y’136 {0}.) Suppose, in system (3.7), that a(s, 00,. , 00(6) (a2, a3, as)
can be chosen so that the corresponding solution b(s, y(z), a)=
(bl(S, y(z), a),. ., b8(s, y(z), a)) satisfies the following:

(i) b*(s, y(’), a)c ker 3’* along z--> y(-).
(ii) The Jacobian 0(bl(s, y(r), a), b2(s, y(z), a))/O(s, z) is nonsingular.

Then t3(z, s)=F-lo b(s, y(r), a) is a two-graph in Ma such that 7to : -->R is an

immersion, and hence (by Proposition 1.2) gives a parametric solution to the problem
A 0 with initial data given by v.

Proof The conclusion ’1= {0} follows from the discussion preceding the state-
ment of Theorem 2. The condition 7r , an immersion, follows immediately from (ii)
and the first two components of F. [3

Remark 3.1. We may define the Lie derivative of a one-form o with respect to a
"time varying" vector field V as follows. Let V=i= ai(s, x)O/Ox (s denotes time)
and o Yi=I hi(x) dxi. Then

= = Ox/

Now in Theorem 2, the requirement that v be a two-graph implies (as noted) that
f63 ker 3’*. We can therefore replace the (weak but difficult to verify) condition (i)
by the "infinitesimal" condition

(i’) Lv(ker 7") ker y*,

which implies b*(s, y(r), a) ker y*c ker y*.
Computing 4* means computing the fundamental solution matrix of the vari-

ational equation associated with system (3.7). We next give an example.
Example 3.1 (Burgers’ equation). Here the induced equation is 00(6=

f(00, , 00(5))= o"(2). Consider the special choice of control
(6)a2(s, 00, ", 0(6)) o2(s)o" -]-" -" og8(s)00

(3.10) a3(s 0",’’’, 00(6)) 2(S)O.__. _.18(S)O.(6),

The first equation in system (3.7) can always be explicitly solved, i.e., ba(s, y(z), a)=
s+ y(z). With the above choice of a2, a3, as, the remaining seven equations satisfy
a linear system, hence the associated variational equation is again the same linear
system. In this case, b*(s, y(z), a) is independent of y.
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Subcase (trivial). Let z v(z)= (0,-z, 1, 0, 0, 0, 0, 0). Then y(z)= F v(-)=
(0, z, 1, 0, 0, 0, 0, 0). Note that y is not a six-graph. Choose a2 a8 =/32
/38 0 in (3.10). Then

In components

b*(s, /(), a)=

1 0 0 0 0 0 0 0

0 1 s s2 s 0 0 0

0 0 1 s s2 0 0 0

0 0 0 1 s 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 s 0

0 0 0 0 s 0 0 1

(D* ll ((2) _. (T(1)(T(4), O.(4), __S(4) 1, --S2(4)- S, --S (4)__ S2, 0,,2 ((3) + (4)(2) + 2(1)(5)__ ((1))2(6), __(5) (1)(6), __S(5)__ S(1)(6)__ (4),
$2(5) $2(1)(6)__ S(4) 1 --S (5)__ $3(1)(6)__ $2(4) S __(1) __S(1) 0)

,3 ((5) + (1)(6), __(6), __S(6), __$2(6), __S3(6), -1, -s, 0).

Here ker y* is spanned by dt, d(1), d(2), d(3), d(4), d(5), S(6) and along
b* ker V*, 1, 2, 3. Next, (s, T(r), a) (s, r+ s, 1, 0, 0, 0, 0, 0) so the Jacobian
condition (ii) of Theorem 2 is satisfied. Finally, (r,s)=F-lo(s,v(r),a)
(s,-r-s, 1, 0, 0, 0, 0, 0), which merely extends the constant data U(Xl(r, 0), x(r, 0))
u(0,-r) 1 to u(s,-r-s) 1, which is a solution of Burgers’ equation. The point
here was to provide as simple as possible an example to illustrate the computations
involved.
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Abstract. Hirsch’s results concerning quasi convergence of almost all trajectories of strongly monotone
semiflows are derived under weaker assumptions adopted from Matano. The proofs are based on a sequential
limit set trichotomy, which follows from the nonordering principle and the limit set dichotomy. The
assumption excluding totally ordered arcs of equilibria, which is required for the set of asymptotically stable
points to be dense, is verified for dynamical systems that are analytic on the state space.
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dense set of quasiconvergent points, limit set dichotomy, nonordering principle, sequential limit set
trichotomy, totally ordered continua of equilibria, global asymptotic stability
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1. Introduction. In a recent paper [8], Hirsch establishes that most orbits of a
strongly monotone semiflow on a strongly ordered space X tend to the set E of the
equilibria. Somewhat more precisely, Hirsch shows that the set of all x X for which
o(x), the omega (positive) limit set of x, satisfies o)(x)c E, is a "large" (open dense,
residual, set of full measure) subset of X. Points x for which o)(x)c E are called
quasiconvergent points; they are called convergent points if o)(x) consists of a single
point of E. The theory of monotone semiflows, as developed by Hirsch, is both powerful
and deep. Unfortunately, it can also be awkward to apply in some situations. One
reason is that the state space for the dynamical system must be a strongly ordered
Banach space, that is, one for which the nonnegative cone has nonempty interior. It
is quite often the case that the "natural" state space for the dynamical system does
not have this property. We can usually rectify this problem by finding a Banach
subspace, imbedded in the natural space, which is strongly ordered. We can then apply
the results of the theory to this smaller strongly ordered space. In the case where the
semiflow maps points in the natural state space continuously into the smaller space,
perhaps for suitably large times, we can bootstrap the results obtained for the dynamical
system on the smaller space up to the natural state space. Even when all this can be
done, it is so inconvenient that it is desirable to have an approach available that avoids
these difficulties from the beginning. Second, Hirsch’s results concerning stable and
asymptotically stable points [8, 8-10] require the semittow to be restricted to an
invariant, strongly ordered subset Xo of the space X. This condition essentially forces
Xo to be an open subset of X and precludes immediate application of the results to
such important examples as the case X0 X/, the nonnegative cone in a Banach space
X, or when Xo is an order interval.

Matano [11], [12] has outlined a competing theory of monotone dynamical
systems, parallel to Hirsch’s, which does not require that the space be strongly ordered.
The main results of Matano have appeared in conference proceedings 11 ], 12] without
proofs. One of the main results of Matano’s theory, as does that of Hirsch, provides
sufficient conditions for "most" points to be quasiconvergent.

In this paper, we combine the ideas of Hirsch and Matano to obtain a theory that
improves several ofthe results ofboth authors, while at the same time being conceptually

* Received by the editors February 13, 1989; accepted for publication (in revised form) July 17, 1989.
The research of the first author was supported in part by National Science Foundation grant DMS 8722279.

? Department of Mathematics, Arizona State University, Tempe, Arizona 85287.
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simpler. We adopt (a slight generalization of) Matano’s idea of a strongly order-
preserving semiflow that does not require the space to be strongly ordered. On the
other hand, all our results are based on modified versions of two fundamental results
due to Hirsch, namely, the nonordering principle for limit sets [8] and the limit set
dichotomy [8]. These two principles also hold under Matano’s weaker assumptions
(see [12]) and can actually be shown by modifying Hirsch’s proofs accordingly. They
alone lead to a simple proof of our Proposition 3.1 (sequential limit set trichotomy), a
result from which most of our theory follows. In this sense, we feel that the theory
develops more naturally and more simply.

In the remainder of this section we describe some basic ideas and notation and
preview several of the main results.

Let X be an ordered metric space with metric d and order relation <-. We write
x < y if x _<- y and x y. Points x and y in X are ordered if either x < y or y < x. Given
two subsets A and B of X we write A-< B (A < B) whenever x-< y (x < y) for each
choice of xA and yB. If x<y then [x, y]= {z X: x<-z<-y}. A subset Y of X is
order convex if [Yl, Y2] c Y whenever Yl, Y2 Y and Yl < Y2.

We assume that the order and the topology on X are compatible in the sense that
x-<_y whenever xn ox, yn-*y, and xn -<yn for all n. If xX we say that x can be
approximated from below (above) in X if there exists a sequence {x,} in X satisfying
Xn ( Xn+l ( X (X ( Xn+l (Xn) for n >- 1 and x, --> x.

Let P: X x ,91+ --> X be a semittow on X, that is, (P is continuous and q,(x) P(x, t)
satisfies cPo(x)= x for every x and cpcp. cp+ for every t, s _->0. For x X, let

+(x)={,(x):t>=o}, ,o(x)
t0

be the orbit initiating at x and the omega (positive) limit set of +(x), respectively.
Of course the latter may be empty. Hence we require some compactness properties to
hold for the semiflow . Namely,

(c) For each x X, ff+(x) has compact closure in X. In addition, for each compact
subset K of X, UxK to(x) has compact closure in X.

We will assume that (C) holds throughout the remainder of this section. It is a
relatively mild compactness assumption, weaker than required by Matano [11], [12].

If /(x) has compact closure in X then to(x) is nonempty, compact, connected,
and invariant, i.e., ,(to(x))=to(x), t>=O, and t(x)-to(x) as t. We let E=
{x X :,(x) x, >_-0} be the set of equilibria. The set of quasiconvergent points is
denoted by Q {x e x: to(x) E} and the set of convergent points by C {X Q: to(x)
is a singleton set}.

The semiflow is said to be monotone provided

(x) _-< ,(y) whenever x _-< y.

Following Matano 11 ], 12], is said to be strongly order-preserving if is monotone,
and whenever x, y X with x < y, there exist open sets U and V, x U, y e V, and
to_-> 0 such that o(U) =< ,o(V). By monotonicity, it follows that

,( U) <- ,( V) for t_>- to.

One ofour main results isthe following theorem (cf. [12, Thm. 5] and [8, Thm. 7.5]).
THEOREM 1. Let X be an ordered metric space and let t be a strongly order-

preserving semiflow on X. Suppose that each point ofX can be approximatedfrom above
or from below in X. Then Int Q is dense in X.
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Some remarks on the theorem are appropriate here. First, note that we require
minimal assumptions on the space X. Since subsets of ordered metrizable spaces are
themselves ordered metrizable spaces under the inherited order and metric, we may
view X as a subset of some larger space. The requirement that every point may be
approximated from above or from below in the space X is not a particularly strong
one. For example, if X is the nonnegative cone or a nontrivial order interval in an
ordered Banach space then X has the required property.

Theorem 1 is a generalized and simplified version of a result by Matano 12, Thm.
5]. In particular we do not require the existence of a bounded set that every orbit must
eventually enter and remain in, and our compactness requirement (C) is milder than
Matano’s (H.2). Hirsch proves [8, Thm. 7.5 and Cor. 7.6] that Q (not Int Q) is dense
without compactness hypotheses but with much stronger assumptions on the space.
For smooth strongly monotone flows defined by semilinear parabolic equations, Poliik
[14] has shown that Int C is dense in X.

With an additional compatibility relation between the metric and the order, a
significantly stronger conclusion can be drawn. The space X is said to be normally
ordered if there exists a constant k > 0 such that

d(u, v) <-_ kd(x, y)

for all x, y, u, v with u, v Ix, y]. A subset X of an ordered Banach space possessing
a normal positive cone (e.g., C(f), LP(f)) is normally ordered.

THEOREM 2. Let X be a normally ordered metric space, and let t be a strongly
order-preserving semiflow on X. Suppose that each point x in X can be approximatedfrom
above or from below in X, and there exists an open and dense subset Xo in X with the
property that each point of Xo can be approximated both from above andfrom below in
X. Then A U Int S f-I C) is dense in X.

The set A in Theorem 2 is the set of asymptotically stable points, as defined by
Hirsch [8]. A point x belongs to A if there is a neighborhood V of x with the property
that for every e > 0 there exists t > 0 such that d(,(x), q,(y)) < e if >_- t and y e V.
The set S is the set of stable points. A point x belongs to S if for every e > 0 there
exists 8>0 such that d(rb,(x),d,(y))<e for t->0 whenever yeX and d(x,y)<i.
Hirsch observes [8] (see also Proposition 3.4 in 3) that A is open and A c Sc Q.
Note that the map x--to(x) is locally constant near an asymptotically stable point
and continuous at a stable point. Theorem 2 asserts that an open and dense set of
points of X consists of either asymptotically stable quasiconvergent points or stable
convergent points having the property that sufficiently nearby points are also
convergent.

Theorem 2 may be compared with Proposition 9.5 of Hirsch [8], which draws
essentially the same conclusion assuming the "astrictive" condition [8, Def. 8.9] and,
of course, that X is strongly ordered and q is strongly monotone. The astrictive
condition of Hirsch is difficult to verify directly. Hirsch provides several sufficient
conditions [8, Thms. 8.11-8.14] for the astrictive condition to hold. Those sufficient
conditions that are most likely to be useful in infinite-dimensional settings require a
stronger compactness condition than (C).

Our next result improves the global stability result of Hirsch [8, Thm. 10.3] at the
expense of an additional compactness condition (the second part of (C)).

THEOREM 3. Let X be a connected, ordered metric space with the property that each
point ofX can be approximated from above andfrom below in X. IfX does not contain
two ordered equilibria, then X contains a unique equilibrium point to which every orbit
converges.
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The assumption that X does not contain two equilibria p, q E, with p < q certainly
holds if X is known to contain at most one equilibrium point. Hirsch assumes the
existence of a unique equilibrium point.

The following convergence result seems to be new.
THEOREM 4. Suppose that X is an order convex subset ofa normally ordered Banach

space Y. Let @t be a strongly order-preserving semiflow on X such that t is condensing
on every order interval in Xfor > O. Assume that any point in X\E can be approximated
bothfrom above and below. IfX contains at most two order-related equilibria, then X Q.
IfX contains no more than two equilibria, then every trajectory in X converges towards
one of them.

This result is optimal insofar as five-dimensional single-loop positive-feedback
systems (which induce strongly order-preserving semiflows) can have three order-
related equilibria with the middle one undergoing an unstable Hopf bifurcation. See
Selgrade 17].

Our next result provides sufficient conditions (similar to those in Hirsch [8, Thm.
9.6]) for the set A of asymptotically stable points to be dense in X. We need to assume
that each point x X belongs to some totally ordered arc in X. A subset J of X is a
totally ordered arc provided J 0(I) where I is a nontrivial interval of real numbers
and 0 is a continuous function from I onto J such that O(s) < O(t) whenever s, I
and s < t.

THEOREM 5. Suppose that X is a normally ordered metric space and that each x X
belongs to some totally ordered arc in X. Let t be a strongly order-preserving semiflow
on X. If there does not exist a totally ordered arc of equilibria in X then A is open and
dense in X.

Section 4 is devoted to providing a verifiable sufficient condition for excluding
the existence of totally ordered arcs of equilibria contained in bounded open subsets
of a Banach lattice. By exploiting an analyticity hypothesis on the semiflow , we are
able to show that a bounded open set U contains no totally ordered arc of equilibria
provided the boundary of U does not contain equilibria for which the infinitesimal
generator of the variational semigroup has vanishing spectral bound (see Theorem
4.1). This result provides a testable condition in order that the main hypothesis of
Theorem 4 holds.

For applications of the results of monotone dynamical systems theory, we refer
the reader to [5]-[7], 18] for applications to systems of ordinary differential equations,
to [8], [11], [12], [14], [15] for applications to parabolic initial boundary value
problems, to [19], [20] for applications to functional differential equations, and to [9],
10] for applications to systems of parabolic equations with time delays. We conclude

this section by giving a concrete example of a semiflow generated by a semilinear
parabolic equation to which our results apply, we do not aim for utmost generality.
Articles [8], 11 ], 12] contain applications to parabolic initial boundary value problems
of much greater generality. Our example can even be treated by energy methods as it
generates a gradient flow [4]. Our results, however, apply directly to a state space that
is not strongly ordered. As it parallels a similar example treated in [8], we closely
follow the treatment given there.

Let 12 be a bounded open set in R" with boundary, 0fl, of class v(-2+a, a > 0. Let
f" 12 x R-. R satisfy the following"

(F) (a) f(x, O) 0 for x 012.
(b) There exist a, b e R, a < b, a _-< 0 _-< b, such that

f(x, b)<-O<-_f(x, a), xe12.
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(C) f is a Lipschitz on f/x [a, b] (in both arguments jointly).

Consider the initial boundary value problem

(p)

OU
--=Au+f(x,u), xelI, t>0,
Ot

u O, x e OlI, > O,

u(x, O) Uo(X), x e a.
The Laplace operator A appearing in (P) could be replaced by any second-order
uniformly strongly elliptic differential operator. The nonlinear term f could depend
on the gradient of u with appropriate hypotheses [8], [11], [12]. Other boundary
conditions could be considered, however, the Dirichlet boundary conditions will allow
us to generate a strongly order-preserving semiflow on a natural state space, which is
not a strongly monotone semiflow.

Let cr(f/), r 0, 1, be the Banach spaces of continuous (r 0) and continuously
differentiable (r= 1) functions on f with the usual norms. Denote by oCr(f) the
Banach subspace of functions vanishing on the boundary of f and by oC(O) the
cone of nonnegative functions in OCr(). AS noted in [8], Int oC+(fi) is empty while

Int oC+(fi) { ou }--<0 on 0f ,u oCl+(fi) ov

where v is the outer normal unit vector field on Of/ and Ou/Ov is the directional
derivative in the direction v. In particular, oC(l) is not a strongly ordered space.

As in Hirsch, we observe the following facts. Mild solutions of (P) generate a
local semiflow @ on oC(l) [8, Thm. 4.4], which satisfies the following:

(S) t: oC(l)-oCl(fi) is continuous for t>0, and

(M) Uo < ul in oC(fi) implies @t(Uo) < t(u).

Fact (M) follows from the maximum principle and the fact that mild solutions are
classical solutions for > 0 (see Remark 4.2 of [8]).

Let

X {u e oC(l)): a <- u(x) <- b, x e

X is a normally ordered metric space with the order and metric it inherits from oC(fi).
Indeed, it is an order convex subset of the normally ordered Banach space oC(fi). It
is easy to see that every point of X can be approximated from above or from below
in X. Arguments similar to those yielding (M) give the following:

(I) restricts to a monotone (global) semiflow on X.

Moreover, we have [8, Thm. 4.4] the following:

(K) t is completely continuous on X.

Our compactness hypothesis (C) follows immediately from (K).
Although X is not a strongly ordered space, since IntoC()=, and thus

@t: X- X cannot be strongly monotone, we nonetheless have the following propo-
sition.

PROPOSITION 6. @ is strongly order preserving on X.
Proof. Let Uo, voX with Uo<Vo. By (M), ,(Uo)<,(Vo) for t>0. Let to>0.

Now u(x, t)=[t(Uo)](x) is a classical solution (t>0) so maximum principle argu-
ments apply. If there exists Xo f such that V(Xo, to)= U(Xo, to) then v(x, t)= u(x, t)
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for x s 1, to by the maximum principle. It follows that v(x, t) > u(x, t) for all x ,
> 0. But then the boundary point principle implies O/Ov(u- v)> 0 on 01. Thus

to(Vo)-to(Uo) Int oC+(l).
Hence we may find neighborhoods Uo and Vo of q(Uo), bto(VO) in oC1(1) such that

Uo -< Vo in oC1().
Since to" X oC1(1) is continuous there are neighborhoods U and V of Uo and Vo
in X such that

(u) Uo, (v) Vo.
Thus qn,(U) _-< to(V). This completes the proof.

The equilibria of are given by the solutions u X of the boundary value problem

Au +f(x, u) O, x e fl,
(E)

u=O, xO.

Theorem 2 applies to the above example, implying that an open and dense set of
initial conditions in X consists of asymptotically stable quasiconvergent points or
stable convergent points. For these initial data, corresponding solutions converge to
the set of solutions of (E) above.

In the following section we state some preliminary results. Section 3 contains the
statements and proofs of our main results.

2. Nonordering principle and limit set dichotomy. Throughout this section we
assume that X is an ordered metric space with metric d and that (I) is a semiflow on
X, which is strongly order preserving. In addition, we assume that every orbit has
compact closure in X. The following result is used extensively in this section.

LEMMA 2.1. Let K and K2 be two compact subsets ofX satisfying KI < K2. Then
there exist open sets U and V, KI U, K2 V, and t >= O, e > 0 such that

t+(U)<_-@t(V) fort>=tl, O<=s<=e.

Proof. Let x K. For each y K2 there exists ty >= 0 and a neighborhood Uy of
x and a neighborhood Vy of y such that q(Uy) <-(Vy) for >- ty since is strongly
order preserving. Then {Vy}y is an open cover of K2, so we may choose a finite
subcover: Kc U = Vy where y K2, 1 <-_ <= n. Let = Uyi, SO is a

neighbo,rhood ofx and let ’= maxl<=,<__ ty,. Then, for each i, r(/) c r(,Uy,) <-- @r(Vy,),
so (U) <= (Vy,) for each i, 1 -< -<_ n, and ->_ . It follows that @(U) -<_ t(V) for
t>_- . For the remainder of the proof we write ,- and Q I7’ to emphasize the
dependence of these open sets on the point x K1. Simi,larly ?= ?. Since x e K1 was
arbitrary, we find for each x e K1 an open neighborhood U of x, an open neighborhood
I of K2, and ’ -> 0 such that (/_)) -< @t(Qx) for >_- t. Again, { U}xr is an open
cover of K1 so we extract a finite subcover Ux., 1 < < m, and set U U Ux. K1
V= ,1 V, K2 and tl =maxl<__<__, x,. Since Vc ,, t( lIx,) <- @t( V) for t>-tl, for
each i, so t(U) -<_ t(V) for >- tl.

To obtain the stronger conclusion of the lemma, note that for each x K there
exists e>0 and a neighborhood W of x such that ([0, e,)x W)c U. As { W}x/q
is an open cover of K1, there exists Xl, x2,’’’, x,, K1 such that K1 c U ’=1 W,. Let
Ut-- [,3 7= Wx and e minl__<_<_,, e,. If x e U’ and 0-< s < e then x W,, for some so
(x) U. Thus ([0, e)x U’)c U so s(U’) U, O<-_s<e. It follows that t+s(U’)
,(U)<-(V) for t>-tl, O<-s<e.

Our main result is based on the following two results, which were first stated and
proved by Hirsch [7], [8] for strongly monotone semiflows.
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PROPOSITION 2.2 (Nonordering of limit sets). An omega limit set cannot contain
two ordered points.

The following result is stated by Matano in [12] without proof.
PROPOSITION 2.3 (Limit set dichotomy). Ifx < y then either
(a) to(x) < to(y), or
(b) to(x) to(y) c E.
We do not give detailed proofs of either Proposition 2.2 or Proposition 2.3 since

this would involve repeating arguments very similar to those given by Hirsch in his
proofs of corresponding results in [8, Thms. 6.2, 6.8]. A proof of Proposition 2.3 is
obtained by proving analogues of the various results in Hirsch [8, 6] and then arguing
precisely as in Hirsch’s proof of his limit set dichotomy. We state below those results,
parallel to ones in [8], which are required for the proofs of Propositions 2.2 and
2.3. We will prove two of them to illustrate how our assumptions replace those by
Hirsch [8].

Proposition 2.2 follows quite simply from the next result.
PROPOSITION 2.4 (Convergence criterion for strongly order-preserving flows). If

r(x) > x for some T> O, then dpt (x) p E as o.
Proof As in Lemma 6.3 of [8], to(x) is an orbit of period T. Since is strongly

order preserving, there exist neighborhoods U of x and V of t(x) and t0=> 0 such
that to( U) <= d( V). For sufficiently small e >0, T/.(x) V for 0=<s=< e and hence
dpto(X < dT+to+s(X) for such s. This implies again that to(to(X))= to(x) is an orbit of
period T+ s, O<=s<= e. Letp to(x). Then dr/s(p)=p forO<=s<= e. Hencep =dsdrp
sp for 0-_< s =< e. Let t=ne+s with n N and O<-_s<e. Then tp=dsdTp=p=p.

Since any t-> 0 can be represented in this way, p is an equilibrium. As to(x) is a
periodic orbit, to (x) {p}.

Simple modifications of Joel Friedman’s argument in Proposition 6.6 of [8] yield
Proposition 2.5.

PROPOSITION 2.5 (Colimiting principle), ifx < y and for some sequence tk o,

,k(x)p, ,k(y)p, thenpcE.

The next result follows immediately from Propositions 2.2 and 2.5 exactly as in
Hirsch [8, Lemma 6.7].

PROPOSITION 2.6 (Intersection principle). Ifx < y, then to(x) f’l to(y) E.
In addition to Proposition 2.6, two additional results are required for the proof

of the limit set dichotomy. One of these is the following.
PROPOSITION 2.7 (Absorption principle). Suppose that x, y X and that neither

are convergent points. If to (x) contains a point u < to (y), then to (x) < to (y). If to (x)
contains a point u > to (y), then to (x) > to (y).

The proof of the Absorption principle is similar to Hirsch’s although we require
an application of Lemma 2.1.

The next result is also used to prove the limit set dichotomy.
PROPOSITION 2.8 (Limit set separation principle). Let x and y be as in Proposition

2.7 and x < y. If there exists tk o such that 4pt(x)- a, (y)- b, and a < b then
to(x) < to(y).

The proof of Proposition 2.8 is identical to that given by Hirsch [8, Lemma 6.10].
In particular, the proof requires the following result.

LEMMA 2.9. Given the hypotheses of Proposition 2.8 then +(a) < b.
We give the proof of this lemmabecause it requires some modifications of Hirsch’s

corresponding proof [8, Lemma 6.10]. It also serves as another illustration of how,
technically, our assumptions replace those of Hirsch.
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Proof For u 7+(x), v +(y), u _-< v define

(u, v) sup {r>_-0: ,(u)_-< v, 0_-< t_-< r}.
We verify two important properties of .
(P1) (,(u), ,(v)) is monotone nondecreasing in t.

It suffices to establish (,(u),,(v))>-,,(u, v). For s<-(u, v), s(u)<-_v, so
s,(u)<=ts(u)<=,(v). Hence

(,(u), ,(v))>-s for all s<-_(u, v).
(P2) If uk -<- vk, u 6 6+(x), v +(y) and u --> u, v --> v then lim supk_ (u, v)

(u,v).
Suppose that o(u, v) < oo and lim sup_oo,,(u, vk) e > (u, v) for some

e>0. Then (u,v)+6<(u,,v,) for all large i, for each 6, 0_-<6<e, where
limi_oo (u,, v,) lim supk_oo (u, v). It follows that u.v)+(u,) <= v, for all large
i, O<-6<e. Letting iooo, we obtain u.v)+(u)<=v for O<=6<e, a contradiction to
the definition of (u, v). Thus (P2) holds.

It follows from (P1) that a =lim,_.oo(,(x), ,(y)) exists in [0, oo]. By (P2),
(a, b) => a. Suppose the conclusion ofthe lemma does not hold, i.e., suppose (a, b) <
oo. For O<= r<-(a, b), r(a) <= b. Actually, r(a) < b, O<- r<-_(a, b) since otherwise
a, b oo(x) by invariance of w(x) and a < b gives a contradiction to Proposition 2.2.
Let K {r(a)" 0=< r--<,,(a, b)} so K is compact and K < b. By Lemma 2.1, there exist
tl, e > 0 and open sets U and V with K c U and b V such that ,,+(U) _-< ,(V),
0-<_ 6 <_-e. It follows that ,(y) V for /_->/o for some integer ko. We claim that
r,(X) U for O<--_r<--(a, b) and all large/. If not, we find a subsequence t, of tk
and a sequence r [0, (a, b)] such that r,,(x) g U,/= 1,2, . We may assume
r- re [0, (a, b)] by passing to a subsequence if necessary. Letting/ oo, we obtain
that a g U. But this is a contradiction to our choice of U and K and our claim is
established.

Hence there exists k. such that

for k>=k2, O<- r<=(a, b), O<- 6 <- e. Thus,

+,+,(x)<-,+t(y),
for t>-tl, k>-k2, O<-r<=(a,b), O<-6<-_e. It follows that (,+,(x),t+,(y))>=

(a, b) + e, k >_- k2. Letting k oo, we obtain c >_- (a, b) + e. But o(a, b) >= c and this
provides a contradiction. Hence (a, b)= oo and the conclusion of the lemma follows.

The proof of the limit set dichotomy (Proposition 2.3) can now be constructed
exactly like Hirsch’s original proof.

3. Convergence, quasi convergence, and stability. In this section we state and prove
our main results. Several of these results (Theorems 3.3 and 3.10, and Corollary 3.12)
overlap similar results of Hirsch [8] and Matano [11], [12]. In these cases, our results
are more general and the proofs, we believe, are simpler. Essentially all the results of"
this section are based on Proposition 3.1 and Corollary 3.2, which, in turn, follow
from the nonordering of" limit sets (Proposition 2.2) and the limit set dichotomy
(Proposition 2.3).

The following definitions will be used throughout this section. We say that x X
can be approximated from below (above) in X provided there exists a sequence x in
X satisfying x<x+<x (x<x+<x) and xx. If x,y
{zX" x<-z<-_y} is an order interval in X. A subset Y of X is order convex if
[Y, Y2] Y whenever y, Y2 G Y and y < Y2.
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We require the following compactness hypothesis for our semiflow on X for
all our results:

(C) For each x X, /(x) has compact closure in X. In addition, for each compact
subset K of X, xn w(x) has compact closure in X.

We assume that (C) holds throughout this section without further mention. This
assumption is a relatively weak compactness requirement. It is certainly satisfied if,
for example, every bounded (or even just compact) set B c X has a bounded orbit
+(B)=t.JxB +(x) and t is asymptotically smooth (see [4]). In particular, if
bounded sets have bounded orbits and t is conditionally completely continuous for
t->_ to, to> 0, then (C) holds. Recall that , is (conditionally) completely continuous
if ,(B) has compact closure in X whenever B is a bounded subset of X (and (B)
is a bounded set).

PROPOSITION 3.1 (Sequential limit set trichotomy). Let X be an ordered metric
space, and let be a strongly order-preserving semiflow on X. Let Xo X have the property
that it can be approximated from below in X by a sequence Yn. Then there exists a
subsequence xn of such that xn <xn+l <Xo, n >_-1, with x, Xo satisfying one of the
following.

(a) There exists Uo E such that

and

oo(x.) < o(x.+) < Uo ,O(Xo).

lim dist (w(x,), Uo) O.

n>--l,

(b) There exists Uo E such that

w(x,) Uo < oO(Xo), n >- 1.

If u E and u < W(Xo) then u <= Uo.
(c) w(x,) W(Xo) E for n >- 1.
Recall that dist (D, x)=infyo d(y, x) gives the distance of a point xX from a

subset D of X.
Proof of Proposition 3.1. Let Yn be any sequence satisfying Y, < Y,/I < Xo, n >= 1

and :, Xo. By the limit set dichotomy (Prop. 2.3) either there exists a positive integer
N such that w(Y,)= w(Y,,) for all m, n larger than N or there is a subsequence Y-i
such that w(Y,,) < w(Y-,+l) for all i. By passing to this subsequence or renumbering the
sequence, we may assume that either oo(xn)= w(x,,) for all n, rn or w(x,)< w(x,+)
for n >-1, where x, is the appropriate subsequence of

Suppose that the latter is the case. Then w(x,) < W(Xo) for all n. For if w(x,) W(Xo)
for some n no then w(x,) W(Xo) for n ->_ no, a contradiction to o(x,) < o(X,+l). Let
f {y: y lim y, y, w(x,)} c t_Jx w(x) where K {Xn}, (-J {X0}. By hypothesis,
t2,: w(x) has compact closure in X so f is nonempty and compact. Suppose y and
u belong to 12 so that y, y, u, u where y,, u, w(x,). Since y, < U,+l and u, < y,+
holds for all n, we obtain y =< u and u _-< y so u y. Thus 1 is a singleton, f {Uo}.
Furthermore, f is invariant since each w(x,) is invariant. Thus Uo E. It follows
immediately from the definition of 11 and the fact that ,__> w(x,) has compact closure
in X that lim._dist (w(x,), Uo)=0. Finally, o(x,)<W(Xo) for all n implies that
Uo<-W(Xo). If Uo tO(Xo) then W(Xo)= Uo by the nonordering principle for limit sets
(Proposition 2.2). This is just (a) of the proposition. If Uo<W(Xo) then choose a
neighborhood W of W(Xo) and to>_-0 such that Uo<-,(W) for t>=to (Lemma 2.1).
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Now there exists tx >0 such that t(Xo) W and by continuity of t,, there is an
integer n such that t(x,) W. It follows that Uo<-,(x,) for t>-to+q. But uoE,
so necessarily, w(x,) -> Uo. On the other hand, to(x,) < to(X,/l) -< Uo holds for every n
so to(x,)< Uo holds for every n. This contradiction shows that tO(Xo)= Uo. Thus (a)
holds if oa(x,) < oa(x,+), n >= 1.

Suppose now that eo(x,)= oa(x), n_-> 1. Since x, <Xo, the limit set dichotomy
implies that either oa(x,)=w(x)<oa(Xo) or oo(x,)=oo(xo) for n => 1. The latter is
precisely case (c) of the proposition. Suppose W(Xl)< oO(Xo). Let Uo W(Xl) w(x,) c E
so Uo < w(Xo). By Lemma 2.1 there exists an open set W containing w (Xo) and to -> 0
such that Uo<=dP,(W) for t>= to. Now, arguing exactly as in the previous paragraph,
we obtain Uo<=dp,(x,) for some n and all large t. This yields oo(x,) > Uo and since
Uo w(x,) it follows that w(x,)= Uo by the nonordering principle for limit sets. Thus
oo(xl) w(x,)= Uo as asserted in case (b). Finally, if u E and u < W(Xo), we may
argue exactly as above with Uo, that Uo w(x,) >= u for all large n, establishing that Uo -> u.

Clearly, an analogous result holds if Xo can be approximated from above in X.
In our next result we summarize some stability information which follows from

the proof of Proposition 3.1.
COROLLARY 3.2. Assume the hypotheses of Proposition 3.1 hold. In cases (a), (b),

and (c) of Proposition 3.1 we have, in addition, the following:
(a) For any n there exists a neighborhood U, of Xo and t, >= 0 such that

dPt(Xn) <-- dPt( U,) for >--_

(b) (i) There exists a neighborhood 0 of Uo, to, tl >- O, and n such that

for >-_ to.

(ii) There is a neighborhood U ofxo with the following property: for each x U,
x < Xo, there exists a neighborhood V Vx ofx in U, an integer N N, and
T T,, > 0 such that

Uo<-_dp,(V)<=dp,(xN), for >- T.

(c) There is a neighborhood U of Xo with the following property: for each x U,
x < Xo, there exists a neighborhood V Vx ofx in U and T T, > 0 such that

(I) ,(X1) (I)t(V) (I) ,(Xo) for >-- T.

Moreover,

d(dP,(Xo), q,(Xl))-->O as t-->oo.

Proof For (a), fix n. Since oo(x,)< W(Xo), Lemma 2.1 implies the existence of
neighborhoods WI D oo(x,) and W2 oa(Xo) and to_-> 0 such that t(W) _<- t(W2) for
=> to. There exists t > 0 such that P,(x,) W and P,,(Xo) W2. By continuity of

there is a neighborhood U, of Xo such that ,,(U,) c W2. Hence
for >- to, so (a) holds with t, to+ tx.

Now consider (b). Since Uo < oa(xo), by Lemma 2.1, there exists a neighborhood
W of oa(xo), a neighborhood O of Uo, and to=>0 such that dP,(O)<=cb,(W) for t>_--to.
There exists t > 0 such that P, (Xo) W for => q. By continuity of cp,, there exists n
such that Pt,(x,) W. It follows that

dp,( O) <= dPt+t,(x,), >= to.
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Choose a neighborhood U of Xo such that ,,(U) c W and let x U satisfy x < Xo.
Then there exist neighborhoods V of x, V c U, of Xo, and t2 -> 0 such that (bt(V) <-

t(dV’) for => t2. Choosing N such that xN W, we have apt(V)<= t(xN) for >-t2.
As t,(V) t,(U) W we have from the paragraph above that

Uo CI) Uo C CI) O <- d W <- d d V d + V >- to,

hence

UO(t(V)fJt(X,N) tto+t,+t.
This establishes (b) with T to + t + t2.

Now consider (c). Since xl < Xo, there exists a neighborhood U of Xo and > 0
such that I’t(xl) -<_ ’t(U) for => t3. Hence, if x U and x < Xo then there is a neighbor-
hood V of x, V U, and t4-> 0 such that qt(V) =< ’t(Xo) for => t4. Since V U, it
follows that

(t(Xl)<--ft(V)ft(Xo) for t t3-k 4.

If d(t(Xo), (I)t(Xl)) "- 0 as t-c does not hold, then there exists e >0, t, such
that d(cI, tn(Xo), tn(x))>-e for n=> 1. Without loss of generality, we can assume
’t.(Xo)--> u, qt.(Xl)- v where u, vco(Xo). But u-> v and nonordering of limit sets,
Proposition 2.2, implies that u v. This contradiction completes the proof of the
corollary.

Remark 3.1. Corollary 3.2 contains stability information that will be exploited
more fully later under the additional hypothesis that X is normally ordered (see
Remark 3.2). A few remarks here will give the general idea.

(b) (i): Observe that if x O and x > Uo then Uo < t(x) <= ’t+t,(xn) for => to.
Since t(x,)--> Uo as , co(x)= Uo. Thus Uo is "upper asymptotically stable" in the
sense that co (x) Uo for all x O with x >- Uo.

(b) (ii): Similarly, Oi,t(x) Uo as , so co(v) Uo for all v V. In particular,
co(x) Uo for all x U with x < Xo.

(c) Similar arguments imply that co(x) co(Xo) for all x U with x < Xo.
THEOREM 3.3. Let X be an ordered metric space, and let t be a strongly order-

preserving semiflow on X. Suppose each point ofX can be approximated from above or

from below in X. Then X Int Q LJ Int C. In particular, Int Q is dense in X.
Proof. Suppose Xo X\Int Q. Then there exists a sequence y, X\Q such that

y, Xo. By passing to a subsequence if necessary, we can assume that either y can
be approximated from below in X for each n or y, can be approximated from above
in X for each n. We consider only the former case as the latter case is similar. Each

Yn is the limit of a sequence x, yn, x, < x,,/l < y,. For each y,, case (b) of Proposition
3.1 must hold since y, Q. By Corollary 3.2 and Remark 3.1, it follows that y, Int C
for each n because x, Int C for all large m. Hence Xo Int C.

DEFINITION. If X X, then x is a stable point if for every e > 0 there exists > 0
such that d(q’t(x),t(y))<e for t->0 whenever yX and d(x,y)<,5. We let S be
the subset of stable points of X. A point x is an asymptotically stable point if there is
a neighborhood V of x with the property that for every e > 0 there exists t > 0 such
that d(t(x), cI, t(y)) < e if _>- t andy V. We let A denote the set of all asymptotically
stable points.

Note that A is an open subset of X and that A c S. In fact, A S Q under the
hypotheses of Theorem 3.3. See also [8, Thm. 8.3 and 9].

PROPOSITION 3.4. If the hypotheses of Theorem 3.3 hold, then S O.
Proof. If x S, then nearby points have nearby limit sets. It follows that only

alternatives (a) and (c) of Proposition 3.1 are possible. Thus x Q.



684 H.L. SMITH AND H. R. THIEME

DEFINITION. An ordered metric space X is called normally ordered if there exists
a constant k > 0 such that

d(u, v) <--_ kd(x, y)

for all x, y, u, v with u, v [x, y].
Remark 3.2. If X is normally ordered, then in (b) and (c) of Corollary 3.2, each

x U with x <Xo belongs to A. Indeed, the neighborhood V of x, in (b)(ii) of the
corollary, can be taken for the neighborhood V in the definition of an asymptotically
stable point. For if y V then

d(dPt(x), dPt(y))=d(dPt(x), tlo)+d(dPt(y), tlo)2kd(dPt(XN) t/o) t_-> T.

Similarly, in case (c), if y V then

d (OPt(x), OPt(y))<= d (t(x), t(Xo))+ d (OPt(Xo), tt(y))

<-2kd(tt(Xo), (I)t(Xl)), t=> T.

Since the term on the right-hand side of each inequality tends to zero, it follows that
x A. Similarly, the equilibrium Uo in (b)(i) is upper asymptotically stable (see Hirsch
[8]) in the sense that for every e > 0 there exists t > 0 such that if x O and x > Uo
then d(t!Pt(x), Uo) < e for > t.

THEOREM 3.5. Let X be a normally ordered metric space, and let t be a strongly
order-preserving semiflow on X. Assume that each x X can be approximatedfrom above
or from below in X. Then A U Int C is dense in X.

Proof If A U Int C is not dense in X there exists an open set U in X such that
U fl A U fl Int C. Let x U and assume that x can be approximated from below.
Then there is a sequence x, such that x, < x,+, < x, x, x and one of the alternatives
(a), (b), or (c) of Proposition 3.1 and Corollary 3.2 holds. We can assume x, U for
all n. As U fl A , only case (a) can hold (see Remark 3.2). Hence x is convergent.
Since x U was arbitrary, U c C. So U c Int C in contradiction to our assumption.

PROPOSITION 3.6. Let X be an ordered metric space, and let t be a strongly
order-preserving semiflow on X. Let Xo X be such that it can be approximated from
above in X and from below in X. Then there exist sequences x, and z, in X satisfying
x, Xo, z, Xo, x, < x,+l < Xo < z,+ < z,, n >- 1, and one of the following holds"

(a) There exists Uo E such that, for n >- 1,

OJ(Xn) ( (.D (In+l) (O) (X0) U0 (O)(Zn+l) (

and

lim dist (to(x,), Uo)= lim dist (to(z,), Uo)= O.

(b) There exists Uo, Vo E such that, for n >= 1, either
(i) to(x,) < to(x,+,) < to(Xo) Uo < Vo to(z,),

lim dist (to(x,), Uo) 0

and whenever v E, v > Uo then v >- Vo, or
(ii) to(x,) Uo < Vo to(Xo) < to(z,+,) < to(z,)

lim dist (to(z,), Vo) 0

and whenever u E and u < Vo then u <-_ Uo.
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(C) There exists Uo E such that, for n >- 1, either
(i) w(x.) < w(x.+,) < tO(Xo) Uo w(z.),

lim dist (o (x,), Uo) 0

or
(ii) to(x.) Uo W(Xo) < w(z.+) < w(z.) and

lim dist (w(z,), Uo)=0.

(d) There exist equilibria Uo and Vo such that, for n >= 1,

,, (x.) Uo < ,o (Xo) < Vo= ,,, (z.).
If u E and u < W(Xo) then u <- Uo. If v E and W(Xo) < v then v >- Vo.

(e) There exists Uo E such that, for n >- 1, either
(i) w(x,) Uo < W(Xo) w(z,) and, whenever u E satisfies u < W(Xo), then

U Uo, or
(ii) w(x,) W(Xo) < Uo to(z,) and, whenever u E satisfies u > W(Xo), then

u>=uo.
(f) For n >- 1, w(x.) W(Xo) w(z.)

_
E.

Proof. The proof is immediate from Proposition 3.1.
As in Proposition 3.1, the sequence x,(z,) can be chosen to be a subsequence of

any sequence ,(,) approximating Xo from below (above) in X.
PROPOSITION 3.7. Let the hypotheses of Proposition 3.6 hold. Ifxo- , then (d) of

Proposition 3.6 holds. Moreover, Uo and Vo are upper and lower asymptotically stable
equilibria, respectively. There is a neighborhood U of Xo with the property that for each
x U with x < Xo (x Xo) there exists a neighborhood V of x in U such that w(y) Uo
(og(y) Vo) for every y V. Ifx U, then og(x) [Uo, Vo]. IfX is normally ordered, then
x A for each x U satisfying x < Xo or x Xo. Finally, in addition to the above, assume
that there exists an ordered Banach space Y with normalpositive cone Y+ such that X Y
and the metric d and order < on X are inherited from the norm and partial order on Y.
Assume that the order interval [Uo, Vo] in Y is contained in X and that dp is condensing
on [Uo, Vo] with respect to some measure of noncompactness for each > O. Then there
exists Wo E satisfying Uo < Wo < Vo.

Recall that is condensing on [Uo, Vo] if, for a suitable measure of noncompact-
ness/3, (dt(K)) </3(K) for any subset K of [Uo, Vo], which is not relatively compact.
See [21, 11.3], for example.

Proof It follows immediately that if Xo Q then (d) of Proposition 3.6 holds since
all other cases lead to Xo Q. That Uo(Vo) is upper (lower) asymptotically stable follows
from Corollary 3.2 and Remark 3.2. Similarly, the existence of a neighborhood U of
Xo with the stated properties, follows from Corollary 3.2. If X is normally ordered,
then the assertion that x A if x 6 U and x < Xo or x > Xo follows from Remark 3.2.

It remains only to establish the final assertion. Suppose that the additional
hypotheses contained in the last sentence of the proposition hold. Fix to > 0 small and
consider the map ,o restricted to [Uo, Vo]. We modify the proof of a result of Amann
[1, Thm. 14.2, see also remarks on p. 667] using the fixed-point index on a suitable
compact convex subset K of [Uo, Vo] to establish the existence of a fixed point for
in [Uo, Vo] different from Uo and Vo.

First we show that there exists a compact convex subset K of [Uo, Vo] containing
both Uo and Vo and to(K K. Following the proof of Sadovskii’s Fixed-Point Theorem
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in [21, 11.5], we let be the family of all closed convex subsets K of [Uo, Vo] such
that Uo, Vo K and @to(K) K. Set

K=O, K, E6 (K).
Apparently, K and K1G K. This implies to(K1)G K1 so that K1. Hence
K K1 E-6 to(K). As to is condensing, the measure of noncompactness of K is zero.

On the convex compact set K the fixed-point index i(g, U)= ii,:(g, U) with the
usual properties can be defined for continuous mappings g: K K and for open (in
the relative topology) subsets U of K. See [1].

By Corollary 3.2(b)(i) there exists r > 0 such that each point x of the closure of
B(uo) {x K; d (Uo, x) < r}, respectively, B(vo) {x K; d(vo, x) < r}, relative to K,
satisfies to(x) Uo, respectively, to(x) Vo. Hereafter, all topological notions are to be
understood relative to K. We will establish

i(dPto, B(uo))= i(to, B(vo))= i(dPto, K)= +1,

which implies, by the additivity property of the fixed-point index, that has a fixed
point woin K\(B(uo) B(vo)). Define the homotopy F: [0, 1] x B(uo) K by F(A, x)
hUo+(1-h)to(X). If F(h,x)=x then x-di,o(X)=A(Uo-to(X))<=O because [Uo, Vo]
is invariant under . Equality can only hold if x Uo because Uo is the only fixed point
of to in B(uo). Inequality implies to(X) > x that, by Proposition 2.4, gives that t(x)
converges to an equilibrium larger than x. But this is impossible for any x B(uo)
because to(x)= {uo}. We have shown that the fixed-point set of F(A,.) in B(uo) is
precisely {Uo}. The homotopy property of the fixed-point index implies that

i(o, B(uo)) i(F(1,. ), B(uo)) +1.

For the latter see 1]. Similar arguments yield the other equalities above. Thus there
exists Woe K\(B(uo)U B(vo)) such that (Wo)= Wo. As to> 0 was arbitrary, we obtain
fixed points w,[Uo, Vo]\(B(uo)fqB(vo)) of 2-" for all large n. The set {w,} is
precompact in [Uo, Vo] since each w, is a fixed point of 2-J for all n =>j and 2-J
is condensing. A standard argument gives that a limit point of {w,} is an equilibrium
of in [Uo, Vo]\(B(uo)B(vo)): Let w.,--> w for 1oo and tl=2-nt, lt=w,,->w. If
> 0, represent mltl + rl, 0 <-- rl < h, with a nonnegative integer rn, 1, 2, . Then

PROPOSITION 3.8. Assume that the hypotheses of Proposition 3.6 hold and that X
is normally ordered. If (a) of Proposition 3.6 holds then Xo S. If (f) of Proposition 3.6
holds then Xo A and there exists a neighborhood U ofXo such that to(x) to(Xo) for all
xU.

Proof. Suppose (a) of Proposition 3.6 holds. Since to(x,) < to(Xo) < to(z,), Lemma
2.1 implies the existence of neighborhoods W1D to(x,) and WD to(Xo) and t, -> 0 such
that t(W1) -<- t(W) for -> t, and neighborhoods WD to(Xo) and WE D to(Z,) and
s,_-->0 such that dpt(W)<-t(W2) for t>-s,. If we let U,= Wfq Wo2 and
max {t,, s,} then dpt(W)<--_dPt(U,)<--_dPt(W2) for > T,. Now we can argue exactly as
in the proof of Corollary 3.2(a) that there exists r, _-> T, such that

t(x,) <= t(U,) <-_ ,(z,) for

Since X is normally ordered it follows that

d(,(x), ,(Xo)) <= kd(t(x,), ,(z,)),
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for >_- rn, x Un. Let e > 0 be given and choose n such that dist (to (x,), to (z,)) < e.
As ,(x,)to(x,) and ,(z,)-to(z,) as t-, we can find p.>0 such that
d(@,(x,), ,(z,)) < 2e if _-> p,. Hence

d(,(x), ,(Xo)) <=2ke,

for ->_ max {r,, p,} if x U,. By continuity of the semiflow, we may choose a neighbor-
hood V, of Xo, V, c U,, such that

d(dPt(x), t(Xo)) <=2ke, x e V,,

for all t->_ 0. It follows that Xo S.
Suppose now that (f) of Proposition 3.6 holds. Arguing as in the proof of Corollary

3.2(c) we find a neighborhood U of Xo and T> 0 such that

(I)/(Xl) __--< (I)t(U) _--((I)t(Zl) for => T.

Since X is normally ordered, we may conclude that

d(dP,(x), t(Xo)) <--_ k[d(,(Xo), ,(Xl)) + d(dPt(Zl), cI:t(Xo))],

for x U and t->T. Both d(t(Xo),@t(xl))-O and d(d,(zl),,(Xo))O as taz
implying that x 6 A.

THEOREM 3.9. Let X be a normally ordered metric space and @t be a strongly
order-preserving semiflow on X. Suppose that each point x in X can be approximatedfrom
above or from below in X, and X contains an open and dense subset Xo
of points that can be approximated both from above and from below in X. Then
A t.J Int (S if) C) is dense in X.

Proof Recall the proof of Theorem 3.5. If U is open in X such that A f’) U ,
then U c C. But Uo := U f) Xo S. Actually, if x Uo, then x e A, so only alternative
(a) of Proposition 3.6 can hold for x. Thus, by Proposition 3.8, x S. Hence Uo_
Int (S fq C). These considerations imply that U 0 [A LJ Int (S f) C)] for every open
set U in X.

THEOREM 3.10 (Global Asymptotic Stability). Let the hypotheses of Proposition
3.6 hold and suppose that every point of X can be approximated from above and from
below in X. IfX is connected and does not contain two ordered equilibria then X contains
a unique equilibrium point which is the positive limit set of every orbit.

Proof Since no two points of E can be ordered, then for each x0 X, only
alternatives (a), (c), and (f) of Proposition 3.6 may hold. In particular, Xo Q for every
xoX. But then no two limit sets to(Xo), to(x) can be ordered, to(Xo)<to(x) or
to(x) < to(Xo) since each consists of equilibria. It follows that alternatives (a) and (c)
of Proposition 3.6 cannot occur; only alternative (f) may occur. Fix Xo X and let
M {x X: to(x) to(Xo)}. By Proposition 3.8, M is open in X. Similarly, the comple-
ment of M is open in X. Since X is connected and M is nonempty, it follows that
M X. Thus to(x) to(Xo) E for all x X. If u to(Xo) then u to(u) to(Xo), so
to(Xo) is a single equilibrium. The proof is complete.

The hypothesis that no two equilibria are ordered is, of course, weaker than
assuming that X contains exactly one equilibria, as assumed by Hirsch in a correspond-
ing result [7], [8].

THEOREM 3.11. Suppose that X is an order convex subset of a normally ordered
Banach space Y. Let t be a strongly order-preserving semiflow on X such that d), is
condensing on every order interval in Xfor > O. Assume that any point in X\E can be
approximated both from above and below and that X contains at most two order-related
equilibria. Then X Q.
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Proof. The proof is immediate from Proposition 3.7.
Remark 3.3. If X contains at most two equilibria, then we obtain from Theorem

3.11 that all points in X are convergent points. A typical application is X Y/ with
zero being an equilibrium and X containing only one equilibrium different from zero.
Then Theorem 3.11 implies that all trajectories converge to zero or to the other
equilibrium. Actually a stronger alternative holds for trajectories starting in between
the two equilibria.

COROLLARY 3.12. Let u < v be two elements in a normally ordered Banach space
X, and let t be a strongly order-preserving condensing semiflow on the order interval
u, v]. Let u, v be the only equilibria of dt on u, v ]. Then thefollowing alternative holds.
Either the trajectories starting in u, v]\{u, v} all converge to u or they all converge to v.

A similar result has been proved by Hirsch [8, Thm. 10.5]. Hirsch allows for
topological vector spaces, but his compactness and order assumptions are stronger
than ours and exclude examples like functional differential equations.

Proof of Corollary 3.12. Assume that there are elements x, y[u, v]\{u, v} with
(I),(x) u, t(y)- v, tc. As is strongly order preserving, we find neighborhoods
U, V of u, v and to> 0 such that ,(U) <_- (I),(x), t(V) _-> ,(y) for t-> to. As X is
normally ordered, we have that

,(U[u,v])-u, ,(vf[u,v])-v, t-.

The same proof as in Proposition 3.7 now implies that there is a third equilibrium
between u and v in contradiction to our assumption.

Our next result provides sufficient conditions for the set of asymptotically stable
points A to be dense in X. For this result, we need to assume that each point x X
belongs to some totally ordered arc in X. A subset J of X is a totally ordered arc
provided J (I) where I is a nontrivial interval in 9, is a continuous function
from I into X, and if(s)< p(t) whenever s, I and s < t.

THEOREM 3.13. Suppose that X is a normally ordered metric space and that each
x X belongs to some totally ordered arc in X. Let be a strongly order-preserving
semiflow on X. If there does not exist a totally ordered arc of equilibria in X then A is
dense in X.

Proof. Assume that x X\A and x p(0) with p([0, 1 ]) being a nontrivial totally
ordered arc. In particular, if(J0, el)

___
X\A for some e > 0. As in the proof of Theorem

3.9 (U=X\A), ((0, e)) is a totally ordered arc of stable convergent points and
to(b(s)) # to((g)) for s # g. Hence (s) to(O(s)) {(s)} defines a continuous map-
ping from (0, e) into E forming a nontrivial totally ordered arc of equilibria in
contradiction to our assumptions.

4. Ruling out nontrivial totally ordered connected sets of equilibria. To have the
asymptotically stable points be dense we had to assume that there are no totally ordered
arcs of equilibria. This assumption may be hard to verify for large systems of differential
equations. A quite general condition is available, however, provided that the semiflow
is analytic.

Let us make precise our scenario.

Scenario. We consider an open bounded set U in a Banach lattice X, with the
cone X/ having nonempty interior, and a monotone semiflow (I) on U.

Let X + iX be the complexification of X. We assume that, for any equilibrium
Xo U there exist a neighborhood V of 0 in X and numbers 0 < e < to such that can
be extended to a continuous mapping from (to- e, to+ e) x (Xo+ V+ iV) to X + iX.
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We further assume that, for any (to- e, to+ e), t is complex differentiable
(i.e., analytic) as a mapping from Xo+ V/ iV to X + iX and that

DOt(x)L(X+iX)

depends continuously on X uniformly in re(to-e, to+e). Here L(X+ iX) denotes
the complex Banach space of bounded linear operators on L(X + iX) endowed with
the uniform operator norm.

Finally, we assume that, for any > 0, , is continuously ditterentiable as a
mapping from U to U and that Ddi, t" U-. L(X) can be continuously extended to U.
Furthermore, we assume that, for any equilibrium Xoe U, Dt(Xo), >=0, forms an
irreducible strongly continuous semigroup on X such that the essential type COess(Xo)
(or essential growth bound) is strictly negative.

We recall that

tOess(Xo) inf
1
In IDq,(Xo)lt lim

1
In IDq

t>o t--,

with l" I denoting the measure of noncompactness. See 8 of [3]. Furthermore,

ress(Dt(Xo) ewess(x)t, > 0,

with rss denoting the essential spectral radius, toss(Xo) -c, e.g., if Dcbt(Xo) is compact
for some > 0. Before we formulate the main result of this section let us recall some
facts about irreducible strongly continuous semigroups.

Let A(xo) be the infinitesimal generator of Dt(Xo), with Xo being an equilibrium.
Then the spectral bound S(Xo) of A(xo) is defined by

S(Xo) sup {Re A; A spectral value of A(xo)}.

It is well known that S(Xo) is a spectral value itself if S(Xo)>-c. See, e.g., Theorem
8.7 of [3].

We are now able to formulate our main result.
THEOREM 4.1. Consider the scenario outlined above. Assumefurther that any closed

set of equilibria in U is compact and that

S(Xo) O,

for any equilibrium Xo 0 U (if there are any). Then every totally ordered connected set

of equilibria in U is a singleton (i.e., consists of one element only).
It is convenient to prove the following result first.
LEMMA 4.2. Consider the scenario outlined at the beginning of this section. Let D

be a totally ordered connected set of equilibria in U which consists of more than one
element. Then S(Xo)= 0 for any Xo D.

Proof. Let Xo D. Then Xo can be approximated by other elements in D from
above or from below. We assume that there are elements xn > Xo such that xn--> Xo.
Recall that Xo, x, are equilibria. Thus, defining

1
(x, -Xo),u IIx. xoll

we obtain that

u,-Dd,(Xo)u,O forno, t>=0.

Let/3 be the measure of noncompactness. See A.3.1 of [3]. Then

fl({u,; n N}) <_-ID’I’,(Xo)l({u.}.) <-_ (M eWossXo+t)8({u.; n N}),
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with e > 0 such that Wess(Xo)+ e < 0 and M depending on e. Hence we realize from
choosing large enough that

/3({u,; n N}) 0.

This implies that the closure of { u,; n N) is compact, and we find v => 0, v 1 such
that

DC,(Xo)V v for all => 0.

Clearly, v is an eigenvector of A(xo) belonging to the eigenvalue zero. As DdPt(Xo),
>=0, is irreducible, v Int X+. This implies that the spectral radius of Dt(Xo)<= 1,

hence s(A)<=0. See Proposition 8.6 and the preceding remarks of [3]. As zero is an
eigenvalue of A, s(A)= O.

Remark 4.1. It follows from our assumptions that S(Xo) 0 is a pole ofthe resolvent
of A(xo). The irreducibility of D,(Xo) implies that S(Xo) is a simple eigenvalue of
A(xo) with an eigenvector v Int X+ and a strictly positive eigenfunctional v* X* of
A*(xo). If we normalize v* and v such that Ilvll- 1, v*(v)--1, then

Px=v*(x)v

is the projection onto the eigenspace of zero. In particular, there exists e > 0, M > 0
such that

II(I P)Dt(Xo)Xll [[Dtt(Xo)X v*(x)l11 <= M e-’ Ilxll,
t=>0. See Theorem 9.11 of [3]. Moreover, v is the only eigenvector of A(xo) in X/.

We are now able to give the proof of Theorem 4.1.
Proofof Theorem 4.1. By Zorn’s lemma we can assume that D is a maximal totally

ordered connected set of equilibria in U. Let D contain at least two points. By
maximality we know that D is closed. Hence D is compact by assumption. D 0 U ,
otherwise we obtain a contradiction from Lemma 4.2 and the assumption that S(Xo) 0
for any Xo 0 U. As D is compact and Int X/ # , Xo sup D exists. See Schaefer 16,
II, Prop. 7.6]. We intend to derive a contradiction to the maximality of D. As D is
totally ordered, Xo D. Let v, v* be the eigenvectors of A(xo), A*(xo) associated with
the eigenvalue S(Xo)=0, v, v*>0, Ilvll 1, v*(v)= 1 and

Px=v*(x)v.

See Remark 4.1. Set Q I- P. We intend to apply the uniform contraction principle
in order to find unique fixed points u u(t, z) QX satisfying

U Qft(Xo-I" Z1) dr" gl) QXo-": F( t, z, u).

See Theorem 2.2 of I-2, Chap. 1 ].
Note that

and

D,F( t, z, u) QDt(Xo+ zv + u),

D,F(t, O, O)= QD,(Xo),

with D,F(t, z, u) being a complex derivative in X + iX for (to--e, to+ e), zv+ u E

V+ iV. See the corresponding assumption in the scenario. Note that QDt(Xo) is a
strongly continuous semigroup on Q(X+iX). Changing the norm in Q(X+iX)
equivalently we can assume that

D,F(t, O, O)II < e-’, t>0,
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with 6 > 0. See Remark 4.1 and Theorem 5.2 of [13, Chap. 1]. As we have assumed
that Dd,(x) is a continuous function of x uniformly for It- tol < e, we can achieve that

IID.F(t, z, u)ll < 1

in a neighborhood of (to, 0, 0).
Hence u F(t, z, u) is a contraction in a neighborhood W+ iW of0+ i0, uniformly

for It-to] < e, z in a neighborhood V1 of 0, V1 C. Note that, by our assumptions,
F(t, .,.) is analytic in VI (W+ iW). Using the metric structure only, the uniform
contraction principle provides us with a unique solution u u(t, z) of

u F(t, z, u), u(to, 0)=0,

if It- tol < e, z V1, u W+ W. After possibly having chosen e and V1 somewhat
smaller than before, u(t, z) continuously depends on (t, z). Proceeding as in the proof
of Theorem 2.2 in [2, Chap. 1], we find that, for It- tol < e, u(t, is analytic in V

_
C.

Furthermore,

OzU(t, z) (Io(x+ix) DuF(t, z, u( t, z)))-1QDt(Xo+ zv + u( t, z))v.

Hence, as U(to, 0)=0 and QDdp,(Xo)V= Qv=0, we have

azu( to, O) O.

Returning to our connected closed set D of equilibria, Xo sup D, we find that

x Xo+ v*(x Xo)V + O(x- Xo),

for x D, and

Q(x Xo) F( t, v*(x Xo), Q(x Xo)).

Uniqueness implies that

O(x Xo) u( t, v*(x Xo)),

if It- to[ < e, x e D, [Ix Xo[I < e, if e > 0 is chosen small enough. Hence

U( t, o’) U( to, ,:r) 0,

for It--tol < e, --e < r_--<0 if e > 0 is chosen small enough. Recall that D is totally
ordered, connected, and contains more than just one point. As u(t, o-)- U(to, r) is an
analytic function of r, we obtain that

u(t, o-) U(to, o-),

for It-tol < e, I1 < e, if e > 0 is chosen small enough. Hence, by the definition of F,

U(to, o’)+ Qxo Qt(Xo+O-V+U(to, o-)),

for It- to[ < e, Ir[ < e.
We claim that x(r)=xo+o’v+U(to, or) is a fixed point of , iflt-to[<e. To this

end we still have to show that

v*,(Xo+rv+U(to, ))- v*(Xo)- r 0,

for It tol < e, I1 < e. But this actually holds because it is true for cr < 0, let < e, It tol < e
and the left-hand side of this equation is analytic in o-. Hence x(o-) is a fixed point of
’t, if Irl < e, It- tol < e. Now

X(O’) lff to+r(X( O’) Ir() to(X( O’)
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for 0-<_ r < e. Applying the semigroup property again we find that

,(x(tr)) x(tr), t>--0.

As gzU(to, 0)= 0 and v Int X+, we finally note that

x tr Xo+ rv + u to

is a strictly increasing function of I1 < e, if e > 0 is chosen small enough. Hence the
totally ordered continuum of equilibria D can be properly extended, in contradiction
to its maximality. This proves our theorem.
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HOMOCLINIC BIFURCATIONS WITH NONHYPERBOLIC EQUILIBRIA*
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Abstract. A general geometric approach is given for bifurcation problems with homoclinic orbits to
nonhyperbolic equilibrium points of ordinary differential equations. It consists of a special normal form
called admissible variables, exponential expansion, strong A-lemma, and Lyapunov-Schmidt reduction for
the Poincar6 maps under Sil’nikov variables. The method is based on the Center Manifold Theory, the
contraction mapping principle, and the Implicit Function Theorem.
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manifold, saddle-node bifurcation
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1. Introduction. In this paper we will study homoclinic bifurcations with non-
hyperbolic equilibrium points. The method we will introduce consists of four parts: a
special normal form theory, exponential expansions for the Sil’nikov solution, the
strong A-lemma, and Lyapunov-Schmidt reduction for the Poincar maps under
Sil’nikov variables. Let us begin with a survey on the same method with hyperbolic
equilibria. Hopefully, this will help us develop the right intuition to the problems we
have in mind.

Consider a system of ordinary differential equations

(1.1) ti=F(u), u Rd,

where F is C and r is large enough so that whenever Cr-k appears, we have r- k->_ 1.
Suppose the origin u 0 is a hyperbolic equilibrium point. Let 1 <= rn <- d and 1 -<_ n -< d
with m + n d be the numbers of the eigenvalues with negative and positive real parts,
respectively, for the linearization DF(O). Then, up to a linear change of coordinates,
we may assume u (x, y), DF(O)=diag (A, B), and

(1.2) Ax +f(x, y), ..f By + g(x, y),

which satisfy that the real parts of the eigenvalues for the m x m and n x n matrices
A and B are negative and positive, respectively, and f, g are vanishing at the origin
together with their first derivatives.

Given a triplet (% Xo, Yl), a solution (x, y)(t) is a solution to the Sil’nikov problem
if the conditions x(0) Xo and y(z) yl are satisfied. Interpreted geometrically in Fig.
1.1, it shows that for a given initial coordinate surface x Xo, an end coordinate surface
Y- Yl, and a time z, a Sil’nikov solution takes exactly units of time to travel from
x-Xo to y-Yl. Observe that when z=0 this problem reduces to the initial value
problem. Thus it is not surprising to expect that the Sil’nikov solution is existing,
unique, and continuously differentiable in its Sil’nikov data -, Xo, and Yl. To be more
precise, let B(8) de...f {(X, y)]Ix[ _-< , [yl <= 8} be the box neighborhood of the origin; then
there exists a small 8o such that for every triplet (-, Xo, y)R/x B(8o) there exists a
unique Sil’nikov solution (x, y)(t) f (x, y)(t, % Xo, yl) in B(28o) for 0 =< =< -. This
solution is Lipschitz in the Sil’nikov data -, Xo, and Yl if the nonlinear terms f and g
are Lipschitz, or C ifthey are C r. The proof easily follows from the uniform contraction

* Received by the editors December 12, 1988" accepted for publication (in revised form) May 15, 1989.
f Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323.
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\

FIG. 1.1. The hyperbolic structure in terms of the Sil’nikov solutions.

mapping theorem together with the following equivalent integral equations:

x(t) eAtxo + eAt-s)f(x(s), y(s)) ds,

(1.3)
y(t) e(t-’)yl + e(t-S)g(x(s), y(s)) ds.

Also, the hyperbolicity is crucial for the validity of all - _-> 0 for it implies the exponential
functions are all bounded in the formula above. See Sil’nikov (1967) and Deng
(1988a-d) for details. The first natural task is to formulate the Sil’nikov problem when
the nonhyperbolicity is taken into consideration.

Before answering this question, let us see first how the Sil’nikov solution can give
us a better understanding of the intrinsic local structure near a hyperbolic equilibrium.
For instance, the stable and unstable manifolds can be described by the limiting
behaviors of the functions y(0, r, Xo, Yl) and x(z, ’, Xo, Yl) as r--> +. Indeed, because
the initial point for a given trajectory is given as (Xo, y(0, -, Xo, Yl)), the uniqueness
of the stable manifold will imply that the family of functions y(0, ,., converges in
the C-topology as - +c and that the limit, denoted as y(0, +c, .,.), does not
depend on the Yl variable. Moreover, the local stable manifold WlSoc is precisely the
graph of the C function y(0, +c,., Yl) for any fixed Yl since the trajectory through
(Xo, y(0, +c, Xo, y)) stays in the box B(2o) for all the positive time (cf. Fig. 1.1).
Similarly, we have W’o graph (x(+, +c, Xo," )), where x(+, +c,., is the limit
function of x(-, -,., as +. As another example, observe that the image of the
n-dimensional "straight" disc x Xo under the time - mapping of the flow is a curved
manifold given as graph (x(-, -, Xo," )), which converges to the unstable manifold in
the C-topology sense. In fact, this simple observation is just a special case of the
so-called A-lemma, or inclination lemma, for any n-dimensional disc transversely
intersecting the stable manifold. This C A-lemma can be proved by directly using the
Implicit Function Theorem and the C-convergence of the functions x(-, -, .,. and
y(0, z,., as r +c. For the complete details, see Deng (1988c).

Of the most importance is to incorporate the Sil’nikov solution into our studies
of homoclinic bifurcations. To do this, let us assume that there is a homoclinic orbit
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F to the origin and consider a Poincar6 map II around the orbit. Figure 1.2 heuristically
illustrates the construction of such a II. Here, Eo and 5:1 are two (d- 1)-dimensional
Poincar6 cross sections in B(2go) with the property that they are transverse to F [’) WSoc
and Ff’)Woc, respectively. For simplicity, let us assume Eo {x1)= go} and E1
{Y) go} locally, cro is the set of those points p (Xo, Yo) of Eo whose local trajectories
hit E at q (Xl, Yl) at the first time -= z(p). Thus the local map 1-Io is defined on cro
with the rule p--> q El. The global map II1 is defined in the same way by following
the trajectories from E1 back to Eo. Without loss of generality, however, E1 can be
taken as the domain for II1 and all trajectories starting from E take roughly a constant
time to reach Eo. In contrast, the domain cro of the local map is a proper subset of
Eo, not containing any point from the local stable manifold, and the time - diverges
to infinity as the initial point p approaches the stable manifold. The Poincar6 map is
now defined as II 1-11 IIo.

In general, the Poincar6 map II is difficult to deal with directly due to the long-time
behavior of the local flow. Thus we wish to find a new variable for the Poincar6 map
such that it becomes tractable in terms of the new variable. The Sil’nikov data (z, Xo, Yl)
serves us precisely for this purpose. We will see this more clearly later on, but for the
moment let us note that A= {(% Xo, y)l >_-o, X(o)- o, Y- go, Ixol--< o, and lyll -<

is imbedded in Rd-1, and that the mapping po’A->Cro with (r, Xo,yl)->
(Xo, y(O, z, Xo, y)) gives rise to a C change of variables since its inverse can be easily
defined by: (Xo, Yo) --> (% Xo, Yl), where (Xo, Yo) P tro, (Xl, y) q IIo(Po) E1 with
r= 7"(p). (Z, Xo, yl) is called the Sil’nikov variable and the change of variables po
transforms these otherwise intractable variables r, Xo, and Yl into independent variables.
Moreover, also note that the local map in the new variable is now simply given as
(x(z, r, Xo, yl), Y) =IIo(po(r, Xo, Yl)) pl(Z, Xo, yl)- Also, the fixed point of II, for
example, is now equivalent to solving the equation po(% Xo, yl) IIl(pl(r, Xo, Yl)) for
(z, Xo, Yl) A.

However, the property of the uniform convergences of x(-, Z, xo, Yl) and
y(0, z, Xo, Yl) as z --> +c alone is not enough to make full use of the nice representations
above for the local map of the flow. This is because the intersection of the stable and
unstable manifolds along a homoclinic orbit must not be transverse. But, on the other

F

FIG. 1.2. The Poincar map for flows and the Sil’nikov variables.
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hand, it is quite sufficient for studying the dynamics of a transverse homoclinic point
for diffeomorphisms. To see this, we refer our readers to Sil’nikov (1967) and Moser
(1973). It turns out that to compensate for this loss of transversality in vector fields,
we need to know a finer and subtler structure of the local flow on an exponentially
small scale. Since we will also encounter the same difficulty in our nonhyperbolic case,
let us explore this idea a little further.

To be more precise, let the coordinates x and y be chosen so that the matrices A
and B are in their real Jordan canonical form:

A=diag(Ao, A1) and B=diag(Bo, B1)

with the property that the real parts for the eigenvalues of the p x p (q x q, respectively)
matrix Ao (Bo, respectively) are a single number ho < 0 (/Zo > 0, respectively), and that
those of the (m-p) x (m-p) ((n-q) x (n-q), respectively) matrix A1 (B, respec-
tively) are strictly less (greater, respectively) than ho (/Zo, respectively). Ao (Bo,
(respectively) is called the principal stable (unstable, respectively) block and its
eigenvalues principal stable (unstable, respectively) eigenvalues. Define

A, diag (Ao, AOI(m-p)) and B, diag (Bo, IZoI(n-q)),

where Ii is the xi identity matrix. Then, the Sil’nikov solution is said to admit a C
exponential expansion if it can be expressed as

(1.4a)
x(t) eA*t[t(t--7-, X0, y)+ Rl(t, 7", Xo, Yl)],

y( t) en*(t-)[q( t,Xo, y) + R2( t, 7", Xo, Yl)]

for all 0_-< t_-< 7" and all sufficiently small ]Xo[ and lyll with the properties that the
coefficient functions and q are C satisfying

(1.4b)
(t-7",O,O)=diag(Ip, O), dto__z_ (t 7-, 0, 0) 0 forall0-<t=<7-,

OXo Oy

(t,O,O)=diag(Iq, O), 0(t, 0,0)=0 forall t>=0,
Oy OXo

and that the remainder terms R and R2 are also C satisfying

(1.4c) ]DiRl( t, % Xo, Yl)[ <- K e-t, ]Die2( t, % Xo, Yl)[ K e’(t-),
for all 0 _-< _-< 7- and all sufficiently small [Xol and [YI, where K and tr are some constants
independent of t, z, Xo, and y, and D is the ith differentiation operator up to the
order 0 =< =< l.

It turns out that a sufficient condition for the exponential expansion requires that
the coordinate (x, y) be admissible in the following sense that, besides being of higher
order, f has the order pk=l [x(k)[2-+- 2k=p+lm Ix(k)[ while g has the order =1 [y(k)[2_+.
g=q/ ly(gl as (x, y) - (0, 0). Note that this necessarily implies that Woc {y 0} and
WUoc {x 0} locally. Fortunately, an admissible coordinate can be obtained by a Cr-2

change of variables for (1.1), and the exponential expansion is C r-4. For the complete
but nontrivial details we refer to Deng (1988a, b, d). A counterexample against the
exponential expansion when the coordinate is not admissible is also given in Deng
(1988b).

Bearing in mind the questions of what are the admissible variables and what are
the corresponding exponential expansions for nonhyperbolic equilibria, let us see what
kinds of additional information we can draw from the expansion. First, the local strong
unstable manifold WlUoUc is given bythe level set q(0, 0, y) 0 ofthe expansion coefficient
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function. By (1.4b) it can be expressed as the graph of a Cr-4 function over the last
n q variables y(q+l),... y(n). Second, when the system does not have the nonprincipal
blocks, the exponential expansion implies that C 1-1inearization theorem, constructively
(cf. Deng (1988a)). Third, when the principal unstable block is only one-dimensional,
we have

lim yT"(O, % Xo, Yl) "OY(o, % Xo, yl)[yT(O, "r, Xo, Yl)" y(O, 7", Xo, y)]-I Bo
+ 07’

which is precisely the theoretical scheme for the convergence of the Feigenbaum
number, where a T means the transpose of a (see, e.g., Collet and Eckmann (1980)).
It is my personal belief that this formula also holds true for all finite-dimensional
principal blocks with y(0, r, Xo, Yl) above being replaced by an n x (n-q) matrix

(y(0, % Xo, Y1,1),""", y(0, % Xo, Yl,,-q)),
with the property that the matrix

(qg(0, Xo, Yl,1), qg(0, Xo, Yl,,,-q))
has the maximal rank q. Last, but not finally, by using the exponential expansion and
the Implicit Function Theorem, we can prove the strong A-lemma, which states that
for every point Uo on the stable manifold there is associated a (d-n + q)-dimensional
linear space W(uo), which contains the stable tangent space at Uo as a subset such
that, for every (n- q)-dimensional Cr-7 disc Do transverse to this critical affine plane
W(uo), the image Dr under the time - map of the flow approaches the strong unstable
manifold WlUoUc in the Cr-7-topology as r- +oe. See Deng (1988d) for a proof. Figure
1.3 illustrates the use of the strong inclination property in classifying some homoclinic

W WtlU

(a) (b)

(e)

FIG. 1.3. The phase portaits of some nondegenerate orbits. (a) Nontwisted homoclinic orbit. (b) Twisted
homoclinic orbit. (c) Double twisted heteroclinic loop.
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and heteroclinic bifurcations for the flow. What is the strong A-lemma for nonhyperbolic
equilibria, and how can we use it, if at all, to classify homoclinic and heteroclinic
orbits? Most important, how can we solve a given homoclinic bifurction problem by
combining all these ideas?

We are now in a natural position to outline our paper, giving hints as to the
answers. In 2, specifically in Lemma 2.2, we will use the Center Manifold Theory
only to obtain a C r-2 admissible coordinate for the system (1.1), with F having
additional eigenvalues of the linearization DF(O) that lie on the imaginary axis of
the complex plane. A coordinate u-(x, y, z) is called admissible in this case if in
terms of the new variable (1.1) takes the following form:

2 Ax +f(x, y, z), )) By + g(x, y, z), O(z) + h(x, y, z),

where f g, and h are higher-order terms satisfying f=O(lxl+lyl+lzl)[x[, g=
O(Ixl / lyl / Izl)lyl, and h O(Ixl lYl), and O(z) describes the flow on the local center
manifold {x 0, y 0} with 0 being C r-1. Note that the admissible coordinate directly
implies the Cr- "straight" invariant foliations on the center-stable and center-unstable
manifolds as W U Izol<< {z Zo, y 0} and W U Izol< {Z Z0, X 0}, respectively.
In particular, when Zo=0, which is Wo, it is analogous to WoU {q(0, 0, y) =0} for
the hyperbolic exponential expansion (see Fig. 1.4). The foliations will be very useful
in 5 in establishing the bifurcation equations and the homoclinic and heteroclinic
connections between bifurcated equilibria.

Dr

straight unstable/

I straight stable

FIG. 1.4. The straight foliations and the strong h-lemma.

In 3, we will formulate the Sil’nikov solution according to its center flow. Roughly
speaking, for every local center flow zC(t) (i.e., c(t) O(z(t))) defined on the positive
maximum interval 0-< < r with respect to a fixed small neighborhood of the equili-
brium point, there exists a unique local flow (x, y, z)(t) satisfying x(O)- Xo, y(r)-Yl,
and z(O) Zo zC(O) (or z(z) z zC(’]’)) for a given triplet (% Xo, Yl) with O=< z < r
and small IXol and lYll. Moreover, this solution can be expanded according to its center
flow in the sense that z(t)= z(t)+ R(t) and the exponential bounds IDix(t)l <-K eAt,
[Diy(t)l<-Ke’(t-), and IDiR(t)[<Ke;tt+(t-’)= are valid for all 0 <= t<z<= r, and all
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sufficiently small IXo[ and lYl[, where ho < h < 0 </x </Xo and K are constants indepen-
dent of t, z, zc, Xo, Yl, Zo (or zl), and the derivatives are taken in t, z, Xo, Yl, and Zo
(or Zl) up to the orders <-r-4. However, the regularity r here must be finite if we
want to find those constants. For the precise statement, see Lemma 3.1. The proof is
directly based on the uniform contraction mapping principle and has much in common
with the existence, uniqueness, and continuous dependence of the Sil’nikov problem
(or the initial value problem) for the hyperbolic case. To obtain the exponential bounds,
certain weighted Banach spaces are used for functions over 0-<_ t-<_ r that are bounded
up to some weighted exponential scales--for instance, e -a’, e-E(t-r), and e-’xt-o(t-r)

are used for x(t), y(t), and R(t), respectively.
In 4, we will prove the strong h-lemma, Lemma 4.1, which is heuristically

illustrated in Fig. 1.4. Roughly speaking, it states that if a trajectory on the center-stable
manifold approaches the equilibrium point u 0, then for every C r-3 n-dimensional
disc Do that transversely intersects the center-stable manifold through a point of the
trajectory, the image Dr under the time r mapping of the flow converges to the unstable
manifold as z +o in the cr-3-topology. Moreover, the convergence rate is the same
as that of the center trajectory, but the tangent space, being normal to the center-stable
manifold, "stretches" exponentially rapidly. Note that when the disc Do happens to
be one of the straight leaves {z z0, x =0} on the center unstable manifold, the
preceding description makes perfect sense, since in terms of the straight foliation
mentioned above, Dr {zC(t, Zo), x 0} locally.

In 5, we will first classify nondegenerate homoclinic orbits in general by the
strong h-lemma and just consider three types of nonhyperbolic equilibria in particular:
saddle-node, transcritical, and pitchfork. The generic codimension-2 bifurcation
unfoldings are obtained through a modified Lyapunov-Schmidt reduction for the
Poincar6 map in the Sil’nikov variable (see Theorems 5.1-5.3 for the precise statements).
One parameter here governs the bifurcations ofthe equilibria and the other the breaking
of the homoclinic orbits. Due to the lack of oscillatory structures for the center flows,
all the dynamics considered are nonchaotic. The chaotic bifurcations of a homoclinic
orbit to a Hopf equilibrium, or of a transverse homoclinic point to a nonhyperbolic
fixed point of a map, are not studied here mainly because many difficulties in analyzing
chaos are still under investigation.

As we have seen, the next three sections consist of the foundation of our nonlinear
and nonhyperbolic analysis. It allows us to reduce a complex problem simply to an
individual case study on the local center manifold. Then the dominant role of the
center flow in the bifurcations theory should prevail as usual. Unexpectedly, however,
the exponential expansion and the strong h-lemma for the nonhyperbolic case are
much more easily and directly obtained than their hyperbolic counterparts. Of course,
to see this we need to compare the proofs with Deng (1988a, d). Also, for the answers
that cannot be included in this Introduction, we will refer our readers to Chow, Deng,
and Terman (1987), Deng (1988e), and Chow, Deng, and Fiedler (1988) for homoclinic
and heteroclinic bifurcation problems with hyperbolic equilibria, which have much in
common with the spirit of 5. For another important topic that is not treated in this
paper, we will refer the reader to Schecter (1987) for an example of the saddle-node
homoclinic bifurcation in R2, and to Dangelmayr, Armbruster, and Neveling (1985)
and Ju (1988) for an example of the pitchfork homoclinic bifurcation in R2 as well.
The former models the dynamics of the forced Josephson junction, and the latter, the
laser with a saturable absorber.

Let us conclude this section with some remarks about our motivations. Luk’yanov
(1982) and Schecter (1987) first studied the homoclinic bifurcation with a saddle-node
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equilibrium point for planar systems. Chow and Lin (1988) then generalized their
results to any finite-dimensional case, using a great variety of techniques, including
exponential dichotomy, Melnikov function, smooth foliation, and Sil’nikov’s central
ideal, called parametrization in their terminology, which also gives rise to the emergence
of our method presented here. They found the periodic orbit in a rather geometrical
way, not by a Lyapunov-Schmidt reduction technique as we do here. Using their
different method, they were the first to realize the necessity of the admissible normal
form for the exponential expansion. However, Chow and Lin’s technique for the
expansion is applicable for only zero-center eigenvalues at the bifurcation point, ruling
out the important class of Hopf bifurcation, where the center eigenvalues are nonzero
in general. Also, as discussed in Chow, Deng, and Fiedler (1988), to use exponential
dichotomy together with the Melnikov function is essentially to ignore the homoclinic
doubling bifurcations that are very likely to occur when the center manifold is two-
dimensional or the homoclinic orbit is degenerate. Homoclinic doubling bifurcations
do occur in some hyperbolic cases (see, e.g., Yanagida (1987) and Chow, Deng, and
Fiedler (1988)). Moreover, instead of separated apparatus to the homoclinic and
periodic bifurcations, only one bifurcation equation derived from the Lyapunov-
Schmidt reduction is needed in our strategy. More important, our main objectives in
this paper are to unify the method for homoclinic bifurcation problems regardless of
the nature of the equilibria, and to lay the foundation for our future investigations
into other, more complicated problems, in particular, chaotical problems.

2. Admissible variables. From now on, we will let u (x, y, z) with x R", y R’,
z R, and m + n + d such that

DF(O)- diag (A, B, C),

where A and B have the same meanings as in 1 and all the eigenvalues of the x
matrix C lie on the imaginary axis of the complex plane. Let Wcs, Wcu, and W denote
an (m +/)-dimensional center-stable manifold, an (n +/)-dimensional center-unstable
manifold, and an/-dimensional center manifold, respectively. Then, by the theory of
invariant manifolds (see Hirsch, Pugh, and Shub (1977), Vanderbauwhede and van
Gils (1987), Wells (1976), and Chow and Lu (1988)), these are C manifolds with
r c. Moreover, up to a C change of variables, we may assume

WS={y=0}, WU={x=0}, W={x=O,y=O}

locally. Also, when (1.1) is written in terms of such a C coordinate, it takes the form

(2.1) 2 ax +f(x, y, z), .,f By + g(x, y, z), O(z) + h(x, y, z)

with DO(O)= C and the nonlinear higher-order terms satisfying

f(O, y, z)=O, g(x, O, z)=O, h(O, O, z)=O,
(2.1a)

Df(O, O, O)= O, Dg(O, O, O)= O, Dh(O, O, O)= O.

Moreover, the functions 0, f, g, and h are C-.
DEFINITION 2.1. The coordinate (x, y, z) is admissible if, in addition to condition

(2.1a), we have h(0, y, z) h(x, 0, z)= 0. A change of variables is admissible if the new
variables are admissible.

LEMMA 2.2. There exists a C r-2 admissible change of variables for (2.1).
Proof The proof is based on an idea by Ovsyannikov and Sil’nikov (1986) and

Deng (1988c), using the Center Manifold Theorem. Let us rewrite (2.1) satisfying
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(2.1a) as follows"

:i Ax +fl(x, y, z)x,
(2.2) 29= By + g(x, y, z)y,

: Cz + O(z) + h(x, y, z)x + h2(x, y, z)y,
where if(z)= O(z)-Cz is Cr-, but f, g, hi, and h2 are C r-2. Consider a change of
variables

x x, y y, = z-p(, x)x- q(, y)y
with some C r-2 functions p and q to be determined satisfying p(0, 0) 0 and q(0, 0) 0.
Note that such a change of variables necessarily preserves condition (2.1a). Substituting
the new variables " into (2.2), we have

x p2 (1Y
C(+px + qy)+ 0(+px + qy)+ hx + h2Y-tx-p(Ax +fx)- dly- q(By+ glY),

where h, h2, f, and gl are understood in the new variables x, y, and r. Also,/i and
0 here are derivatives along the solutions of the new equations. For this reason p and
q may also be regarded as variables from R’ and R", respectively.

Let

0( +px + qy) 0() O(x, y, , p, q)px + O:z(x, y, , p, q)qy
for some Cr-2 functions 01 and 02. It is easy to see that

0,(0, 0, 0, 0, 0)= 0(0, 0, 0, 0, 0)- 0.

Moreover,
(2.3) O,(x, O, , p, q)= Ol(X 0, ’, p, 0), 02(0 y, r, p, q)= 02(0, y, sr, 0, q).

Collecting like terms in the equation for above yields= Cr + if(st) + [Cp + OlP--ti--pa--pfl + hl]X
+ Cq + Ozq gl qB qgl + h2]y.

Now it is easy to see that, for the new variable to be admissible, it suffices for the first
bracket term above to be zero when y 0 and for the second to be zero when x- 0.
For the first case, this is equivalent to saying that on the center-stable manifold y 0
the following coupled equations must be satisfied:

ax +f(x, O, + px),

(2.4) C" + ff(’),
lk= Cp-pa+ Ol(X, O, , p, q)p-pfa(x, O, +px) + h(x, O, +px).

Note that these equations do not actually depend on the q variable since
O(x, O, , p, q) O(x, 0, ’, p, 0) according to (2.3). The linearization of this vector field
of (m + l+ ml) equations at the trivial equilibrium point of the origin has a lower
triangular form whose diagonal blocks consist of the stable matrix A, the center matrix
C, and the matrix for the linear operator Lp Cp-pA for all x rn matrices p. Thus
the set of eigenvalues consists of Z(A), Z(C), and Z(L), where Z(A) is the set of
eigenvalues of a given linear operator A. Let us determine Z(L). It is easy to check
directly that if is an eigenvalue for the transpose matrix A* and v is a corresponding
eigenvector, and likewise, if/x e ;(C) with a corresponding eigenvector w, then wv*
is an eigenvector of L for the eigenvalue /x- ,, whose real parts are positive for all
e E(A) and/x e ;(C). Moreover, z- are the only eigenvalues, since the dimension

of the generalized eigenvector space corresponding to/z -, is the product of those of
I and (see, e.g., Lancaster (1969)).
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Because of such a separation of the eigenvalues, the theory of invariant manifolds
(see the same references above) applies. Thus, there exists a C r-2 function p =p(, x)
whose graph gives rise to the center-stable manifold of this (x, st, p) system of (2.4).
The same argument yields the function q.

Remark 2.3. (a) If (1.1) is C differentiably depending on a parameter, then the
admissible change of variables also smoothly varies with the parameter. This can be
directly achieved by the lemma, treating the parameter as an additional center flow.

(b) Under the admissible variables, the function 0 in (2.1) remains unchanged
and thus is C-, but f and g are reduced to Cr-2 and h is C r-3.

(c) As mentioned earlier in the Introduction, we obtain the "straight" invariant
foliations Ws= U Iol<< {Z Z0, y 0} and W= [A Izol<< {z Zo, x --0} as a corollary to
the admissible change of variables. In particular, the local stable and local unstable
manifolds are, respectively, the x-axis (y 0, z 0) and the y-axis (x 0, z 0) locally.
For different approaches to achieve the same foliation there exists a geometric proof
based on the graph transformation method by Hirsch, Pugh, and Shub (1977) exten-
sively for diffeomorphisms and Fenichel (1979) for flows, and an analytic proof based
on the variation of constants formula by Henry (1981) and later by Chow, Lin, and
Lu (1988). In contrast to our approach, the admissible variables can also be obtained
through their invariant foliations.

3. Exponential expansion with center flows. Let z(t) with z(0) Zo (or z(z) Zl)
be any solution on the center manifold defined for 0-<_ < - with respect to a certain
neighborhood of the origin, where z could be infinity. Given such a center solution
and a triplet (z, Xo, Yl) with 0-<_ z< z, a solution (x, y, z)(t) of (2.1) is called a Sil’nikov
solution if the Sil’nikov conditions x(0)= Xo, y(z)= Yl, and z(0)= z(0) are satisfied.
This is sometimes referred to as the first type of Sil’nikov problem. The second type
of Sil’nikov problem is, of course, the same as the first one except that the last condition
z(0) z(0) is replaced by z(z) z(z). Indeed, they are identical up to the time reversal
(t->-t). Suppose that the Sil’nikov solution exists and is unique with respect to the
Sil’nikov conditions for all 0=< z < z and sufficiently small [Xo[, ]Yl[, and [zol (or Izl)
and that the function (x, y, z)(t) d=f (X, y, z)(t, Z, Xo, Yl, Zo) (or (x, y, z)(t, ’, Xo, Yl, z))
is C k for all the arguments. Then the solution is said to admit an exponential expansion
of regularity k if there exists a Ck function R of (t, z, Xo, Yl, Zo) (or (t, -, Xo, y, Zl))
such that the following is satisfied"

(3.1a) z(t) zC(t)+ R(t, ’, Xo, Yl, go) (or R(t,

with

(3.1b) R(0, ’, Xo, Yl, Zo)=0 (or R(% % Xo, Yl, Zl)=0),

and there exist constants Ao < A < 0 </ </o and K independent of t, , Xo, Yl and Zo
(or Zl) such that

(3.1c) IO’x(t)l<=Kea’, ID’y(t)l<-Ke’-), IDig(t)l<=Keat+"<’-) for0<-t=<r,

where D denotes the ith derivative in all the arguments up to the order 0 =< i-< k.
For definiteness, let us consider the first type of Sil’nikov problem in the following

lemma. Necessary modifications for the second type are given in the remarks after the
proof.

LEMMA 3.1. Let the variable (x, y, z) for (2.1) be cr-2 admissible as in Lemma
2.2. Let fl > O, A < 0 < tz be arbitrary butfixed constants satisfying Ao +/3 r 2) < A < 0 <
tz < tZo fl r 2) and A + tz fl r 2) > O. Then there exist positive constants M, K, and
small go depending on the choices of fl, A, and only such that as long as IzC(t)[ _<-
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for 0 <- < .c, there exists a unique Sil’nikov solution for all 0 <- z 7", IXol, lYll, and

IZol <- 5o, which admits a Cr-3 exponential expansion. In particular, for the solution itself
the constant K in (3.1c) can be replaced by 2MtSo.

Proof. The proof is based on the uniform contraction mapping principle. Let

r min {A -Ao-fl(r-2),/Zo-/z- fl(r-2), A +/z fl(r-2)}
and M be large enough so that

[eArl <-- M e(’+[3)t for >= O, lent[ <--_ M e(g-)t for <_- O,

[e Ct <= Meltl for all t.

Let [[f[[ be the C r-2 norm of a given function f in the neighborhood of the origin for
which the admissible form (2.1) is valid. Let

(3.2) 8o
4

(lI/ll+llgll+ll011+llhll)

Let R(t)= z( t) z( t). Let us consider the equations for x, y, and R. We have

[(t) ,(t)-,(t) =f CR(t)+ L(z(t), R(t))R(t)+ h(x(t), y(t), R(t)+ z(t)),

where

(z, (s + zl as

with O(z)= O()-C as in (2.1). Now, it is easy to check that the existence of the
Sil’nikov solution is equivalent to the existence of the solutions to the following integral
equations:

x() e’xo+ e(’-’f(x, y, e +) ds,

(3.3) y(t) e(-’y + e(-g(x, y, R +) ds,

R(t) eC(-’[L(z, R)e + h(x, y, R + z)] ds,

where x= x(s), y= y(s),..., etc., in the integrals. Let be the set of continuous
functions (x,y,R)(t) defined on 0NtN< satisfying Ix(t)lN2oMe
2oM e"(-’, and lR(t) N2oM e+"(-’. Equip with a weight norm

l(x, y, e)= sup (x() e-’l+l() e-"(-’l+lN()
0NtN

Let T denote the operator defined by the right-hand side of the integral equation (3.3).
Then T is a contraction mapping on with the contraction constant

2M 1

Indeed, for (x, y, R) and (, fi, R) T(x, y, R), we have

IX(t)[ oM ex’ + M e("-)(’-’)4M=gllf[ ex" ds

4M3[[fl[
ext8oMext+ ext <28oM
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because of (3.2) and If[ O(Ixl+ly[+[zl)lx[ and Ao+/3 <-_A-or. Similarly, we have

I1 --< 2oMe’’-’). Moreover,

I/(t)l_-< Me’<’-s)[4MIIOII,S e’+’(’-’1 ds,

since ILl- O(IRI / Iz=l), Ihl- O(IxllYl). Thus,

[/(t)l <= 4M3(110
/ IIh II) e

_<_

because of (3.2) and A + fl . Hence, T(E) = Z. To show T is contractive, obsee
the following trivial estimates:

If(x, y, R +z)-f(Y, , +z)l2Maollfll eatll(x, y, R)-(Y, , )l],
Ig(x, y, R + z=)- g(, , + z=)l2Maollgll e(’-)ll(x, y, R)- (, , )11=

for (x, y, R) and (Y, f, )eE, since Ifl O(Ixl+lyl+lzl)lxl and Igl O(Ixl+lyl+lzl)lyl.
Also

IL(z, R)R + h(x, y, R + z)-(L(z,)+ h(, , + ))1
2Mo(l1011 + Ilh II) e’+(’-)ll(x, y, k) -(, , )11

since h(x, y, z) O(Ixl lyl). Now, similarly to the estimates for 2, y, and R above, it is
easy to check that

with p as above. Thus, by the Uniform Contraction Mapping Theorem, there exists
a unique function * in such that *= T(ff*). Moreover, ff*(t) ff*(t, r, Xo, y, Zo)
is C-3 in the parameters Xo, y, and Zo since the admissible change of variables is
C-2. To show it is also C-3 at r ro < r, we simply replace the interval [0, to] on
which all the functions of the space are defined by a larger one [0, to+ e] and then
show that the same operator T has a unique fixed point ff*(t, r, Xo, y, Zo) in the new
function space. Thus ff*(t, r, Xo, y, Zo) is C-3 in ro as well. The differentiability in
time simply follows the standard argument for the smoothness of solutions to the
initial value problem found in textbooks, for instance, Hale (1978) and Irwin (1980).
Since all the paial derivatives are continuous, if* is C-3 differentiable by a standard
fact from calculus.

The estimates for the derivatives follow the same technique as for the exponential
bounds above. To begin with, we observe first that the growth rate for all the variational
flow DJz(t, Zo) on the center manifold cannot be greater than O(ejl’l) for all 0j
r-3 and all as defined. Indeed, this can be proved directly by using the same
arguments as above, using an appropriate weight norm for all the functions z(t), i.e.,
the maximum of the exponentially scaled function e-’z(t)l over 0 < r (see also,
e.g., Vanderbauwhede and van Gils (1987)). When these estimates are used for the
variational integral equations for the mixed system obtained by differentiating (3.3),
we clearly see that the corresponding derivatives on x, y, and R will not exceed the
orders e(x+(j+l)o)t, e(-(j+l)o)(t-r), and e(h+(j+l)D)t+(-(j+l))(t-z), respectively. Again,
the desired estimates are obtained by the uniform contraction mapping principle
together with some appropriate weighted Banach spaces of functions. We note that
all the contraction constants are the same number p = but the constant 2M6o may
vary for each 0j r 3. By the choices of , , fl and of a sufficiently large K since
r is finite), the proof is completed.
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Remark 3.2. (a) For the second type of Sil’kinov problem with z(z)= zC(z)=
Lemma 3.1 is still valid by changing the inequality h +/z-/3(r-2) > 0 into h +/z +
/3(r-2)<0. This is obtained by directly applying Lemma 3.1 to the time-reversed
system. We will actually use this second type of lemma in 5.

(b) Later we will also use the proven fact that the variational flow DJzC(t, Zo)
cannot grow faster than O(ej’) for all 0 <- < z and 0-<j-< r-3. More precisely,
IDJz(t, Zo)l <- K ejl3t for 0-<_ < zc, where the constant K may be chosen as the same
one in the lemma.

(c) All the results above can also be easily extended to systems depending on
parameters by the same modification as in 2 (see Remark 2.3(a))--that is, by consider-
ing the parameters as additional center directions.

4. Strong ,-lemma. We will continue to use the same notation and results from
the two previous sections. In this section we consider the inclination behaviors of
subsets when carried by the local flow forward in time. To be precise, let D be an
n-dimensional C r-3 manifold intersecting the center-stable manifold W transversely
at a point po (Xo, 0, Zo). Thus D can be written as the graph of a C r-3 function
(x, z)= (p, q)(y) over a small 6-box B"(6)={ylly[<-6} on the y-axis. Let D denote
the connected image of D" in the 6o-box Ba (6o) of the origin under the time z mapping
of the flow. We are interested in the asymptotic inclination behavior of D as z +
under the assumption that the center-stable trajectory through the point of intersection

Po converges to the origin as z - +c. As observed in the introduction, when D" happens
to be one of the straight leaves {z Zo, x =0} on the center-unstable manifold, the
asymptotic inclination behavior is self-evident" D" converges to the unstable manifold,
with the tangent spaces identically equal to each other, so long as the center trajectory
goes to the origin (cf. Fig. 1.4). But, in general, D is said to be C r-3 e-close to the
unstable manifold WlUoo in Bd (60) by an arbitrarily small number e > 0 if there exists
a time z.(e) such that for every z-> z.(e), D is the graph of a C-3 function
(x, z) (p, q)(y) over lYl <-- o satisfying II(p, q)ll < , where I1"11 denotes the usual
C-3 norm for all C-3 functions in B(6o). Note that 60 is fixed but 0 < 6 _-< 60 is not,
in general. Now we have Lemma 4.1.

LEMMA 4.1 (strong h-lemma). Given an n-dimensional C-3 disc D transversely
intersecting the center-stable manifold at a point Po, if the solution through Po converges
to the origin as z- +o, then the image D in Bd(60) under the time z-mapping of the
flow is C-3 e-close to the unstable manifold. Moreover, the tangent space ofD at p is

exponentially close to the tangent unstable manifold at the origin.
Proof. The idea of the proof is to use the Sil’nikov solution to express D, then

the Implicit Function Theorem together with the exponential expansion to obtain the
graph representation of DT, and last, the expansion to estimate the rate of convergence.

Without loss of generality, we may assume that the center trajectory through the
projection point (0, 0, Zo) WlCo of the base point Po (Xo, 0, Zo) converges to the origin
forward in time. Indeed, this fact simply follows the straight invariant foliation on the
center-stable manifold due to the admissible variable and the assumption. Thus, let
us assume [zC(t, Zo)[ =< 60/4 for all -> 0.

By definition,

D {(Xl, Yl, Zl)[ (Xl, Yl, Zl)--(X, y, Z)(Z, O, P(Yo), YO, q(YO))

for those lYol so that Ixl, lyll and IZll
To use the Sil’nikov solution for the desired alternative representation of D, we need
to estimate first the definition time for the center flow. Since Iz(t, q(0))l <--60/4 with
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q(0) Zo for all t->_ 0, by the continuous dependence on the initial data we have that
for every r>0 there exists a small number y(7-) such that IzC(t, q(yo))]<-8o/2 for all

lYol _-< y( r) and 0=< t<=r. In fact, we can obtain a better approximation
(,o/4KIIqll) e- by the following estimate:

Iz(t, q(yo))l<--lz(t, q(Yo))-zC(t, Zo)i+lzC(t,

80 80<-_ge’llqllY()/--<-
4 2

provided =< 7-. Thus, the exponential expansion implies that for lyol-<-

yo y(0, 7-, P(Yo), Yl, q(Yo))

holds true provided lYll-<- 6o. By comparing the two sides of this formula we can easily
show by the exponential bounds (3.1c) with K=2M6o when i=0 that for 7->=

clef
7"1 1/(-)ln(8MKllqll), the relation ]y11--<6o must imply lYol<Y(). Thus, in
terms of the Sil’nikov solution, D7 can be written as

D7 {(Xl, Yl, Zl)Ix1 x(7-, 7-, P(Yo), Yl, q(Yo)), Yo y(0, 7-, P(Yo), Yl, q(Yo)),

Zl z(7-, O, P(Yo), Yo, q(Yo)), for those lyol <-- y()such that IXll, lyll, Izl <- o}.

To express D as the graph of a C r-3 function over lyll <--o, we use the Implicit
Function Theorem to solve the equation

(Yo Yl)
def

Yo-- y(O, 7-, P(Yo), Yl, q(Yo)) 0

for Yo in terms of Yl. Since (0, 0)= 0 and the Jacobian

0 0 _, 1
=>1-Y(O, 7-,P(Yo),Yl,q(Yo)) >-l-K(llpll/llqll) e

Oyo Oyo 2
deffor 7-> 7-2 (1//x)In (2K(llpll+llqll)) and all lyll_-< 6o and [yol<=6, we can solve yo

O(Yl) from the equation for sufficiently small ]Yll. Moreover, IO(yl)l<=2M6o e-.
Note that the last inequality actually implies that the domain of the solution can
be extended to the entire 6o-box, while still maintaining the constraint lYol =< 3’(7-) for
all 7-=> 7-1 + 7-2. Furthermore, 11 =<2K e-’. Let p(yl)= x(7-, 7-, P(O(Yl)),Yl, q(O(Yl)))
and q(Yl) z(7-, 0, P(O(Yl)), O(Yl), q(q(Yl))) over lYll--< 6o. This completes the
second part of the proof.

Last, let us estimate the rate of convergence. It is obvious that we have IIPII
O(e) < e for large 7-. Moreover, by the expansion and Remark 3.2(b) on the growth
rate of the center flows,

Iq,(y,)l <= lz( , q( O,(yl) )l + lR 7-, 7-, p(O,(yl)), Yl, q(qt,(yl)))l

<=lzC(7-, q(0))[+ (7-, .) Ilqlllq,,(y)l+2M6o e
OZo

E
<=-+ K e(-llq[ e-+ 2M6o ex

2

--<-+-+-< e
2 4 4

for sufficiently large 7-, provided [z(7-, q(O))[<e/2. The last inequality is true since
z(t, q(0))0 as t+. Finally, since z(7-, q(0)) does not depend on Yl, all the
derivatives for p and q in Yl up to the order r-3 are exponentially small. ]
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As we know, center-stable and center-unstable manifolds are not necessarily
unique. However, we have the following corollary that will also be used in 5.

COROLLARY 4.2. Two given center-stable manifolds have the same tangent space at
any common point whose trajectory converges to the equilibrium.

Proof. Let W and W be two center-stable manifolds intersecting at a point p.
If they do not have the same tangent space at p, then there must be at least one tangent
direction, say v, of W normal to Ws. Using W as the center-stable manifold in
Lemma 4.1, the limiting direction of v at the origin must be contained in the tangent
unstable manifold at the origin that is normal to the center eigenvector space. This is
a contradiction since both W and W have the same tangent spaceAthe center
eigenvector space--at the origin.

5. Homoclinic bifurcations with nonhyperbolic equilibria. In this section we will
classify homoclinic orbits with nonhyperbolic equilibria according to the strong inclina-
tion property from the previous section, and consider specifically three basic types of
codimension-1 nonhyperbolic equilibria that undergo the saddle-node, transcritical,
and pitchfork bifurcations, respectively. We will state and prove the corresponding
theorems for the generic two-parameter unfoldings.

For definiteness, from now on we will explicitly assume that the vector field
F= F(u, a) of (1.1) depends on two parameters a =(al, O2) in the C fashion. Also,
for directness we will assume the parameter is generic in the sense that Ce governs the
bifurcations of the equilibria while a2 governs the transverse crossing of the center-
unstable manifold and the stable manifold. This will be made precise as we proceed.

In this paper, we consider only the bifurcation of those homoclinic orbits at the
bifurcation point a =0, F F(t) that are contained in either WUN W or WCSf-1 Wu.
Up to the time reversal (t-->-t) we will always assume the first case. We will also
assume that the homoclinic orbit is asymptotically tangent to the center eigenvector
space of the linearization DF(O, 0) as t-->-. A homoclinic orbit F satisfying these
two conditions is called nondegenerate if, in addition, there exists an n-dimensional
C disc D" on the center-unstable manifold such that as a submanifold of W it
transversely intersects the center manifold, while as a submanifold ofa it transversely
intersects the center-stable manifold W at a point from F. Observe that when the
center dimension is 1, the nondegeneracy of a F is equivalent to the transverse
intersecting of the center-unstable and center-stable manifolds along F, i.e.,

(5.1a) span {TpW, TpWCU}--d forallpF,

where TpW means the tangent space of a smooth manifold W at a base point p (see
Fig. 5.1). Also note that, since the tangent spaces of center-stable and center-unstable
manifolds are uniquely defined along a homoclinic orbit F by Corollary 4.2, the
definition of nondegeneracy is independent of the choices of these manifolds (for a
different justification, see Chow and Lin (1988)).

Let E be any (d 1)-dimensional small and closed Poincar6 cross section transverse
to the homoclinic orbit F. Let W (c) and WS(c) denote the parametrically dependent
center-unstable and stable manifolds that also vary with the parameter a in the C
fashion. Let d(Cel, ce2) be the distance between E f’) WCU(a) and E fq WS(a), where d
is continuous and d (0, 0) 0, which represents the existence of the original homoclinic
orbit F. The crossing of the center-unstable and stable manifolds is said to be transverse
along the c2-direction if the following condition is satisfied:

d(O, a2)
(5.1b) lim0.
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FIG. 5.1. The phase portrait of a nondegenerate homoclinic orbit.

Since the flow from one Poincar6 cross section to another gives rise to a ditteomorphism,
this property of nonzero limit, and consequently the definition of transverse crossing
above, are independent of the choices of cross sections.

Next, let us introduce the types of codimension-1 bifurcations of the equilibria
to be considered. Let us assume that the linearization DuF(O, 0) has only one eigenvalue
with zero real part, and that the equilibrium point u 0 at a 0 is any of the following:

(5.2a) Saddle-node" elDF(O, 0)(er, er) > 0, eD,F(O, O) > O,

elD2F(O O) O,
(5.2b) Transcritical" F(0, a)=0 forall a, eDE,,F(O, 0)(er, er)>0,

2 2elD,o,F(O, 0)er> 0, eD,,2F(O, 0)er 0,

(5.2c) Pitchfork: F(0, a)=0, eD2,,F(O, a)(er, er)--0 forall a,

eiDa,,F(O, 0)(er, er, er) > 0, eD,F(O, 0)er> 0, 2elD,2F(O, 0)er 0,

where er and e are a right and a left eigenvector of the zero eigenvalue, respectively,
with 81 chosen so that eer>0 (see Sotomayor (1974), Guckenheimer and Holmes
(1983)). In terms of the center manifold, these intimidating and technical conditions
can always be reinterpreted, respectively, in the following relatively explicit ways.
Indeed, if we let 0- O(z, a) be the vector field on the center manifold as in (2.1) of
2, then. we have, equivalent to (5.2a-c), respectively,

00 020 00
(5.3a) 0(0, 0) z (0, 0) 0, (0, 0) >0,0Z2 (0, 0) > 0,

0tl
O0 020

(5.3b) 0(0, a)=0 foralla, --(0, 0)=0, (0,0)>0,
OZ OZ2

020 020
(o,o)>o,

O0=020(0, a)=0 foralla, --(0,0)=0,(5.3c) 0(0, a)
Oz2 Oz

020 0200 0
(0, O) > O, (0, O) > O, (0, O) O.

OZ OZ OOl OZ 001.2

0o
(o, o) o,
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We emphasize once again the explicit roles forced on the parameters as in (5.1b) and
(5.2a-c) are simply for definiteness and they can be achieved by following the procedure
below. Take the first case (5.2a) as an example, elD,F(O, 0)> 0 and elD2F(O 0)=0
in (5.2a) can always be obtained by choosing al as the gradient direction of the scalar
function elF(0," and a2 the normal direction to the gradient vector at a 0. Once
this is done, it only remains to check condition (5.1b) if an application problem ever
arises. As another remark, let us point out that the last two bifurcations of steady states
are not generically of codimension 1. They can always be perturbed into a saddle-node
equilibrium point by making O0/Oa(O, 0) rs 0. But they do appear in many applications
due to other mechanisms, e.g., certain types of symmetries adhering to the physical
models considered will force the persistence of the transcritical or pitchfork steady
states. See Guckenheimer and Holmes (1983), and in particular, Dangelmayr, Arm-
bruster, and Neveling (1985) and Ju (1988) for specific examples. Nevertheless a
two-parameter family of vector fields having a nondegenerate homoclinic orbit to a
nonhyperbolic equilibrium point (of the preceding three types) is said to be generic
(in our restrictive sense above and in this paper only) if up to a C change of parameters
the transverse crossing condition (5.1b) and one of the three nonhyperbolic conditions
(5.2a-c) are satisfied.

We are now in a position to state our main theorems. Before doing so, we discuss
preliminary results on the local bifurcations of steady states as preparation. For the
original account of those results, see Sotomayor (1974). We should be aware that all
the discussions are valid only in an implicitly small but fixed neighborhood of the
origin (u, a)= (0, 0) in d+2. Let us begin with the saddle-node case.

Solving the equation 0(z, a)=O and 00/Oz(z, a)=O simultaneously for z and a
by the Implicit Function Theorem (IFT), we obtain the continuation of the saddle-node
equilibrium points z Eo(a2) along a curve a Co(a2). Both functions are C- and
satisfy

(5.4a) o(0) Co(0)= (0)= c6(0)= 0,

because of 08/0a2(0, 0)=0. To find hyperbolic equilibria near u =0 we solve the
equation O(z, a)=0 alone this time for a by the IFT and obtain a C r-1 function
a 3’(z, a) satisfying

O3,
7( Eo( a2), a2) co(a2), z E(a2)’ a2) O,

(5.4b)
02/(Eo(ot2) or2) < 0,

0/ (0, 0) 0.
0Z2 002

Thus, by the Taylor expansion at z Eo(a2) we can easily see that al 3,(z, a2) < Co(a2)
for z # Eo(a2). Indeed, expanding , at z Eo(a2) and taking the square root, we have

(5.4c) +x/c0(a2)- o 4-1/202’//0Z2(E0(O2), 02) O(Ig- Eo(o2)l)(z- Eo(o2) ),

Therefore, for every a < Co(a2) there are exactly two equilibria lying on both sides of
Eo(a2). Denote the one above Eo by E/ and the other by E_. Note that E/ and E_

collide at Eo when a Co(a2). As we have mentioned earlier, in the Introduction, a
number of people have also contributed to the following theorem.

TIaEOREM 5.1 (Chow and Lin (1988)). For a generic two-pararneterfamily ofvector
fields satisfying conditions (5.1a, b) and (5.2a) for a nondegenerate homoclinic orbit to
a saddle-node equilibrium there exists in a neighborhood A of a =0 a Cr-3 curve
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O --C1(O2) with a quadratic tangency to the Co curve at a =0 (i.e., Co(0)= Cl(0), c(0)
c(O) but c’(O) c’(O)) such that, up topossibly renaming the direction ofa2, thefollowing
are satisfied in a small tubular neighborhood of the homoclinic orbit"

(i) For a I= {a Aleither al > Co(a2), a2-<-0, or 02>0 o > c1(02)} there exists
a unique hyperbolic periodic orbit having m Floquet multipliers inside the unit circle in
the plane.

(ii) For a II={a Alal Cl(a2), a2>0} there exists a unique homoclinic orbit
to E+.

(iii) For ot III={a AlOtl <ca(a2) a2>=O or 01c0(02), 020} there exists a
unique global heteroclinic orbit from E+ to E_ in addition to the one connecting E+ to
E_ from the local bifurcation of the saddle-node equilibrium. In particular, when a <
cl(a), a2> 0, respectively, al Cl(a2), a2 < 0, respectively, Cl(a2) < al <- Co(a2), a2<-0,
this orbit approaches E_ forward in time asymptotically along the center manifold from
above E_, respectively, the strong stable manifold ofE_, respectively, the center manifold
from below E_ (see Fig. 5.2).

Next, we consider~ the transcritical case,(5.3b). To find nonzero equilibrium points
we solve equation O(z, a)=0 for z, where 0= O(z, a)/z. Again by the IFT we obtain
a C ’-2 function z El(a) satisfying

(5.5) El(0) =0, OE1 OE1(o) < o, (o) o.

Then we have Theorem 5.2 below.
THEOREM 5.2. For a generic two-parameterfamily ofvectorfields satisfying (5.1a, b)

and (5.2b) for a nondegenerate homoclinic orbit to a transcritical equilibrium there exists
in a neighborhood A of a =0 a C- curve al Cl(a2) satisfying c1(0) <0 such that, up

C, ft Co

E+EE+_ II".
0

III

E+

FIG. 5.2. e bifurcation diagram for the saddle-node homoelinic bifurcation.
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tO possibly renaming the direction of a2, the following are satisfied in a small tubular
neighborhood of the homoclinic orbit:

(i) For a I { ce A c1 > Cl (a2), a2 > 0} there exists a uniqueperiodic orbit having
m Floquet multipliers inside the unit circle.

(ii) For a II {a Ala Cl(a2), a>0} there exists a unique homoclinic orbit
to E

(iii) For a III {a Ala < Cl(Ce2)} there exists a unique global heteroclinic orbit
from E to the origin in addition to the local connection due to the local transcritical
bifurcation. In particular, it approaches the origin from different sides of the origin as the
sign of tz2 changes, and from the strong stable manifold of the origin when Ce2 --O.

(iv) For a IV= {a Ala =0, a20} there exists a unique homoclinic orbit to the
saddle-node origin.

(v) For a V {c A tz > 0, c2 < 0} there exists a unique global heteroclinic orbit
from the origin to E in addition to the local connection. In particular, it approaches E
from its different sides on the center manifold as a crosses the curve al Cl(a), andfrom
the strong unstable manifold of E1 on the curve.

(vi) For a VI {c A[ ce_= 0, al >0} there exists a unique homoclinic orbit to the
origin (see Fig. 5.3).

III 0
.,/VI

O
Et

IV>_.V

0

0

o +_../7..>

FIG. 5.3. The bifurcation diagram for the transcritical homoclinic bifurcation.

Finally, we consider the pitchfork case (5.3c). To find nonzero equilibrium points
we solve the equation O(z, or)-0 for al by the IFT, where 0- O(z, a)/z and obtain a
Cr-2 curve O y(Z, a2) satisfying

Oy 023,
(5.6a) 3,(0, a2) =zz (0, a2) 0, (0,0z 0)<0.

Thus, by the Taylor expansion at z 0, we can easily see that a y(z, a)< 0 for
z 0. In fact, we have

(5.6b) + %/1-- -1/2(ozY/oz2)(O, a2) -t-- O([zl)z.
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Therefore, for every O < 0 there exist exactly two nonzero equilibria lying on both
sides of the zero on the z-axis. Denote the one above the origin by E/ and the other
by E_. Note that E/ and E_ collide at the origin when c1 0. We have Theorem 5.3.

THEOREM 5.3. For a generic two-parameter family of vector fields satisfying condi-
tions (5.1a, b) and (5.2c) for a nondegenerate homoclinic orbit to a pitchfork equilibrium,
there exists in a neighborhood A of =0 a Cr-4 curve al c(a2) with a quadratic
tangency to the a2-axis (i.e., c1(0)= c(0)=0 but c’(O)SO) such that, up to possibly
renaming the direction of a2, the following are satisfied in a small tubular neighborhood
of the homoclinic orbit:

(i) For a I {a A] al > c(a2), a2 > 0} there exists a uniqueperiodic orbit having
m Floquet multipliers inside the unit circle.

(ii) For a II={a E AIOtl=Cl(Ot2), a2>0} there exists a unique homoclinic orbit
to E+.

(iii) For a III {a e AI < c(=)} there exists a unique global heteroclinic orbit
from E/ to the origin, approaching the origin asymptotically along the center direction
but from its different sides as the sign of a2 changes.

(iv) For a IV= {a AIc c(c=), c= < 0} there exists a unique global heteroclinic
orbit from E+ to E_.

(v) For aV={aAlal>C(a2) a2<0} there does not exist any global homo-
clinic, heteroclinic, or periodic orbit.

(vi) For VI { AI=0, > 0} there exists a unique homoclinic orbit to the
origin which is the continuation of the original homoclinic orbit (see Fig. 5.4).

Before proving the theorems, let us draw heuristically the phase portraits in Fig.
5.5 for some oversimplified situations where d 2, 0 a + z2 for the saddle-node case,
0 z(al + z) for the transcritical case, and 0 Z(al + z2) for the pitchfork case, respec-
tively. In terms of the straight invariant foliation, the c curves, for example, are given

1 ,vy v

FG. 5.4. The bifurcation diagram for the pitchfork homoclinic bifurcation.
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(a) (b)

(c)

FIG. 5.5. Some phase portraits for when periodic orbits take place. (a) Saddle-node. (b) Transcritical. (c)
Pitchfork.

as a =-a2
2 in the first and third cases and a =-o2 in the second case. Also, the

existence of the periodic orbits is equivalent to solving the scalar equation z(0)=
IIl(X(Z), 6o) for the time -, where (x( t), z( t)) solves the second type of Sil’nikov
problem x(0) Xo 3o and z(-) z 6o. Let E+(a) denote the bifurcated equilibrium
point above the origin, if any, or zero otherwise, and let s z(0)- E+ be the distance
of the "initial" point z(0) on Eo to E+. Then x(’) must be O(s2) by the exponential
expansion (for more details concerning this estimate, see the proof below). Thus, we
obtain the bifurcation equation

(5.7) s---E+(Otl)+Ot2+O(s2) fors>0

by the Taylor expansion IIl(x, 6o)= c2+ O(x). We do not even have the constraint
s > 0 in the saddle-node bifurcation case, where the equilibrium disappears completely
for a > 0. Using this equation together with the straight foliation, it is not difficult to
derive all the conclusions in the theorems. Not surprisingly, we will derive the same
form of the bifurcation equation (5.7) for the general cases through a modified
Lyapunov-Schmidt reduction. Motivated by these model examples, we can now prove
Theorem 5.1.
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Proof of Theorem 5.1. We will assume that our readers are familiar with the
construction of the Poincar6 cross sections Eo and E1 and the Poincar6 return maps
IIo and II1 from 1. The necessary modifications are made as follows: the y-component
there is now augmented into the (y, z)-component and, specifically, Y_, is given as
{z 60} in the 6o-box of the origin. To use the idea of Lyapunov-Schmidt reduction
to the return map II p(r) po(’) under the Sil’nikov variables, we need to normalize
our variables in the following as preparations.

First, normalize the local coordinates on Eo as (sc, y, z) such that (:, y, z) (0, 0, 0)
represents the intersection point F fq Eo. Similarly, use (x, r/) for E so that (x, r/) (0, 0)
corresponds F fq E1 because we have assumed the homoclinic orbit is asymptotically
tangent to the center eigenvector space as -o. See Fig. 5.6.

FIG. 5.6. The cross sections and a perturbed phase portrait for the saddle-node case.

Second, use Lemma 3.1 for the second type of exponential expansion together
with Remark 3.2(a) and expand the Sil’nikov solution with respect to the center
trajectory zC(t z, 60, a) for 0 =< =< z satisfying zC(0, 60, a) 60. The Sil’nikov variables
(z, :, r/, a) parametrize Eo and E1 as follows:

(z, , *1, a)(,y(O, z, , *1, 60, a),z(O, z, , rh 60, a)),

Replace z by a variable s, where z and s are related by

where

if al =< Co(a2),
otherwise.

Since Oz’ we may solve for r as a function of (s, a):

(5.8) ’= ’(s,
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Recall from (3.1a) that

z(0, , :, n, o, )= z(-, o, )+ R(0, , :, , o, ).
Define

X(s, , , )= x(,, , , n, o, ),
Y(s, , rl, a)= y(0, ’, :, r/, 60, a),

R(s, , q, a)= R(O, "r, , q, 60, a),

where z is defined by (5.8). Then the normalized Sil’nikov variables (s, , r/, a) para-
metrize Eo and E1 as follows"

po(S,, n, a) (, Y(s,, rl, a),s+s*(a)+R(s,, n,a)),

OI(S, , n, O)--" X s, , "l, 0l),

Clearly, the local map under these new variables is

no po(s, , n, ,)= p(s, , n, ,).

Note that the change of variables z- s is C r-1 in z and at least continuous in
Actually we will see in a moment that it is C r-3 in e and ag. if a <= Co(ag.), where
e x/Co(ag.) al, and C-1 in a > Co(a2). Note also that when a > Co(a2) there is not
any equilibrium point; therefore, the existence time of definition for the local center
trajectory zC(-’r, 60, a) is finite and s can be both positive and negative depending on
whether - sufficiently large. On the contrary, we require s > 0 when

Third, we also need to extend the functions X, Y, and R differentiably to s <_-0

whenever a _-> Co(a2) occurs. To do this, it suffices to show that these functions are of
order O(sg.), at least at this parameter range. Because of the exponential bounds e
and e for the functions x(z, z, Xo, y, z, a) and (y, z)(0, z, Xo, y, zl, a), respectively,
it suffices to show s zC(-z, 60, a) E/(a) >- a e-b‘ for some positive constants a and
b. To show the lower exponentially small bound on a Co(a2), we take the Taylor
expansion of 0 at z Eo(a2)= E+(a) and use (5.3a) to obtain

1 39-0 (Eo, Ce)(Z-- Eo)2+ O([g- Eo]3)O( z, , - z<= a(z- Eo)9.

for some positive constant al. Thus, by the comparison principle, the integral curve
through the same value 6o at 0 for the vector field O(z, ) lies above that of the
vector field al(Z--Eo)2 for the negative time, that is,

z(-, o, )- Eo() _->. > 0
’+ k2

for some constants ki. This certainly implies the desired lower bound. For the other
case where al<co(a2), we take the Taylor expansion of 0 at z= E+(a)" O(z, a)=
O0/Oz(E+, a)(z-E+)+O(Iz-E+]2). Expanding O0/Oz further, we have

t.oz
[ ’9 0 ]O(z, a)= ,7_2 (Eo, a)(E+-Eo)+O(IE+-Eo]2) (z-E+)+O(lz-E+l2)

<=be(z-E+)
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for some positive constant b since, by (5.4c), E+-Eo O(x/Co(a2)-al) O(e). (In
fact, by the IFT we can solve E/-E0 as a C r-3 function of e and a2.) Therefore, by
the comparison principle we again derive the desired lower bound for s. We also use
X, Y, and R to extend the functions.

As the last preparation, we write the global map 111 in the normalized coordinates
for Zo and E1 as

sc=P(x,*1, a), y= Q(x, *1, a), z= T(x, *1, a).
We are now ready to consider the equation po(S, sc, .1, a)= II1 p(s, , ’1, a) for

periodic orbits running around the homoclinic loop once. This is equivalent to solving
the equation (s, :, .1, a)-0 for the normalized Sil’nikov variable (s, sc, .1) with the
constraint s > 0 only if a <- Co(a2), where

(s, so, .1, a) Y(s,,*1, a) Q
s+ s*(a)+ R(s, , .1, a) T

Certainly (0, 0, 0, 0)=0 due to the existence of the homoclinic orbit. Compute the
Jacobian with respect to (s, , .1) at the origin in order to use the IFT; then we have

(5.9) D(0, 0, 0, 0)-- 0 0 -Q(0, 0, 0)
1 0-T(O,O,O)

by (3.1c), Remark 3.2(b), and the definition of s. Since the first m-columns span the
local center-stable tangent space in Zo, Tp(WC,ofqZo), at p=Ff’)Eo while the last
n-columns span the global center-unstable tangent space in o, Tp( WCUf") o), then by
the nondegeneracy condition (5.1a) the Jacobian is nonsingular. Thus, by the IFT, a
unique solution (s, sc, .1) (g, , )(a) exists for a from a small neighborhood A of the
origin. To ensure that this solution indeed gives rise to a periodic orbit, we need to
find only those a satisfying a -< Co(a2) such that the constraint s > 0 is satisfied because
there is no restriction on s when a> Co(C2). To do this, we need the following
Lyapunov-Schmidt reduction procedure to obtain the bifurcation equation.

Because of the special structure of the Jacobian (5.9) of , we can first solve sc

and .1 in terms of s and a from the first m + n 1 equations of 0 by the IFT. Thus,
as far as only these equations are concerned, so(a) and (a) are the solutions and
g(a) can be treated as an independent variable. Hence, by formally setting g 0 and
plugging : :(a) and .1 (a) in the function , the equation 0 will be respected
except for the last equation, that is,

sc P(0, /, a), 0 Q(0, , a), k(a) T(0, , a),
where the function k(a) deZ T(0, , o). Note that the geometrical interpretation of this
relation is that (, 0, k(a)) is the unique intersection point of the global center-unstable
manifold {(P, Q, T)(0, .1, a)} with the local center-stable manifold Wc {y=0} (cf.
Fig. 5.6) in o. By the transversality condition (5.1a) the function k(a) must be at least
C r-2 (the same as the admissible variable; the same conclusion also holds for (a)
and /(a) as well). By means of the distance d(a) between W and WSoc in Eo, we
actually know more about the function k(a). Indeed, by definition, it must satisfy

0<=d(a) min ](P, Q, T)(0, .1, a)-(sc, 0, 0)]--<lk()l,
I:l.lnl_-<o

lim
Ik((0, c2))1

> 0
2--- 0
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by the transverse crossing condition (5.1b). Thus, for a2>0, k((0, t2) must have a
constant sign. Since k(0)- 0, the inequalities above imply

ck(0)
#0.

For definiteness, we assume Ok(O)/Ooz2 > 0, which corresponds to preserving the direc-
tion of a2 in the statement of the theorem.

Now, the desired bifurcation equation is simply the last equation of -0 at
(s, , /)= (g, , )(a) and a-< co(a2). Using Taylor expansion at g=0, and the order
estimates for the functions X, Y, and R above, we have

= -E+(c) + k(a)+ O(2),

which has the same form as (5.7). Thus g> 0 for a <-_ Co(a2) if and only if

k(o) > E+(a).

To describe this region {k(a)> E+(a)} {al--< Co(a2)}, let us begin with its boun-
dary k(a)= E+(a). This is precisely when the homoclinic orbit to E+(a) takes place,
since the stable manifold of E+ is {y-0, z-E+} by the "straight" foliation of the
admissible variable mentioned in 1 and 2 and the intersection point of the unstable
manifold of E+, where the center-stable manifold of the origin is (, 0, k(a)). By
substituting z E+(a)= k(a) into the function al y(z, a2) in (5.4b) we can solve for
a C r-2 curve al c(a2) satisfying c(0) =0 from the equation al y(k(c), c2), and
c(a2)<Co(a2) is always true by the definition of y. Thus k(a)= E+(a), or E_(a) on

c. Indeed we claim that k(a)= E+(a) is satisfied if and only if c c(a2) and a2>O.
To show this we need only to rule out k(c)- E+(a) on the lower half c curve. Since
E(0)=0, c(0)=0 and d/daEk((c, a2))l=o=Ok/oa2(O)>O, k((c(a), c))=
E+((c(a2), a2))_-> Eo(a2) if and only if a> 0. For exactly the same reason we see that
k((co(a2), a2))> E+((Co(a2), a2)) Eo(a2) for a2>0 and k((co(c2), a2))<
E_((co(a2), c2)) Eo(a2) for ct2 < 0. Moreover, since E+(a) Eo(a2)
while k(a)-Eo(a2) is differentiable, it must be that k(a)<E+(a) for a<Cl(C).
Therefore, we can conclude that {k(a)> E+(a)}{al<-co(a2)} is the wedge-shaped
region between the curves Cl and Co"

{1c1(2) < a1<- Co(2),

(see Fig. 5.7).
To show that c has quadratic tangency to the Co curve, simply observe from (5.4c),

c(0) c(0) E(0) 0, and Ok/Oa2(O) 0 that

1 02y
(0, 0) [0ak2 ]2(C CO)’(O " OZ2 (0) < O.

Next, to show that the periodic orbit is unique, we need to rule out the possibility
that there might be solutions to the following cyclic equations other than the trivial
one (g, , /) found above"

Y(s,+, ,+, r/,+, a) Q (X(s,, ,, r/,, a), r/, a)=O
Si+ + S*(O) -{" R(s,+I, i+1, "/i+1, t) T

for =0,..., (mod k). Note that their solutions with si >0 imply the existence of
periodic orbits running around the loop k times. By the IFT again, we can show that
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C1

k(a)=E+(a)

Co

E()<k(a)<E+(a)

FIG. 5.7

the solutions are unique, which must be the repetition of k copies of the (g, se, ). Thus
the uniqueness is established. Indeed, because the associated Jacobian consists of
nonzero blocks only as does DO(0, 0, 0, 0) above, the parameter range on which the
existence and uniqueness conclusion holds for such periodic orbits can be chosen the
same as A.

Thus to complete (i) it only remains to show that the periodic orbit has m Floquet
multipliers inside and n outside the unit circle. To see this, consider the characteristic
polynomial det ID(p II po(g, l, a))- hlI =0, where r[ II1 pl p is the Poin-
car6 map in the old variables. It is equivalent to considering det [DII1 Dpl(g, , , a)
hDpo(g, , , a)[ =0, which has the form det Q(0, 0, a)h"+p(h,g, , (q, a)=0, where
p is an (m + n)-degree polynomial with all the coefficients having the order at least
O(s). Thus as s-->0 it has precisely m roots inside and n outside the unit circle.

Part (ii) has been proved above, since k(a)- E+(a) takes place exactly on the c
curve if and only if a2>0. To show (iii), note that when k(a)<E+(a), the point
(sc, 0, k) from the global unstable manifold of E+ lies in the local stable manifold of
E_, which is {y- 0}. Note also that when k(a)- E_(a) the heteroclinic connection
comes in along the strong stable manifold of E_, which is {y 0, z E_} by the straight
foliation of the admissible variable. This happens precisely on the curve al- Cl(a2)
for the same reasons as for k(a) E+(a) above. But this time a2 < 0 since k(a)
E_(a < E+(t ). [3

The proofs for Theorems 5.2 and 5.3 follow the same strategy as above. That is,
use s, the distance of the center trajectory z(-", o, a) to the bifurcated equilibrium
above the origin; use the comparison principle to estimate the lower bounds of s in
terms of an exponentially small number e-; extend the functions X, Y, and Z to
s-< 0 differentiably; and use the IFT to obtain the bifurcation equation and the straight
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foliation of the admissible variable to establish the connections. In these two cases, s
is always positive because of the persistence of equilibria. We omit the details here
because the proofs are not only similar but also much easier.
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EXISTENCE, BIFURCATION, AND LIMIT OF SOLUTIONS
OF THE SIMILARITY EQUATIONS FOR FLOATING

RECTANGULAR CAVITIES AND DISKS*

CHUNQING LUJ-

Abstract. The differential equation f’"+Q[Aff"-(f’)2]=fl, (Ae[0, oo), Q>0, fl real, ’=d/dx for
x [0, ]) with the boundary conditionsf(0) =f(1) =f"(1) =f"(O) + 0 is considered. Existence of solutions
of this boundary value problem is proved for fl _-< 0. Bifurcation of the number of solutions as A varies is
studied, and the limit of convex solutions as Q- oo is given.

Key words, similarity equations, existence, bifurcation, limit

AMS(MOS) subject classifications. 34, 76

Introduction. The third-order nonlinear ordinary differential equation

(1) f’" + Q[Aft"- (f,)2] =/3,

where Q > 0, A e [0, ), and fl are constants, f=f(x) is an unknown function defined
in [0, 1], and ’= d/dx subject to the boundary conditions

(2) f(O)=f(1)=f"(1)=f"(O)+ 1 =0

arises from a reduction by similarity ofboundary layer formulation ofthe Navier-Stokes
equations for the distributions of velocity in a low Prandtl number fluid zone in the
shape of either a floating rectangular slot or a floating circular disk [5], [6]. The flow
in low Prandtl number fluid (liquid metal or silicon) is contained by the lateral solid
surfaces and surface tension. The floating zones are assumed to be in a microgravity
environment so that the force of gravity is neglected. Existence of solutions of (1)-(2)
has been proved in [1] for the following cases:

(1) For given A > 0 and for fle (0, 1 there exists at least one Q > 0 such that the
convex solutions exist.

(2) Let A 1 or 2. Then for given Q > 0 there exists at least one fl such that the
convex solutions exist.

In this paper we continue our study of the existence of solutions for fl -< 0, some
bifurcation phenomena of the number of solutions as parameter A varies, and the
limits of such solutions as Q--> oo. The paper is divided into four sections. In 1 we
prove the existence of solutions in the case fl 0. The existence of convex solutions
for all A e [1, 2] is given in 2. In 3 we study bifurcation phenomena, i.e., we prove
that if A 1, then the solution is unique for given Q, and that if A 2, then there exist
multiple solutions for some Q. Finally, we prove the existence of solutions for fl < 0,
and discuss the limit of the convex solutions as Q-+ +oo. Considering Q cl Re and
13 c2" (OP/Ox) for the floating slot (A- 1), and/3 c (OP/Or) for the floating disk
(A 2), where ci are constants, P is the pressure, and Re is the Reynolds number (see
[5], [6], and [1]), we see that our results imply that

1) If the pressure P is constant (/3 0), then there always exist two-cell flows;
2) There exist two-cell and three-cell flows for the floating slot;
3) As the Reynolds number Re becomes large, Q is very large. In this case flows

exist with/3 < 0; namely, the pressure is monotonously decreasing with respect to x

* Received by the editors December 19, 1988; accepted for publication (in revised form) June 11, 1989.

" Institute of Software, Academia Sinica, Beijing, People’s Republic of China. Present address, Depart-
ment of Mathematics, State University of New York, Buffalo, New York 14214.
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for the slot or to r for the disk (see [1]). And as Q- the velocities of the two-cell
flows tend to zero.

For convenience, we introduce the change of variable" y 1- x. Then the equation
takes the following form:

(3) g’"-Q[Agg"-(g’)2]=-fl (0_-<y_-< 1)

subject to the boundary conditions

(4) g(0) g"(0) g(1) g"(1) / 1 0.

1. Existence of solutions in the case O.
THEOREM 1. Given A >-_ 0, there exists at least one Q >-_ 0 such that there exists at

least one solution of the boundary value problem (3)-(4).
Proof. Set /3=0 in (3), and make further changes of variables: */-cy, p(*/)

g(*//c), Q/c, where */is the new variable, and c is a parameter that will be determined
in the rest of our proof. Then the problem becomes to prove that there exist numbers
c > 0 and Q > 0 such that the equation

(1.1) p’"- [Apq"- (p’)2] -0,
has solutions satisfying

(1.2) (0) "(0) =0,

and

Q
(1.3) p(c) =0, q"(c) --.
Suppose that p(*/) is a solution of the initial value problem (1.1) with the initial
conditions

(1.4) q(0) 0, q’(0) a, q"(0) 0.

Our goal is to find an appropriate value of a such that the solution q of (1.1)-(1.4)
across the positive half ,/-axis at */= c with q"(c) is less than zero. We divide the
proof of Theorem 1 into two lemmas.

LEMMA 1. Let q(*/) be a nontrivial solution of the initial value problem (1.1)-(1.4).
Then a 0 and q"(*/) < 0 for all */> O.

Proof Since a 0 gives only a trivial solution, a 0. Hence, q’"(0) -a 2 < 0 and
then q(*/) > 0, q’"(*/) < 0 and q"(*/) < 0 initially. Assume that there exists the first
positive point */= Xo at which q" =0. Then q’"(Xo)=-p’(Xo)2-<- 0. If q’(Xo) 0, then
there must be a point xl < Xo such that o"(xl) > 0 and a point x2 < x such that o"(x2) 0.
This contradicts the assumption that Xo is the first such point. If q’(Xo)= 0, then q 0,
which contradicts the fact that a 0. Therefore, o"< 0 for all */> 0. This completes
the proof of Lemma 1.

LEMMA 2. Let (*/) solve (1.1)-(1.4) with a > O. Then q must reach zero somewhere
in (0, c).

Proof We observe that q(*/) > 0 for sufficiently small */> 0. Hence, q’" < 0 as
long as q > 0 by Lemma 1. The Taylor expansion of o at */= */o, where */o> 0 is
selected so that q(*/o)>0, q ’( */o) > 0, but q"( */o) < 0, gives that q(*/)<
q(*/o) + q’(*/o)(*/-*/o)+ q"(*/o)(*/-*/o)2/2 as long as q remains positive. Thus q must
equal zero somewhere in (0, o). Lemma 2 is proved.

Combining Lemmas 1 and 2, we conclude that there exist solutions of (1.1)
satisfying (1.2) and (1.3) at some c>0. Consequently, Q=q"(c)c3>O. The proof of
Theorem 1 is completed.
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Remarks. Observe from the proof that if q is a solution of the boundary value
problem, then q’(0) must be positive due to q" <0. This theorem gives the concave
down solutions representing two-cell flows. Also, we see that for any q with q’(0)> 0,
solving (1.1)-(1.4) must give a number c (depending on a) at which q crosses the
r-axis, and then a positive number Q. Although we have not proved the uniqueness
of such Q, it does not simply imply that different a’s will present different Q’s because
Q -q"(c)c3. Numerically it was found that the number of Q’s corresponding to/3 0
is 1 (see 1 ]).

2. Existence of solutions in the case 1 <_- A<=2. Since we have proved the existence
of solutions for A 1 and 2 in [1], we only consider the case 1 < A < 2. Applying the
transformation used in 1 with c 1, we get the equation

(2.1) re’" [Aqr"- o’2] -flQ,

together with the boundary conditions

(2.2) q(O) q"(O) O,

(2.3) re(l) =0, q"(1) -Q.

THEOREM 2. For given Q > 0 andfor given A (1, 2) there exist at least one number
and a convex function solving (2.1)-(2.3).

Proof Differentiate (2.1). Then

(2.4) q’"’ Aqq’" + (A 2) o’r".
Let q’(0)= A and q’"(0)=/x. We will apply the shooting argument with the shooting
parameters A and/z to the initial value problem (2.2)-(2.4) with q’(0) A and q’"(0)
First we need the following two lemmas.

LEMMA 3. Suppose that q solves (2.2)-(2.4) with A > 0 and tx < O. Then q’" < 0 for
all > O.

Proof Initially, q and q’ are positive, and q" and o’" are negative. Differentiating
(2.4) once again, we obtain

(2.5) qS) aqq’"’ + z(a-1)q’q’"-(2-a)q"2.
Then, by (2.5), q’’<0 and then p"<0 as long as q’>0 and q’"<0. Therefore, q’
becomes zero before q’" does. Assume q’(r/x) =0. Then q", q’", and q’ are less than
zero and then q’"’ < 0 for r/greater than and closer to r/x. Since q’"’ < 0 wherever p’" 0
for rt > Tx, q’"-<_0 for > r/x. Assume q’"(r2)=0 for some first 2> fix. Then, p""(rt2)=
(A-2)q’(r/2)q"(r/2)<0, which implies p’">0 for some r/<72, which contradicts
q’"(r/2) < 0. Lemma 3 now follows.

From the proof of Lemma 3 we see that we have proved the following corollary.
COROLLARY. If p solves (2.2)-(2.4) with A > 0 and/z < 0, then q" < 0 as long as

q_->0.
Next we define four sets on the quadrant E {(A,/x)IA > 0 and/x < 0} of the real

A-/x plane as follows:

124 {(a, /x )l #"(1) < Q}.

Observe that these four sets are open and 12x fq 122 and 123 [’) 124 are both empty.
Next, we describe the four sets 12i in more detail.
LEMMA 4. 1) The subset {(h,/z)l/z <-Q} of lies entirely in 124.
2) For each tx < 0 there is a ho(/Z) such that the region 0< h < ho(/X) lies entirely

in 122.
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3) For each A >- 0 there is a Ixo(A < 0 such that the region Ixo(A < tx < 0 lies entirely
in 123, and that 122 71124 and 122 f’)123 are not empty.

4) The subset {(A, Ix)IA > (Q/2)} of , lies entirely in 121U 124.
Proof Conclusion 1 follows directly from Lemma 3. If A 0 and Ix < 0 then qY" < 0

for all r/> 0 by (2.4), and hence q(1) < 0. By the continuous dependence of solutions
on A we get 2. Similarly, we prove conclusion 3. Note that the conditions A 0 and

Ix =0 give the trivial solution. Thus, for given Q> 0 there is a Ixo(0)< 0 such that
q"(1) >-Q, and then 122 ["] 123 is not empty (Fig. 1). Finally, if h > Q/2 and (h, Ix) 124,
i.e., qY’(1) > -Q, then q(1)> A + q"(1)/2> 0, so (A, Ix)e 121. The proof of Lemma 4 is
complete.

-Q

0,2

FIG.

Q/2

0

Lemma 4 is illustrated in Fig. 1. By the lemma of Hastings (see [2] and [3]), it is
concluded that the conditions we have found for the four sets show there is a point
that is not in 12 12 U 122 123 LJ 124. This proves Theorem 2.

3. Bifurcation phenomena on numbers of solutions. Let Q > 0 be given in this
section. We will study the number of solutions of (3)-(4) for A 1 and A 2, because
most similarity equations in studying flows for the floating zones are concerned with
A= 1 or 2 (see [5], [6], and [1]). This also implies that the number of/3 for given Q
bifurcates as A varies from 1 to 2. In this section we give a proof of the bifurcation
diagram shown analytically in 1 ].

THEOREM 3. Suppose A 2. Given Q >-_ O, there exists a unique number such that
the boundary value problem (3)-(4) has a unique solution.

Proof. It is sufficient to prove that for given Q > 0 the fourth-order nonlinear
equation

(3.1) f’"’-2Qff"=O

with boundary conditions (2) has a unique solution. Suppose, by contradiction, that
both f and f2 solve (2.1)-(2.4), and fl f2. Define a function h(rl)=fl(rl)-f2(rl).
Then h (r/) solves the equation

(3.2) y’"’-2Qfl(’q)y’"-2Qf"(rl)y =0 (0 ’q 1)
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together with the homogeneous boundary conditions:

(3.3) h(0) h"(0) 0,

(3.4) h(1) h"(1) 0.

Without loss of generality, suppose h’(0)= A >_-0. Recall that f’[’ < 0 (see 1]), f > 0,
and f"< 0 in (0, 1) for i- 1, 2. It follows from (3.2) that

(3.5) h’"(r/) 2Q f(z,,he-2Ol,xy, dt dx + h’"()e2I’1 tit.

Let h’"(0)=/x. We will prove that if h(r/) is nontrivial and satisfies (3.3) with h(1) =0,
then h"(1) never becomes zero. This implies that the. boundary value problem of linear
ordinary differential equations (3.2) with (3.3)-(3.4) has only a trivial solution, as
desired. Thus, there are several subcases to consider.

Case 1. h _>-0 and/x >0. Initially, h, h’, h", and h’" are positive. Since h(r/) reaches
its maximum somewhere in (0, 1), there must be a point r/’ at which h > 0, h’> 0, and
h"< 0. Hence h’"< 0 at somewhere in between zero and r/’, say r/". However, once
h’"(r/") <0 then h’"<0 as long as h>_-0 for r/> r/", and so h"<0, h’<0, and h’"<0
when h =0 at some r/= r/ > r/". In the proof of the following case, Case 3, we will
see that if h has its next zero at r/= r/2, then h’>0, h"> 0, and h’"> 0 at r/2, which
will again lead to Case 1. Therefore, it is impossible that h" does not equal zero
whenever h 0.

Case 2. A > 0 and -<0. Initially, h > 0. Then, by (3.6), h’"< 0, and hence h"< 0
as long as h > 0. If r/" is the next zero point of h(r/), then h’ < 0, h" < 0, and h’" < 0 at

r/= r/". This is the case that we have studied in Case 1, in which it has been proved
that h"< 0 at the next zero point of h(r/).

Case 3. A =0 and/x < 0. Initially, h"< 0, h’< 0, h’"< 0, and h < 0 for r/ close to
zero. Suppose h =0 somewhere. There would be a point, say r/* (<1), at which h"> 0,
h’>0, and h<0. Also, there would be a *e (0, r/*) such that h’"(:*)>0. Then we
see that h’"> 0 as long as h<-0 for r/> :* by (3.6). This means that h’>0, h"> 0, and
h’"> 0 at r/= r, the next zero of h. This is as in Case 1.

Case 4. A =0 and/z>0. This is the case where h"> 0, h’>0, and h>0, initially,
which is similar to Case 1.

In summary, we conclude that if h(r/) has only a finite number of zeros in [0, 1],
then h"= h =0 for r/>0 will never occur simultaneously. Suppose that h(r/) has
infinitely many zeros in [0, 1]. Then, there must be a sequence {r/,} (n 1, 2,...) of
the zero points of h(r/) such that r/ re [0, 1], and r/, < r/,/, and such that h’>0,
h">0, and h’">O at r/ for n=l,3,..., and h’<0, h"<0, and h’"<0 at r/ for
n 2, 4, . The continuity of h’" yields h h’= h" h’" 0 at sr, therefore h 0, which
is impossible. The conclusions of Theorem 2 now follow.

Theorem 3 implies that all the flows for the floating slot are two-celled. Our next
theorem indicates that for some Q> 0 the number of solutions of (1)-(2) bifurcates
as A varies. That is, in the case where A 2 there is only one solution for any given
Q > 0, i.e., only one/3 corresponds to one Q; and if A 1 there are admitted multiple
solutions for some Q > 0, i.e., there are more than one (at least three)/3 corresponding
to one Q as depicted in [1]. Since, in fact, we have proved in the case where A 1
that for any given Q> 0 there is admitted at least one fl such that problem (1)-(2)
has a convex solution 1], we only need to prove that there exist some Q > 0 for which
there are admitted some/3 such that the corresponding solutions are nonconvex.

THEOREM 4. Let A 1 in (1). There exist some Q > 0 and corresponding fl such
that (1)-(2) has at least one nonconvex solution.
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Proof We apply the same transformation used in 1 again and obtain the following
equation"

(3.6) p,,, pp,,_ 4
C

with boundary conditions (1.3)-(1.4). Differentiating (3.6) once gives

(3.7) o"" o’" o’".
Consider the initial value problem (3.7) with initial conditions

(3.8) o(0) o"(0)= 0, o’(0)= A, o’"(0)=

Our purpose is to find some pairs (A,/x) such that problem (3.7)-(3.8) has nonconvex
solutions. The proof of this theorem is contained in the following lemmas.

LEMMA 5. 0’"’ < 0 for all r > 0 as long as hlx O.
Proof Differentiating (2.7), we obtain that

q9
(5) qgp q ’’"(3.9)

hence

(3.10) ,,,,( r -I’d d, "2e-Igq, d, dx.

Since h/z # 0 implies that o" # 0 initially, o"" < 0 for all r/> 0. This proves the lemma.
Remarks. It is seen from Lemma 5 that if a =< 0 and /z < 0, then o’"< 0, o"< 0,

o’ < 0, and o < 0 for all r/> 0. Also, if a > 0 and/z < 0, then o’", o" < 0 for all r/> 0;
hence o 0 somewhere. This is a convex solution, which we found in [1].

LEMMA 6. 0 must reach zero with qg" < 0 for some r > 0 in the following two cases"

(I) A >0 and tx >0.
(II) h <0 and tx >0.

Proof. Case I. Initially, o, o’, o", o’" > 0, but o’"’ < 0. By (3.10), o (s) < 0 and hence
o" must reach zero somewhere, say r/a, with o’"(r/a)<0 so long as 0 > 0. Therefore,
q"(r/)<0 for r/> r/a, which will lead o’=0 and o", o’"<0 at some r/> r/a. Thus o
must become zero at some r/= r/2 with o"(r/2)< 0.

Case II. Initially, o, o’< 0 but 0", o’"> 0. We claim that there must be a point
r/--sc where o’" =0. To see this, we suppose the contrary: that o"’> 0 for all r/> 0.
Then o’ is concave up, so o’ becomes zero somewhere, say r/= r/3. This yields 0
with o">0 at some r/4> r/3 Therefore, o(s)=<-o"2<0 for r/ r/4, and o’" must be
zero somewhere, which contradicts the above supposition. Let o’"(r/o)= 0. We see that
o’(r/o) > 0 by o"(r/o) > 0 and o""(r/o) -q’(r/o)O"(r/o) < 0. Then o’"’ < 0 gives o’" < 0
for all r/> r/o, and reaches its first zero somewhere with o"> 0. Furthermore, o must
reach its second zero with o"< 0 due to o"" < 0 and o’" < 0. This is what we want’to
prove. From the above proof we see that to get nonconvex solutions, o’"(0) must be
greater than zero. Hence a 2+/z =-/3Q/ca> 0. This proves the following corollary.

COROLLARY. Any nonconvex solution of the boundary value problem (3)-(4) corre-
sponds to > O.

In addition, we have found the three-cell flows for the floating slot analytically
in the proof of Theorem 4, which occurs if h < 0 and/x > 0.

4. Existence of solutions for I < 0, and the limit of the convex solutions as Q -> oo. As
a complement to our previous paper [1], in this section we prove the existence of
solutions for negative /3 for all A [1, 2]. Also, we study the limit of the convex
solutions g(x) of (3)-(4) as Q-.
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THEOREM 5. For given A [1,2] there exists a number Qo Qo(A) such that if
solutions of (3)-(4) are convex and Q> Qo, then <0. Particularly, Qo(2)_-<6(e6-1).

Proof. Suppose that q(x) is a concave down solution. Then q"" < 0 bythe corollary
in 2; hence o(1) < h +/x/6 and/z > -6h. Thus/3 -(h 2 + ix)/Q. To prove the theorem
we only need to show that h > 6 for large Q. Assume the contrary, that is, that 0 < h -<_ 6,
and then -36 < tz < 0 for Qn’+oo. There would be subsequences of {An} and {/xn}, say
{A ’,} and {tz’,}, such that lim h ’, and lim ’, t2 as n --> oo. Since , and/.2 are bounded,
the corresponding solution q(x; h,/2) would have the finite second derivative at x 1,
but q"(1; h’,,/x’,)=-Q’,’-oo. This contradicts the theory that the solutions con-
tinuously depend on the initial conditions. Therefore, there exists a Qo Qo(A) such
that if Q > Qo, then/3 < 0.

In particular, let A 2 and g(x)= q(x)Q in (3). Then the equation becomes

(4.1) q"" 2qq’",

with boundary conditions

(4.2) q:, (0) q:,"(O) q:,( 1 O, q"(1 -Q.

Again let q’(0)= A and q’"(0)=/x. Rewriting (4.1) as

(4.3) q’"(x)= lxe2d’

it is observed by/x < 0 and 0 < o < hx for x (0, 1) that

1)
(4.4) -Q =/x e2I dx > tx e’ dx

A

Then

(4.5) /z <

On the other hand, since o’"’ < 0 for x (0, 1), o (1) < h +/x/ 3 !. This gives /x > -6A.
Combining this inequality with (4.5), we obtain 6(ex 1) > Q, namely, h > In (1 + Q/6).

Note that/3 in equation (1) is equal to (h 2 +/x)/Q. Then h 2 +/x > h 2 -6A. Since
the hypothesis on Q gives In (1 + Q/6)> 6, we conclude that h2+/x > 0, i.e.,/3 < 0.

Combining the corollary in 3, we complete the proof.
Remark. It is seen from the proof of Theorem 5 that h --> oo as Q --> oo, i.e., h O(1)

for large Q. For A 2 we have proved h > In Q as Q--> oo. The next theorem will show
h / Q -> 0 as Q - oo for the convex solutions.

THEOREM 6. Suppose that 1 <-A<-_2 and that g(x) are concave down, and solve (3)
with the boundary conditions (4). As Q -> oo, then g(x) --> 0 and g’(x) - 0 uniformly in
[0, 1], and g"(x)->O uniformly in [O, xo] for any Xo (O, 1).

Proof Recall that the concave down solutions we have found satisfy g""< 0 in
(0, 1), which has been proved in 2. We will prove that for any given real sequence
{Qn} with Qn-oo there exists at least a subsequence {Q’,} such that g(x; Q’,)-O and
g’(x; Q’,)-O uniformly in [0, 1], and g"(x; Q’,)-O uniformly in [0, Xo] for any Xo< 1.
Let g’(0)= cr and g’"(0)= K. Rewrite (3) as

(4.6) Agg"-

Integrating (4.6), we obtain

(4.7)
Q

Agg’- A + I g’ dt + cr2
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The fact g""<0 and the boundary conditions imply that -l _-< g" <- 0, [g’[<_-1, and
0 <- g<-1 for all x [0, 1]. Thus the function sequence {g’(x; Q’,)} is equicontinuous.
By the Arzelh-Ascoli theorem there exists a subsequence {g’-k} that converges uniformly
to a continuous function h(x) on [0, 1]. Similarly, {gnk} contains a subsequence, say
{g,} for simplicity, that converges uniformly to a function k(x) on [0, 1]. Thus
k’(x) h(x). In brief, we drop the indices nk in the rest of the proof. It is known that
g(0)=tr and g’"(0)= K are bounded because of negative g" and g’’ and g"(1)= 1.
Hence lim o’=tro and lim k/Q=O (appropriate subsequence of nk) as Q-. Set
Q e in (4.7). This yields

(4.8) Akk’- (A + 1) k’2 dt + crox 0 (0 <-_ x <- 1).

Suppose that there is a point Xo (0, 1) at which k 0. Then k 0 in an open subinterval
I of (0, 1). By (4.8) we see that on !

(4.9) k’= (A+ 1) k’ dr- o’ox (Ak)-1.

Then on the interval/, k" and k’" exist and satisfy (differentiating (4.8) twice)

(4.10) Ak’" =0.

So k’" 0 and k ax2 + bx + c on I, where a, b, and c are some constants. Substituting
k into (4.8), we find a 0. Therefore, k is a linear function on/. Since k is also convex,
k(xo) 0 implies that I (0, 1). Hence the homogeneous boundary conditions of g
lead to b= c=0, and k= k’=0.

We have proved that g and g’ uniformly converge to zero on [0, 1]. Next we will
show that {g"}- 0 uniformly on [0, 1- 6] for any small 6 > 0. Since g" are convex, as

g’(1-6/2)-g’(1-6)
0> g"> g"(1- 6) > -0.

6/

The proof of Theorem 6 is now complete.
Remark. Note that h Qo- and/x QK in the proofs of Theorems 5 and 6. We

see that h - and h/Q 0 as Q . In the case A 2, we have proved In Q < h < Q.
Also, the conclusion of Theorem 6 agrees with the numerical results [4].
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FLAT CONNECTIONS AND SCATI’ERING THEORY ON THE LINE*

D. H. SATTINGERt

Abstract. The scattering theory of n x n first-order systems on the line is formulated in terms of a fiat
connection on a vector bundle over R x P(C). The relation of the scattering data to a set of transition
matrices is discussed. The scattering transform is obtained as a sectionally holomorphic gauge transformation.
The winding number constraints of Bar-Yaacov ["Analytic properties of scattering and inverse scattering
for first order systems," Ph.D. thesis, Yale University, New Haven, CT, 1985] and Beals and Coifman
Comm. Pure Appl. Math., 37 (1984), pp. 39-90] on the scattering data are shown to be a necessary condition

for the diagram for the transition matrices to commute. The transition matrices are reconstructed from
scattering data with multiple poles by solving a sequence of triangular factorization and Riemann-Hilbert
problems. The inverse scattering problem is formulated as a system of singular integral equations and
reduced to a Fredholm system by Plemelj’s method for a special class. A formulation of the dressing method
for n x n hierarchies in terms of sectionally holomorphic gauge transformations is given.

Key words, scattering theory, fiat connections

AMS(MOS) subject classification. 34A55

1. Introduction. Consider the matrix linear first-order differential operator

d
(1.1) D(z, Q)=-x-ZJ-Q
where J is a diagonal matrix and Q is an off-diagonal matrix (viz. Qjj =0). More
generally, we may consider the case where J and Q are elements of a semisimple Lie
algebra g, with J in the Cartan subalgebra. Such differential operators arise as isospectral
operators in a large class of completely integrable systems of partial differential
equations. The solution of the forward and inverse scattering problem for (1.1) is now
fairly complete, due to the work of Beals, Coifman, Deift, Tomei, and Zhou [2],
[5], [16].

Beals and Coifman solved the inverse scattering problem for potentials Q for
which the scattering data consists of simple poles with residues of a specified type (to
be discussed below). Such potentials are generic in the sense that they are dense in
the topology of LI(R); but the class is not invariant under Bicklund transformations
12], 17].

The forward and inverse scattering problems can be formulated naturally in the
geometric language of vector bundles. Using this approach, we extend the analysis of
the scattering problem given in [2], [5] to a more general class of scattering data. We
use the construction of scattering data given by Zurkowski [17], which is invariant
under Bicklund transformations. We show how the scattering data in the form given
by Zurkowski is related to the transition matrices of the bundle, and show how to
reconstruct the transition matrices from the scattering data. This entails the solution
of a sequence of scalar Riemann-Hilbert problems and involves the so-called winding
number constraints introduced by Bar-Yaacov [1]. We derive the winding number
constraints as a consequence of the requirement that the transition matrices of a certain
principal bundle must intertwine and give them in a simplified, explicit form.

* Received by the editors June 22, 1988; accepted for publication (in revised form) June 26, 1989. This
research was partially supported by National Science Foundation grant DMS-87-02578.

t School of Mathematics, University of Minnesota, 127 Vincent Hall, Minneapolis, Minnesota 55455.
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In [2] the inverse scattering problem is formulated as a Riemann-Hilbert problem
for a wave function m(x, z) with poles in the complex plane. First, a rational approxima-
tion to the scattering data is constructed, and then a small norm problem for
the remainder is solved. This leads to a wave function m with, in general, different
poles than those required of the solution. An algebraic problem must then be solved
to obtain the correct poles. In [5], the inverse scattering problem is reduced to inverting
a linear operator with the structure 1 + "small"+ "compact," for which the Fredholm
alternative applies. For certain nth-order self-adjoint scalar equations, the existence
and uniqueness of the solution is accomplished by the use of the so-called "vanishing
lemma" developed by Deift, Tomei, and Trubowitz [6], [7].

We present an alternative approach to the inverse scattering problem in 6. There
is a large classical literature on Riemann-Hilbert problems, going back to Plemelj. We
show how a variant of Plemelj’s method can be used to reduce the problem to a
Fredholm integral equation in the case J*=-J. The Riemann-Hilbert problem of
inverse scattering involves the space variable x as a parameter, and the solution must
satisfy certain "radiation conditions" as x- +c. This condition is easily verified for
the Fredholm integral equation that we obtain.

In general, we cannot guarantee that the Fredholm problem is solvable; however,
in certain cases a general result of this nature can be established. For the nth-order
self-adjoint scalar case, the vanishing lemma is used to prove that the kernel is trivial.
For first-order n n systems, the scattering data arising from skew-Hermitian potentials
(J*=-J and Q*=-Q) has certain symmetry properties that guarantee the unique
solvability of the inverse scattering problem [13].

2. Scattering data for n x n systems. In this section we review the basic results of
scattering theory for one-dimensional systems. We assume throughout that the eigen-
values of J are distinct with nondecreasing real parts" Re A -< Re A2--<. -< Re An. We
look for a solution to the eigenfunction problem Dx(z, Q)(x, z)=O in the form

(x, z)= m(x, z) exZJ. Then m satisfies the differential equation

(2.1)
Om(x,z)
=z[J,m]+Q(x)m.

Ox

Equation (2.1) is supplemented by the "boundary" condition

(2.2) sup Ira(x, z)[ < +m

and by the asymptotic condition that m- 1 as z- c.

FIG. 2.1. Sectors of analyticity in the complex plane, tr tx-u.
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To carry out the analysis of (2.1), (2.2), we introduce the following sectors in the
complex plane. Let z be a complex number for which Re z(Aj- Ak) 0 and let u be a
permutation of {1, 2,..., n}. Define

a ={zlRe z(h()- h()) < 0 for j < k}.

Of course, not every permutation will correspond to a sector. Let E, tr =/z
-1 u, be the

ray running from zero to infinity that separates two sectors, with l-ly on the left, and
f, on the right, as shown in Fig. 2.1. The right action of the permutation group on
n x n matrices is given by JTy v-IJr, where Ty is the n x n permutation matrix
associated with u. Then T,Ty= T,y. If J=diag(hl,’’’,An), then Jy=JTy=
diag (hy(1 ), / y(n ))-

We call the standard representation that in which the real parts of the eigenvalues
of J are nondecreasing. By the u representation of a matrix U we mean the matrix
UTy u- Uu. Below, we will use the phrase u-lower to indicate that a matrix is lower
triangular in the u representation, etc.

THEOREM 2.1 [2]. Let Q belong to LI(R); then there exists a unique solution m(x, z)
of (2.1), (2.2) such that (i) m (x, z) is meromorphic in each of the sectors f y; (ii)
m (x, z) - 1 as z - o in f or as x - -o for fixed z y; (iii) m (x, z) is bounded on
-c < x < c for regular values ofz. In each sector fy, m has continuous boundary values
on Orgy, except at possible limit points of the poles on the boundary.

The poles of m correspond to the bound states in the 2x2 case. For general
potentials in L1, the poles of m constitute a bounded, discrete set Z; but for a dense
open subset of potentials in L, Z is finite and the poles of m are simple [2]. In
this paper we treat general poles of m, with none on the rays E. The case of an
infinite number of poles (clustering at a point in E) has been treated by Zhou
[16]. In this paper we will indicate another method of treating an infinite number of
poles.

In [2] and [5], the scattering data of Q is given in terms of the singularities of m.
These consist of the location of its poles, the singular parts of m at these poles, and
the jump conditions of m across the rays E. The jump conditions comprise the
continuous component of the scattering data and are obtained as follows. Let
my(x, )(m,(x, so)) be the limit of m as z- scE from the regions fy(f). It is easily
verified by direct substitution that w mlmy satisfies the differential equation

Dew=- -sCad J w=0,

The solutions of this equation are of the form expXeJv(sc) exp-xJ. We denote such an
expression by V(:)x, so m satisfies the jump conditions my(X, )= m(x, )Vo()x,
: E. From now on we will denote the collection of matrices { V} simply by V.

At an isolated pole, say zj, of m, the wave function can be factored (cf. [12], [17])
as a product rn rb(x z)(1 + L(z))’, where 7 satisfies (1.2) in fy, tends to 1 as x -o
or as z c for x < 0, and L is strictly u-lower and rational in z, with an isolated pole
at zj. If m has a finite number of isolated poles in fly, we can repeat the process a
finite number of times until m has been factored in the form m r/(x, z)(1 + L(z)),
where L(z) is strictly u-lower, rational in z, and tending to zero as z tends to infinity,
and r/ is holomorphic in fy and satisfies the usual asymptotic conditions at -c for
x < 0. Such a factorization is unique. If m has two such factorizations, m r/(1 + L)
7’(1 + L’), then TI’-IT] =[(1 + L’)(1 + L)-l]x; but the left side is analytic in fy and the
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right side is meromorphic in the entire complex plane with its only possible singularities
in f. Therefore the right side is in fact entire, and since it tends to 1 as z- (for
x < 0), it is identically 1. Therefore r/- r/’ and L= L’.

We may repeat the same arguments for x > 0. Since, however, m tends to a diagonal
matrix 6 as x [2], we obtain the unique factorization m=p(l+ U,), in the
sector for x > O, where p is an analytic solution of (2.1) and U is a strictly u-upper
triangular matrix that is rational in z and tends to zero as z . Summarizing, we
have the following theorem [12], [17].

THEOREM 2.2. e wave function m(x, z) can be uniquely factored in x {x 0}
as m (1 + L where

(i) is an analytic solution of (2.1) in that tends to 1 as x - or as z tends
to infinity for (z, x) x {x 0), and

(ii) L is strictly u-lower, rational in z in , analytic in , and tends to zero as

Similarly, in x {x 0}, m can be uniquely factored as m p(1 + U)6, where
(iii) p is an analytic solution of (2.1) in that tends to 1 as x or as z

for (z, x) x {x 0}, and
(iv) U is strictly u-upper, rational in z in , analytic in , and tends to zero as

(v) 6 is a diagonal matrix, meromorphic in , that tends to 1 as z in .
From the two representations m (1 + L) p(1 + U)X6, we obtain the matrix

S(z) from S(z) p (1 + U)6[(1 + L)-I]. We are now in a position to define
the scattering data (cf. [17]).

DEFYWOY 2.3. The scattering data of Q is s.d. (Q)= { V; zj; L}, where {zj} are
the totality of poles of m in E, L is rational in z in , analytic for z and
tends to zero as z .

The matrix V() is defined on the set of rays E. The matrices V and L are not
completely arbitrary, but must satisfy a number of constraints that will be discussed
in the course of this aicle. For one thing, the k x k lower minors, det(V), must be
identically equal to 1; and a set of "winding number constraints" must be satisfied by
the upper minors det(V) and the singular pas L. The precise relationship is given
in Theorem 4.8.

The relationship between the V and Q is much the same as the relation between
a function and its Fourier transform. (As is well known by now, the scattering transform
is a nonlinear analogue of the Fourier transform.) If the derivatives DJQ L(R)
for ljk, then k(v()--l)=o(1) as ; if xkQGL1, then vck(E) and
DJ(V-1)0 as for Ojk (cf. [2, Thm. E]).

A paicularly convenient space of potentials to work with is the Schwaz space
S(R) of C rapidly decreasing functions. If Q S(R), then each V 6 S(E) (cf. [2] for
the behavior of V in the neighborhood of the origin). In this paper we restrict ourselves
to potentials and scattering data in the Schwaz class, since regularity questions are
not the issue here. For a treatment of more general data, see [16].

So far we have shown how to obtain the scattering data beginning with the wave
function m constructed by Beals and Coifman. In their picture, the singularities in m
constitute the scattering data. In the bundle view, however, the singularities of m arise
from gluing together different coordinate patches of a principal bundle. We now present
an alternative construction of m that is consistent with the bundle viewpoint to be
developed in 3.

THEOREM 2.4. [17] ere exist solutions (x,z) and p(x, z) of (2.1) in x
(-, a] and x (b, ], respectively, that are analytic for z , continuous in the
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closure, and satisfy the asymptotic conditions fly --) 1 as x --) -o, py --) 1 as x --) oc for z fy;
and "qy --) 1 as z --) oc for x <= a and py --) 1 as z --) c for x >- b.

For any complex z, let II denote the projections onto the positive (e 1), negative
(e =-1), and null (e 0) subspaces of the operator Re z ad J; that is,

(Ha)jk ajk if sgn Re z(Aj- Ak) e, (rla)jk 0 otherwise

(where we define sgn 0= 0). We obtain a wave function r/y that is normalized at
by solving the integral equation

(2.3) r/y 1 + (II + II)) e(x-y)z Qrly e-(-y) dy IIz+ e(-y) Qrly e-(x-y) dy.

For z fy, (2.3) is a Fredholm integral equation, and the solutions will have poles in
z. For sufficiently negative a, however, the norm of the integral operator will be less
than 1 on (-oc, a l, and (2.3) can be solved by successive approximations. This gives
a solution of (2.1) on Oy x (-c, a] that tends to 1 as x--)-c. The solution for x >= a
is obtained by solving the differential equation on x => a using the data r/y(a, z) obtained
from the solution of the integral equation on (-oc, a). By this method we obtain a
solution that tends to 1 as x--)-c, and is analytic for z fy. For x-< a, the solution
will tend to 1 as z--) in 12y, but this asymptotic behavior does not hold for x > a.

Similarly, py is obtained by solving a Fredholm integral equation normalized at
+c. This solution is analytic in 12y and tends to 1 as z --) for x >- b. In general, a < b,
the two solutions will not cover the entire real line, and additional solutions on
intermediary intervals will be required. (Such a situation was, in fact, discussed in the
original method of [2].) If, however, the norms of the integral operators in (2.3) are
less than 1 over the entire interval (-c, 0] and [0, c), then we may cover the entire
line with two patches for each O Of course, in the case where m is known to have
only a finite number of poles, r/y and py may be constructed on (-co, 0] and [0, co),
respectively, from m itself, using the procedure outlined prior to Theorem 2.2. For
now, let us stick to the case where only two patches are needed.

The solutions r/ and p are not uniquely determined. Given any two solutions on
x < 0, r/1 and r/:, say, it is easily seen that Dz-lq: 0, so that vii r/: W(z) for some
W(z) analytic in fy. From the asymptotic conditions rb --) 1 as z c we conclude that
W(z) 1 + L(z), where L is strictly u-lower triangular for z Oy.

Since py and r/y are both solutions of (2.1), r/y= pySy(z)’, where Sy is analytic in
fy. In fact, by the argument above, Dzp-l,ly =0, hence plr/y Sy(z) for some matrix
&(z).

The wave function m in each sector 12y can be constructed from py, r/y, and Sy.
We perform a triangular factorization of Sy, namely,

(2.4) Sy (1 + Uy)6y(14- Ly) -1,
where U,(Ly) is u-upper (lower) triangular, and 6y is diagonal. Writing (2.4) in the
form Sy(l+Ly)=(l+ Uy)6y, it can be seen that the factorization requires solving a
system of linear equations for each of the n(n- 1)/2 zero entries of the matrix (1 +
The factorization can be carried out provided that the lower principal minors of
do not vanish. That is, let A-= det- Sy, where

detf S=det [ S’-j+I’n-j+I S’-j+I""]Sn,n_j+ Sn,
Then the factorization (2.4) can be carried out provided none of the Af(z), which are
holomorphic in fy, vanish.
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The zeros of these minors give precisely the eigenvalues in the 2 x 2 case. In the
general case, the minors tend to 1 as z in ly. We take my-,/y(l/Ly)’-
py(1 / Uy)X6y for all values of z y for which the lower minors of Sy do not vanish.
We claim m is bounded in x for these regular values of z. The entries of (1 + Ly) are
(6jk / Ljk) exp ((A- Ak)XZ). For z fly, working in the , representation,

exp((A--Ak)XZ)O as x--c forj>k;

but Ljk--O for j<k, so (l/Ly)X-*l as x-. Similarly, (l+Uy)l as x.
Therefore m is bounded on the entire real axis for all z for which the factorization
(2.4) may be performed. The poles of m arise precisely at those zj which the factorization
breaks down.

3. The vector bundle viewpoint. Let us now turn to the formulation of the above
picture in terms of sections of a vector bundle. We define a base space B R x PI(C)
consisting of the entire real line crossed with the Riemann sphere and construct a
trivial vector bundle over B by attaching to each point (x, z) in B the n-dimensional
complex vector space C n. The sections of this bundle are functions v(x, z) taking
values in C". We denote the bundle by E.

We have constructed a global basis, or frame, for E, namely, the constant sections
el, e2,’", en. It will be useful, however, to consider other choices of frames. For
example, if g(x, z) is a matrix-valued function on B we obtain a new frame e(x, z)
g(x, z)e. Such a transformation g is called a gauge transformation. It is simply a
change of basis in the fibers which varies from point to point over the base space.
Associated with each frame is a matrix. The matrix associated with the constant frame
el," ", en is the identity matrix. We will call this the standard frame. Clearly, g(x, z)
is the matrix associated with the frame e(x, z) g(x, z)e, so the columns of g constitute
the basis sections of the new frame. We may also refer to a frame as a gauge.

Now a differential operator Dx d/dx- U, where U is an n x n matrix, may be
interpreted as describing how sections of E vary with x. It is natural to ask how D,
transforms under a gauge transformation g. Let q and q’ denote the coordinates of a
section in two different frames related by a gauge transformation g; thus, we write

’= gqt. Similarly, let D and D ddx- U’ denote the differential operator in the
two different frames (or gauges). Then we must have (Dq)’ D’q’, or gD D’g. It
is not hard to see that this transformation law leads to the differential equation
dg/dx + gU- U’g 0; in particular, the gauge transformation that gauges d/dx-zJ-
Q to d/dx-zJ satisfies (2.1).

So far, we have said nothing about the dependence of the frame on z, or its
behavior as x or z- c. Since Q 0 as Ix]- , it is natural to ask that the frame tend
to the standard frame as Ix]- ; that is, that it in some sense be a perturbation of the
standard frame. To discuss the z dependence, we introduce the Cauchy-Riemann
operator Dz.--0* =,d/dz*. The operator Dz. tells us how sections vary with z (in the
"anti-holomorphic" direction). The pair of operators D, and Dz. form the components
of a connection. Together, they tell us how sections vary along curves in the base space.
Let us define Dq=(Oq/ox-zJq-Qd/)dx-D.d/dz*. The equation Dq=0 defines
parallel translation of the section q along a curve in the base space.

Note that [Dx, D.] 0, since D, depends holomorphically on z. This means that,
at least locally, it is possible to construct a frame g in which the connection takes the
simpler form {d/dx-zJ, D.}. All we need do is construct holomorphic solutions of
(2.1) in some open neighborhood in B. Although E is trivial and the connection is
flat, it is, however, not possible to construct a global frame that trivializes the connection.
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Roughly speaking, the obstructions to such a trivialization constitute the "scattering
data" for the problem.

To explain this remark, let us see how Dz. transforms under g. We have

Dz.g gz, + g g +Ix

where Ix g-10g/Oz*. Note that Og/Oz* 0 wherever g is analytic. For gauge transfor-
mations g with isolated singularities (for example, the wave function constructed in
Theorem 2.1), Og/Oz* is defined as the distribution

O*g()=-If g(O*)dz^ dz*,

where q is a smooth (C) section. With this definition it is not hard to see that if g
is sectionally analytic in the neighborhood of a smooth oriented curve C, then O*g
g+(:)- g_(:), where + refer to the limits of g on C consistent with its orientation. We
return to the equation Ix g-1 0*g below, and show that it, in fact, is a Riemann-Hilbert
problem for the inverse problem.

For now, let us return to our discussion of the gauge transformation and the
construction of a new frame. We wish to show how to construct a frame that tends to
the standard frame as Ixl and z tend to infinity. Associated with the bundle E is the
(trivial) principal bundle B x G, where G is the Lie group with Lie algebra g. The
gauge transformations are sections of this principal bundle. As we explained above,
the columns of a gauge transformation g constitute a frame (or gauge) for the vector
bundle E.

Let So(B, G) be the collection of all frames that are normalized to tend to the
identity as Ixl or z tend to infinity. We construct sections of So(B, G) that are solutions
of the (2.1), (2.2) as follows. Choose a covering of the base space by the sets f
f x {+x _>- 0}, and assume (compare the comments below) we can construct a collection
of local patches r/ and p, that are defined and analytic (in z) and tend to 1 as Ixl and
z tend to infinity in f+, respectively. The gauge transformations r/ and p constitute
local frames in f+. At 012 +/- the frames must be matched by transition matrices. The
transition matrices between r/ and p onf x {x 0} are S, and the transition matrices
for r/ and p are denoted by N and R, respectively. A global frame is now obtained
in C\E by connecting these patches by the relevant transition matrices"

(3.1)

r/ rh,N

p,.=puRX

n pS

across E, x {x -< 0},

across x {x ->_ 0},

on fx {x 0}.

Comparing the jump conditions for g with those for r/ and p, we find that

N (1 + L,) V,(1 + L)-1 and R (1 + U)8V,,6(1 + U,)-.
An immediate necessary consequence of the relations (3.1) is the identity

(3.2) RS. S,N.

We show in 4 that (3.2) leads directly to the winding number constraints on the
scattering data 1], [2]. The identity (3.2) is a statement that the diagram ofthe transition
matrices commutes.
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We must still construct the frame on the set E. The frame for the vector bundle
is singular in that the rays of E must be considered separately in the covering of the
base space. This step is a little unorthodox from the point of view of vector bundles,
since the set E is a one-dimensional subvariety of the base space B; but it is dictated
by the analytic properties of the solutions of the differential equation.

When J*=-J, the set E reduces to the real line, and solutions of (2.1) for real z
(denoted by so), which tend to 1 as x tends, respectively, to +o can be constructed by
converting (2.1) to a Volterra integral equation and solving by successive approxima-
tions. For example, the wave function normalized at -ce satisfies the integral equation

Cho=l+IooeX-tJQchoe-X-tJdt.
For general E, the wave functions that live on E can no longer be obtained by

solving a Volterra integral equation. To construct r/(x, so) for scE, we proceed as
in 2, equation (2.3): change u to tr and z to :; then repeat the argument exactly as
before. This gives a solution of (2.1) on E x (-, a] that tends to 1 as x--c.

Similarly, we construct a solution of (2.1) on E that tends to 1 at + and denote
it by p,. As in the regions 12 we may connect these two solutions by a matrix, say
S," rl pS. Let us define the Jost functions of (2.1) as those.solutions that live on
E and are bounded for all x. To obtain them, we must perform a factorization of $.
We try to factor S (1 + U)(1 + L)-, where (IIo + II)U 0 and II+L 0. If
this factorization can be performed, then the Jost function is given by

m, r/(1 + L) p(1 + U)Xt.

From the triangular properties of L and U, it is easily seen that m(x, ) is bounded
for all x and tends to 1 as x--.

Presumably, those values of : for which the factorization cannot be performed
correspond to poles embedded in the continuous spectrum, but I have not seen how
to treat this case. We may call the matrices {So} the Jost scattering data. In the case
J* -J there is a transformation from the Jost scattering data to the Riemann-Hilbert
data. This transformation is worked out for the general case in the Appendix to this
paper.

We have thus constructed a global frame on E that tends to the standard frame
as Ixl and z tend to infinity and in which D has the form d/dx- zJ.

We have thus replaced the scattering data by a set of transition matrices for a
sectionally holomorphic frame. This viewpoint brings the scattering problem in line
with the treatment ofthe self-dual Yang-Mills equation, in which the transition matrices
of a holomorphic vector bundle play the role of the scattering data. When considering
the associated nonlinear evolution equations with Dx as an isospectral problem, the
transition matrices evolve linearly with the flow.

Now let us return to the case when it is not possible to construct a frame with
only two regions of the real line (-oo, 0) and (0, ). It is always possible to decompose
the line into a finite number of subintervals on which Fredholm equations such as
(2.3) have solutions that are analytic in f and tend to 1 as z o. In that case we
have a set of transition matrices N,, R, and S, that satisfy the compatibility
equations (3.2) for each j. Thus in the general case we must cover the base space with
a larger number of open sets. We must correspondingly take a larger set of transition
matrices for our data.

Instead of choosing more subintervals of the real line R, Zhou 16] breaks P(C)
into more regions, as indicated in Fig. 3.1. Outside the large circle he uses the wave
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FIG. 3.1. Support of scattering data in Zhou’s method.

function m constructed by Beals and Coifman, which is regular for sufficiently large
z. Inside the circle, he constructs, in each sector, analytic solutions that are normalized
at -ee or at +oe. Since the regions inside the circle are bounded, he does not have to
contend with the difficulties in the asymptotic behavior of these solutions as z- o.

In any event, to construct a sectionally holomorphic frame for the bundle, we are
forced to cover the base space B with a certain minimal number of open sets, either
partitioning the real line, or partitioning PI(C).

The transition matrices are not the same as the scattering data. The scattering data
is the minimal data needed to reconstruct the potential Q. The first step in the solution
of the inverse scattering problem is to reconstruct the transition matrices from the
scattering data.

However, from the point of view of the integration of the nonlinear evolution
equations, it is sufficient to work with the transition matrices, since they also evolve
linearly with time. The differential equation (2.1) arises as an isospectral problem for
a commuting hierarchy of Hamiltonian flows (cf. [2], [3], [8], [11]). These flows arise
as "zero-curvature" conditions for a fiat connection whose components are

0 0 0

D=-x-U D, v. D.-
at. oz*’

where u zJ+ Q and v, z"K + B,(z, Q) (K diagonal) where B, is a polynomial in
Q and its derivatives. The zero-curvature condition [D,, D,] [O/Ox- u, O/Ot, -v,] =0
leads to a hierarchy of nonlinear evolution equations in Q.

The linear evolution of the scattering data can also be obtained from a "zero-
curvature" condition. Under the sectionally holomorphic gauge transformation g the
components of this connection are transformed into

0 0 0
z"K, +l,

Ox
zJ,

at, oz*

respectively. Since the flatness of the connection is preserved under the gauge transfor-
mation,

O
_zj =0, O*+l,ot,O* + ,

Ox
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These zero-curvature conditions lead, at least formally, to linear evolution equations
on the "scattering data"/"

--=z[4 ], z"[K, ].
Ox Ot

It is useful to introduce an orientation of E as indicated in Fig. 3.2.
The orientation of the rays induces an orientation of the complement 12- C\E,

and 12 can be written as the union of two domains, fl+ and 12_. Letting m+, 7+/-, etc.,
denote the sections on fl+, we can write the transitions more compactly as follows:

rl+= rt-N, rl+ p+/-SX, p+= p-R.
4. Winding number constraints. The continuous and discrete components of the

scattering data (viz. the poles and principal factors at the .poles and the transition
matrices V) are not independent, but must satisfy certain. "winding number con-
straints." These were introduced by Bar-Yaacov [1] and play a fundamental role in
the recovery of the transition matrices from the scattering data.

+ +

FIG. 3.2. Oriented system of rays.

Remark. In [5], which is concerned primarily with first-order systems obtained
from a class of nth-order scalar problems, the winding number constraints are satisfied
automatically. This is because the first-order systems derived from the scalar case
inherit a special symmetry.

The winding number constraints can be derived as a consequence of (3.2). We
present the proof here, and also give a more explicit description of the winding number
constraints in the case of general scattering data.

The case where all the eigenvalues of J are purely imaginary is somewhat simpler
to explain, and we will treat that case first. Let us write J diag (A1, A2 An), where
the h are real and h > hE An" In this case there are only two sectors, the upper
and lower half planes, which we denote by fl/ and 12_. The permutation tr associated
with the rays separating f+/- is the product of transpositions: cr- (1, n)(2, n- 1).
it simply reverses the order of the integers 1,..., n. The permutations v+/- associated
with 12+ are v+ identity, and v_ r.

Let N, R, and S+ denote the transition matrices between the four patches p+/- and
r/+/-. For x =0 we have r/+ p+S+, p+ p_R, rl_ p_S_, and r/+ r/_N; hence

(4.1) S_N=RS+.
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Regarding the transition matrices as mappings between the bundle patches p+, 7+,

we may represent these relations schematically as a commuting diagram, as in Fig.
4.1. Let the triangular factorizations of S+ be

(4.2) S+ (1 + U+)6+(1 + L+) -1, S_ (1 + L_)6_(1 + U_) -1,

where L+/- and U+ are, respectively, lower and upper triangular matrices in the v+
representations. These factorizations are consistent with the asymptotic conditions
satisfied by r+/- and p+. Now (4.1) is

(1 + L_)6_(1 + U_)-’N R(1 + U+)6+(1 + L+)-l;

and this may be written as

(4.3) V= (1 + U_)-IN(1 + L+)= 6-1(1 + L_)-R(1 + U+)6+,

where V(:) is the jump of m across the real axis (m+(x, )= m_(x, ) V()).
To derive the winding number constraints on the scattering data, we need the

following two lemmas from the theory of matrices.
LEMMA 4.1. Let L and U denote general lower and upper triangular matrices, and

A an arbitrary matrix. Let d: denote the upper and lower k x k minors. Then
(i) d +k La= (dL)(d-a),
(ii) d-aU (d-a)(d+U),
(iii) d-AL= (d-A)(d-L),
(iv) d- UA (d- U)(d-A).
LEMMA 4.2. A matrix T has the triangularfactorization T= (1 + L)6(1 + U) if and

only if none of its upper minors vanish. Furthermore, its upper minors are given by
d-( T) d+6 662. 6, where diag (, 62, , 6,). Similarly, T has the fac-
torization T (1 + U)6(1 + L) if and only if none of its lower minors vanish, and in that
case d-( T) d-6 n-k+l

The transition matrices have a certain structure, namely, Theorem 4.3.
THEOREM 4.3. The matrices N and R have (in the standard, identity representation)

the triangularfactorizations N (1 + upper)(1 + lower), R (1 + lower)(1 + upper), hence
d;N= l d-R.

Proof. Following [2], approximate Q by potentials of compact support; then
/+/-(x, z) are entire functions of z and N is also an entire function of z. We have
N(z)" /_(x, z)-l?+(x, z). For x < min supp Q the wave functions 7+/- satisfy the free
wave equation D/= 0; hence for x << 0,

q+/-(x, z)= A+/-(z) eXZJA+(z) e-zJ.

$

1+ + P+

N

rl p
S

FiG. 4.1. Diagram of the transition matrices for J*=-J.
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In order that + satisfy the asymptotic conditions as z oo and as x -oo, we must have

A+=l+lower and A_=l+upper,

hence the result holds when Q has compact support. The general case now follows by
approximating a general potential by potentials with compact support. The same proof
also holds at +oo.

THEOREM 4.4. The lower minors of V are 1 d-( V) 1 for each k. The upper minors
satisfy the equation d-(6+)=(d-8-)(d+V)k on the line Im z=0. This may be restated
as a Riemann-Hilbert problem for the diagonal matrix 8:

(4.4)

where

d+
Cbk d-_ V

where 8k is the kth entry of 8, and d- V 1.

Proof. We have d-V d(1 + U_)-IN(1 + L+) d-N 1 from (2.3), Lemmas 4.1
and 4.2, and Theorem 4.3. Similarly,

1 =d+ +
k n d-(1 + L_)8_( V)Sg’(1 + U+) d+k(8-)dk Vd-a_’.

Equation (4.4) follows directly from this result and the relation d-8 882 8k. ["]

The winding number constraints are an immediate consequence of the Riemann-
Hilbert problem for 8 +. Let f+ be any function analytic in 11+ (upper and lower half
planes), tending to 1 as zc, and which does not vanish on the real axis. Let
N(f+) Z(f:) P(f+), where Z and P are, respectively, the numbers of zeros and
poles off in +, counted according to multiplicity. Assume both Z and P are finite.
From (4.4) we have d arg 8 d arg 8 + d arg bk; integrating this identity along the
real line and applying Rouch6’s theorem, we get

(4.5) N(Sk) =-f- d arg tk(

where N(6) is the total number of zeros minus poles of the function 8k in f f+ f_.

We have thus proved Theorem 4.5.
THEOREM 4.5. The Riemann-Hilbert problem (4.4) and the winding number con-

straints (4.5) follow from (4.1), the condition that the diagram of the transition matrices
commute.

A method of determining the integers N(Sk) from the principal factors of the
scattering data is given below in Theorem 4.8.

We now turn to the general case in which the matrix J has complex eigenvalues.
We first discuss the structure of the transition matrices. The permutation r has a very
specific form [17]. For z fl, Re zA(j)is nondecreasing. Therefore for Z, both
Re :Aj) and Re :A,) are nondecreasing in j. Let us work in the u representation (i.e.,
choose a representation in which u identity) so that Re :Aj is nondecreasing in j.
There are integers al < a2 <" < a such that tr leaves each Ip {j: Re (:A) ap}
invariant. Moreover, the Ip are consecutive sets of integers: Ip--{np_ + 1,..., np},
where 1 <_- n < n2 n _-< n; and tr reverses the order in each Ip. Thus tr is the product
of transpositions: tr= (1, n)(2, (n-1))... (n, n)((n + 1), (n-1)). For example, the
situation for the 3 x 3 and 4 x 4 cases, where the elements of J are, respectively, the
third and fourth roots of unity, are depicted in Figs. 4.2 and 4.3.
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(12)

(13

(23)

(123) id

(13)

(321)

(12)

(23)

12)

(23) (13)
FG. 4.2. Sectors for the diagonal matrix J diag (o, 2, 1).

(14)

(13)(24)

(14)(23) (23)

(23) (23)

(14) e

(4213) (12)(34)

(13)(24) (14) (12)(34)
FIG. 4.3. Sectors for J=diag (-1,-i, i, 1).

THEOREM 4.6. The transition matrix V that connects my and m, across E is block
diagonal: V0 -0 if Re :Ai Re :As. Its diagonal blocks factor as (1 + upper)(1 + lower).

Each transition matrix N,, is block lower triangular in the v representation with
diagonal blocks of the form (1 / upper)(1 + lower); each R, is block upper triangular in
the v representation with diagonal blocks of the form (1 + lower)(1 + upper).

The transition matrices S, factor as (1 + U,)(5,)(1 + L,)- where U, is upper and
L, is lower triangular in the v representation. In the v representation (with and f,
as in Fig. 1.1) L, is block lower triangular with upper triangular diagonal blocks, whereas
U, is block upper triangular with lower triangular diagonal blocks.

Finally,

(4.6) V t,l(1 + U,)-IR(1 + U,)tS,=(I+L,)-IN,(I+L,).
Proof (cf. [2]). For : we have (m-,m,)o=(VX)is=(eXeSVe-Xes)o=

V0(:) exp {x:(Ai-As)}. Since my is uniformly bounded on -<x <c, we must have
V0 0 whenever Re (Ai As) # 0. Thus, V can be written as a sum of block diagonal
matrices (O)p Vp), 1 <- p <-_ s.
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For potentials of compact support, V.(x, z) eXZJ(A,(z)) e-xzj for x <supp Q.
Since r/ - 1 as x - -oo, A, must be lower triangular in the u representation. The matrix

A, is converted to the u representation by conjugating with 0--1" A tr-lAtr AT,.
From the particular form of tr it is easily seen that A is block lower triangular with
its diagonal blocks upper triangular. Thus in the case of compactly supported potentials,
N (A’)-IA has the form given in the statement of the theorem. The general result
follows by approximating Q by potentials of compact support. The proof of the case
for the R is the same.

We know that S (1 + U)(6)(1 + L)-I where U and L are, respectively,
upper and lower triangular in the/x representation. Their form in the v representation
is given by U,T and L,T, respectively, and the conclusion of the theorem is obtained
without difficulty.

Equation (1.6) may be written as follows"

6;1(1+ U,)-IR(1 + U,.)6,,=(I+L,)-IN,,.(I+L,).
From this and the relations my r/(1 + L) p(1 + U)6, etc., we obtain (2.6). This
completes the proof of Theorem 4.6.

We now turn to the extension of Theorem 4.4 to the sector case. The previous
arguments can be repeated, with appropriate modifications for taking into account the
block triangular nature of the matrices involved. Taking lower k x k minors of V, we
have d-V, d[(1 + L,)-IN(1 + L)] d[(1 + L)-IN,] by Lemma 4.1. This time
N and (1 +L)-1 are block lower triangular; so the lower k xk minors may be
computed by taking determinants of the diagonal blocks. But the diagonal blocks of
(14-L)-1 are upper triangular, and the diagonal blocks of N are (1 +upper)x
(l+lower). So d-[(I + L)-IN,]=d-IV, 1.

Now taking upper k x k minors of (4.5) we get, by the same arguments, 1 d-R,
d(1 + U)-IR(1 + U)= d-(6-lV,6) in the u representation. Explicitly, we have

1 =d+ -1(.- a .., V..-..)
d+ /-1 + /-1k(- 6-, u)d-( Vu)dk( 8.u).

We have proved Theorem 4.7.
THEOREM 4.7. The lower minors ofV are all 1 along E and the upper minors satisfy

(4.7) 6’, 6bk,(),
where

(4.8) b)(:)
d_,(u_lvu), :

(again, we are taking do(V) 1).
Taking arguments and then the differential of (4.7), we get

d arg 6- d arg 6 d arg bk (:), Eo-, o’=/z
-1

Integrating this identity over the rays E, we get

(4.9) N(6) -- d arg 4(),

where E U E and N(6k) is the total index of the function 6k in the complex plane:
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In this integral the functions 6() and 6{() denote the limiting values of 6k on
from the regions 12 and 12,, respectively.

By Rouch6’s theorem, N(6k) is the number of zeros minus the number of poles
of 6k in . These in turn can be related in a precise way to the locations of the poles
in the principal factors L of the scattering data as follows. First note that

A_j+,(z)
6 zX_(z)

z f,

where A-(z) d(S). For a functionf meromorphic in fl let Z(f) and P(f) denote,
respectively, the number of zeros and poles of f in II, and let N Z-P. Then
N(Sjj) Z(A_j+,) Z(A_]).

Carrying out the factorization S(1 + L) (1 + U)6, we find that the lower minor
A_] appears in the denominator of the jth column of L, for j 1... n- 1. So if P
is the total order of the poles in the jth column of L, in the , representation, then
P=Z(d-_(S)), and N(Si)=P_I-P. (We set P=Z(d-(S))=O.) The total
index, or degree, of 6j in f is obtained by summing over ,. Thus the winding numbers
of the diagonal elements can be obtained directly from the principal factors L.

Choose the arguments of bk(:) to tend to zero at infinity. Then

Y f d arg 4k,(:)=--Y arg bk,(0).

We have proved Theorem 4.8.
THEOREM 4.8. The winding number constraints on the scattering data are

1
(4.10) Pk-,- Pk -- arg bk.(0),

where the functions Cbk are defined by (4.8), their arguments are chosen to tend to zero
as along the ray ,, and

P=E P

with P, equal to the number ofpoles in the kth column ofL in the , representation.

5. Reconstruction of the transition matrices from the scattering data. The inverse
problem is to reconstruct the potential Q given scattering data s.d. { V(), z, L} that
satisfy the necessary constraints d(V)= 1, (V-1) S(), and the winding number
constraints (4.10). This is done in [2], [5] for the case where all the poles of m are
simple, and the principal factors L at a pole zg lq have the form (in the u rep-
resentation)

1
L CEk,k+l,

Z--Zg

where Ek,k/l is the matrix with a 1 in the (k, k + 1) entry and zeros everywhere else,
and c is a constant. Such scattering data is "generic" in the sense that it is the scattering
data for a dense class of potentials in L, but this class is not invariant under Bicklund
transformations 12], 17].

THEOREM 5.1. The transition matrices S, R, and N can be uniquely reconstructed
from scattering data s.d. { V(s), zj, L(z)} for which d-( V) 1, V- 1) S(), andfor
which the winding number constraints (4.10) are satisfied.
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Proof Given V and the factors 1 + Ly, N is obtained immediately from the formula
N =(1 + L,)V(1 + Ly) -1. The diagonal factors 6y of Sy are obtained by solving the
(scalar) Riemann-Hilbert problems (4.7) given the location and multiplicity of the
zeros and poles of 6y. We saw how to determine the degree of 6j from the scattering
data. (Below we give an explicit solution to the Riemann-Hilbert problem (4.7).)

We next turn to the construction of the factors 1 + Uy and the transition matrices
R. In proving Theorem 4.7, we have shown that dV (dkty)+ (dkt+-1) in the
representation. By Lemma 4.2, V has the factorization V =(1 + B,)-1613y(1 +
where By is strictly upper triangular in the , representation. This factorization is a
purely algebraic problem. Performing these factorizations on each of the rays, we
obtain matrices By on 0fy, each of which is strictly upper triangular in the , representa-
tion. Next, using Lemma 5.2 below we construct analytic splittings

(5.1) (1 + By) (1 + R)(I + U),
where U is upper triangular and analytic in l)y, R is upper triangular and analytic
in 12, etc.

Then

V (1+ U)-l(l+R)-16-16y(l+R)(l+ U)
-1(1 + U.)-l(1 + R)-I(1 + Ry)(1 +
l(1 + U.)-IR(1 +

where l+Uy (l+y o -1Vy6y ), 1 + Ry (1 + tyR6l), and R (1 + R)-I(1 + Ry). We
have now constructed N, R, S, and Sy in such a way that (3.2) is valid.

The analytic splittings (5.1) are obtained through an application of Lemma 5.2
below. Let C be the union of two adjacent rays of E, with the orientation inherited
from E, as in Fig. 5.1. Denote by E+/- the components of the complex plane lying to
the "left" and "right" of C with the given orientation.

FIG. 5.1

LEMMA 5.2. Let C and E+ be as shown in Fig. 5.1. Let L be a strictly lower triangular
matrix on the contour ,, with coefficients in S(E). Then 1 + L has an analytic splitting
(1 + L)= (1 + F+)(1 + F_) where F+ are the boundary values of matrices analytic in E+,
respectively. Similarly, we can factor (1 + L) (1 + F’_)(1 + F_).

Proof Though not Abelian, the group of triangular matrices is solvable, and the
factorization problem can be carried out by solving a sequence of scalar problems.
Suppose we want to carry out the factorization (1 + F)(1 + L)= (1+ G), where F is
analytic in E_, G is analytic in E+, and all matrices are strictly lower triangular.

Let H+ denote the projections of functions f S(E) into the boundary values of
functions analytic, respectively, in E+ and E_. These projections are constructed in
the usual way as follows. Define

1 If(t) dt.F z
2 7r---- t- z
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Then IIf(s) limz_e. F(z), where the limits are taken as z approaches sceX from
:, respectively. At points away from the origin, the projections Il+/-f(:) are given by
the usual Plemelj relations" -- PIx f(t)

II+f() +f + dt.
7ri t-

The analysis is more complicated at z 0, but IIf tend to constants as z -> 0 from
and (H+ II_)f(0) =f(0).

Returning to the proof of the lemma, first choose an F for which the only nonzero
terms are immediately below the diagonal" Fjl,j_I # 0 for j 2,..., n. We use F to
annihilate the first subdiagonal of L by setting

-II_Ln. LFn,n_l -1 n,n--1 II+Ln,n-1
We now have a matrix (1 + L) (1 + F1)(1 + L) where all terms on the diagonal and
first subdiagonal of L vanish. We then repeat the process with the next subdiagonal
by choosing an F with nonzero terms on the second subdiagonal, and so forth. The
matrix (1 + F) is obtained as the product (1 + F) (1 + F") (1 + F). This proves
the lemrna.

We apply this lemma to obtain the factorizations (5.1), with C 0, and X+ f.
This essentially completes the proof of Theorem 5.1 except for the solution of the

Riemann-Hilbert problem (4.7). An existence proof was given for this problem in [2],
using induction on the number of rays X. However, a simple constructive proof may
be given as follows.

Let X t_Ji Xj, where Xi are rays extending from the origin, and let be smooth
functions in LI(E), with b- 1 as so-co along the ray. (Recall that the scattering
transform preserves the Schwartz class, so that the scattering data will be smooth.) We
want to solve the following Riemann-Hilbert problem.

Construct f(z),
(i) Meromorphic in f C\E; f(z)- 1 as z --> oo in f.
(ii) f+(sc) =f-(sc)b(sc), sc Xj, where + and denote the limits from the left and

right, respectively, being oriented from zero to infinity.
(iii) f has the prescribed poles and zeros in f.
(iv) f tends to a finite, nonzero limit as z- 0 in f, independent of the sector.
THEOREM 5.3. Let Z and P be, respectively, the numbers of prescribed zeros and

poles off in f, counted according to multiplicity. Choose the branch of log b that tends
to zero as c along the ray X. Let N be defined by

(5.2) N -1 d(arg 4)
2 r--- 2 arg 4j (0).

27ri

Then a unique solution to the Riemann-Hilbertproblern exists ifand only ifN Z- Pand

(5.3) Ibl(O)b2(O)’’’ b(O)l 1.

Proof. If there are two solutionsf and f2, we form their ratio. Then all singularities
(jumps and poles) cancel out, and their ratio forms a function with removable sin-
gularities in the entire plane that tends to 1 as z-> oo, so it is identically one, and the
solution is unique.

Necessity. A necessary condition that the problem have a solution is that
thl(0)b2(0) br(0)= 1 [2]. This is seen as follows. Number the sectors and the rays
by j, j 1,..., r, and let be the ray separating f from -’j+l" Across Y_,j we have
ff(s)=ffi(sc)bj(s). Letting sc-0, we get f(0)=f+l(0)bj(0); there is no need to
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distinguish limits from the right or left at the origin. Therefore fl(0)-f2(0)(l(0)--
f3(0)f2(0)42(0)thl(0) f(0)$(0)$2(0)""" St(0), and the result follows from the
assumption that f does not vanish at zero. The condition (3.3) follows at once; and
moreover arg thl(0) +" + arg St(0) 2riJ for some integer J. We will see in the course
of the proof of sufficiency that J must be equal to Z-P for f to have the right
asymptotic behavior at infinity.

Sufficiency. It is easily seen that

F(z)=exp 2r--- t-z

satisfies the correct jump conditions across the rays, tends to 1 as z-> oo, and has no
poles or zeros in ft. Now

1 .f logthj(t) dt=l [logbj(0)]logz+O(1)
2ri z 2

so in the neighborhood of z 0, F behaves as does z where

as z->O,

1
K =log [(1(0)(2(0) (])r(0)].

2ri

Condition (5.3) is a necessary and sufficient condition for F to be single-valued in an
neighborhood of z-0. Assuming (5.3) is satisfied, K N, where N is given by

(5.2), and F behaves as does zN near z 0. So z-NF is bounded near z- 0 and does
not tend to zero.

Choose

R(z): (z-z.i) (Z--ptk)
j= k=l

to be a rational function with the prescribed zeros and poles of the problem, counted
according to multiplicity. Then z-NR(z)F(z) satisfies all the conditions of the problem
in the finite plane and is O(zz-P-m) at infinity. It therefore tends to 1 as z - oo if and
only if N Z- P. This is the winding number constraint.

To see that the condition N=Z-P is necessary, let f be a solution to the
Riemann-Hilbert problem. Then f+ z-mR(z)F(z) is an entire function that behaves
as does zN-z/P as z - oo. If N-Z + P < 0, this ratio, hence f, must vanish identically
in the entire plane. If N-Z+ P> 0, then f= zP-zR(z)F(z), and f has a zero of order
N- Z+ P at the origin.

6. Singular integral equations and Plemelj’s method. Once the transition matrices
N and R= have been reconstructed the next step in the solution ofthe inverse scattering
problem is to solve the Riemann-Hilbert problem O’g-gl, where g is the frame
{%, P, 7=, P}. Since m has poles, it was necessary in [2] and [5] to solve a Riemann-
Hilbert problem, or singular integral equation, with poles. In the bundle approach
used here, the Riemann-Hilbert problems obtained are regular, with no additional
singularities to be dealt with. There is an extensive literature on singular integral
equations/Riemann-Hilbert problems, going back to Plemelj. The basic approach is
to "regularize" the singular integral equation by reducing it to an integral equation of
Fredholm type. We present that method here for the somewhat simpler case J*=-J.
Then X reduces to the real line in the complex plane.

In the general case, it must be shown that the intersection of the rays of X at zero
do not introduce singularities at the origin (cf. [2], [5]). It would be interesting to
extend the Plemelj approach to this situation.
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Thus, let E R and let f/+/- denote the upper and lower half planes. Assume we
are given the transition matrices N, R, and S+/-, with RS/=S_N. Let +/-(x, :)=
limz_,+/- r/(x, z) for : E and define

A+/-() lim e-Xq+/-(x, ) e’,

Then r/+(x, sc) r/oA: on E, and N (A_)-IA+. Similarly, define B+/- to be the corre-
sponding limits of p+/- as x- +o, so that p+/- poB and R (B_)-IB+. Across we
have 0*g=rt+-r/_ for x=<0 and O*g=p+-p_ for x=>0. Taking g=r/o on -=
E x {x <- 0}, we find that

/x=g-10*g T]-I(+--T]_) rI-I(rIoA-rIoA_)=(A+-A_) on 2.

Since r/(x, z) is analytic in f+ and r/-10 as zoo in 1"+, we have, for x<=O,

1 f rio(X, t)A+(t) 1
rt+(x, z) 1 27r---] J z

dt, Z f+

and

1 f rio(X, t)A+(t) 1
0--- dt, Z f_

27ri t-z

Taking the limit of the second integral as z- - for : E, we obtain

1 P (, r/oA+(t)X-1
0 - (A+()- 1)+2 t-

dr,

By similar arguments applied to z +, we obtain a second singular integral equation

gl (oa_() 1)+ a-(t) 1
0= 2i t-

dt,

Summarizing, we have derived a pair of singular integral equations for o viz.

e no(X, t)a(t)-(6.) (no(X, )a()- 1)= dt.

Conversely, if o satisfies (6.1), then define by

1 o(X, t)A(t)- 1
dt(x’ z)- 1 2 for Z

Taking the limits of as z and using (6.1), we find that (x, ) o(x, )A(),
hence += _N, where N AA+, and our Riemann-Hilbe problem is solved.
Thus the singular integral equations (6.1) are fully equivalent to the original Riemann-
Hilbert problem.

There is also a second pair of integral equations satisfied by po, together with the
asymptotic conditions

lime-xepo e 1.

Given the two solutions of the singular integral equations rio and po, we obtain
solutions r/+/- and p+/-, analytic in +/-, which satisfy the Riemann-Hilbert problems
r/+ rt_N and p+ p_R on {x =< 0} and {x >= 0}, respectively, with the addi-
tional radiation conditions. Suppose these two Riemann-Hilbert problems have unique
solutions under the conditions stated. Putting x 0, multiplying the second equation
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above by S+(), and using the identity RS/ S_N, we find p+S+ p_(RS+) (p_S_) N.
Hence pS+/- satisfy the same Riemann-Hilbert problem as r/+/-. By uniqueness, r/+/--
p+S+/- for x 0 and E.

In the general case we would have to solve a sequence of Riemann-Hilbert
problems on successive intervals of the real line and patch the solutions together.

The potential Q is recovered as follows. Define w(x, z)= r/+/-(x, z) for x_-<0 and
z fl+/-, and w p+/-(x, z) for x_>- 0 and z fl+/-. Consider the expression Q(x, z)
(Dzw)W-, where Dz is the derivation

0
Dz z ad J.

Ox

By the analytic properties of w, Q is analytic in + [A 1_ and is bounded as z c. Its
only possible singularities consist of jumps across E. But on E, say for x <_-0,

Q+/-(x, ) (Der/+/-)r/-1 De
-1(r/oA+)(A+/-

De(r/o)(A:)(Al)r/ff + r/oDe(A:)(A-;1)r/
De(no)n

since De(A: 0. Thus Q has the same limits from both sides of E and therefore has
no jumps across . So Q is entire in z and bounded as z-, hence Q is independent
of z.

Let us now return to the reduction of the singular integral equations to a Fredholm
system. First rewrite the pair of equations (6.1+/-) as

P (r/o 1)A+/-(t)XA()
dt+/-r/o- 1 (Al)x- 1 +-- Al(:) dt,

-rrl t-- "n’l t--

where, more specifically, A+/-()= eeA+/-()e-xe, etc. Adding these two equations,
we get

(6.2)

where

r/o- 1 kl(X, :)+ f (r/o- 1)Kl(X, t, ) dt,

1 A+(t)XA_’()’-A_(t)’A-I()
Kl(X, t, )-27ri t-

1__ A_(t)
N(t) N()’ AI(:)

27ri t-

and

1{ P IA+(t)-l dt}AT(),+_j{l_ fr.kl(X, ) - 1 +-- 1 P A_(t) 1

ri t- ’i t-

d/(x, z)
1 Is r/A+( t)- l

dt, z l ,+2’i t- z

The limits of q(x, z) as z so+ are

1 P f r/oA_,+- 1
q:(x, ) + (r/oA5,+ 1)+

2ri Jx t- : dt.

Below we show that (6.2) is, in fact, a Fredholm integral equation; but first we
need to investigate whether it is equivalent to the original Riemann-Hilbert problem.
Let r/o satisfy (6.2) and define
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Comparing these expressions with equations (6.1+), we see that the singular integral
equations (6.1+) for r/o are equivalent to the conditions q+(x, sc) =0. Since q is analytic
in z , and tends to zero as z--> , we see that q must vanish identically.

It is a simple computation to show that if r/o satisfies (6.1), then q satisfies the
Riemann-Hilbert problem q_= q+Nx. (Recall that 7 satisfies the Riemann-Hilbert
problem r/+= q_NX.) The Riemann-Hilbert problem satisfied by @ is called the
accompanying problem [10], [14]. Thus (6.2) is equivalent to the singular integral
equations (6.1+/-) provided that the accompanying problem has no homogeneous
solutions.

The accompanying problem can, in turn, be reduced to a system of Fredholm
integral equations. Rewriting it as @_(A_I)x= @+(A-l)x, and defining o @-(AI)x-
q+(A-1)x, we find by the same arguments as above that

1 f.d/A(t)Xdt=O for
27ri z

Taking limits as z- :+, we get

P f oA+/-(t)
oA+/-(:)x +/-

7r .Iv. t-
dt =0.

Multiplying these two equations on the right by A+(sc)x, respectively, and adding, we
get the homogeneous integral equation

1 ft. A+(t)’(A+()-)X-A-(t)X(A-()-l)x
(6.3) $o(X, )+ $o(X, t) dt=O

27ri t- sc

corresponding to the accompanying problem.
Our next task is to demonstrate that (6.2), (6.3) are indeed Fredholm integral

equations on L2(E). We do this by showing that K(x, t, ) is in L2(E E). It is clear
that if the scattering data is at least Lipschitz continuous, then K1 is bounded on the
diagonal sc. A second difficulty arises because is infinite. We must show that

fr. f ’Kl(X, t, ’)[2 dt d’ < +:,

where, for IK(x, t, )1 we may take the sum of the absolute values of the entries of
K1, or any equivalent norm. We decompose the integral into integrals over the sets

I:- tl < 1 and Isc- tl--> 1. Let us consider the integral over Isc- tl -> 1 first. Since A5 and
(A_) are bounded on E (all the exponentials are oscillatory on E), we have

(6.4) IK(x, t, )1 <= const. N(t)X-N()

Now N(t)= 1 + W(t), where W is smooth and decays as t--> +, so

IKl(X, t, )l -< const.
Iw(t)l+lw()l

Hence

]K(x, t,)12 dt d<=const. { f Il_tl>_ Iw(t)l+lw(t)llw()l }I -t] dt d

The first integral is dominated by

-t[l
= dt <= 2 W(t)l2 dt < +c
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and the second term is dominated by

I I W(t)IIW()I at dsr 211

The integral over [r-tl < 1 is bounded by

(6.5) fls-tl<l N(t)X-N(s) N(t)X-N(s)
dt ds.

Now

N(t)X-N(s) 1

t-s t-s

d 1 eXyJ(N’(y)+x[J, N]) e-y N y dy t-----
xyJ dy

so (6.5) is finite if g(s) L2(R), where

g(s)= sup IN’(y)+x[J, N(y)]I.
s--l<=y<_s+l

Now we are looking for solutions satisfying the asymptotic condition

lim e-JTo(x, ) exeJ= 1

and a similar condition on p0 at +m. Multiplying on the left by e-eJ and on the right
by e*eJ, and putting Wo(X, )- e-Xe,lo(X, s) e’‘e- 1, we get the integral equation

Wo k(x, ) + It. eX(t-e)JwoK (x, t, ) dt

where

1
K(x, t, )-27ri

A+(t) e-X(t-)A_l()-A_(t) e-(t-)A-l()

and

1{ PI.e(,_)jA+(t)-Ik(x, )= l+--
7ri t- s

e-x(’-e)J dt} A_T_I()

1{ ___PI. t-)A-(t)-I+ 1
7ri

e(
t-:

e-x(t-)2 dt} A-I()- 1.

We need to show that the inhomogeneous term k(x, )--> 0 as x-->-. Since all
the exponential terms in exaA/(t) e-xa are purely imaginary for E, the limit

P f A+(t)- 1 -x(,-)Jlim ex(t-)J e dt
x--o "a-I J: t-

may be evaluated using the following result from the theory of distributions"

p e itx

lim +(t),
"tri

where P stands for the Cauchy principal value. For the jkth entry we get

-(A+(s) 1)jk sgn Im (Aj- Ak).
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Now Re zh < Re zhk for j < k and Re z > 0. Hence sgn Im (A hk) > 0 for j < k. Since
A/(t) is lower triangular by Theorem 4.6, we get

A+(:)- 1.

Similarly,

P f A_(t) 1
lim ex(t-)J e dt= -(A_()- 1)
x--o n Jx t- sc

so k(x, ) -* 0 pointwise as x -00.

With further efforts, k(x, st) can be shown to tend to zero in the mean as x
as well; on the other hand, the dependence of kernel K(x, :) on x is the exponential
of an imaginary term, so the norm of K remains bounded as x -oo. This step requires
further analysis.

When E R the Riemann-Hilbert problem can also be Fourier transformed to a
convolution equation on a semi-infinite line. This approach has been considered in
detail by Gokhberg and Krein [9]. In this picture, there is a very striking difference
between the 2 x 2 and n x n cases. In the n x n case, the integral operators obtained
are of the form (roughly speaking)

Fd/(s) f(s t)tp( t) dt.

Such an integral operator F is not even Fredholm. In the 22 case (and also the
second-order scalar case), the inverse scattering problem can be reduced to the
Gel’fand-Levitan-Marchenko integral equation, in which the operator takes the form

Fb(s) f(s + t)O( t) at.

Here the kernel of the integral operator depends on the sum of the arguments; and,
under very mild decay conditions on f (which are satisfied in practice) the integral
operator is of trace class and the integral equation can be solved by Fredholm’s method
of determinants and minors. The second- and nth-order cases are thus totally different
in character.

7. The "dressing method" for n x n hierarchies. In this section we develop a parallel
of Zakharov and Shabat’s dressing method for the Kadomtsev-Petviashvili (KP)
hierarchy based on sectionally holomorphic gauge transformations. We first review
the dressing method for the KP hierarchy [15]. The KP hierarchy can be obtained by
"dressing" the family of differential operators

0 d

Ox,,
D= n=2,3,...

with upper and lower Volterra integral operators W+ 1 + K+/-, where

IxK+@(x) K+(x, y)b(y) dy

and K_ is defined similarly. We obtain, formally, the hierarchy of nth-order differential
operators Bn, defined by
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Following Zakharov and Shabat, we will say that the operators W+ dress the constant
coefficient bare operators on the right to the perturbed operators on the left.

Assuming one of the operators, say W/, is invertible, the following proposition
is easily demonstrated [15].

THEOREM 7.1. Let 1 + F W_ W_o Then W+ both dress the bare operators O/Oxn
D to the same operator O/Ox,,- B if and only if
(7.2) [I+F,O/Ox,-D"]=O.

Moreover, in this case, the B, are purely differential operators.
The commutation relations (7.2) are linear evolution equations for the "scattering

operator" F:

OF
(7.3)

Ox,
F, D"].

The basic intertwining relations (7.1) can be rewritten as the operator identity

oW
W-l= B.- WDnW-1.

Oxn

The left side of this identity is an integral operator, whereas WD"W- contains both
differential and integral terms. Decomposing this identity into its differential and
integral parts, we obtain the well-known relationships

OW
(7.4) B,=[L"]+, W-I=-[L"]_, L= WDW-1,

OXn
where Ln]+ denote the differential and integral parts of the integrodifferential operator
L= WDnW-. From the identities LW= WD and (O/Ox,-B,)W= W(O/Oxn-D"),
and the commutation relation [O/Ox- D, D] =0, we obtain the nonlinear evolution
equations

OL
(7.5) Ox,-[(L")+,L].

In an exact analogy with the KP hierarchy, the n x n hierarchies introduced in
3 can be obtained by constructing a sectionally holomorphic gauge transformation

g such that

g -zJ -u(x,z) g, u=zJ+Q(x),

(7.6)
-z -v,(x, z) g,g
Ot

v, z"K + B,(z, Q).

We orient as in Fig. 3.1 and denote the associated components of g in 12+ by
g+/-. In analogy with Theorem 7.1, we have Theorem 7.2.

THEOREM 7.2. Let g be a sectionally holomorphic gauge transformation that tends
to 1 as Ix or Izl tends to infinity. Let g+/- denote the limiting values of g on . from 12+
and 12_. Then g+ both dress (O/Ox-J) and (O/Ot,-"K) to the same operators
O/Ox- u(x, ), (O/Ot, ,,(, Q)) if and only if

(7.7) F,-x-J =0, F,---K =0,

where F g-ag+. Moreover, in this case, both u and v, are polynomials in z.
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Proof The relations (7.7) may be expressed concisely as D,g-are the derivations
g+ 0, where Dn

0 0
Do =2---- : ad J, D, =2-7#- :" ad K

OX

and the intertwining relations (7.6) can be written concisely as

Og
_ _

Og
_

=_-7--. g + gz"Kg u =rag + gzjg-.
Ox

(Equivalently, we may write B, (D,g)g-, where Bo Q(x).) We will denote Vo u
and to x. The proof of Theorem 7.2 is based on the following identity, which is easily
derived:

(7.8) v. v, g_(Djg-lg+)gS j E

where v, are the limits of v, on Z from 125.
If g+ both dress (O/Ox-J) and (O/Ot,-"K) to the same operators (O/Ox-

u(x, )), (O/Ot,-v,(, Q)), then v,+= v on Z, and Djg2g+=O by (7.8). Conversely,
suppose (7.7) are satisfied on Z for a sectionally holomorphic gauge transformation g
that tends to 1 as Ixl or z tends to oo, and define v, =(Og/Ot,)g-l+gz"Kg-. Then
+ O(z")v, v, on E by (7.8), so v, is an entire function of z. Since g 1 as z oo, v,

for n _-> 1, and u O(z) as z- oo. Therefore u and v, are polynomials of degree 1 and
n in z, respectively.

Now g has an asymptotic expansion in inverse powers of z in each sector 12 5
uniform in x in (-oo, a] or x in [a, oo) respectively, for any finite a, hence G gKg-also has an asymptotic expansion"

gKg-’-- -.j=0

Since v =(Og/Ot)g- +(zG) is a polynomial in z, vn =(zG)+, where (zG)+ the
polynomial part of the asymptotic expansion of zG.

We claim that vn is a polynomial in Q and its derivatives up to order n. The
corresponding statement is proved in [11] for the terms in the asymptotic expansion
of mKm- where m is the meromorphic wave function of Theorem 2.1; namely,
(zmKm-)+ is a polynomial of order n in z whose coefficients are differential poly-
nomials in Q.

The differential polynomial character of z is unaffected by the transformation
from rn to g. The relation between rn and g is given simply by rn g(1 + L) in 12
and m g(1 + U,)6, in f+, where,

xzJ + t,z"K
j=l

and A e A e- On the other hand, v, z K + B,(z, Q), where B,(z, Q) (D,g)g-,
and (D,g)g- is invariant under right multiplication of g by an element in the kernel
of the derivation Dn. (Note that the ker D, {A}.)

It is easily verified that G satisfies the following differential equations"

aG
-Iv., G], n=0, 1,

Ot



754 D.H. SATTINGER

where, as usual, to-x and Vo u. From the first of these equations (n 0) we obtain
the recursion relation

It follows that

hence that

ox
-[Q’ G].

z" (="[ u, (])+ (z"[zy + Q, ])+
Ox +

=[, (z+’G)+] + [(, (z"()+],

--(z"6)+-[Q,(z"6)+].[J, (z"+6)+]
0x

Furthermore, the recursion relation (z"+lG)+ G,+I + z(z"G)+ is easily verified. We
therefore have Lemma 7.3.

LEMMA 7.3. The differential polynomials v, satisfy the recursion relations

[J, Vn+l] (0--ad Q)vn, v+,-zvn=G+.

The Hamiltonian hierarchy of flows follow from the zero-curvature relations

Vm, -- Vn =0.

From the equation for m 0 we get

Ou Ov "G+[(z )+,u](7.9) Ot,-Ox
Since u zJ + Q, these equations can also be written

oQ or, or,
[v, u]= -[Q,

Ot, Ot Ox

[Z Vn+- 2Vn] [Z an+l]

Ae. Trsfrfi f te Jost t t te le t. In this Appendix
we show how to obtain the transition matrices N and R from the matrices S, S.
We first prove the following lemma. We use the notation -=LEMMA A1. e limits

lim n2, lim nm lim n lim nm
X

exist for all Z for which the corresponding wave function is defined and satisfies the
appropriate integral equation.

Proof Let us prove the statement for , which satisfies the integral equation
(2.3). Operate by e- on the left and by e on the right and apply the projection
H. This projection knocks out the integral to +, and it is immediate that

lim Ho =Hol=l.
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The wave function my (which satisfies the differential equation in the interior of
fy) satisfies the integral equation

my 1 + (H_) e(x-y)zJ Qmy e-(x-y)zJ dy- H e(x-y)zJ Qmy e-(x-y)zJ dy,

where II_ projects onto the subspace where Re z ad J is strictly positive for all z
We obtain an integral equation for the boundary values m+/- by taking the limit as z
approaches so+. In the limit as z- so+, the ranges of the projections H each contain
terms for which Re sc(A- Ak)= O. Conjugating with e-J and applying IIo, we obtain

xl--m IimTX 1-III(Qm+)-’dy=l+

where the matrix Ly is in the range of the projection IIo in the v representation. The
other limits are established in the same way.

Now we can write Vy- rl(Ay)x, V r/(A) where

A lim IIo-.
It follows immediately that N=(A)-(Ay). Similarly, we have R,=(B)-I(By),
where

py=pB and By=limIIp-x.

The matrices Ay and By can be uniquely determined from Sy, S as follows. The
relations

fly pyS, qy rl,.(Ay)’, py p,.(By)’, rl,.

imply S(Ay)= (By)Sy. Similarly, S,.(A.)= (B.)S.. By the triangularity properties of
the Ay and By we conclude that

d+ +kSr-" dkSy d-S= d-S,.
Given two matrices S and Sy with the same upper minors there are uniquely determined
lower and upper triangular matrices Ay and By such that S BySyA-. Similarly, there
are uniquely determined /x-lower and /z-upper matrices A and B, such that S
B,S,A1.
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ON THE SPREAD OF CONTINUOUS-TIME LINEAR SYSTEMS*

AVNER FRIEDMAN" AND MICHAEL L. HONIG$

Abstract. Given the impulse response h of a linear time invariant system, this paper considers signals
y h u with inputs u subject to lu(t)l <- and asks, for a given r > 0 and y(to), what is the set of all the
possible values (the "spread") of y(to+ r). This set is characterized, its properties are studied, and it is
computed for some functions h.
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1. Basic definitions and results. Let h(t) be a prescribed continuous function
defined for 0-< < and belonging to LI(0, ); we refer to it as an impulse response.
Let u(t) be any measurable function for 0=< < satisfying lu(t)[-< 1; we refer to it
as an input. The function y(t), defined

y( t) h( s)u(s) as,

is called the output or the signal
Given a [, to>--0, 7-> 0, we would like to estimate the range of the output y(t)

at time to + % given that y(to) a. More quantitatively, we wish to bound the numbers

t+(a, 7., to) sup {y(to+ 7.); given y(to) a},

6--(a, 7., to) inf {y( to + 7.); given y(to) a}.

Introduce the class of control functions

(1.1) K,= {u L(-cx, 7-), -l <= u(s)<- l, I h(-s)u(s) ds= a }
and the functional

(1.2) J(u) f h(7-- s)u(s) ds,

and define

(1.3) o’+(7, a)= sup J(u),
K-,a

(1.4) o’-(7.,a)= inf J(u).
Kr,
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DEFINITION 1.1. The function r(-, a)= r+(z, a)-o’-(r, a) is called the spread
of the linear system.

The motivation comes from the following theorem.
THEOREM 1.1. For any a [, z > 0,

(1.5) sup +(r, a, to)= o’+(% a),
to 0

(1.6) inf -(r, a, to)= o’-(r, a),
to_-->0

and, consequently,

(1.7) sup t+(r, a, to)- inf t-(r, a, to) o’(r, a).
to=0 to->-o

Proof The condition y(to)= a means that

h(to s)u(s) a.(1.8) as

Writing

to+-
y(to+’) h(to+Z-s)u(s) ds

dO

and substituting to-S=-S’, U(to+S’)= v(s’), we get

y(to+ r) h(r-s’)v(s’) as’.

The same substitution applied to (1.8) gives
o

h(-s’)v(s’) as’= a.

Hence

+(% a, to)=sup h(r-s’)v(s’) ds’; v satisfies Iv(s’)ll,

I h(-s’)v(s’) ds’= a

Extending v(s’) to s’<-to by zero, we see that cr+(r, a, to) is sup Jr(v) when v is
restricted to a subset say K.... to, of K,, hence

+(r, a, to)----< 0"+(% a).

As to--> c the subsets K.... to increase and every u K,, restricted to a bounded interval
is a function in U to>O K.... to restricted to the same interval; this implies the equality in
(1.5). The proof of (1.6) is similar.

+THEOREM 1.2. For any a R, z> 0 there exist admissible functions u .... u,, in

K, such that

+ +(, ),(1.9) J(u.)= sup J(u)= a
Kr,

(1.10) J(u-.) inf J(u) o--(% a).
Kr,
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Indeed, taking a maximizing sequence uj, we can extract a subsequence that is
weakly convergent in Loc to a function Uo. It is easy to check that Uo is a maximizer
for Jr, i.e. Uo is the asserted /u.. The proof of (1.10) is similar.

and this enables us to compute theIn this paper we study the structure of u,
spread of some linear systems of interest. In 2 we solve a general maximization
problem, which is then used in 3 to analyze the structure of u,. In 4 we establish
various properties of r(z, a), and in 5 we compute r(r, a) for some examples.
Finally, in 6 we show that all the results can be extended to the case where y(to),
y(to+zl),’’’, y(to+zN-1) are prescribed and the range of y(to+ZN) is sought; here

Motivation for studying the function r+/-(z, a) comes from the following problem,
posed in [1] and [2]. For any d > 0, T> 0 and impulse response h(.), denote by
Nmax(T, d) the maximum number of inputs uj(s) such that the corresponding outputs
y(t) satisfy

max [yi(t)-y(t)l>-d Vij.
O<t<=T

Since the mapping u- y, in L(0, T), maps the set of inputs u into a compact subset,
the number Nmax(T, d) is finite. We define

log Nmax( T, d)
(1.11) MCT(d)= lim bits/sec,

T--> T

and would like to obtain bounds on the MCT(d) for any h(. ). Set

r* inf{r[ or(r, 0) d}.

Work in progress [3] indicates that

1
(1.12) MCT(d) <=-
for any h(.) that satisfies

f ,h(-s)[ ds<-_I ,h(-s)l ds
h(’-s)/h(-s)>= 1} h(’-s)/h(-s)<=l}

for all z<-z*; the arguments used depend on results derived in this paper. Results
obtained here (in 6) for the N constraint problem, in which N output values are
specified, can be used to tighten the upper bound given by (1.12) (see [3]).

The problem of computing spread for a discrete-time linear system with impulse
response hi, i=0, 1, 2,..., is considered in [2]. This computation is equivalent to
solving a linear program with bounded variables and one equality constraint. Here we
show how the spread can be computed for a continuous-time linear system. Two
examples of special interest are presented in which the spread can be computed by
finding a solution to a transcendental equation.

2. A general optimization problem. Let f(s), g(s) be continuous functions in
c< s =< 0 that belong to LI(-, 0), and assume that

(2.1) f 0 a.e.,

(2.2) meas {c }=tz =0 for any/x.
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Let

K { u(s) measurable for -< s < O, lu(s)l <- l, If(s)u(s) ds t }
for some fixed a R, and

J(u)=fg(s)u(s)ds.
As in the proof of Theorem 1.2, we can show that there exists a function Uo K such
that

(2.3) J(uo)=maxJ(u).
uK

THEOREM 2.1. For any solution Uo K of (2.3) there exists a number A such
that almost everywhere

(2.4) Uo(S) {sgnf(s) if g(s)/f(s) A,
-sgnf(s) ifg(s)/f(s)<h.

Note that (2.4) is equivalent to

Uo(S) sgn [g(s) hf(s)].

Proof. We begin by proving that Uo 1 almost everywhere. If the assertion is not
true then the set Go-{lUol < 1} has positive measure. Denote by G the subset of Go
consisting of all points of Go-density equal to 1, such that also f(t)#0. Then
meas G meas Go> 0.

Take tl, t2 in G(tl # rE) and let Gi be a subset of G contained in the go-neighbor-
hood of ti, such that sups, lul < 1, meas G 0 and 260 < Itl- tEl. By decreasing one of
these sets we arrive at the situation where

G1 ["] G2 , meas G1 meas G2 > 0.

For any real numbers A1, A2, if e is positive and small enough then the function

E E
(2.5) t Uo+ A1 - X,+ A2 - X2satisfies [ff[-< 1. Furthermore, if

(2.6) Al f f(s) ds+A2 I f(s) ds=O,

then _f(s)a(s) as c, so that a K. Note that (2.6) is equivalent to

(2.7) Af( tl) + A2f( t) O’l(gO)

for some cr1(6o) such that trl(go) 0 if go 0.
From the maximality of Uo it follows that (2.6), or (2.7), implies J()<= J(uo), that

is,

(2.9)

Al f g(s) ds+A2 f g(s) ds<=O,

Alg( tl) + A2g( t2) <-- trE(gO)
for some tr2(go) such that tr2(io) 0 if go 0.
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If we choose

f(t2) o"1(8o)
(2.10) Al=-i4f("t$+ f(t,---"--)-
so that (2.7) is satisfied, (2.9) must then hold and, upon letting 80 + 0, we get

(2.11) a2[ g(tl)f(t2)
+ g(t)] <=0.

Since A2 is arbitrary, it follows that the expression in brackets must vanish. Thus

g(tl) g(t2)
f(tl) f(t2)

for all tl, t in G. Since G has a positive measure, this is a contradiction to (2.2).
Denote by D the set of all points such that f(t)# 0 and is a Lebesgue point

of Uo. Thus almost all in (-o, 0) belong to D. Take any h, t2 in D with

(2.12) g(t,).>g(t2)
f(tl) f(t2)"

We will prove that almost everywhere

(2.13) Uo(t=) sgn f(t2) implies Uo(tl) sgn f(t),

(2.14) Uo(t) -sgnf(t) implies Uo(t=) -sgnf(t=).
These two statements clearly imply assertion (2.4).

To prove (2.13) suppose the assertion is not true. Then the set G of the pair (h, t)
for which (2.13) is not true has positive measure. Choose h, t at which has
density 1. Since t and t are Lebesgue points of the function Uo(t) and Uol 1 almost
everywhere, for any o> 0 we can find sets G1, G such that meas G 0, G is contained
in the 8o-neighborhood of 6, and

Uo(t) sgn f(t) for all G,

Uo(t) -sgn f(t) for all G.
By choosing 28o<1h-t2i and by suitably decreasing one of the sets G, we get
G f3 G b, meas G meas G=. We again form the function (2.5). If

(2.15) A2sgnf(t)<O, A, sgnf(t,) > 0,

then t =< 1 if e is sufficiently small.
If we can further choose A1, A such that (2.6) (or (2.7)) holds, then (2.8) (or

(2.9)) must be satisfied. Condition (2.7) is satisfied by the choice (2.10) of A, and if
A2 sgnf(/2) < 0, then clearly also A1 sgnf(tl)> 0 provided 8o is sufficiently small. We
conclude, after letting 8o- 0, that (2.11) must hold provided A2 sgn f(t_) < 0. Dividing
(2.11) by A2f(t=), we arrive at the inequality

g(t,_____) _1
g(t2)

_> O,
f(/1) f( t2)

which is a contradiction to (2.12). This completes the proof of (2.13); the proof of
(2.14) is similar.

From Theorem 2.1 we immediately get Corollary 2.2.
COROLLARY 2.2. The constant A in Theorem 2.1 is uniquely determined by

(2.16) f, tf(s)l as- f, If(s)i ds=a;
g(s)/f(s)> A g(s)/f(s)<A
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consequently the maximizer Uo is also uniquely determined. As a decreases fromo if(s)[ ds to _o_ if(s)[ ds, h h(a) increases monotonically from
inf{g(s)/f(s)} to sup {g(s)/f(s)}.
s<0 s<0

3. The structure of u,,. Choose h(t) as in 1, i.e.,

(3.1) h LI(0, ) f) C[0, )
and assume further that

(3.2) h(t) # 0 a.e.,

(3.3) meas {O < < oe;
h( + ’) }h(t-=h =0 Vz>0, A.

Taking f(t) h(-t), g(t) h(z- t) in Theorem 2.1 and Corollary 2.2, we get Theorem
3.1.

THEOREM 3.1. There exists a unique solution +,u, of (1.9) given by

sgn h(-s) if h(z-s) > h+
+ h(-s)

(3.4) u,(s)
-sgn h(-s) if h(z--)<h +

h(-s)

where h
/

is determined by

(3.5) I ’h(-s)[ ds- I .h(-s), ds a.
h(’r--s)/h(--s)>h +} h(t-s)/h(-s)<X +}

Clearly also /u,,(s) sgn h(z-s) if 0<s< z.
We now consider a special case.
THEOREM 3.2. If hLl(0, oo), h>0, d2(logh)/dt->O, then there is a unique

solution of (1.9) given by

+ I1 if(3.6) u.,(s)=._l if p. < s < O

and +u.,( s) 1 if 0 < s < ’, where Ix is determined by

(3.7) h(-s) ds- h(-s) ds .
Proof. By assumption,

h’(s)
is strictly increasing;

h(s)

hence

h’(-+ s) h’(s)
h(z+s) h(s)

This means that

d h(z+ s)
ds h(s)
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and thus

h (r s)
is strictly decreasing in s.

h(-s)

Now apply Theorem 3.1 to complete the proof.
Remark 3.1. If log h is convex (but not satisfying d2(log h)/dr2> 0), then we can

approximate it by a smooth function hn with d2(log hn)/dt2>O. Applying Theorem
3.2 to the corresponding maximizers h

U,,, we deduce that there is a maximizer u,,,
(for h) having the form (3.6), (3.7). There may be other maximizers; for instance, if
h(t)=e-t then every u K,, is a maximizer. (Note that (3.3) does not hold for
h(t)=e-’.)

THEOREM 3.3. If h LI(0, o3), h>0, and d2(log h)/dt2 <O, then there is a unique
solution of (1.9) given by

+ {-1 if-oo<s<l,
(3.8) u,(s)=

1 ift2<s<O
+and u,(s)= 1 if 0 < s < ’, where 12 is determined by

(3.9) h(-s) ds + h(-s) ds a.

Note that d/x / da > 0, d/2 / da < 0, where (a) and /2 =/2 (a) are defined by
(3.7) and (3.9), respectively.

(4.1)

4. Properties of the spread. Theorem 3.1 implies that

h(’--s)/h(--s)>A +i
[sgn h(-s)]h(r- s) ds

I{h(.r_s)/h(_s)<A [sgn h(-s)]h(r-s) as+ Ih(-s)l ds

-II h(’-s)
h(.r_s)/h(_s)>A +} h(-s)

[h(-s)l ds

I h(-- s) Ioh(’r-s)/h(-s) <A+} hi’fi Ih(-s)l ds+ Ih(-s)l ds

where A / is determined by (3.5). Similarly, we can show that

(4.2)

h(’r-s)
lh(-s)l ds

-- I{h(7"-s)/h(-s)<A-} Ih(-s)las- Ih(r-)las

where A- is determined by

(4.3) -I ,h(-s), ds + I Ih(-s)l ds a.
h(’r-s)/ h(-s)> X-} h(r-s)/ h(-s)<A-}

As a decreases from o Ih(s)l ds to -Jo Ih(s)l ds, a-() decreases monotonically
from sups<o {h(r-s)/h(-s)} to infs<o {h(t-s)/h(-s)}. Also, A-(0)= A+(0).
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Combining (4.1) and (4.2) gives the spread

1
tr(-, c)=

1
[+(, )--(, )]

(4.4) =I{ h(’-s)
h,-)/h-)>x, h(-s)

[h(-s)l ds

h(,- s Ih(-s)l ds + Ih(- s)l ds
h(z-s)/h(-s)<Am} h(--S)

where A max (A -, A +) and A min (A -, A +).
THEOREM 4.1. ere holds

(4.5)
O(’ ) A.

Proo Since A +(a) is a monotonically decreasing function of a, we can write

(4.6) Ih(-s)lds-l h(-s,lds=-
h(r-s)/h(-s)> ++&A} h(-s)/h(-s)<++&}

where I, are positive. Subtracting (4.6) from (4.1) gives

(4.7) 2
<h(-s)/h(-s)< +&

From (4.1), (4.6), and (4.7),

.(, ) .(, _)=
h(-s)

where e(1) 0 as I 0. Letting 0 gives 0+/0 I+. A similar argument
shows that 0-/0 I
ToM 4.2. (i)

is concave in
(ii) (r, )=--(,--) and cherefore (, )= (r,-),
(iii) 0(r, )/0 N0 g >0.
oo Asseion (i) follows immediately from Theorem 4.1 and the fact that

01+/0 (01-/0) is negative (positive) for all . Asseion (ii) is obvious from the
definition of . Finally, since (r, ) is concave in (by (i)) and 0(r, )/0 =0 at
=0 (by (ii)), (iii) follows.
We now specialize to the case where either log h is convex, so that

(4.8) +(,)= h(-s) ds- h(-s) ds+ h(s’) ds’

where is determined by (3.7), or log h is concave so that

(4.9) +(r, a)=- h(r-s) ds+ h(r-s) ds+ h(s’) ds’

where # is determined by (3.9).
THEOREM 4.3. If h’< 0 and log h is convex or concave, then

(4.10)
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Proof If log h is convex, then from (4.8) we get

2h(r)-2h(z- tx) > O.

Similarly, if log h is concave then

Otr+(r’a)-I_ood I;, d

Or --ds h(r-s) ds- -s h(r-s) ds+h(r)

2h(’-/) > 0.

Finally, the second inequality in (4.10) follows from the first inequality and Theorem
4.2(ii).

5. Examples. If h (t) exp {- k(t)}, where k(t) --> oo, k convex (k concave), then
log h is concave (convex). For h(t) (t + a) b where a > 0, b > 0, log h is convex.

We now consider two functions h(t) of special interest.
THEOREM 5.1. Let

N

(5.1) h(t)= aie-O’t (ai>O,,i>O).
i=1

Then d2 log h/dt2>O.
Proof As in the proof of Theorem 3.2, the assertion is equivalent to showing that

d h(r- s) h(-s),aifli e

as h(-s) h2(-s)

is negative for any z > 0. But the numerator is equal to

E E aifliaj(e-O’(-)+j- e-(-)+’)

Y Y aia;i e(’+)(e-’- e-)

=1/2 Y , aiaj e(’+J)[i(e-’ e-)+

E , aiaj e(’+)(/3i

and each term in the last sum is negative if
For the function (5.1), the/x determined by (3.7) is given by

The next example is

(5.2)

Since

N aiE --(2 e’"-l) a.
i=1 i

h(t) e-’ cos tot (/3 > 0, to > 0).

h(’r-s)
h(-s)

cos toz + sin to" tan tos),
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we can check that the optimal solution +u .... which for simplicity we will denote by
Uo, satisfies

sgn h(-s)
Uo(S)

-sgn h(-s)

if y- nr < tos <
(2n + 1)7r

(2n +3)7r
if < tos < 3’- nTr

2

if n =0, 1, 2, , and

-sgn h(-s)
Uo(S)=

sgn h(-s)
if -7r/2 < tos <min (7+ r, 0),
if min (3,+ 7r, 0)< tos<-O

where y [-3r/2,-rr/2] is to be selected such that

(5.3) h(-s)uo(s) as .
Recalling (5.2) we can check that

Uo(S)
1

if y-2nTr < tos < y-(2n 1)r,
if y-(2n 1)Tr < tos < y-2(n 1)Tr

for n 1, 2, , and

Uo(S)=
1

if 2’ < tos < min y + r, 0),
if min 3’ + 7r, O) < tos < O.

Setting y’= min (3, + 7r, O) and using the formula

h(-s) as=-Re fl+ito
e-(13+iw)b e-(t+i)a]l

we can compute

h(-s) ds + h(-s) ds
n=l J(’y--2nr)/o d (y--(2n--1)’n’)/w

o

h(-s) ds + h(-s) ds.
y’/

After somewhat lengthy calculations we get the expression

iw e(O+)v/ 1 + e-/
(5.4) Re titlE-+to. l e_O=/,

ito+/3/32 + to,,,2 1 2 e 3+ io "y’/ "F e t3 +i Y }
or

/3 2 ev/

fl_ + to2 + (f12 + to2)( 1 e-/) (/3 cos y + to sin y) cos y’+ to sin y’).
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Hence (5.3) determines 3’ by the following formulas"

2 et/’

1 e_,/o, (/3 cos 3"+to sin 3’) a(to2+/32)+/3

[ 2 ev/’
(5.5) l_e_t,/,o+2 e(+’)/’ (/3 cos 3,+o0 sin y)

Since

if -r < 3’ < 0,

=a(to2+/32)-/3 if-3rr/2< 3’<-rr.

foo h(r-S)Uo(S) ds= Re { fo e-(O+i)(r-s)U(S)

Re{ e-(+i" Ioo ho(-S)Uo(s) ds}
and the last integral is equal to the expression in braces in (5.4), we find that

+(, )= (B2 + w2)(1- e-3/0’) [/3 cos (3’ tot) + to sin (3’ tot)]

e
2 (/3 cos tot- to sin tot)+ Ih(s)l as if -or < 3’ < 0,

+(, )=
2 et((’+)/’-)

(2+ to2)(1- e-/3/’) [/3 cos (3" tot) + to sin 3" tot)]

+ 2 (/3 cos tot-to sin tor)+ Ih(s)l ds if
337"
--< 3’ < --’n’.

2

6. Several constraints. The results of the previous sections can be extended to the
case of several constraints. In fact it all hinges on generalizing Theorem 2.1 to the
problem

l(6.1) max g(s)u(s) ds

where Ks is the set of all measurable functions u(s) satisfying

(6.2) -1-<u(s)-<l for-oo<s-<0,

(6.3) f_f(s)u(s)ds=ai(i=l,2,’’’,N).
Here g and f are given functions in Ll(-oo, 0)f)C(-oo, 0] and ai are given real
numbers.

TIaEOREM 6.1. Assume thatfl # 0 almost everywhere and that, for any real numbers
1,

measure g=2 =0.
i=1

Then there exist sequences u,, Ai,,, ai, with u, - uo weakly in Loc, oq,, a l, oq,, - ofor 2 <-iN N, where uo is a maximizer of (6.1), and

(6.4) Urn(S) sgn g(s) A,mf(S)
i=1
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(6.5) ffi(s)um(s)ds=oi,m(i=l,2,’.’,N).
Thus to evaluate (6.1) we need to analyze the u,, from (6.4), (6.5) and then compute

o_ gu,,, noting that

Ioog(s)u"(s)dsIoog(s)u(s)ds=maxIoog(s)u(s)ds’,
Proof For any small > 0 introduce the "penalized" functional

(6.6) Jn(u) g(s)u(s) ds -L f(s)u(s) ds-
i=2

and consider the problem

(6.7) maximize Jn(u) for u K

where K consists of all functions u satisfying

-lu(s)l, ISf,(s) ds=.
Proceeding as in the proof of Theorem 2.1, we deduce that if lal 1, where is defined
by (2.5) with Uo un, then (2.6) implies

Ag(q)+Ag(t)- (]unds-,)(A(q)+A(,))N(o)
i=2

where un is a solution of (6.7) and (o) 0 if o 0. Taking o 0, we get the inequality

A1 g(tl) 2 i,(l) +2 g(2) i,(2) 0
i=2 =2

for some scalars 1.n. We can now proceed as in 2 to deduce that meas {lull < 1} 0;
furthermore,

(6.8)

We note that

un(s sgn g(s)- Y Ai,nf(s)
i=1

from this inequality it follows that

1
f(s)u,(s) ds-ai <-_ C, C independent of

’F i----2

Hence, as 0,

It is also easy to verify that for any convergent subsequence un (weakly in Lo),
the limit uo is a solution to problem (6.1). Indeed

(6.1O) Jn u. gun ds max gu ds gn ds
Kan

where K. is defined as K but with

2= 2, N N,"
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Since % n cj, if we take 7 to vary in a subsequence of r/,, such that tn t weakly
0lnLo,then gu, co

j_ gu ano u K (i.e., satisfies (6.2), (6.3)). Denoting by u
any solution of (6.1)-(6.3), we then have

L ga ds f gu ds

also, by maximality of u (see (6.7)),

fgu ds=Jn(Ul)NJn(un).

Using these relations in (6.10) and noting that

gu, ds guo ds,

we conclude that

fguds=foguds=maxfguds"Ko

Thus Uo is a solution to (6.1)-(6.3). Recalling (6.8), (6.9) completes the proof of
Theorem 6.1.

Remark 6.1. The Ai, satisfy

f{ f,(s) as- f{ f(s) ds ai (l <= <= N).
g> "Y’Xj, mfj g <’Y’Xj,mfj

From these equations we should be able to determine the )tg, at least in some relatively
simple examples, and show that Ag, Ag (,g finite) as m ; this would imply that

Uo=sgn g(s)- 2 h(s)
i=1

fo
d-

Remark 6.2. Theorem 2.1 can actually also be proved using the penalized
functional

gu ds- fu ds- a
s2 ds.

1+

Remark 6.3. Consider the problem

(6.11) max L(u)
uK

where K is the set of all inputs u that satisfy

(.) h( t s)u(s) s , j , .,
and where J,(u) is defined by (1.2) and 0= t < t <. < t_ < t r.

Set

(6.13a) +(r; q, ,..., t, )=max J,(u),

(6.13b) -(; t, ,..., t, )=rain J,(u).
uK
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Then there exists a solution to (6.11) if and only if

(6.14)
I1 Ih(s)l as,

tT"--(tj tl, O/1 ,’’’, tj-1, O/j-l) O/j 0"+( tj /1, O/1 ,’’’, tj-1, O/j-l),

If we assume h(s)= 0 for s < 0, the conclusion of Remark 6.1 becomes

(6.15)
sgn[h(r-s)-,=l A’h(t’-s)l’ tj<s<tj+l,

u(s)
sgn [h(r-s,- i= Aih(ti-s)], S<tl

where hi,’’ ", AN satisfy (6.12).

I<j<=N.
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THE EXPANSION OF A HOLOMORPHIC FUNCTION IN A
LAPLACE SERIES*

HANS VOLKMER

Abstract. It is shown that a holomorphic function defined on a suitable subset of the complex manifold
{(x, y, z) C3: x + y2 + z 1} can be expanded in a series of spherical surface harmonics. When sphero-conal
coordinates are introduced, this result gives the expansion of a holomorphic function of two variables in a

series of products of Lam6 polynomials.

Key words, spherical harmonics, Lam6 polynomials, Laplace series
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Introduction. In 1862 K. Neumann [6] proved that every function holomorphic
inside an ellipse with foci at the points +1 can be expanded in a locally uniformly
convergent series of Legendre polynomials. Later Hobson [4, Chap. VIII and others
studied the convergence of such a Legendre series associated with arbitrary functions
defined on the focal line [-1, 1]. It is not surprising that the latter results from real
analysis are more difficult to state and prove than the original theorem from complex
analysis.

Now it is well known that a Legendre series is a particular case of a Laplace
series, i.e., the expansion of a function defined on the two-dimensional unit sphere

S= {(x, y, z) E 3: x2+y2+ z2= 1}

in a series of spherical surface harmonics. The convergence properties of Laplace series
are thoroughly studied in the framework of real analysis, see Hobson [4, Chap. VII]
or Sansone [7, Chap. III]. However, there seems to be no result in the literature
extending Neumann’s expansion theorem to Laplace series. In this paper we will prove
such a theorem on the expansion of a holomorphic function in a Laplace series.

To formulate our theorem we must first specify domains that replace the domains
bounded by ellipses in Neumann’s theorem. These domains are subsets of the two-
dimensional complex manifold

T= {(x, y, z) E C3: x2+y2+ z2= 1}

and are defined by

T {(x, y, z) T: Ixl2/lyl2/lzl2 < cosh 2y}

where y is any positive real number. The system of sets Tr is nested in the sense

S=T=T=T if0</3<y<.

This situation is analogous to that of the nested system of interior domains of ellipses
with foci at the points +1. In this analogy the unit sphere S corresponds to the focal
line [-1, 1]. Our main Theorem 4.7 in 4 then states that every function holomorphic
on Tr can be expanded in a locally uniformly convergent Laplace series. This Laplace
series is the ordinary one associated with the given function restricted to S. Of course,
the spherical surface harmonics involved in Laplace series have to be continued
holomorphically from S to T in order to make our statement meaningful.

* Received by the editors September 6, 1988; accepted for publication (in revised form) July 25, 1989.
? Fachbereich Mathematik, Universitit Gesamthochschule Essen, Universititsstrasse 3, D 4300 Essen

1, Federal Republic of Germany.
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The proof of the main theorem is simple. It uses Neumann’s theorem and some
well-known facts on the ordinary Laplace series. For convenience of the reader we
have collected these basic results in 1 and 2, respectively. In 3 we derive some
elementary properties of the manifold T and the sets Tv which are needed to prove
the main theorem in 4.

If we introduce a complex version of sphero-conal coordinates in the manifold
T, then our expansion theorem yields the expansion of a holomorphic function of two
complex variables in a series of products of Lam6 polynomials, see Theorem 5.2. An
expansion of this kind has already been given by Volk [10] in 1925.

I am indebted to Prof. D. Schmidt who drew my attention to Volk’s paper. Whereas
Volk’s results turned out to be incorrect they were the starting point for the work
leading to the present paper.

1. Proof of Neumann’s theorem. In this section we reprove Neumann’s expansion
theorem. The proof is adapted from Whittaker and Watson [12, Chap. XV]. We also
refer to Szeg6 [9, Thm. 9.1.1] and Meixner and Schifke [5, Thm. 3, p. 258] where
Neumann’s theorem appears as a special case of more general expansion theorems.

Let Pn be the Legendre polynomial of degree n. We know that the normalized
polynomials x/2n / 1. Pn, n =0, 1, 2,. ., form an orthonormal basis of the Hilbert
space L2(I) of square-integrable functions on the interval I [-1, 1] subject to the
inner product

(f, g), := 1/2 f( t)g( t) at.
-1

We mention that the completeness of the system x/2n + 1 P, is a consequence of the
fact that the space of polynomials is dense in L2(I). It follows that every function

f L2(I) can be expanded in the LZ-convergent series

(1.1) f(t)--- ., (2n+ 1)(f P,),P,(t).

This series is called the Legendre series associated withf In order to prove Neumann’s
theorem, we now assume that f is a function holomorphic on the domain

E := {cos 0:0 C, Jim 0] < y}, 0 < y _-< o,

which is the interior of an ellipse with foci at the points + 1 and half-axes cosh 2’ and
sinh y. If 3’ o then Ev is the whole complex plane. We first derive a bound for the
Legendre polynomial Pn using its Laplace’s integral representation

1 I_ )n(1.2) Pn (cos 0) (cos 0 + sin 0 cos q dq, 0 e C.

Since

Icos 0 + it sin 01 _--< max ([e’l, le-’[) e[Im o[ for -1 =< _--< 1,

(1.2) yields [P,(cos 0)1<= e n[ImOI. This implies immediately

(1.3) IP.(z)l<-_e for z/,, 0-<a<,

where E is the closure of E and Eo := I.
Now consider the Legendre function Q, of the second kind which is holomorphic

on C\I and satisfies

Q,(t-iO)-Q,(t+io)=riP,(t), -1 <t<l.
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Since f is holomorphic on Ev, this equation together with Cauchy’s integral theorem
shows that

(1.4) (f Pn), =1___ fo f(z)Q,,(z) dz, 0< fl < T,
2 "rri E,

where the integral is taken round the circumference OEt3 of E in a positive direction.
To estimate Qn we use again its Laplace’s integral representation

(1.5) O(cosh w)= (cosh w+sinh w cosh u)-- du, Re w>0.

We write w w + iw, w > O, w , and use the inequality

Icosh w + sinh w cosh/,/I 2

(cosh wl +sinh wl cosh u)2 cos2 w2+ (sinh w +cosh w cosh u)2 sin- w2
>_- max (e2w,, sinh w cosh2 u).

Then (1.5) gives

IQ,(cosh w)l <-- e -"w’
sinh w cosh u

The above integral is equal to 7r/2. Hence we obtain from (1.4)

(1.6)
I<f, P=>,l-< 1oEI e_.z1 rr

Ilfl I127r sinh/3 2-- coth/3 e Ilfl/ll2

We used Ilflll to denote the maximum of If(z)l over z . Combining (1.3) and
(1.6) we see that the Legendre series (1.1) has the convergent majorant

rrcoth/31lf[/zll Y (2n+ 1) e"-t)(1.7) - ,=o

on E whenever 0_<- a </3 < y. Hence the Legendre series associated with f converges
normally on compact subsets of Ev, i.e., it has a convergent majorant on compact
subsets of Ev. In particular, the Legendre series is locally uniformly convergent on
Ev. Hence, by Weierstrass’s theorem, the sum of the series is holomorphic on Ev. This
sum is equal to f on I by the completeness of the system x/2n + 1. P, in L2(I),
consequently, it is equal to f on Ev by the identity theorem. We have thus proved
Neumann’s theorem.

THEOREM 1.8. Let f be a function holomorphic on Ev where 0< y <_o. Then the
Legendre series associated with f converges normally on compact subsets of Ev to
the sum f

In 4 we will not use this theorem directly, but instead inequalities (1.3) and (1.6)
which led to the majorant (1.7).

2. The Laplace series associated with functions on S. Concerning Laplace series
we refer to Hobson [4, 95 and 211], Sansone [7, Chap. III, 18-24], and Schifke
[8, 5.5]. We will need the following definitions and remarks.
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A spherical harmonic of degree n is a polynomial in the variables x, y, z with
complex coefficients which is homogeneous in x, y, z of degree n and which is harmonic,
i.e., satisfies Laplace’s equation. A spherical surface harmonic of degree n is a function
defined on the two-dimensional unit sphere S, which is the restriction of a spherical
harmonic of degree n onto S. The spherical surface harmonics of degree n form a
complex linear space of dimension 2n+ 1. Let L2(S) denote the Hilbert space of
square-integrable functions on S endowed with the inner product

(2.1) (f g)s =-4- f(p)g(p) dp,

where the integral is taken over the sphere S of area 4zr. Spherical surface harmonics
of different degrees are orthogonal with respect to )s. Moreover, spherical surface
harmonics are complete in L2(S), i.e., every function f L2(S) can be expanded in the
LE-convergent series

(2.2) f(p)--. . f,(p), p S,
n=O

where f, is the orthogonal projection of f onto the linear space of spherical surface
harmonics of degree n. The series (2.2) is called the Laplace series associated with f.
The spherical surface harmonic f, can be represented as an integral

2n+l

(2.3) f" (P) 4rr I Pn((P, P’))f(P’) dip’
S

=(2n+ 1)(f P,((p, ")))s,

where P, is the Legendre polynomial of degree n and denotes the usual inner
product in R3.

Formula (2.3) will be used to derive estimates for f,. First, we note that the norm
of P,((p, .)) with respect to the inner product )s is equal to (2n + 1) -1/2. This can
be calculated by using polar coordinates in S with north pole p. Hence the Cauchy-
Schwarz inequality applied to (2.3) gives

(2.4) IlL 11oo v’2n+ i Ilf I1
where I[f, Iloo denotes the maximum of If,(p) over p e S and Ilfll= (f, f}/2. Obviously,
(2.3) and thus (2.4) remain valid if f is replaced by f,. It follows that

(2.5) IlL I1= IlL [Ioo x/2n + 1 IlL 112,

This inequality means that the L2-norm of a spherical surface harmonic cannot be
"essentially" smaller than its max-norm.

Let us call the quantity

( )_1(2.6) p(f) := lim sup I[f, loo/n
\

the harmonic radius of f We always have p(f)>_-1 by (2.4) and, by (2.5),

((2.7) p(f) lim sup IILII/"
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The harmonic radius of f will play the role of a convergence radius of the Laplace
series associated withf in 4. At this point we can give a potential theoretic interpreta-
tion of the harmonic radius which, however, will not be used in the sequel. Let (2.2)
be the Laplace series associated with a functionf L2(S). Then form the function

(2.8) f(rp):= rnfn(p), O<-r<p(f), pS.
n=0

The series converges normally for 0_-< r-< to< p(f), pc S. Hence f is a harmonic
function defined on the ball with center zero and radius p(f) in 3. At least if p(f) > 1,
then f is the solution of the Dirichlet problem to find the harmonic function on the
unit ball which is equal to f on the sphere S. Now p(f) can be interpreted as the
largest radius of a ball with center zero so there exists a harmonic function on this
ball extending f, see Schifke [8, Thm. 1, p. 139]. If p(f) > I then f, being the restriction
of the analytic function f, is itself analytic on the real analytic manifold S. The converse
is also true: if f is analytic on S then p(f)> 1. This statement could be proved by
methods from the theory of partial differential equations; however, we will see that it
is a simple corollary of our main theorem in 4.

There is a close connection between Laplace series and Legendre series (see, e.g.,
Hobson [4, p. 342]) which is crucial in most investigations ofthe convergence properties
of Laplace series. Let (2.2) be the Laplace series associated with a given continuous
function f on S. Introducing polar coordinates in S

(2.9) k(O, q) (sin 0 cos q, sin 0 sin , cos 0)

we can rewrite (2.3) in the form

f,,(p)
2n + 110 Io’ P,,((p, k(O, o)))(f k)(O, ) sin 0 d dO.
4r

Now if we set p (0, 0, 1) then we obtain

(2.10) f,(0,0, 1)
2n+l I2 ./o

P" (cs0) sin0g(0)d0

where

(2.11) g(0) := f-- (f k)(O, q) dip

is the mean value of (f k)(0,. on [0, 2r]. If we substitute cos 0, g(0) (t), then
(2.10) yields

(2.12) f(0, 0, 1)
2n + 1 fl P,(t),(t) dt.

2 .I-1

Hence f,(0, 0, 1), n 0, 1, 2,. ., is equal to the sequence of coefficients in Legendre
series associated with , i.e.,

(s)--- Z f,(0, 0, 1)P,(s), s 6 [-1, 1].
n-----0

To study the Laplace series at points different from the north pole we use its orthogonal
invariance. Let 6 be a (real) orthogonal 3-by-3 matrix. Thenf L2(S) implies f 6
L2(S), and if f, is a spherical surface harmonic of degree n then f, is also one. It
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follows easily that if (2.2) is the Laplace series associated with a given functionf e L2(S),
then

(fo (7)(p)--- E (fn )(P), p S,
rl=0

is the Laplace series associated with f . In particular, the harmonic radius is
orthogonal invariant, i.e., p (f 6) p (f).

3. The manifold T. In the introduction we defined a subset T of C by

T= {(x, y, z)(3-" x2+y2+ z2= 1}.

We consider T as a two-dimensional complex manifold. If (Xo, yo, Zo)e T and, for
example, Xo is nonzero then we may take (y, z) as a local coordinate system in a
neighborhood of (Xo, Yo, Zo). It will be useful to express the condition x2 + y2 + zz 1
defining T in terms of the real and imaginary parts of x, y, z. If we write

(3.1)

then we have

(x, y, z) u + iv with u, v 3

x2 + y2 + z (u, u)-(v, v)+ 2i(u, v)

where again denotes the usual inner product in 3. Hence

(x,y, z)6 T if and only if (u, v)=0 and (u, u)-(v, v)= 1.

Similarly, we have

(3.3) Ixl=+lyl2+lzl2=<u, u>+<v, v>.
The above relations prove immediately the following lemma.

LZMMA 3.4 Let (x, y, z) T and let be a (real) orthogonal 3-by-3 matrix. Then
the transformed vector (, , ) := 6(x, y, z) (here we do not distinguish between row and
column vectors) also belongs to T and lyl 2 + 13712 + Il2 Ixl 2 + [y[2 + izl.

Using the map k:C2 T defined by (2.9) we have the following important lemma.
LEMMA 3.5. For 0 <--_ < , the following sets are identical

((x, y, z) T: Ixl 2 + lyl + Izl = cosh 2t}

={6o k(O, r#). orthogonal, r# R, IIm 0l t}

( k(it, 0)" c orthogonal, det 1}.

Proof (1) To show that the second set is contained in the first one, let q ,
0 01 +/- it, 01 , and set (x, y, z) := k(0, rp). Then we calculate

Ix] 2 + [yl 2 + Izl 2 Isin 012 + Icos 012
sin2 01 cosh2 + cos2 01 sinh2 + cos2 01 cosh2 +sin2 01 sinh2

cosh2 + sinh2 cosh 2t.

This shows that (x, y, z) is in the first set. Lemma 3.4 now implies that also (7(x, y, z)
is in this set for all orthogonal 6.
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(2) To show that the first set is contained in the third one, let (x, y, z)e T and
Ixl2+lyl2+lzl2=cosh2t. We write (x,y,z) in the form (3.1). Then, by (3.2) and (3.3),
(u, u)-(v, v)= 1 and (u, u)+(v, v)= cosh 2t. Hence (u, u) cosh2 and (v, v)= sinh2 t.

By (3.2), u and v are orthogonal. Hence there exist two orthogonal unit vectors a, e 3
such that u- cosh t and v sinh t. Let ff be the orthogonal matrix with det 1,
first column , and third column . Then (x, y, z) u / iv (i sinh t, 0, cosh t)

k(it, 0), which proves that (x, y, z) is in the third set.
(3) Since the third set is obviously contained in the second one, the proof is

complete.
Let us now consider the sets

T {(x, y, z) T: ix[ 2 + [y[2 + [zi2 < cosh 2y}

for 0 < y-<_ c where T T if y c. It is obvious that Tr is an open subset of T. By
Lemma 3.5, Tv can be written in the form

Tr { k(it, 0)" 6 orthogonal, det 1, 0_-< < y}

which shows that Tr is pathwise connected because the set of orthogonal 3-by-3
matrices with determinant 1 is pathwise connected. Consequently, Tv is a domain in
T. Lemma 3.5 also shows that the closure of Tv and the boundary of Tv with respect
to T are given by

v= {(x, y, z) T: [xl+lYl+lzlZ<=cosh2/},
O Tr {(x, y, z) 6 T: Ixl2 + [y[Z + lzlZ cosh 2 y}.

We again remark that

To:=S=Tt=TvcT=To if0<fl<y<o.

Every function holomorphic inside an ellipse with foci at the points +1 is uniquely
determined by its values on the focal line [-1, 1]. Analogously, we have the following
lemma.

LEMMA 3.6. Letf g be two functions holomorphic on Tv such thatf g on S. Then
it follows that f g on Tv.

Proof Let qo be any given point in Tv. By Lemma 3.5, we can write

qo 6 k(0o, qo), qo , [Im 0o[ < y.

Again by Lemma 3.5, we see that f ff k(0, qo) and g ff k(0, qo) are well defined
and holomorphic functions of 0 on the strip Jim 01 < 3’. Since f g on S these functions
agree on N. The ordinary identity theorem now yields

f o k(0, qo)= go o k(0, qo)

Setting 0 0o this proves f(qo) g(qo). V1

if Jim 0[ < y.

4. The Laplace series associated with functions on T. Letfn be any spherical surface
harmonic of degree n. Since fn is the restriction of a polynomial onto the unit sphere
S, we see that f, admits a holomorphic extension on the manifold T. This extension
is uniquely determined by Lemma 3.6. In the rest of this paper a spherical surface
harmonic will always be considered as a function defined on T.

Now let (2.2) be the Laplace series associated with a functionf L2(S). Then, by
(2.3), the spherical surface harmonic f, is given by

(4.1) f,,(x,y,z)
2n+l I P,,(xx’+yy’+zz’)f(x’,y’, z’) d(x’,y’, z’)
4" Js
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for all (x, y, z) S. The right-hand side of (4.1) is a polynomial in x, y, z. Hence it
represents a holomorphic function on T which is equal to fn on S. It follows that (4.1)
is true for all (x, y, z) T. We will now use (4.1) to prove an inequality that will play
the same role for Laplace series as inequality (1.3) played for Legendre series.

PROPOSITION 4.2. Let fn be any spherical surface harmonic of degree n. Then

If(q)l(2n/l) ellflsllz for all q .
Proof We first prove the above inequality for q--k(it, 0)--(i sinh t, 0, cosh t),

where 0 =< =< a. Then (4.1) with f fn gives

fn(q)
2n+l

47r
P,(z cosh + ix’ sinh t)f,(x’, y’, z’) d(x’, y’, z’).

The argument of the Legendre polynomial P, lies in the set E {cos 0: Ilm 0l -< ce}
because 0_-< -< ce and (x’, y’, z’) S. Hence the above equation and (1.3) yield

(4.3) [f, k(it, o)[=<(2n+ l)llPnlllllf, Isll2<-(2n+ l) e"llf, IsI]2.
If q T is arbitrary then, by Lemma 3.5, we can find an orthogonal matrix and
0 =< t-< c such that q k(it, 0). We then apply inequality (4.3) with f, in place
off which proves the desired result. V1

We now generalize inequality (1.6).
PROPOSITION 4.4. Let f be a function holomorphic on Tr where 0 < y <-oo, and let

(2.2) be the Laplace series associated withf Then, for 0</3 < y and allp S, thefollowing
inequality holds

71" n[f.(P)l<-(2n+l)coth e- Ilfl 11.

Proof. It is sufficient to prove the above inequality for p (0, 0, 1) because of the
orthogonal invariance of Laplace series and Lemma 3.4. To estimate Ifn(0, 0, 1)1 we
use (2.12), i.e., the connection between Laplace series and Legendre series. Since f is
holomorphic on Tr, Lemma 3.5 shows that the function g defined by (2.11) is holomor-
phic on the strip IIm 01 < 3’. Clearly, g is an even function of period 27r which implies
that the function defined by (cos 0) g(0) is well defined and holomorphic on the
domain Er. Now (2.12) and (1.6) give

(4.5) If,(O, O, 1)l<-(2n+ l)-coth e II ?l  ll .
It follows from (2.11) and Lemma 3.5 that, for IIm 0l -</3,

(4.6) I(cos 0)1- Ig(0)l =<max {Ifo (0, )1" e} -< Ilfl I1,
Equations (4.5) and (4.6) together prove the desired inequality. 1-1

We are now in a position to prove our main theorem.
THEOREM 4.7. Let f be a function holomorphic on Tr where 0< y-<oo. Then the

Laplace series associated with f converges normally on compact subsets of Tv to the sum
f In particular, the series is uniformly convergent on compact subsets of Tr.

Proof For given 0 =< c < y choose some/3 such that c </3 < % Then, by Proposi-
tions 4.2 and 4.4, the Laplace series associated with f has the following convergent
majorant on T,

(4.8) -Tr cth t Ilfl ll .=o2 (2n+ 1)2 e"(-t.
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This proves that the Laplace series is normally convergent on compact subsets of Tv.
The sum of the series is holomorphic on Tv and, by the completeness of the spherical
surface harmonics in L2(S), it agrees on S with f Hence the sum of the Laplace series
is equal to f on T because of Lemma 3.6. U

Let us note two simple corollaries of the above theorem.
COROLLARY 4.9. Let f L2(S) and 0< 3’<_-o. Then the following statements are

equivalent.
(1) The harmonic radius p(f off defined by (2.6) or (2.7) is greater than or equal

to e v.
(2) f admits a holomorphic extension onto Tr.
(3) The Laplace series associated with f converges uniformly on compact subsets of

(4) The Laplace series associated withfconverges normally on compact subsets of Tv.
Proof Obviously, (4) implies (3). If we assume (3), then the sum of Laplace series

is holomorphic on Tv and, as in the proof of Theorem 4.7, we see that this sum extends
f Hence (2) holds. Statement (2) implies (1) by Proposition 4.4. Finally, if we assume
(1), then we prove (4) as in the proof of Theorem 4.7 replacing Proposition 4.4 by
(1). [3

We now prove a result announced in 2.
COROLLARY 4.10. Let f L-(S). Then f is analytic on S if and only if its harmonic

radius p f is larger than 1.

Proof If p(f) > 1, then f is analytic by the implication (1) =:> (2) of Corollary 4.9.
Now let f be analytic on S. Then a standard compactness argument shows that

there is a positive 3’ such that f can be continued holomorphically on Tr. Hence
p(f) => e > 1 by the implication (2) ==> (1) of Corollary 4.9. [3

For later applications, the following variant of Theorem 4.7 is useful. Since the
spherical surface harmonics of degree n form a (2n+l)-dimensional subspace of
L2(S), we can choose an orthonormal basis f’, m =-n,..., n, of this subspace. Then
the Laplace series associated with a given function f L2(S) can be written as a double
series

(4.11) f(p)--- (f f’)sf, (p).
n=O

Concerning this series we have the following theorem.
THEOREM 4.12. Letfbe holomorphic on Tv where 0 < 3" < . Then the Laplace series

(4.11) considered as a double series converges normally on compact subsets of Tv to the
sum f More precisely, we have the estimate

I(f,f’)sf’(q)l<-- coth 3 Ilfl llo(2n + 1)2 e"("-)

for O<-- a < < 3" and q T.
Proof By Proposition 4.2, we have

IfT(q)l =< (2n + 1) e for q e T.
Hence the inequality of Cauchy-Schwarz yields

I(f, fT)sfT(q)l I(L,fT)sf’(q)l <= (2n + 1) e"" IlL sll=,
This yields the desired inequality if we use Proposition 4.4. [3

We conclude this section with the following remark. There is a generalization of
Theorem 1.8 which states that every function holomorphic on the ring-shaped domain
E\E, 0_-< a </3 =< , can be expanded in a series in terms of Legendre polynomials
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P, and Legendre functions Qn of the second kind, see, e.g., [5, Thm. 2, p. 256]. This
expansion is related to that of Theorem 1.8 as Laurent’s expansion is related to
Taylor’s expansion. We could try to find a similar expansion of Laurent’s type valid
for functions holomorphic on the domain To\T,, 0 <- a < fl <=. However, such an
expansion does not yield anything new because every function holomorphic on T0\T
is already the restriction of a holomorphic function on T0. To prove this we use
Hartog’s theorem [3, p. 18] which states that every function holomorphic on G\K can
be continued holomorphically to a function on G provided G is a domain in C with
n _-> 2, K is a compact subset of G, and G\K is connected. The theorem remains true
if G is a Stein manifold of dimension n _-> 2, see 1, p. 144, Remark (2)]. We can apply
this theorem because G- To is a Stein manifold, K- T is compact, and To\ T, is
connected. The connectedness of To\T is a simple consequence ofitem 3 ofLemma 3.5.

5. Closing remarks. Theorem 4.12 can be used to prove a theorem on the expansion
of a holomorphic function oftwo variables in a series of products of Lam6 polynomials.
In the following we will merely state this result without proof. The proof is contained
in [11].

Consider LamCs differential equation in its algebraic form [2, 15.2, Eqn. (7)]

1( 1 1 )E ah-n(n+l)u
(5.1) E"+- ++ +

2 u-1 u-a 4u(u-1)(u-a)E O,

where a > 1 is fixed and n, h are parameters. It is well known that, for every even
nonnegative integer n and every m 0,. , n/2, there is a uniquely determined value
of the parameter h such that (5.1) admits a solution E which is a polynomial in u of
degree n/2 having m zeros in the open interval ]0, 1[ and n/2-m zeros in the open
interval ]1, a[. The polynomial E is called a Lam6 polynomial and is denoted by E,m.
It is uniquely determined by n and m up to a constant factor. We normalize the Lam6
polynomials such that

where

fo f w(s, t)lEr(s)ET(t)l2 dt ds: 1

1 t-s
w(s,t)-27rx/s(l_s)(a_s)x/t(t_l)(a_t), 0<s<l<t<a.

The products E (s)E (t) of Lam6 polynomials are the expressions of special spherical
surface harmonics of degree n in suitably chosen sphero-conal coordinates. It is
therefore possible to apply Theorem 4.12 to obtain the following theorem.

THEOREM 5.2. Let g(s, t) be a .function of two complex variables s, which is

holomorphic on the domain

{ Isl [s-lilt-l[ Is-al[t-al }(3,/-- (s, t) C: Itl+ / <cosh 2y
a a-1 a(a-1)

where 0< y-<_ (G,/= C2 if), =). We assume that g is symmetric, i.e., g(s, t) g(t, s)
for all (s, t) Gr. Then g can be expanded in the series

g(s, t)= 2 2 w(tr, r)g(tr, ’)Em (tr)E(r) d’dtr ET(s)E(t),
=0 =0

which converges normally on compact subsets of G‘/.
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This theorem on the expansion of a holomorphic function oftwo complex variables
in a series of Lam6 polynomials can be considered as an analogue to Neumann’s
theorem on the expansion of a holomorphic function of one variable in a
series of Legendre polynomials.
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equation with an irregular singularity and the asymptotic behaviour of the coefficients of the formal solutions
of the equation.

Key words, irregular singularity, formal solutions, Stokes multipliers, Mellin transform, Cauchy-Heine
transform, difference equation

AMS(MOS) subject classifications. 34A30, 34E05

0. Introduction. We consider homogeneous linear differential equations of a
complex variable x with an irregular singularity at o. If (D) is such an equation of
order m N, it possesses m linearly independent formal solutions of the form

(0.1) f(t) hj(t)tp exp qj(t), j{1,..., m},

where t=xlip for some pN, /Ct-1]][logt], pC, and qC[t] for all j
{1,’’’ ,m}.

In 1 ], Balser, Jurkat, and Lutz establish a relation between the Stokes multipliers
of a particularset of solutions and the asymptotic behaviour of the coefficients of the
formal series h (j 1,. ., rn), for second-order equations of unit rank. Schiifke (cf.
[8]) has derived similar results for a class of first-order differential systems. In this
note, these results are generalized to equations of arbitrary order and rank. We use
Mellin transforms of solutions of an associated differential equation to represent the
coefficients of h (j e {1,. ., m}), and Cauchy-Heine transforms to represent solutions
of (D) defined below. Our approach is based on the work of Ramis [6] and Duval [4].

1. A preliminary result. Let (D) be a differential equation of the type mentioned
in the Introduction, of order m. In this section we introduce a particular system of
solutions {f’,j{1,..., m}, u7} of (D), with the property that, for each j
{1,..., m} and each u7/, f is represented asymptotically by f as t- in a
certain sector S. Other systems of solutions could be used instead, such as that
discussed in [5, Satz IV’, p. 99]; this discussion would lead to analogous results. The
system defined below has a small technical advantage (cf. the remark at the end of 2).

We begin by introducing some notation. By (Dt) we will denote the equation into
which (D) is carried by the change of variable t=xlip. (Dr) possesses m formal
solutions of the form (0.1). For all i,j {1,..., m} we will write

Pi [Jj Pij, qi qj qi, deg q k(i, j).

We will assume that k(i, j) 0 if j, in which case/ C t-1]] for all j { 1,. , m}.
Without being essential, this restriction simplifies the argument presented below.

* Received by the editors March 23, 1988; accepted for publication (in revised form) April 21, 1989.
? Institute of Econometrics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The

Netherlands.
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If iS j, the leading term of qij is of the form

Aijt k(i’j), hij C*

and we define

1
OiJ_k(i,j)l (arg Aij (2A + 1)Tr}, 7/

for some fixed determination of arg A0. Let J denote the set of all ordered pairs (i,j)
with i, j { 1, , m} and j. To each triplet (i, j, l) J x 7/we will assign an integer
u n(i,j, l) and will write

0j= 0 and k(i,j)= k,,.

We choose n(i,j, 1) in such a way that, first, the mapping n’J 7/- 7/ is a bijection,
and second,

Let

Noting that

0v+ --< 0 for all v 7/and k+l--< k whenever 0 0+1.

N= E k(i,j).
(i,j)eJ

O + k i,j 0 I 2 "n’,

we readily verify that

(1.1) 0+N 0--27r.
We impose the following additional conditions on the mapping n:

(1.2) n(i,.h l+ k(i,j))= n(i,j, l)+ N.

Furthermore, we define

o’(i,j)={n(i,j,/): l 7/}, (i,j)eJ,

or(j) U cr(i,j), j{1,’" .,m},
ie{1,..-,m}\{j}

J={(i,j)eJ: k(i,j)=kand Oi=Oforsome le7/},

Note that v cr(i,j) implies (i,j) J but that the inverse is not true, as several 0 may
coincide.

The directions arg =-O-(r/2k), re7 of the Riemann surface of log t, are
the so-called Stokes directions of (Dr). The Stokes directions of (D) are given by
arg x= -p(O,+(Tr/2k)), veZ.

Let a and /3 be real numbers such that a </3, and let C denote the Riemann
surface of log t. By S(c,/3) we denote the sector

S(c,fl)={teCo: a <arg </3}.

For every v e 7/we define a sector S S(a, ), where

(1.3) ce -min 0, + /3 -max 0,-

Obviously, a <= c+ and/3 <_-/3+. Furthermore, a+N a + 27r and/3+
hence

S,,+N e2=S,,, v ..
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Putting

we have

Hence it follows that

max k(i,j)= K1,
(i,j)J

0v -"K v’<u+lmin 0, + <- 0 +
2kv

-tr
-0+ cSf’)S+cS -0v- -0+(1.4) S -0 21’ 2k’

Any single ruth order differential equation is equivalent to a system of first-order
differential equations. Let [D,] denote the system of first-order differential equations
corresponding to (D,). This system possesses a formal fundamental matrix of the form

(1.5) /3(t) II(t)tR exp Q(t),

where/-it Gl(m; C[[t-1]]), R =diag {pl," ", p,,}, and Q diag {ql," ", q,,}. We will
use the following result, which is an immediate consequence of Theorem 2.1 of [7].

THEOREM 1.6. Equation [Dr] possesses a system offundamental matrices {F, v 7}
with the following properties:

(i) ffv( t) ( t) as t- in S
(ii) /3+N(t)=/3(t e-2=i) exp 27rig;
(iii) (/31/3+-I)0#0 (i, j6{1,..., m}) implies (i,j)J.
Proof Let 1 > 2>" "> r be the different values of k(i, j), (i, j) J. According

to Theorem 2.1 of [7], the matrix H in (1.5) can be factorized in the following way:

H=H1...Hr,

where/6 Gl(m; C{t-1},j), s= 1 + 1/9. (For an explanation of the notation used in
this proof we refer the reader to [6].) Let H denote the matrix function obtained by
analytic continuation on the Riemann surface of log of the sum of in a direction
0 6 (r/j, 0 ), where

=max{0," v’>=v, kv,=}, 0 =min{0," v’<v,k,=,O,>7},
and let

/3(t) H[(t) H(t)tR exp Q(t).

By Theorem 2.1 of [7], F is a fundamental system of [D,]. Furthermore, H(t)--.I-I
as - oe in

S,,.=- S -0 2’
Consequently, /3.(t) (t) as oe in f3 =l S,. Obviously, S. c S,. for all j e

v+N e-2ri{1,’’ .,r} and thus (i) is satisfied. Due to (1.1), H (t)=H(t for all
j {1,..., r} and hence it follows that (ii) holds as well. Now let l {1,..., r} such
that k. For all j # we have

(1.7) + <- 0 0
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and hence Hj+1= H. If J J+ and 0= 0+, then (1.7) is also true for j l, so we
find

$1ff.+ I if J J+ and 0 Or+
Now suppose that J J+, or 0 > 0+1. We have

ff’/+l= exp {-Q(t)}t-R(n)- (H[)-H[+IH’+I Ht exp Q(t).

Furthermore,

(1.8) r/7= 0= 07+1

in this case. From (1.7) and (1.8) we deduce that

S,,,C’IS,+=S-O-2k---,-O+ cS, forallj>/.

Now, He Gl(m; A(S,)) for allje{1,..., r} and all veT], and thus (H)-H/+-
I e End (m; Ao,(S,S,+)). It follows that

(H)-’... (HI’)-HI’/1 g;’-I End (m; Ao,s,(S,C’IS,+I)).
Consequently, for all h, i6 {1,..., m} we have

I)h exp qhi ao,sl.( S (-O(JIL+

This implies that either (21+1--I)hi=0,
2k’ -0+

or exp qhi Ao.s,(S(-O- 7r/2k,
-0+ 7r/2k)). The second possibility occurs only if k(h, i)= k and Re Ahitk(h’i) <0
for all S(-O-7r/2k,-0 + r/2k), i.e., if (h, i) J. This completes the proof of
Theorem 1.6.

COROLLARY 1.9. Equation (Dr) possesses a system of solutions {f, j
{ 1, , m}, u 7/}., with the following properties"

(i) ff(t)--.f(t) as too in S;
(ii) ff+u(t)=ff(t e-2ri) e2%;
(iii) There exist complex numbers s, v 7/, such that

sf.
ff+l ff 0

ifv6 o’( i,j),
otherwise.

We will call the numbers s the Stokes multipliers of the system of solutions
{ff, j {1, , m}, v 7/}. Note that (ii) and (iii) imply that S+N

ProofofCorollary 1.9. We will prove the equivalent statement for the system D, ],
i.e., we will prove the existence of fundamental matrices F, v 7/, with the following
properties"

(i)’ F(t) F(t) as -> oO in S
(ii)’ F+N(t)= F(t e-2=i) exp 27riR;
(iii)’ (F-F+-I)o#O implies that i#j and vr(i,j).
Let /z 7/ and suppose that J,_ J, J,+_ J,+ and 0, 0,+1
0,+_ for some r. Thus J, consists of r pairs (ih,jh), h=l,...,r, with

k(ih,jh) k,, and there exist integers lh such that

(1.10) 0 !- =O+h_l=O h6{1 r}IhJ

Consequently, a,+ a,+h and/3, =/3,+h- for all h {1,. ., r} (cf. (1.3)). If r> 1 it
follows that

(1.11) S,+h=S(qS+r, he{l,..., r-l}.
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We take Fr and fr/r---r+r If r= 1, (i)’-(iii)’ are automatically satisfied for
v =/x. Now suppose that r > 1. Let

According to Theorem 1.6, (C-I)s=0 unless (i,j)6Jr, i.e., unless (i,j)
{(i,j),..., (i,j)}. We readily verify that Jr is an antisymmetric and transitive set
(cf. [5]), i.e., (i,j)Jr implies (j, i)-Jr, and if Jr contains both (i,j) and (j, k) then
it also contains (i, k). Due to these properties, C can be written uniquely as a product
C CI.," Cr, such that (Ch--I)o--O unless (i,j)--(ih,jh), and thus/x + h-1 tr(i,j)
(cf. [5, p. 82]). Hence, if we choose

Fr+h FrCl Ch, h 6 {1, r-1},

then (iii)’ obviously holds for , =/x + h 1, h {1, , r}, and hence for all
Furthermore, for all h {1,. , r} and i, j {1,. , m} we have

0 ifj jh,
(1o12) (Ftz/h--Fr/h--1)ij--

(Fr/h-1)iih(fh)ihj ifj=jh.

Now suppose that Fr/h_l( t) F(t) as t- in St+h_1. Thus

(1.13) (Fr+h_),h(t)"I2Iiih(t)tP’hexpqih(t), tinSr+h_l.

From (1.10) we infer that ReZihtkh’<O for all t6S(-O,-(Tr/2kr),
-0r + (Tr/2kr)) and hence, in view of (1.4) and (1.11), for all St+h, provided h < r.
This implies that exp q,,j(t) decreases exponentially as t in S/h. With (1.13) it
follows that

(F+h_l)iih(t) exp (--qjh(t))"O as tcxzin Sr+h.

Combining this with (1.12), we conclude that Fr+h(t)--.F(t as t- in Sr+h. By
means of induction on h this property can be established for all h {0, , r- 1} and
thus (i)’ is true for all , 7/. As J J/u for all , 7/, we have

Fr+u= /u, Fr+,+N=F+,+I
if/x is chosen as before. Let

F+N +r+N C.

It follows from Theorem 1.6, property (ii), that

(1.14) =exp (-27riR)ff’’/3r+ exp 27riR.

Furthermore, t can be written uniquely as a product ( ... ( such that (th-
I)ij =0 unless Ix+h+N-lecr(i,j), or equivalently (due to (1.2)), tz+h-ler(i,j).
With (1.14) it follows that

h exp (-27riR) Ch exp 2riR, h e { 1," ", r}.

Thus, Fr+h+N( t) ffTr+N(t exp (-27riR)C... Ch exp 27fiR, and hence, in view of
Theorem 1.6, property (ii),

Fr+h+rv(t)= ffzr(te-2i)c1. Ch exp27riR= Fr+h(te-2’)exp2.a-iR h{1,...,r}.

This proves (ii)’ for all , 7/.

2. An integral representation for the coefficients of/. Let j {1,..., m}. If is
a formal solution of (D,) of the form (0.1), then (under the assumption made in 1)
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is a formal power series solution of the equation (D) resulting from a change of
the unknown y in (D,) to z, where

z(t)= y(t)t-P exp (-qj(t)).

Throughout this section it will be assumed that (D) has no singularities in the
finite complex plane but at most a regular one at the origin. In that case, both (Dr)
and (D) have at most a regular singularity at the origin of the complex t-plane. (D)
may be written in the following form"

Dz Y ahlth Z O,
/=0 h=0

where N Yil,...,,,i:iCj k(i, j), ahl C, aom O, and aura 0. Let

The coefficients , with n 1 can be determined by means of a recursive relation, or
equivalently, by solving an th-order difference equation (A) of the form

(Aj) E E ahl(--1)l(n+h))n+h =0,
h=0 !=0

subject to initial conditions.
For each let ff denote the function defined by

(2.1) (t)=f(t)t- exp (-q(t)) if (i,j),

where f is one of the solutions of (D) mentioned in Corollary 1.9. Obviously, is
a solution of (D), represented asymptotically by

h,(t)t exp qi(t)

as in S. Let y be a half-line in S S+I staing from zero. Due to (1.4),

ReAotk’<O foralltSS+, (i,j).

Therefore, ff decreases exponentially as on y. Fuhermore, since the origin is
at most a regular singular point of (D), (1/t) has at most polynomial growth as

0. Hence the integral

1
(2.2) (n)

2i

exists for suiently large n. With the use of paial integration it is easily verified that
the function h defined by (2.2) satisfies the difference equation (A) if u (j) and
n is larger than some integer no. Let

() () (1,. , S).

For each j (1,. , m) the functions h with (j) are linearly independent (cf.
the remark below) and, consequently, form a fundamental system of solutions of (A).
Hence there exist complex numbers c, u(1,..., N) such that, for each j
(1,...,,

(2.3) h c(n), n no.
v()
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Remark. Let i, j E J and 1E 7/such that u n(i,j, 1) {1,. ., N}. With the aid of
the saddle-point method it can be shown that h admits an asymptotic_representation
of the form

(2.4) /(n)--- CF
n

k exp(p(n+P))(l+g(n))’ n-oo,

where p is a polynomial in n /k" of degree not exceeding k, without constant term,
C C*, and g n-/k"Cn-/k"], p and C are completely determined by qo and
and, conversely, p determines q and (cf. [2], [3]). (Due to (1.4), the sector S f)S+
contains a saddle point of the function q(t)+ n log if n is sufficiently large, and
(2.4) can be proved by a straightforward application of the saddle-point method. For
other systems of solutions, such as that discussed in [5], the proof of (2.4) is slightly
more involved, as it requires a study of the asymptotic behaviour of q outside S.)

The assumption in 1 that k(h, i) 0 for all (h, i) J implies that qhj Y qo if h # i.

Therefore, if j E{1,..., m} is given, qo and determine u. Now suppose that v,
u: (j) and ua # u2. Then it follows that p, #p and (2.4) shows that h , and h
must be linearly independent.

3. A relation between the Stokes multipliers s and the coefficients of h. We begin
by assuming, as we did in the previous section, that (D) has no singularities in the
finite complex plane but at most a regular one at the origin. Under this condition we
have the following generalization of the result of Balser, Jurkat, and Lutz 1 mentioned
in the Introduction.

THEOREM 3.1. For all u{1,..., N} the coefficients c in (2.3) are equal to the
Stokes multipliers s defined in Corollary 1.9.

Proof Consider the function h defined by

h(t) t-,,o+1 f i//v (,/-) ,./- no-1

v. 27ri(r- t)
dr, u{1,..., N},

where no, y, and q have been defined in the previous section. (The function h (t) "o-

is a Cauchy-Heine transform of q(t)t"o-.) h" is analytic in C\Im y. As y is an
arbitrary half-line in SS+ S(a+, fly) (cf. (1.3)), starting from zero, h can be
continued analytically to the sector

S S(a,+,/3 +27r)

by continuously changing the direction of y. It follows from (2.2) and Proposition
4.2 of [6] that h admits the asymptotic representation

(3.2) h(t) E h(n) t-", toinS

(and even that h is Gevrey of order 1 + l!k). Furthermore, it is easily seen that

(3.3) h(t)-h(te2=)=(t), tSfqS+.

For each jE{1,..., m} let h be defined by

nO--I
hf(t) E hj,t-" + E sh" (t) + E s,h" (t e2i),

where s,,/x 1,..., N, are the Stokes multipliers mentioned in Corollary 1.9. From
(3.2) and (3.3) we conclude that hf is analytic on C and admits the following
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asymptotic representation"
no--1

(3.4) h;(t)"- hjnt + s.h’(n)t
n=O (j)

as -+ oo in

N S, N --’
tz8(j):tx<

Moreover, we have

Putting

fO ifvt(j), v<N,
hjV+l t) h( t) s(h(t)-h(te))=sd/(t) if (j),

h(te_2i)_hfV(t)={O if N r(j),
sN(h t) h e2ri)) SN@N( t)

hf(t)tpj exp qj(t)= g(t),

and using (2.1) and Corollary 1.9, we find the following relations"

or equivalently,

(3.5)

v+l v+lg -g=f -f, v=l,...,N-1,
--2"n’i e2.n’ipj e-2.n.i e27ripjg(t e -gJV(t)=f)(t -ff(t),

v<N,

if N e or(j).

gjV+l __fT+l gj _fj, v 1, , N- 1,

{g)( e-2"i) f( e-2rri)} e2rr% gV( t) f]v( t).

These identities show that (g)(t)-f)(t))t-’ is analytic in C\{0}. From the asymptotic
properties of gf and f given by (3.4) and Corollary 1.9, in combination with (3.5),
we deduce that

(g)(t)-fjl.(t))t- exp(-qj(t))--- E aj(n)t-", t-->ooinC,

where aj(n) Yvaj) sv’(n) , E,aj) (& c,)’(n) (cf. (2.3)). Consequently,
Y----oaj(n)t- is a convergent power series and its sum is (gj(t)-
fjl.(t))t-P exp (-qj(t)). In view of (2.4) this implies that s,-c,=O for all ve (j) (and
hence gj fj for all v e { 1, , N}).

If (D) has an irregular singularity at the origin, or other finite singular points,
the argument presented above is no longer valid. For example, the integral on the
right-hand side of (2.2) may not exist. We therefore modify the path y. in the following
way. Let t S n Sv+l, such that all finite singularities of (Dr) are contained within
the disk {t E C" It[ < tl} and let be a half-line in Sv N Su+I, starting from t. Now
the integral

1 f tn_(3.6) h(n) =- 6(t) dt
2 rri J

is well defined for all n > 0 and admits the asymptotic representation (2.4) (which is
independent of t). Furthermore, let

h(t) f f(r)r-1

2ri(r- t)
dr.
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h is analytic in the "sector" ={tS" [tl>ltl}. According to Proposition 4.2 of
[6], h is Gevrey of order 1 + 1/k and is represented asymptotically by. f(n)t-"

n=0

as t--> cx3 in S. Moreover, we have

h(t)-h(te2=i)=b(t), t6Sf’)S+l, Itl>[tl.

Defining, for each j {1,..., m}, a function h by

h(t) sh" (t) + s,h" e2=i)
/x ((j):/x /x (j):/x--

and proceeding as in the proof of Theorem 3.1, we conclude that the function a
defined by

a(t)=-f(t)t-Jexp(-qj(t))-h(t), j6(1,...,m}, u6(1,...,N},

is holomorphic at and independent of v. Thus we finally obtain the following result.
THEOREM 3.7. For all j {1,. , m} the coefficients of the formal power series hj

can be written in the form
(3.8) /,, 2 sf(n)+a,, n,
where the numbers s are the Stokes multipliers defined in Corollary 1.9, the ajn are
complex numbers with the property that limsup,_.[aj,[ 1/" <, and h is given by
(3.6) and represented asymptotically by (2.4) as n .

In general, for a given j {1, , m}, one of the functions h with v t(j) will
dominate the others as n - . With the aid of (3.8) and (2.4), the corsponding Stokes
multipliers s can be determined from the asymptotic behaviour of h,. In many cases
we may even do a little better, due to the fact that the Stokes multipliers are analytic
functions of certain coefficients of the equation. In particular, if k(i,j) is constant for
all (i,j) J ("one-leveled" equation), it is possible to determine all Stokes multipliers,
if the asymptotic behaviour of/j, as a function of these coefficients is known. This is
illustrated by the example in 4.

4. An example. We illustrate the foregoing with a very simple example:
(D) x2y"(x)+o’xy’(x)=(x4+ax3+flxZ+yx+6)y(x), o’, a, fl, 3/, eC.

This equation has two linearly independent formal solutions fi and fi of the form

f(x) f(x)x’ exp q(x), f2(x) f2(x)x-’-’- exp (-q(x)),

where q(x) 1/2(x2 + ax) p 1/2( 2 fj

_
-za -r- ), and (x) 1 +E,= ,x-", j= 1, 2.

Using the notation introduced in the previous sections we have p 1, k(1, 2)-
k(2, 1)=2, ,2 1, and ,1 =-1. Hence, choosing 0o=0, we find

0= 2’ 2 4’ 2 - v7/.

In this particular ("one-leveled") case, (D) possesses two unique solutions, f
and f, represented asymptotically by f as x - ee in S U S and $3 U S, respectively,
and two unique solutionsf andf represented asymptotically byf as x oo in $2 U $3
and $4 U Ss, respectively.
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The substitution

takes (D) into

(D1)

y(x) z(x)x exp q(x)

x-z"(x) + {2x + axz + (2p + cr)x}z’(x)

+ {(ap +1/2ao’- y)x + p(p + or- 1) 6}z(x) O.

The coefficients hi, satisfy the difference equation

(A) 2(n+2)y/+ n-o-+l +/ y/-{(n-O)(n-O-r+l)-}y=O

with initial conditions

( )(4.1) yo =1, y,=1/2 ap+a--’y
For sufficiently large n, according to (2.2), (2.3) and Theorem 3.1, hi, may be

written in the form

h=
2ri o

$4 f OOe2"rri

/ 4(x)xn-1 dx,#2(x)x"-1 dx
2,rri ao

where qv(x)=-f(x)x-p exp(-q(x)), u=2, 4. The asymptotic behaviour of hi, is
given by

(4.2)

47ri
exp 7ri(2p + o’) F

2

[s2(-1)n exp (a /) (l + o(1))

s4 exp {-Tri(2p + o’)- a](l + o(1))],
Suppose, for example, that Re a > 0. Then it follows that

(4.3) s=4-i exp ri(2p+o’)- lim h,,F- 2

If, on the other hand, Re a < 0, we have

(4.4) s4=-47ri exp {27ri(2p+’)-a---} lim ’"F(n-2p-’- l)2

As both Stokes multipliers are entire functions of a, once their values for Re a > 0
or Re a < 0 are known, other values may be found by analytic continuation. Unfortu-
nately, it is not easy to determine the Stokes multipliers as functions of the coefficients
of the equation. In general, (4.3) and (4.4) will merely yield approximations of s2 and
s4 for given values of these coefficients. (In this connection it might be worthwhile to
study the parameter dependence of the solutions of the difference equation (A).) To
conclude this section we mention two particular cases in which (A1) can be solved
explicitly.

(i) a =y =0. Then we have

F(n-a)F(n-b)]12n hl2n+ =0, n 6,
n!F(-a)F(-b)



792 G.K. IMMINK

where a and b are the roots of the equation (mx-p)(mx-p-tr+ 1)-6=0. With (4.2)
we find

2 7ri exp 7rift
s2 s4 exp (-Trifl)

r(-a)r(-b)

(ii) tr =3’- 6- 0. We readily verify that in this case hln may be represented by

1 (n-p-1) I_e-(X+,/2)mx,,dx"(4.5) hln ---- 11

Comparison of the asymptotic behaviour of the right-hand side of (4.5) with (4.2)
yields the following expressions for the Stokes multipliers s2 and s4"

ix/-2- exp (2,n’ip -1/4a 2)
s2 s4 exp (-2rip)

r(-o)
in agreement with the result found by Sibuya (cf. [9, Thm. 22.2]).

Remark. After this paper was completed I received a preprint by M. Loday in
which she presents a method for computing the Birkhott invariants of differential
systems of order 2 (cf. 10]). Following her approach, we can improve the computation
of the Stokes multipliers s2 and s4 in the preceding example by making the change of
variable x--sc-1/2a. This essentially reduces the polynomial q(x) to a single term (1/2:2)
and makes the exponential factors exp (ax//2) and exp (-ax/n/2) disappear from
the asymptotic representation (4.2). Consequently., both s2 and s4 can be computed
from the asymptotic behaviour of the coefficients hln of the modified formal solution
fl, regardless of the value of a.

However, in the case of higher-order equations, the appearance of exponentials
with different orders of growth in the asymptotic representations of the coefficients
/n, as in (4.2), cannot usually be avoided.

Acknowledgments. Thanks are due to Professors B. L. J. Braaksma and J. P. Ramis
for their helpful comments.
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ON THE CONNECTION PROBLEM FOR SOME SCHRODINGER
EQUATIONS IN RELATION TO THE BICONFLUENT HEUN

DIFFERENTIAL EQUATION*
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Abstract. Following a previous paper concerning the eigenvalue problem, greater detail is given for
determining of the so-called connection coefficients for the Schr6dinger equation of rotating harmonic, three-
dimensional, anharmonic oscillators and for a class of confinement potentials related to the biconfluent
Heun differential equation.

Key words, connection coefficients, difference equation

AMS(MOS) subject classification. 34B25

1. Introduction. Many physical problems concern eigenvalue problems. Such is
the case for the rotating harmonic, three-dimensional, and doubly anharmonic oscil-
lators and a class of confinement potentials [1]-[4]. In a previous paper [5] it has
been shown that in these four cases, the corresponding Schr6dinger equations are, in
fact, now Fuschian differential equations of the biconfluent Heun (BCH) type [5].
This linear equation which has one regular singularity at the origin and one irregular
singularity at + of the fourth species, is characterised in the Ince [6] classification
by the formula [0, 1, 14].

The study of eigenvalues for this equation is closely connected with the so-called
two-connection problem. As a rule we have to determine the constant coefficients of
the linear combinations between the two fundamental sets of solutions at the origin
and at +. It is a very difficult problem. In the neighbourhood of the origin the
solutions are represented by convergent series, but at infinity by formal series. Moreover,
when the variable is complex, the asymptotic representations of the solutions are
sectorially dependent (Stokes phenomenon).

In this paper, by application to the BCH equation of the general-theoretical
Kowalevskii [8]-[11] method, we present some results concerning this problem in a
more tractable form.

Previously, this problem has been studied in great detail and with very interesting
results by Kohno [12]-[15], in 1970 for an nth order linear differential equation with
an irregular singularity of rank 2, and in 1974 for an nth-order linear differential
equation with an irregular singularity of arbitrary rank.

2. The biconfluent Heun equation (BCH). Previously [5], it was shown that the
four Schr6dinger equations reduce to the BCH equation. This equation has been written
in canonical form [7]. Nevertheless, here it is convenient to put the BCH in the
following form:

2t2q9 t(al,o @ al,1 W al,2 )q9 (a2,o-t- t4)q9 0,

where ai, are four irreducible parameters. Equation (1) has two singular points: a
regular singular point at zero, and an irregular singular point at infinity. By making
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the standard transformation

y X eax+(b/2)x2qg(kt)
on the canonical BCH equation [7]

(2) xy"+ (1 + a -x-2x2)y’+((y-a -2)x- 1/2(6 +(1 + ce)/3))=0,

we obtain (1), with the four relations"

1/2[ + ( + )t] + a( +)-o +2ao =0,

y-o-2-a +a + a2+2b+2p(b 1)=0,

2(1-b)a+b=O,

b(b-2)k4=l.
It follows that

a,,o -(20 + 1 + a), a, k(2a ),
(3)

a, 2k2( 1 b), a:,o -p(p + c ).

According to the analytic theory of differential equations, we can write the following
results in the vicinity of the two singularities.

(a) Solution at the origin (t 0). At the origin it holds that a fundamental system
of solutions is given in the form of convergent series

(4) % tO, 2 G(s) t’,
s=0

where j 1, 2 and p is a root of the characteristic equation

(5) E(p)= p(p-1)-a,op-a2.o=O.

If/91,/92 are the roots of this equation, we suppose that Plp2 O, Pl p2, and Pl- p
is a noninteger. The coefficients G(s) satisfy the difference equation

[(p + s)(p + s- 1)- a,,o(pj + s)- a2,o]G(s)
(6)

-[(p + s- 1)a,,,]O(s- 1)-[(p + s- 2)a,,z]G(s- 2)- G(s-4) 0,

with the conditions

(7) G(0) 1, G(-1) G(-2) Gj(-3) 0.

(b) Solution at infinity (t +). In any section $ of the complex t-plane, defined
by ]Arg tl< (7r/2)- e there exists, when t, a fundamental system of solutions of
(1) [19]"

(8) qo(k)(t, S)- e(’ Y h(k)(s)t-s,
s=o

where k 1, 2 and Qk(t) A ]k)t + A ]kt2. The quantities A]k) are the roots, supposed
nonzero and distinct, of the characteristic equation

F(A2) 4A- 2al,2A2 a,4 0,(9)

with

1,2 +4 (22 4a2
A ,2- 4

4 4
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By direct substitution of (8) in (1) we find the other quantities

A?)- 2al’lA (21) 2ai,1A(22)
4A (1) A?)= (22al,2 4A al,2

(10) l 4A1)_ al,2

1,1A 2) 2al,oA 2)_ A ?)2 2A2)
2 4A2)- a,2

It follows that [14]

(11) 1)2) 2 al,o 1al,1 1

3. The connection eoecients. Between the solutions at the origin and at infinity
of (1) there hold the formal relations

(12) (t) CJ(S)I(t, S)+ CJ2(S)2(t, S),

where S is some section of the complex plane with angle less than /2.
Instead of determining directly the coecients Ck we strive to find the asymptotic

behaviour of the solutions at the origin and to obtain a relation of type (12). The
nonperiodic coecients A defined below, are called "connection coecients" [10].
If we put

4

(13) G(s)= E aJf(s),

where {f(s)}4= is a fundamental system of solutions to (6), then, taking (7) into
account, we find that AJ are solutions of

4 4

A() f()(O) 1 AJ)f)(s) O,(14) E
v=l v=l

for s=-1,-2,-3, where j= 1,2. Now the functions f)(s) can be expressed
[9], [12], [13] in terms of series as follows:

.k(r) [ k(v)

/=0

where the coecients hk(l) are given by (8), and

largsl<-e, 0<e<, v=1,2,3,4, r(v)=E(v/2).

E(z) is the integer pa of the number z, and k(v)= v+ 1-2r(v). Besides, gjr(Z) in
(15) is the following modified F function [16]"

1/[-+(-o)]- earl/+, d,

where z e N.
The contour L is composed of the three following pas (1
(1) The ray arg ()=-(k+ 2r) staing at ;
(2) The circle I1 1 described on the negative direction;
(3) The ray arg ()= (k+2r)+2 going to .

The function g(z) is an arbitrary solution of the hypergeometric difference equation
[0],[].

(7) (z+o-g (z)=a (z-).
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k)z) beThis is demonstrated by integrating by parts. Explicitly, the functions gj, can
written

1 f ,.l.1/2[__z+(I,2__Pj)]_1) g)(z) dz,
2i J

2i
(18)

3) g,?(z) 1 f ,/2-+.:-o-1 ex’’/:+’ dr,(
2i J

( 4) g,(z) 1 y -z+.,-o-i e:,,+,, d.1/2[

(k)tzWe infer the asymptotic behaviour of these functions g;,r from the general result
[8], [9]

+ a) (k)+/ etZ-znz+z/:t"-"--
Z

(19)

g, ta)z-
/=1

where a C, I2A[ e= the constants a] and s,o are independent of a and
,o #0.

Later we need only the asymptotic behaviour of the f))(s) functions defined by
(15). This is

20) f) =g,r(s){l+O(s-/2)}, S, largsl<-e,

( f(s+= -,(ts){1 + O( /)} if

4. Ateto f (). The coecients of {A}} are solutions of system (14).
Now, using results of Norlund [16], [17] on the so-called adjoint equation of the
dierence equation (6), we find [9] that it is possible to calculate the {A}} without
solving the system (14).

The adjoint equation of (6) can be written [17]"

(22)
[(pj + s)(p. + s- 1)-a,o(P.i + s)- a2,o]m(s-4)

(pj -t" s)al,]l,tT( s 3)- [(& + s)a,,z]m(s -2)- re(s) 0.

Now, simple relations exist between the solution of (22) and that of the previous
equation (6).

Let D(s) be the Casoratis determinant of the fundamental system of solutions
of (6):

(23)
fl)(s) f2)(S) f3)(S) f4)(S)

f.}(S+ 1) fff)(S+ 1) f3)(S+ 1) f)4)(S-lt-1)
f1)(S -+- 2) f)Z)(s + 2) f3)(s + 2) /4)(S -+- 2)
/1(, + 3) f(s + 3) /j3(, + 3) f)4(s + 3)
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D) is the algebraic complement of the vth element of the last line. Then a fundamental
solution of (22) is given by

O(s+ 1)
(24) tz)(s) pJ(s)Dj(s+ 1)’

u 1,2, 3,4,

where

pJ(s) [(p + s + 4)(p + s + 3) al,o(p + s + 4) a2,o].
It follows that D(s) given by (23) can be written:

(25) Dj(s) s,rl)J //(1, i, -1, -i)(1 + O(s-1/2)),
/=0

where (1, i,-1,-i) is the corresponding Vandermonde determinant. Likewise,

lj,r(1)(S) ?T’(I+ O(s-’/z)),
l=O

where

14, , i, -1, 4 i, 74/’_ 7/ (1,-1,-i)=4,

’I//3 // (1, i,-i)=-4i, ?/I,r4 //’ (1, i,-1) =-4,

and we obtain for the asymptotic behaviour of the/xJ)(s)
C(27) /zJ )(s) ta,.() (1 + O(s-’/2))), C

p k/Sj,r(v)(S+ 1) ,(1, i,-1,-i)’
where s , larg s < e, 0 < e < . From (24) it follows that 17]

(:8) Z

where j= 1,2 and 1=0, 1,2. Comparing the system (14) with the system (28), it may
be deduced that the connection coefficients AJ ") are given by

(29) A{)= J)(-3)pJ(-3)= {)(-3)((pj+ l)pj-al,o(Pj+ l)-a:.o)
where 0, 1, 2, 3 and j 1, 2. These coefficients are therefore solutions of the adjoint
equation (27) for s =-3 with the asymptotic conditions

k()(30) lim (J)(s)g,r()(S+ 1)p(s))= C.

5. Conclusion. The two fundamental sets of solutions, at the origin and at infinity,
are formally connected by (12). In this paper, instead of determining directly the
coefficients involved in these relations, we have found an asymptotic representation
of the convergent power series solutions at origin (4), of type (12). We have obtained
these asymptotic behaviours by means of asymptotic set solutions of the adjoint linear
difference equation (22), and have found that, in fact, the connection coefficients are
expressed in terms of the values of paicular solutions of that adjoint difference
equation.

A previous paper [5] has shown how, by means of integral equations, it is possible
as a rule to solve the eigenvalue problem for the SchrSdinger equation of type [0, 1, 14].
However, it is not an easy task to solve this integral equation. In the present paper a
very different way is proposed using a more classical method. This method can be
used for other SchrSdinger equations having only two singularities with one irregular
singular at infinity.
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ZEROS OF CHEBYSHEV POLYNOMIALS ASSOCIATED WITH A
COMPACT SET IN THE PLANE*

E. B. SAFF? AND V. TOTIK

Abstract. It is proved that the zeros of the Chebyshev polynomials associated with a compact set in
the plane having connected interior and complement stay away from the boundary if and only if the set is
bounded by an analytic curve.

Key words. Chebyshev polynomials, zeros, analytic curve, Faber polynomials
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Let K be an infinite compact subset ofthe complex plane C. The unique nth-degree
monic polynomial T(z)= Tn(z)= z +... with minimal supremum norm on K is
called the nth Chebyshev polynomial associated with K. It is well known that the zeros
of T lie in the convex hull of the set K. For the case when K is the unit disk,
T(z) z ", n 0, 1,. ., so it is possible for all the zeros of T to lie in the interior
of K. The aim of this paper is to characterize those sets K for which the zeros stay
away from the boundary of K.

Let G be the unbounded component of the complement C\K of K. Obviously
the Chebyshev polynomials associated with K are the same as those associated with
C\G; therefore in what follows we will assume that K C\G, i.e., the complement
of K is connected. Widom [5] has proved that for every closed subset S of G there
is a natural number ns such that each T can have at most ns zeros in S. Thus, most
of the zeros are close to K. In the case where K has empty interior we actually know
the asymptotic distribution ofthe zeros of T; namely, it coincides with the equilibrium
measure of the set K (see 1 ]). This result is no longer true if K has nonempty interior,
as the above-mentioned example of the unit disk shows. It seems to be a very difficult
problem to determine the distribution of the zeros (if it exists at all) for general K’s.
In connection with this question our aim is to prove the following theorem.

THEOREM. Let K be a compact subset of C with connected interior and complement.
Then the zeros of the Chebyshev polynomials T stay away from the boundary of K if
and only if K is bounded by an analytic curve.

By "staying away from the boundary" we mean that for some neighborhood of
the boundary there is no zero of Tff in this neighborhood for all large n. The proof
shows that the same result holds if by "staying away from the boundary" we mean
that for some neighborhood of the boundary there are at most o(n) zeros of Tff in
this neighborhood for n c.

By an analytic curve we mean a simple closed curve y that has a parametric
representation yl(t)+ iy2(t), [0,27r], where 3’1 and y2 are analytic functions on
{0, 2].

It seems likely that our result is valid in a somewhat more general form; namely,
if K has disconnected interior, then the zeros stay away from the boundary exactly
when K is bounded by a finite number of (in this case not necessarily simple) analytic
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800 E.B. SAFF AND V. TOTIK

curves. However, in this formulation "staying away" must mean the weaker o(n)
version discussed above as can be seen from the example: K {zllz2+ 11 <-- 1}. In fact,
this K is bounded by an analytic (though not simple) curve, but the symmetry of K
with respect to the origin implies that Tn+l(0)=0 for all n.

Proof (Sufficiency.) We need the Faber polynomials associated with the set K.
Our assumption is that K is bounded by a simple closed analytic curve 3’. Thus

the complement Go of K in C := C U {c} can be mapped conformally onto the exterior
of a circle CR {w Ilwt- R} by a function p normalized by q(o)= o, limz_, (z)/z 1
(cf. [2, 14]). Then R is the logarithmic capacity of K and since, without loss of
generality, this may be assumed to be 1, in what follows we take R- 1, i.e., p maps
G conformally onto the exterior of the unit disk. If

O_
p(z)= z+ ao++"

z

is the Laurent expansion of at infinity, then the expansion of pn is of the form
.(n)

(-- z +z-+... + (o +....
Z

The polynomials

are called the Faber polynomials of K.
Since 3" is analytic, there is an r < 1 such that p can be extended to a conformal

mapping of the unbounded component of the complement of a curve 3’r ----- K := int (K)
onto the exterior of the circle Cr (cf. [2, p. 45]). Clearly, if for r-< p =< 1, Kp denotes
the compact set bounded by the curve 3’p q-l(C,), then the Faber polynomials of
K --K and K, are identical (in what follows we may assume r < 1 so large that 3’, is
a simple closed analytic curve for r <-p <-1). But then there exist constants A > 0 and
0 < a < 1 such that on 3’1 the modulus of the difference between F,(z) and p"(z) is at
most Aa" for all n (see [2, p. 108]).

We will show that for max {a 1/2, r} < p < 1 all the zeros of T Tn lie in K for
large n, and proving this will complete the sufficiency part. Let al/2< b < p. First we
claim that for z 3’1 we have [T,,(z)-Fn(z)[<=Bb for some constant B independent
of z and n. To prove this claim we expand T, in its Faber series:

7"(z) V.(z)+cV._(z)+...+CVo(Z).

It is known (see [3, p. 58]) that the Fourier expansion of T,(p-l(ei)) has the form

r(p-(e’)) e’k + cl e’(k- +’’" + c + ql e-i +"
and so from the Parseval formula we get

1 +lcl+... +lcl<
1---- .o

IZ,(p-(e’))] dO.

We have already remarked that [F,(z)-p"(z)[<-Aa for z 3"l=OK, which implies
that IIfll-<l+aa, and so I1Tll-<l+aa". Substituting this into the previous
estimate we get

levi = +... + levi = _-< 2aa" + a2a2’,
from which the inequality IT(z)-F(z)l <- D,/-ff, a "/ immediately follows for z 3"1
with a constant D (note that the Faber polynomials are uniformly bounded on
and this proves our claim.
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Next we note that the Bernstein-Walsh lemma (cf. [4, p. 77]) yields the following
inequality for the supremum norms:

Tn Fn --< , for any s -> 1,

and since on ys we have already seen that IFl= s"(1 +o(1)) uniformly in s=> 1, the
inequality IT,(z)-F(z)[ < IF(z)l follows for every large n, say n-> no, and any z K.
Hence T, has no zeros outside K for large n.

Now let b < bl < p. From what we have discussed above concerning F, and o it
also follows that for z Ko we have uniformly [F,(z)[ => db for some positive constant
d, and at the same time IT,(z)-F(z)l<=Bb inside 71. Thus we can conclude again
that Tn has no zero in K\K, for large n.

This completes the sufficiency part of the proof.
(Necessity.) Now suppose that the zeros stay away from the boundary. Let

1

nk=l

be the normalized counting measure on the zeros Zk of T. Since the zeros of the
T’s lie in the convex hull of K, we can select a subsequence {vn} converging in the
weak-star topology (on Borel measures with compact support) to some measure v.

According to our assumption and the Widom theorem mentioned in the Introduction,
v is supported in a compact subset of the interior K of K. By assumption, K has
connected interior and so there is a compact set H K such that H has connected
interior containing the support of v and T,(z) 0 for z K\H and n large. Let

g(z):=exp(-flog 1 dr(t))
where we take that branch of the logarithm that is positive for positive z. Then g is
defined, analytic and single-valued in C\H (note that v is a probability measure). In
K\H and also in a neighborhood of the boundary of K

(1) [T,,k(z)ll/"k exp ( I log [Z--t, dr(t)),
and this combined with the fact that

(2) lim T, " cap (K)

yields the result that the function

log Ig(z)l I log ]z- dr(t)

is a harmonic function in C\H, is of the form log [z[ +o(1) around the infinity, and is
at most as large as log (cap (K)) on K\H. If (z) denotes the Green’s function with
pole at infinity for the complement of K, then we have again (z)+ log (cap (K))
log[z[+o(1) as z, but (z)+log(cap(K))>-_log(cap(K)) in C\K. Therefore,
from the maximum principle for harmonic functions, we get first that (z)+
log (cap (K))_->log [g(z)[ in C\K and then that these two functions actually coincide
because their difference is zero at infinity. From this we get that log[g(z)[>
log (cap (K)) outside K. In the interior of K\H we obtain from (1) and (2) and the
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maximum principle that log Ig(z)[ < log (cap (K)). These facts imply that on the boun-
dary of K we must have log Ig(z)l-- log (cap (K)) and that at no other point of C\H
can we have equality. Thus,

OK {z C\H lg(z)l cap (K))
and from this we will deduce that OK is in fact an analytic curve.

Without loss of generality we may assume cap (K)= 1. First of all we show that
OK is locally an analytic curve. Let Zo be an arbitrary point on the boundary of K. If
g’(zo) O, then g has an analytic inverse g-1 in a neighborhood U of Zo, and in this
neighborhood OK coincides with the image of a portion of the unit circle under the
mapping g-1. Hence, for some neighborhood U c U of Zo, the intersection OK f"l U1
is the analytic image of an arc on the unit circle, and so it is analytic.

Now suppose that g’(zo) gk-)(Zo)=O, gk)(zo)SO, with k->2. Then g can
be represented in a neighborhood U of Zo as g(z)= c+(h(z))k, where Icl=lg(zo)l 1,
h is analytic in U, and h(zo) =0 but h’(zo)O. For some small 3>0 the set

{wile+ 1, Iwl_--< 3}
is the union of k analytic arcs intersecting the x axis at zero with angle (Tr/2 + arg c)/k +
j’rr/k, O<=j < k. According to what we have said above, this implies that, in some
neighborhood U c U of Zo, the part of the boundary 0K lying in U1 is the union of
k analytic arcs such that their tangent lines at their common point Zo divide the plane
into 2k congruent sectors. Let y be the inverse image of the circle wl under the
mapping w h(z), z U. Then it follows from h being conformal around Zo that, for
small > 0, y is a simple closed curve such that OK divides it into 2k connected
pieces" y,o,"" ", Y.2k-1, where each of these Jordan arcs is considered without its
endpoints. Let P /.j, j 0, , 2k- 1. Then Po belongs either to K or to G; for
definiteness, suppose that Po G. As we move away from Po we stay in G until we
reach OK. This implies that P1 K since in the opposite case we would have P
which would mean that the common endpoint S of Y.o and y, had a neighborhood
disjoint from K, contradicting the maximum principle (recall that outside K we have
Igl >-- 1 and that Ig(S)l 1 because S OK). In a similar fashion we can see that P2
and P3 K. Now, since G is connected, the points Po and P2 can be joined by an
arc F lying in G. Since it is not possible to join Po and P2 inside 3’ (the possibility
of joining P and P3 to Zo in K inside y prevents this), we can assume that F lies
exterior to y (except for its endpoints). Similarly, since K is connected, the points
P and P3 can be joined by an arc Fo in K that also lies exterior to y. But clearly
such a pair of arcs must intersect, which is absurd because G fq K . This contradic-
tion shows that g’(zo)=0 cannot occur.

We have thus shown that OK locally is an analytic and simple curve. To complete
the proof we have only to mention that OK must be connected because K is connected.
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A PROOF OF THE MACDONALD-MORRIS ROOT
SYSTEM CONJECTURE FOR F4*

F. G. GARVANt

Abstract. This paper gives a proof of the q case of the Macdonald-Morris root system conjecture
for F4 that draws on ideas from Zeilberger’s recent proof of the G case and Kadell’s proof of the q-BC,
case. The present proof depends on much computer computation. As in Zeilberger’s proof, the problem is
reduced to solving a system of linear equations. A FORTRAN program generated the equations, which
were solved using the computer algebra package MAPLE.
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Morris conjectures, Mehta’s integral, multidimensional integrals, root systems, Selberg’s integral
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1. Introduction. In 1962, Dyson [D] in some statistical work in nuclear physics
conjectured

(D’) (27r) I-[
l<=i<jn

leii-ei%l dOl" dOn
F(1 +1/2n/3)
F(1 +1/2/3)"

(Re (/3) > 0).

In the electrostatic analogue the left side is the positional partition function of n point
charges in a unit circle with angular variables [01,"’, 0n] and/3 1/T, where T is
the temperature at thermal equilibrium. By appealing to Carlson’s theorem [T, p. 186]
we can assume without loss of generality that/3 2k is an even nonnegative integer.
Now, by the orthogonality of the exponentials, Dyson observed that (D’) can be written
as the constant term of a Laurent polynomial:

(D) Constant term of 1-[ (1-x)
k (kn)!

lijn (k!)
Since each term in the product on the left can be expanded by the binomial theorem
we can view (D) as a multisum binomial coefficient identity, or equivalently, as a
terminating hypergeometric multiple series identity. Such series rarely factor and when
they do, as in (D), it is interesting and important. The n 2 case follows trivially.
Dyson proved the n 3 case from Dixon’s [D, p. 152] identity for the alternating sum
of the cubes of binomial coefficients. This identity is a special case of Dixon’s [Ba, 3.1]
evaluation of a well-poised 3F2. This led Dyson to add more parameters to his
conjecture:

(general-D) C.T.
liJ<=nil (1- X_.jj) ai (al+

!... an
where ai are nonnegative integers. Here we use C.T. as our abbreviation for constant
term. This more general conjecture was proved in [Gu], [W], and [Go]. A q-analogue
of (general-D) was conjectured by Andrews [An] and later proved by Zeilberger and
Bressoud [Z-B].
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If the unit circle in Dyson’s problem above is replaced by the real line then the
analogue of (D’) is the Mehta-Dyson conjecture [Me], [M-D]

i=1 li<j<=n
[ti- tjl 2z dtl at. fl F(jz + 1)

j=l F(z + 1)

This was proved by taking the appropriate limits in Selberg’s [Se] integral:

(s)

t-’(1- ti) y-1 H It,- tl 2z dtl"’" dt.
i=1 li<j<--n

F(x+(j-1)z)F(y+(j-1)z)F(jz+l)
j=, F(x+ y+(n+j-2)z)F(z+ 1)

(see [Ma2]).
In 1982, Macdonald [Ma2] conjectured generalizations of both (D) and (M-D)

in the context of root systems of Lie algebras. The generalization of (D) is given below
in (M). The BCn case is intimately connected to Selberg’s integral (see [Ma2] and
[As]). Recently much progress has been made on q-generalizing and extending Selberg’s
integral. Aomoto [Ao] has given a new proofthat depends on little more than integration
by parts; see [As] for a nice account. Kadell [K1] and Habsieger [Habl] have proved
Askey’s q-analogue of Selberg’s integral. Homogeneous symmetric polynomials
Z,(t; z) have been added to the integrand of Selberg’s integral so that the resulting
integral still has closed form (see [Ri] and for the q case [K3]). For z 1/2 they are the
zonal polynomials of statistics studied by James ([Jaml], [Jam2], [Jam3]) and Constan-
tine [Co]. For z 1 they are Schur functions and for arbitrary z they are the Jack
polynomials [Jac] studied by Macdonald [Ma3], Stanley [St], and Kadell [K3]. It is
hoped that some of these results may be extended to other root systems yielding further
applications to multivariate statistics. See [He], [O1] for a setting for generalized
hypergeometric functions associated with root systems.

Recently the Macdonald conjectures have led to interesting developments in other
areas of mathematics. In combinatorics, a study of the A, and q-A, cases in [Z1],
[Z-B] led to the technique of counting and q-counting tournaments. In Lie algebra,
Hanlon [Hanl], [Han2] has found an interesting formulation and refinement of the
Macdonald conjectures in the context of the cyclic homology of the exterior product
of a Lie algebra with C[t, t-l]. In number theory, character sum analogues of the
Macdonald conjectures have been found by Evans [E]. In algebra, Regev [Rel], IRe2]
has found connections between Mehta-type integrals, PI rings, and representations of
the symmetric group.

We now describe the simplest form of Macdonald’s generalization of Dyson’s
conjecture (D). Unfortunately, no generalization to all root systems is known for
the more general (general-D). Let R be a reduced root system, let x" denote the
formal exponential corresponding to a R, and let k be a nonnegative integer. Then
Macdonald conjectured that

Here C.T. means constant term in the Laurent polynomial in the x+ and the di are
the degrees of the fundamental invariants of the Weyl group of R. Dyson’s conjecture
is equivalent to the A,_I case. Morris [Mo] conjectured a generalization of (M) for
the G2 case with an extra parameter. This led to the Macdonald-Morris conjecture
([Ma2], p. 988), which has the same form as (M) except that k is replaced by k (with
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the restriction that ks is constant on roots of equal length) and the binomial coefficients
on the right side are replaced by certain factorials. Also in [Ma2] q-analogues are
given. These q-Macdonald-Morris conjectures are cast in the language of affine root
systems [Mal] and are related to the Macdonald identities of [Mal]. In this paper we
restrict attention to the q 1 case.

The Macdonald-Morris conjectures are known for A, ([Gu], [W], [Go]),
B,, C,, D,, BC, (follow from Selberg’s [Se] integral as noted by Macdonald [Ma2]),
G2 ([Z2], [Hab2]). The goal of this paper is to give a proof of the F4 case spelled out
below in (1.1). Since this paper was first written the Macdonald-Morris conjectures
have been proved for all root systems by Opdam [02]. We should mention that recently
the G ([Z3]) and the BCn ([K2]) cases of q-Macdonald-Morris have been proved.

Opdam’s proof involves using his shift operators [O1] for general root systems
and Heckman’s [He] Lz-norm formula for the orthogonal polynomials associated with
root systems. Macdonald [Ma2] has also generalized the Mehta-Dyson conjecture
(M-D) to finite Coxeter groups. Opdam [02] has proved the Weyl group case. Also,
since this paper was first written, we have been able to extend the methods of this
paper to prove the S(F4) and S(F4) cases of the q-Macdonald-Morris conjectures.
(This should appear in a joint paper with G. Gonnet.) We have also been able [Ga2]
to prove the icosahedral case 13 of the Macdonald-Mehta-Dyson integral which is
not accessible via Opdam’s method. Moreover, we have been able to show [Ga3] that
all cases of the q-Macdonald-Morris conjecture and the Macdonald-Mehta-Dyson
integrals can be written in closed form. Although Opdam’s proof is very beautiful it
does not include all the results of this paper (see, for instance, 8). We also hope that
a more elementary proof is possible.

The Macdonald-Morris conjecture for F4 is

C.T. I-I
i<j4

4

H (1--X2)b(1--XT, 2) b H (1-x’x.x;x;) b

rl,r2,r3,r4

(1.1)
(6a + 6b) (4a + 4b) (2a + 6b) (4a + 2b) (2a +4b)!(4b)!(3a)!

(5a + 6b) (3a + 5b) (3a + 4b) (3a + 2b) (2a + 3b) (a + 3b)! (2a + b)!

(3b)!(2a)!(2b)!
(a+2b)!(a+ b)!a!a!b!b!b!

=f(a,b).

The goal of this paper is to prove (1.1). Kadell’s paper [K2, 2] also contains a
new proof of the (q 1) BC, case of the Macdonald-Morris conjecture that avoids
integrals. This new proof is analogous to Aomoto’s [Ao] proof of Selberg’s integral
in the following sense" It involves adding extra factors to the Laurent polynomial as
opposed to adding extra factors to the integrand of Selberg’s integral, and Aomoto’s
integration by parts is replaced by the fact that the derivative of a Laurent polynomial
has no residue. We extend Kadell’s proof to the F4 case, but another idea is needed.
The extra idea comes from Zeilberger’s [Z3] proof of the G case of the q-Macdonald-
Morris conjecture. In [Z3] Zeilberger describes a method for handling q-Macdonald-
Morris for a specific root system given enough computer time, memory, and luck. As
in [Z3] the problem is reduced to finding and solving a system of linear equations
whose unknowns are constant terms of certain Laurent polynomials. These equations
are generated with the aid of a FORTRAN program. Finally the equations are solved
using the computer algebra package MAPLE.



806 FRANK G. GAlVAN

After some preliminaries in 2 an idea of the proof is given in 3. The results
behind the FORTRAN program that generates the desired equations are given in

4-6. The proof is completed in 7.
We have been able to verify the results of this paper by another method. Recently

[Gal] we have found a new proof of the G2 case of the Macdonald-Morris conjecture
which is solely in terms of integrals. Our proof was motivated by some conjectures of
Askey [As] that have to do with adding roots to the G2 case of the Macdonald-Morris
conjecture, and is analogous to Aomoto’s [Ao] proof of Selberg’s integral. We have
been able to extend our integral proof of the G2 case to the F4 case. However, this
other proof involves finding equations between certain integrals and converting these
into equations involving constant terms. The proof then proceeds as usual by solving
a system of linear equations. We have omitted this other proof, finding the approach
of working with Laurent polynomials rather than with integrals more straightforward.

In 8 we give some other results that involve adding extra factors to the F4 case
of the Macdonald-Morris conjecture. The results are analogous to Askey’s [As]
conjectures for G2. Although many of these results can be written as products of
factorials, we are unable to generalize them to all root systems. These other results
may indicate that a simpler proof of the F4 case is possible.

All computer programs used in this paper are available from the author on request.
Some preliminary calculations were done using REDUCE at the University of Wis-
consin, Madison. The final FORTRAN and MAPLE programs were run on an APOLLO
DN-5800 at the Institute for Mathematics and Its Applications, University of Min-
nesota, Minneapolis.

2. Some preliminaries. In this section we prove some properties of the root system
F4 that will be needed later. We assume that the reader is familiar with the basics of
root systems and their Weyl groups. See [Bo], [Ca], and [Hu] for treatments of root
systems and Weyl groups.

Let {el, e2, e3, e4} be the standard basis of R 4. The roots of F4 are usually written
as

(2.1) +/-e, (1<=i<=4), +/-e,+/-ej (l <j --<_ 4), 1/2(+/-el+/-e2+/-e3+/-e4);

see, for example, [Bo, p. 272]. We call this set of roots (1(F4). It is clear that the
long roots of F4 are isomorphic to D4. In this paper we shall use two other ways of
writing the roots of F4.

First, we rewrite the roots of F4 to make it clear that the short roots of F4 are
isomorphic to D4. Let (I)(2)(F4) be the set of vectors

(2.2) +/-2ei (1-<i=<4), +/-ei+ej (1-<i<j=<4), (+/-el+/-e2+/-e3+/-e4).

(2)(F4) and (I)(1)(F4) are isomorphic as root systems. The isomorphism is given by

(2.3) A: (1)(F4) (2)(F4)

where A is the transformation with matrix

(2.4)

0 1 0 1

1 0 1 0

1 0 -1 0

0 -1 0 1
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with respect to the standard basis of 4. This is a root system isomorphism since
AtA 2/. As an immediate consequence we have the following lemma.

LEMMA 2.5. Short roots of F4 D4.
Second, we may write the roots of F4 (as given in (2.2)) as Z-linear combinations

of a l, a2, a3, a4, where

(2.6) c el e2, 2 e3 + e4, 3 e3- e4, 4 e2- e3.

These Z-linear combination are given in Appendix A. The ai come from the Dynkin
diagram for D4, which is given in Fig. 1.

FIG. 1. Dynkin diagram for D4.

From the symmetry of the Dynkin diagram we see that any permutation of
a, a2, a3 leaves the root system of 04 invariant. It is interesting to note that any such
permutation also leaves the root system of F4 invariant. Let r $3 and suppose

24 kiaiGc(2)(F4) where ki7/(1 < i<4). Then we define

(2.7) ra kc%( + ka() + k3tr(3 d- k4c4

We have the following lemma.
LEMMA 2.8. For r S3,

(((F4)) ((F4).
For a root system R we denote its Weyl group by W(R). We need a nice way to

code the elements of W(F4). By [Bo, p. 257], W(D4) consists of all signed permutations,
with an even number of signs, that act on the coordinates e, e2, e3, e4. Let H denote
the set of all signed permutations that act on the coordinates e, e2, e3, e4. For a R
we denote by w the reflection through the hyperplane orthogonal to c. Since Wei
W(F4)(1 --< _<-- 4) we have

(2.9) W(D4) H c W(F4).

We introduce some notation to describe the elements of H. We denote the
permutations on the coordinates el, e, e3, e4 using the usual cycle notation. We define
the sign changes as follows: For 1-<_iN 4 let si denote the transformation given by

(2.10) Si [4 4, ei__>_ei, and e-> e (j i).

For example,

s(34)(e + e2 + 2e3- e4) -e + e2- e3 -+- 2e4.
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LEMMA 2.11. Every we W(F4) can be written

w (,r0-)kh

where k 0, 1, 2, h e H, r W2e and o" We,_e:z_e3_e4.
Proof. We have

IN[ 24.4! 27.3, W(F4)I 27.32

[Bo, p. 273, Eq. (X)].
The result follows since to- H and (7O’) 3= L []

Let

_-, ---{(XI,X2,X3,X4) U=[[ 4". XI>X2>X3>X4’O,=
(2.12)

X2 + X + X4 Xl, Xl + X4 X2 -- X3}.LEMMA 2.13. For every x R4 there is a unique v such that x can be transformed
into v by some element of W(F4).

Proof From [Bo, p. 272, Eq. (II)] the following vectors form a base for F4"

(2.14) e2-- e3, e3- e4, e4, 21-(el- e2-- e3-- e4),

with the roots written in the usual way (i.e., as elements of (1)(F4)). In our representa-
tion of F4 (i.e., as elements of (2)(F4)) this corresponds to

(2.15) el e2 q- e3 e4, --el + e2 e3 e4, el d- e4, -e -i- e

By applying the relevant signed permutation we find that the following vectors also
form a base for F4"

(2.16) -el + e2 + e3 d- e4, e e:z-- e3 d- e4, e3-- e4, --e -1- e2,

by [Ca, Thm. 2.2.4]. The closure of the chamber C corresponding to this base is given
in (2.12). The result follows from [Ca, Prop. 2.3.4]. [3

Let

(2.17) funch" 4 t, funch (x)= v

with x, v as in Lemma 2.13 above. For a ,4.= kiei(ki 7/) we let

4

(2.18) x’= 1] xk ’.
i=1

The elements w of the Weyl group act on monomials by

(2.19) w(x)=xw),

and by linearity on Laurent polynomials that are linear combinations of the x.
Let

(2.20) F(x; a, b)- I-I (l-x") k"
t:I:)(2) (F4)

where

a if a is a short root,
ks= b if a is a long root.

We note that F(x; a, b) is the Laurent polynomial on the left-hand side of (1.1).
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LEMMA 2.21. For w W(F4),

C.T. xF =C.T. xW(")F

where F is defined in (2.20).
Proof The result follows from the fact that F is symmetric with respect to the

Weyl group and w does not change the constant term.

3. The idea of the proof. Let

(3.1) f’(a, b)--C.T. F(x; a, b)

where F is defined in (2.20). Our goal is to prove that if(a, b)-f(a, b) for all a, b 0.
The idea is to proceed by induction on a. That is, we want to prove that

(3.2)
f’(a + 1, b)__f(a + 1, b)
f’(a, b) f(a, b)

This will be enough because the case a 0 is already known, since

(3.3) Long roots of F4 D4.

The flavor of our proof is similar to Zeilberger’s [Z3] proof of the G case of the
q-version of the Macdonald-Morris root system conjecture. Let L be the lattice
generated by a(a F4). Now,

f’(a + 1, b)= C.T. F(x; a + 1, b)

=C.T. 1-I (1-x")F(x; a, b)
short F

=C.T. [I (1-x)F(x; a, b) (by Lemma 2.5)
aD

(3.4)
C.T. E axF(x; a, b) (for some L’ L)

ceL’

=C.T. axfunch(’F(x; a, b) (by (2.17) and Lemmas 2.13, 2.21)
cL’

C.T. E a’xF(x; a, b)

for some finite subset S of C, which is defined in (2.12). I-Io4 (1- x) was multiplied
out using a FORTRAN program; funch (a) was calculated for each monomial x that
arose in each stage of the multiplication. The 37 vectors that arose, v(i)(1 <=i=<37),
are listed in Appendix B. S {v(i)" 1 =< i=<37} and

(3.5) a’x= 192x(-768x(2+ + 192X v(37).
S

The complete list of coefficients in (3.5) is given in Appendix B. Let

(3.6) an(i)=C.T.x’()F(x; a, b) (1_-<i_-<37).

The problem is to get an(i)(2 <- i-<37) in terms of an(l) C.T. x(F(x; a, b) C.T.
F(x; a, b)=if(a, b). Once we have done this, (3.2) should follow from (3.4) and (3.5).

Hence we need to find 36 independent equations in the unknowns an(i)(1 <-_ <- 37).
Our goal is to write a FORTRAN program that will generate equations. The input of
this program is a 4-tuple k=(kl, k2, k3, k4)GN4. The output will be either a
homogeneous linear equation in the an(i)(1 <- -<- 37) or an error message, which says
such an equation is not possible. It will turn out that, when k v(i)(2<-i<-37), the
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corresponding outputs will be the required 36 independent equations in the an(i)(1 <=
=< 37). See 6 for more details. We describe how we came by this program in four steps:

Step 1. Use

0 k k k k(3.7) C.T. x1x1’x22x33x44F(x; a, b) -0.

As we noted before, this idea was used by Kadell [K2] in his proof of the q-BC,, case.
This gives rise to an equation involving constant terms of rational functions in
xl, x2, x3, x4 times F.
Step 2. Use the Weyl group to reduce the number of types of terms arising in Step 1.
Step 3. Use the Weyl group to write the constant terms that arise in Step 2 as

constant terms of Laurent polynomials times F.
Step 4. Use the Weyl group to write the constant terms that arise in Step 3 in terms

of the an(i)(1 <- 37), if possible.
In this way, for certain k, (3.7) can be written as a linear homogeneous equation in
the an(i)(1 <= <= 37).

4. Steps 1 and 2. An equation involving constant terms with denominators. In this
section we describe the first two steps, mentioned in 3, that are needed in turning
(3.7) into an equation involving the an(i). Equation (3.7) is

0 C.T. k+a t- -+
/=2 1- xx 1- x x 1- x/x 1- x/x/

(-2x. 2x )(4.1) +b l_x+ -21 -x
--XIX2 X3X4+ b _,

2,3,4=+/-1 1--XlX’X3 xr4
+

X X’22X33X4
"--_"-r’----r xkF(x" a, b)

1 xl x’22x33x4 /

where k (kl, k2, k3, k4). Hence,

(4.2)

C.T. klxkF C.T. a +
=2 1- XlX

l + (x,/x2))1 -(x,/x)

+2b
(l+x2) + b E

1 -t- XlX;2X;3X;4 kf
r2,r3,r4=zt=l 1 XlX;2X;3Xr44/

X

This completes Step 1.
In Step 2 we reduce the number of different denominators appearing in Step 1 to

two (one for each root length). The reason this can be done is that each term on the
right-hand side of (4.2) is of the form 1 + x’/1-x for some a F4, and so can be
converted to one of two types by using the fact that the Weyl group acts transitively
on roots of equal length and by Lemma 2.21. Hence for each a F4 we need to find
a w W(F4) such that

el e3, cz short,
w()

e e2 + e + e4, o long.

It is clear that for a of the form ei + e, el +/- e2 +/- e3 +/- e4, we may take w H, the set of
signed permutations (defined in 2), and w is easy to calculate. All that remains is to
find a w H such that w(2el) el e2 + e3 + e4. Let SYM denote the reflection through
the hyperplane orthogonal to el e2- e3- e4; then

(13) SYM
s4

2e 2e el e2 + e3 e4 - el e2 + e3 + e4.
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Hence we find that (4.2) may be written as

0 C.T. klxk -i’-a

(4.3)

(xl +x3) (xk+(23)xk+(34)Xk

(x,-x)

-[- S3xk -[- (23)sx + (34)s4xg)

(X2 -[- XlX3x4) k+ b (2s4 SYM (13)x
(XIX3X4--X2)

+ S2xk -" S4S2xk -" $2S3xk -lr- $2S3S4xk .dr- X k + $4xk

-[- $3Xk -1- S3S4Xk)} F(X; a, b).

5. Step 3. Getting rid of denominators. The constant term expressions that arise
in Step 2 can be written as either

p(x)
(5.1) C.T. F(x; a, b)

X X

or

p(x)
(5.2) C.T. F(x; a, b)

X X3X4 X2

where pi(x)(i-1, 2) are Laurent polynomials. In this section we show how each of
these expressions can be written in the form

C.T. p(x)F(x; a, b),

for some Laurent polynomial p(x), and how such an expression can be computed.
Expression (5.1) is easy to handle. Since F(x; a, b) is symmetric in Xl, x3 we have

1 (p(x)-(13)p(x))F(x;a,b)(5.3) C.T.
pl(x)

F(x; a, b)=C.T.X X3 X1 X

and it is clear that (p(x)-(13)pl(x))/(xl-x3) is a polynomial.
Before we can handle (5.2) we need to define an algorithm, FUN, whose input

is a vector given in terms of the ei(1 <_- _-< 4) and whose output is the same vector given
in terms of the a(1 _<-i_-< 4), defined in (2.6). FUN: R4 R4 is a linear transformation
whose matrix is

(5.4)

1 0 0 0
1

1 1 0 0

with respect to the bases {e" 1 -<_ <- 4}, {a" 1 =< =< 4}. The inverse of FUN is UNFUN,
with matrix

(5.5)

1 0 0 0

1 0 0 1

0 1 1 -1

0 1 -1 0



812 FRANK G. GARVAN

For a =E/4=l lioi(li.) we let

4

(5.6) Y’= I-[ Y’
i-----1

FUN acts on monomials by

(5.7) FUN (x’) yFUN (c),
and by linearity on Laurent polynomials that are linear combinations of the x. For
example,

FuN (X1X3X4) FUN (xe,-e2+e3+e4)
X2 /

yFUN (el-e2+e3+e4)

ycl+a

YlY2.

Alternatively, we could describe the action of FUN as replacing Xl by yly4x/yzy3, x2
by Y4Yv@’2Y3, X3 by V2Y3, and X4 by x/Y2/Y3.

From Lemma 2.8 it follows that

(5.8) F’(y; a, b)= FUN (F(x; a, b))

is symmetric in Yl, Y2, Y3. Now we can handle (5.2)"

(5.9)

pz(x)
C.T. F(x; a, b)

XIX3X4 X2

((12)p2(x))
C.T. F(x; a, b)

X2X3X4 Xl
(by Lemma 2.21)

C.T. i/-l(lR’}D"()’|x-"-f-r/--x"| F(x" a, b)
\ x,-c,,_l ]

C.T.
q(Y)

F’(y; a, b)
Y:-Yl

where q(y) is the Laurent polynomial

(by applying FUN)

(5.10)

Hence,

q(Y) Yl FUN (x-l(12)pE(x)).

1 (q(y)-(12)q(y))F,(y,a,b)C.T.
pE(x)

F(x; a, b) C.T.
XlX3X4--X2 YE--Yl

(5.11)
-1 C.T. UNFUN(q(Y)-(12)q(Y),)F(x; a, b)
2 Y2--Yl

and UNFUN ((q(y)-(12)q(y))/(yz-yl)) is a Laurent polynomial in xi(1-<i-<4) as
required.

We note that (pl(x)-(13)pl(x))/(xl-x3) and similarly UNFUN ((q(y)-
(12)q(y))/(y2-yl)) can be easily computed by observing that if pl(x)=12 c12x12=
Za CaX lX22X33X44 then

lat-a3l-1
(5.12) Pl(X)-(13)pl(x)=Ysgn (a1-a3)c12x’zx, , xTin(121’123)+lx’ax(’’’%)-l-’.

Xl X3 1=0
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6. Step 4. Obtaining equations in the an(i). In this section we describe the final
step needed in converting the constant term equation (3.7) into an equation involving
the an(i). An examination of Steps 1-4 will then yield an algorithm whose input is a
4-tuple k (kl, k2, k3, k4) E4 and whose output is an equation involving the an(i),
or an error message.

By Step 3 we can write the constant term equation (3.7), in terms of constant
terms of certain Laurent polynomials times F(x; a, b). In Step 4 we would like to find
such expressions in terms of the an(i). To do this we use funch, defined in (2.17).
Suppose we are given such an expression, say p(x)F(x; a, b), where

(6.1) p(x) ax (for some finite set L’).
aL’

Then

(6.2)

C.T. p(x)F(x; a, b)

C.T. Y aaXfunch ’)F(x; a, b)

=C.T. a’oxF(x a, b)

(by Lemma 2.13, (2.17), and
Lemma 2.21)

(where S funch (L’) C
defined in (2.12)

37

E a’v(i)an(i)
i=l

(where an(i) is defined in (3.6)).

i),37 which may not necessarily be the case.Note that here we are assuming S
However, for all values of the input k that we use, this condition is satisfied. We leave
it to the reader to write a subroutine that will do the reduction described in (6.2). This
subroutine should check whether Sc {v(i)} 37 If this condition is not satisfied thei=1"

output of the subroutine should be some error message.

7. Step 5. Generating the equations and completing the proof. In the previous
section we noted that Steps 1-4 yield an algorithm whose input is a 4-tuple k=
(kl, k2, k3, k4) E4 and whose output is an equation involving the an(i). We have
written a FORTRAN program that incorporates this algorithm. We leave it to the
reader to use (4.3) and Steps 3 and 4 to write such a program. We have found that
the set of inputs k= v(i)(2 -< i=<37), given in Appendix B, yield a system of 36
independent equations in the an(i), as required. In fact a certain sequence of such
inputs will yield a certain sequence of equations that can be solved easily using an
algebra package like MAPLE. The form of our sequence is shown in Table 1.

We note that each input v(io) produces an equation whose left-hand side is an(io).
Each equation in the output is a linear equation in the an(i)(1 <-_ <- 37) and the an(i)
that appear on the right-hand side occur as left-hand sides of equations that appear
earlier in the output sequence. In other words, the system of equations is triangular
in shape. Since this paper was first written we have found that this triangularity extends
to all root systems. In fact, if the set of inputs has the form

{y" y< yo}n LN C,

then the corresponding system of equations is triangular with respect to any order that
preserves the root order. Here < is the usual root order, yo L C, L is the root lattice
and C is the fundamental chamber.
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TABLE

Input

kl v(2) an(2)

kz= v(3) an(3)

k3= v(4 an(4)

k4---/)(5) an(5)

ks v(7) an(7)

k36 v(37) an(37)

-a

(5a+6b+l)
-1

(3a+5b+l)
-1

(3a+4b+ 1)
-1

(5a+6b+2)
-1

(5a+6b+2)

-1

(6a+8b+6)

Output

an(l)

{b an(l)+ 3a an(2)}

{2(a + b)an (2)+ a an (3)}

{(a + 2b)an (2)+ 2a an(3)+ 4(a + b) an (4)}

a an(l) + 2a an(2) + 6b an(3) + 4a an (4)}

{a an(4) + 2a an(6) + + a an(36)}.

Below we give our complete sequence of inputs"

kl v(2), k2 v(3), k3 v(4), k4-- v(5), ks--- v(7),

k6 v(8), k7 v(6), ks v(al), k9 v(14), klo- v(9),

kll v(lO), k12 v(12), ka3 v(13), k14-- v(15), k15 v(16),

k6= v(17), k7 v(18), k18 v(19), k9-- v(20), k2o v(21),

k21 v(22), k22 v(23), k:3 v(24), k4-- v(25), k5 v(29),

k26 =v(26), k27 =v(27), k28 =v(28), k29 =v(30), k3o =v(31),

k31 v(32), k32 v(33), /33 v(34), /34-- v(35), k35 v(36),

k36 v(37).

We can now complete the proof. From (3.4) and (3.5) we have

(7.1)

if(a/ 1, b)-- 192 an(1)-768 an(2)+... + 192 an(37)
(a complete list of the coefficients is given in Appendix B)

(3a + 2)(3a + 1 )(2a + 1 )(6a + 6b + 5)(4a + 4b + 3)
18432

(3a+4b+3)(3a+Sb+3)(5a+6b+5)(2a+3b+ 1)(3a +5b+2)

(2a +6b + 1)(4a+2b+3)(4a+4b+ 1)(6a +6b + 1)(2a +4b + 1)
(Sa+6b+3)(Sa+6b+4)(3a+4b+2)(5a+6b+ 1)(5a +6b +2)

(4a +2b + 1)(2a +2b + 1)2an(1)
(via MAPLE)

(3a+4b+ 1)(3a+Sb+ 1)(2a+3b+2)

f(a+l,b)
f’(a,b),

f(a,b)

which is (3.2) as required.

8. Other results. In this section we give other results that have to do with adding
roots to the F4 case of the Macdonald-Morris root system conjecture. Recently [Gal]
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we have found a new proof of the G2 case of the Macdonald-Morris root system
conjecture that is solely in terms of integrals. Our proof was motivated by some
conjectures of Askey [As] about adding roots to the G2 case, and is analogous to
Aomoto’s [Ao] proof of Selberg’s integral. We have been able to extend our integral-type
proof, mentioned above, to the F4 case. This proof involves converting equations
involving integrals into equations analogous to (4.3) given in Step 3, and then the
proof is completed by proceeding as in Steps 4 and 5. The proof given in this paper
is more straightforward and direct.

We consider sets of the form S-- T k.J-T, where T is a subset of the short roots
of F4 (i.e., D4). We call two such subsets S and S2 equivalent if there is a w W(F4)
such that S:= w(S1). This defines an equivalence relation on such sets. By using a
FORTRAN program we have found all the equivalence classes, shown in Table 2.

Here the /3k are given in Appendix A. The results for 6 < IsI/2 < 12 follow easily
from the results in the table by taking complements. We denote

[x’]=(1-x’)(1-x-’).

We have calculated

(8.2) C.T. H [x’]F(x; a,b)

for all possible subsets T of the short roots of F4 such that T 71- T th. By Lemma
2.21 it is enough to consider only those T where S T U- T is a representative of
an equivalence class. The same FORTRAN program that calculated f’(a+ 1, b) in
terms of the an(i) (see (3.4), (3.5)) was used to calculate (8.2) in terms of the an(i),
and hence as a product of a rational function of a and b, and of f(a, b). To our
surprise, many of these rational functions factored completely into linear functions.
In fact, for each 1 _-< k-< 11 there exists at least one T with ITI- k such that (8.2) factors
completely into linear factors. Most of these linear factors seem to glue onto f(a, b)
to become factorials. Askey [As] has observed a similar phenomenon in G2. We do
not see how to generalize these results to all root systems. At the very least our results

TABLE 2

Number of
equivalence classes Representative of each equivalence class

2 2
3 4

4 6

5 7

6 9
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seem to indicate that an easier noncomputer proof of F4 may be possible. The results
that only involve linear factors are given below.

For 1<_- ij <_- 12 we define

k

(8.3) [il, i,...,
j=l

(6a+6b+l)
(8.4) C.T. [1IF=2 f(a,b),

(5a+6b+l)

(4a+4b+ 1 (6a+6b+ 1
(8.5) C.T. [1, 2]F=4 f(a, b),

(3 a+5b+ 1 (5 a+6b+ 1

(4a+4b+ 1 (6a+6b+ 1 )(5a+ 10b+2)
(8.6) C.T. [1, 4]F=2 f(a,b),

(3 a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1

(4a+2b+ 1 (4a+4b+ 1 (6a+6b+ 1
(8.7) C.T. [1, 2, 3]F=8 -3-+4b+l)(3a+5b+l)(5a+6b+l) f(a, b),

(8.8) C.T. [1, 4, 51F=12

(8.9) C.T. [1, 2, 4, 5]F=8

(4a+4b+ 1 (4a+2b+ 1 (2a+6b+ 1 (6a+6b+ 1
f(a,b),

(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1 )"

(2a+6b+ 1 (4a+2b+ 1 (4a+4b+ 1 (7a+8b+3)
(2a+3b+ 1 )(5a+6b+2)(3a+4b+ 1 (3a+5b+ 1

(6a+6b+l)
f(a, b),

(5a+6b+l)"

(8.10) C.T. [4, 8, 9, 10IF

(8.11)

(8.12)

(8.13)

=32
(3a+ 1 (6a+6b+ 1 (4a+4b+ 1 (4a+2b+ 1

(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5a+6b+ 1
f(a,b),

C.T. [1, 4, 8, 9, 10IF

=48
(3a+ 1 (2a+2b+ 1 (4a+2b+ 1 (6a+6b+ 1

(5a+6b+3)(2a+3b+ l )(5a+6b+2)(3a+4b+ l

(4a+4b+ 1 )(7a+12b+4)
f(a, b),

(3a+5b+ 1)(5a+6b+ 1)

C.T. [1, 2, 4, 5, 6, 8IF

=288
(3a+ 1 (6a+6b+ 1 (2a+6b+ 1 (2a+2b+ 1

(5a+6b+3)(3a+5b+2)(2a+3b+ 1) (5a+6b+2)

(4a+4b+ 1 (2a+4b+ 1 (4a+2b+ 1
f(a,b),

(3 a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1 )’

C.T. [1, 2, 7, 9, 10, 11, 12]F

(3a+ 1 (2a+2b+ 1 (2a+4b+ 1 (2a+6b+ 1 (5a+5b+3)
=384

(3a+4b+2)(5a+6b+3)(3a+5b+2)(2a+3b+ 1) (5 a+6b+2)

(4a+4b+ 1 (6a+6b+ 1 (4a+2b+ 1
f(a,b),

(3 a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1 )"
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(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

C.T. [1, 2, 3, 5, 6, 7, 11, 12]F

(3 a +2) (3 a+ 1 (4a+4b+3 (2a+2b+ 1 (4a+6b+3
=1152

(5a+6b+4)(3a+4b+2)(5a+6b+3)(3a+5b+2)(2a+3b+ 1)
(4a+4b+ 1 (4a+2b+ 1 (6a+6b+ 1 (4a+2b+3)

f(a, b),
(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5a+6b+ 1 )"

C.T. [1, 6, 7, 8, 9, 10, 11, 12]F
(3a+ 1 (4a+2b+ 1 (2a+4b+ 1)(4a+4b+3)(2a+2b+ 1

=384
(5a+6b+4)(3a+4b+2)(5 a+6b+3)(3a+5b+2)(2a+3b+ 1

(6a+6b+ 1 (2a+6b+ 1 (4a+4b+ 1 )( 13a+ 10b+7)
f(a,b),

(5a+6b+2)(3a+4b+1)(3a+5b+1)(5a+6b+ 1)
C.T. [2, 4, 7, 8, 9, 10, 11, 12]F

(3a+ 1 (6a+6b+ 1 (2a+6b+ 1 (4a+2b+ 1 (4a+4b+3)
=768

(5a+6b+4)(3a+4b+2)(5a+6b+3)(3a+5b+2)(2a+3b+ 1)

(4a+4b+ 1 (2a+4b+ 1 (2a+2b+ 1 )(7 a+4b+4)
(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1

f(a,b),

C.T. [1, 3, 6, 7, 8, 9, 10, 11, 12]F
(3a+ 1 (2a+4b+ 1 )(6a+6b+5)(4a+4b+3)(2a+6b+ 1

=2304
(Sa+6b+4)(3a+5b+3)(3a+4b+2)(Sa+6b+3)(3a+5b+2)

(4a+4b+ 1 (6a+6b+ 1 (4a+2b+ 1 (2a+2b+ 1 )2
(2a+3 b+ 1 )(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1

.f(a,b),
C.T. [3, 5, 6, 7, 8, 9, 10, 11, 12]F

(3a+ 1 (4a+2b+ 1 (2a+6b+ 1 (6a+6b+ 1 (6a+6b+5)
=768

5a+6b+4)(3a+5b+3)(3a+4b+2)(5a+6b+3)(3a+5b+2)
(4a+4b+ 1 )(4a+4b+3 (2a+4b+ 1 (2a+2b+ 1 )(7 a+4b+4)
(2a+3b+ 1 )(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5 a+6b+ 1

f(a, b),
C.T. [4, 5, 6, 7, 8, 9, 10, 11, 12]F

(3 a+2) (3 a+ 1 )(6a+5+6b)(4a+4b+3)(6a+6b+ 1
=2304

5a+6b+5)(5a+6b+4)(3a+4b+2)(5a+6b+3)(3a+5b+2)
(4a+4b+ 1 (2a+6b+ 1 (2a+2b+ 1)(4a+2b+3)(4a+2b+ 1

(2a+3 b+ 1 )(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1 (5a+6b+ 1

.f(a,b),
C.T. [2, 3, 5, 6, 7, 8, 9, 10, 11, 12]F

(3a+ 1 (2a+4b+ 1 )(6a+6b+5)(4a+2b+ 1 (2a+6b+ 1
=2304

(2a+3b+2)(5a+6b+4)(3a+5b+3)(3a+4b+2)(5a+6b+3)
(6a+6b+ 1 (4a+4b+ 1 )(4a+2b+3)(4a+4b+3)(2a+2b+ 1 )2
(3a+5b+2)(2a+3b+ 1 )(5a+6b+2)(3a+4b+ 1 (3 a+5b+ 1

f(a,b)
(5a+6b+l)’
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(8.21) C.T. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]F

=4608
(3 a+2)(3a+ 1 (6a+6b/ 1 (4a+4b+ 1 (2a+6b+ 1

(5a+6b+5)(5a+6b+4)(3a+5b+3)(3a+4b+2)(5a+6b+3)

(4a+2b+ 1 (2a+4b+ 1 )(6a+6b+5)(4a+2b+3 (2a+2b+ 1

(3a+5b+2)(2a+3b+ 1 )(5a+6b+2)(3a+4b+ 1 (3a+5b+ 1

(4a+4b+3)
f(a,b),

(5a+6b+l)"

(8.22) C.T. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]F

=3072
(3a+2) (3 a+ 1 )(6a+6b+5)(2a+4b+ 1 (6a+6b+ 1

(3a+5b+ 1 )(5a+6b+ 1 (3a+4b+2) 5a+6b+3)(3a+5b+2)

(4a+4b+ 1 (4a+2b+ 1 (2a+6b+ 1 )(4a+4b+3 (4a+2b+3)
(2a+3b+ 1 )(5a+6b+2)(3a+4b+ 1 )(5a+6b+5)(5a+6b+4)

(2a+2b+ 1) 2(7a+9b+7)
f(a,b).

(3a+5b+3)(2a+3b+2)(3a+4b+3)"

It is a little unsettling that not all of the results above can be written as factorials.
Since this paper was first written we have found nicer results. In fact, if we restrict
ourselves to subsets of positive roots, there is a chain of subsets in which each
corresponding constant term formula can be written as a product of factorials. This
chain seems to be related to the root order, but we have been unable to generalize to
other root systems.

Appendix A. We write the roots of (2)(F4) as Z-linear combinations of
ai(l_-<i_-<4) defined in (2.6)"

fll=a=el-e2, fls=ot+ot4=e-e3, f18-- o lq- o2q- ct4--- ed- e4,

f12:a2--e3+e4, f16--ot2+a4--e2+e4, fl9--Otl+Ot3+ot4--el-e4,

f13--o3:e3-e4, f17--ol.3+o4--e2-e4, fllo--O2+o3+ot4--e2+e3,

4-- 014-- e2-e3

[l l-- a +Ol2-l-o3+ ol4-- el dc-e3

fl12-- ol.+o2+ol.3+2a4= el+ e2

tx 1+ ce2-- el- e2+ e3+ e4, ce 1-- c2-- el-- e2-- e3- e4,

tx -q- ix3-- e-e2+ e3-- e4, t-tx3= el--e2-e3We4,

O2"O 2e3, 02-o 2e4,

l+a2+2a4= el+e2- e3+e4, 2al+a2+a3+2o4=2el,

c+a3+2a4= el+e2-e3- e4, c1+2a2+ce3+2ce4= el+e2+e3+ e4,

ce2+ a3+2o4-- 2e2, c +c+2ct3+2a4 el+ e:+ e3-- e4.
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Appendix B. The vectors v(i)(l<=i<-_37) that appear in (3.5) are listed below:

v(1)=(0, 0, 0, 0), v(14)=(2,2,2,2), v(27)=(5,3,3,1),

v(2)=(1, 1, 0, 0), v(15)=(4, 2, 2, 0), v(28)=(5, 4, 1, 0),

v(3)=(1, 1, 1, 1), v(16)=(4, 4, 0, 0), v(29)-(4, 4, 2, 2),

v(4)=(2,1,1,0), v(17)=(3,3,2,2), v(30):(5,4,2,1),

v(5)=(2, 2, 1, 1), v(18)=(4, 2, 2, 2), v(31)=(6, 2, 2, 2),

v(6)=(3, 2, 1, 0), v(19):(4, 3, 2, 1), v(32)=(6, 3, 2, 1),

v(7)=(2, 2, 0, 0), v(20)=(4, 4, 1, 1), v(33)=(6, 3, 3, 0),

v(8)=(3,1,1,1), v(21):(5,2,2,1), v(34)=(5,5,0,0),

v(9)=(3,2,2,1), v(22)=(5,3,1,1), v(35)=(5,5,1,1),

v(10)=(3, 3, 1, 1), v(23)=(5, 3, 2,0), v(36)=(6,4, 1, 1),

v(11)=(3,3,0,0), v(24)=(3,3,3,3), v(37)=(6,4,2,0).

v(12)=(4, 2, 1, 1), v(25)=(4, 3, 3, 2),

v(13)=(4, 3, 1, 0), v(26)=(5, 3, 2, 2),
The complete version of (3.5) is given below:

XC v(2)_[..Y a’ 192x -768x 576x3)+960x4) l152x5)+2688x6)

-576x<7)_1152xg)-576x<1)-576x<11)- 1152xv12)

+ 1152x 13)+576x<14)_ 192xv 15)_ 192x16)_ 1152x<17)

+2304x18)_ 1152xv(21 )- 1152x22)+1152xV(Z3)+576xv(24)

1728xV25)+2304xv(26)- 1152xV(27)+384xV(Z8)+576x v(29)

1152XV(3)--576XV(31)+ 1152Xv(32)- 192xv(33)__ 192X v(34)

+576XV(35)--576XV(36)+ 192Xv(37).
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has calculated the values of an(2) and an(3) given in Table 1 in 7.



820 Fmg. G. GaRVAN

Note added in proof. Robert Gustafson (A generalization ofSelberg’s beta integral,
preprint) has proved q-Macdonald-Morris for the affine root systems of types S(CI)
and S( CI) v.

[An]

[Ao]

[As]

[Ba]

[Bo]
[Ca]
[Co]

[D]

REFERENCES
G. E. ANDREWS, Problems and prospects for basic hypergeometricfunctions, in Theory and Applica-

tions of Special Functions, R. Askey, ed., Academic Press, New York, 1975, pp. 191-224.
K. AOMOTO, Jacobi polynomials associated with Selberg’s integral, SIAM J. Math. Anal., 18 (1987),

pp. 545-549.
R. ASKEY, Integration and computers, in Proc. Computer Algebra Conference, D. Chudnowsky,

G. Chudnowsky, and R. Jenks, eds., to appear.
W. N. BAILEY, Generalized Hypergeometric Series, Cambridge University Press, London, New York,

1935; reprinted, Hafner, New York, 1964.
N. BOURBAKI, Groupes et algbres de Lie, Chaps. 4-6, Hermann, Paris, 1968.
R. W. CARTER, Simple Groups of Lie Type, John Wiley, London, New York, 1972.
A. G. CONSTANTINE, Some noncentral distribution problems in multivariate analysis, Ann. Math.

Statist., 34 (1963), pp. 1270-1285.
F. J. DYSON, Statistical theory of the energy levels of complex systems: I, J. Math. Phys., 3 (1962),

pp. 140-156.
[E] R. EVANS, Character sum analogues of constant term identities for root systems, Israel J. Math., 46

(1983), pp. 189-196.
[Gall F.G. GARVAN, A beta integral associated with the root system G2, SIAM J. Math. Anal., 19 (1988),

pp. 1462-1474.
[Ga2] ., Some Macdonald-Mehta integrals by bruteforce, in q-Series and Partitions, D. Stanton, ed.,

IMA Vol. in Math. Appl. 18, Springer-Verlag, Berlin, New York, 1989, pp. 77-98.
[Ga3] Progress on the Macdonald conjectures, preprint.
[Go] I.J. GOOD, Short proofofa conjecture ofDyson, J. Math. Phys., 11 (1970), p. 1884.
[Gu] J. GUNSON, Proof of a conjecture of Dyson in the statistical theory of energy levels, J. Math. Phys.,

3 (1962), pp. 752-753.
[Habl] L. HABSIEGER, Une q-intdgrale de Selberg et Askey, SIAM J. Math. Anal., 19 (1988), pp. 1475-1489;

summarized in C.R. Acad. Sci., 302 (1986), pp. 615-617.
[Hab2] ,La q-conjecture de Macdonald-Morris pour G2, C.R. Acad. Sci., Paris S6r. Math., 303

(1986), pp. 211-213.
[Hanl] P. HANLON, On the decomposition of the tensor algebra of the classical Lie algebras, Adv. in Math.,

56 (1985), pp. 238-282.
[Han2] , Cyclic homology and the Macdonald conjectures, Invent. Math., 86 (1986), pp. 131-159.
[He] G.J. HECKMAN, Root systems and hypergeometric functions II, Compositio Math., 64 (1987),

pp. 353-373.
[Hu] J.H. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin,

New York, 1972.
[Jac] H. JACK, A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh Sect. A, 69

(1969-70), pp. 1-17.
[Jaml] A. T. JAMES, Zonal polynomials of the real positive definite matrices, Ann. Math., 74 (1961),

pp. 456-469.
[Jam2] Distribution of matrix variables and latent roots derived from normal samples, Ann. Math.

Statist., 35 (1964), pp. 475-501.
[Jam3] , Calculation of zonal polynomial coefficients by use of the Laplace-Beltrami operator, Ann.

Math. Statist., 39 (1968), pp. 1711-1718.
[K1] K.W.J. KADELL, A proof of Askey’s conjectured q-analog of Selberg’s integral and a conjecture of

Morris, SIAM J. Math. Anal., 19 (1988), pp. 969-986.
[K2] ,A proof of the q-Macdonald-Morris conjecture for BCn, preprint.
[K3] The q-Selberg-Jack polynomials, preprint.
[Mall I. G. MACDONALD, Affine root systems and Dedekind’s rl-function, Invent. Math., 15 (1972),

pp. 91-143.
[Ma2] ., Some conjecturesfor root systems andfinite reflection groups, SlAM J. Math. Anal., 13 (1982),

pp. 988-1007.
[Ma3] ., Symmetric Functions and Hall Polynomials, Second edition, to appear.
[Me] M.L. MEHTA, Random Matrices, Academic Press, New York, London, 1967.
[M-D] M.L. MEHTA AND F. J. DYSON, Statistical theory ofthe energy levels ofcomplex systems: V, J. Math.

Phys., 4 (1963), pp. 713-719.



MACDONALD-MORRIS FOR F4 821

[Mo]

[O1]

[02]
[Rel]

IRe2]

[Ri]

[Se]
[St]

[w]
[Z1]
[z2]

[Z3]

[Z-B]

W. G. MORRIS, Constant term identities for finite and affine root systems, Ph.D. thesis, Univ. of
Wisconsin, Madison, WI, 1982.

E. M. OPDAM, Generalized hypergeometric functions associated with root systems, Ph.D. thesis,
Leiden, the Netherlands, 1988.

E. M. OPDAM, Some applications of hypergeometric shift operators, preprint.
A. REGEV, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math.,

41 (1981), pp. 115-136.
, Combinatorial sums, identities and trace identities of the 2x2 matrices, Adv. in Math., 46

(1982), pp. 230-240.
D. RICHARDS, Some extensions of Selberg’s and related integrals, with numerous applications,

Presented at q-Series Workshop, Institute for Mathematics and Its Applications, University of
Minnesota, Minneapolis, MN, March 1988.

A. SELBERG, Bermerkniger om et multiplet integral, Norsk. Mat. Tidsskr., 26 (1944), pp. 71-78.
R. P. STANLEY, Some combinatorial properties ofJack symmetric functions, preprint.
E. C. TITCHMARSH, The Theory of Functions, Oxford University Press, Oxford, London, 1939.
K. WILSON, Proof of a conjecture of Dyson, J. Math. Phys., 3 (1962), pp. 1040-1043.
D. ZEILBERGER, A combinatorialproofofDyson’s conjecture, Discrete Math., 41 (1982), pp. 317-321.
,A proof of the G2 case of Macdonald’s root system-Dyson conjecture, SIAM J. Math. Anal.,

18 (1987), pp. 880-883.
,A unified approach to Macdonald’s root-system conjectures, SIAM J. Math. Anal., 19 (1988),

pp. 987-1013.
D. ZEILBERGER AND D. BRESSOUD, A proof of the Andrews’ q-Dyson conjecture, Discrete Math.,

54 (1985), pp. 201-224.



SIAM J. MATH. ANAL.
Vol. 21, No. 4, pp. 823-836, July 1990

()1990 Society for Industrial and Applied Mathematics
001

DERIVATION OF THE DOUBLE POROSITY MODEL
OF SINGLE PHASE FLOW VIA HOMOGENIZATION THEORY*

TODD ARBOGASTf, JIM DOUGLAS, JR., AND ULRICH HORNUNG:

Abstract. A general form of the double porosity model of single phase flow in a naturally
fractured reservoir is derived from homogenization theory. The microscopic model consists of the usual
equations describing Darcy flow in a reservoir, except that the porosity and permeability coefficients
are highly discontinuous. Over the matrix domain, the coefcients are scaled by a parameter e
representing the size of the matrix blocks. This scaling preserves the physics of the flow in the matrix
as e tends to zero. An effective macroscopic limit model is obtained that includes the usual Darcy
equations in the matrix blocks and a similar equation for the fracture system that contains a term
representing a source of fluid from the matrix. The convergence is shown by extracting weak limits
in appropriate Hilbert spaces. A dilation operator is utilized to see the otherwise vanishing physics
in the matrix blocks as tends to zero.

Key words, porous medium, double porosity, fractured reservoir, homogenization

AMS(MOS) subject classification. 76S05

1. Introduction. It has long been known that the porous rock that composes
a petroleum reservoir may contain many cracks or fractures. A naturally fractured
reservoir is one that has throughout its extent many interconnected fracture planes.
For over 30 years it has been known that flow in such reservoirs is not like that in
unfractured reservoirs [16]. Instead, the flow acts as if the reservoir possessed two
porous structures, one associated to the system of fractures, and the other associated
to the porous rock (the matrix). This double porosity/permeability concept has been
used to model the flow of a single component in a single phase within a naturally
fractured reservoir since around 1960 [5], [14], [18], [21].

More recently, a general form of the double porosity/permeability model has
been described [3], [10]. The earlier models can be considered as approximations
to this more general model [3]. It was derived on physical grounds under the main
assumption that the fluid pressure (or, equivalently, density) is uniform at the surface
of each matrix block. Herein we will derive this general model from the point of view
of homogenization theory [6], [17]. It will be seen that the model is in some sense the
limit of a family of microscopic models in which the sizes of the matrix blocks tend to
zero (hence, the fluid indeed becomes uniform at the surfaces of the blocks).

A straightforward homogenization of the entire reservoir would yield a single
porosity model with some average permeability [1], [7]. This would be quite inade-
quate since two very distinct porous structures are present in the reservoir and their
interaction has a strong influence on the flow characteristics. This interaction is a fine
structure process whose effect only must be homogenized; the process itself must be
retained on a microscopic level.

*Received by the editors January 16, 1989; accepted for publication August 1, 1989. This work
was supported in part by the National Science Foundation.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
$Scientific Hornung Institute (SCHI), P.O. Box 1222, D-8014 Neubiberg, Federal Republic of

Germany.
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We will use a variant of the homogenization technique that was used by Hornung
and Jiger to describe catalytic reactions in a porous medium [12]. There, the driving
mechanism was the chemical process of catalytic reactions that takes place on a micro-
scopic scale. The overall (or homogenized) behavior of the system could be obtained
only when a careful modeling of these microscopic reactions was maintained as the
medium was homogenized. See also [11] for a similar situation involving displacement
in mobile and immobile water and [20] for an example from chromatography. This
technique is also discussed in a formal sense in a related paper where Arbogast, Dou-
glas, and Hornung consider two-component flows in naturally fractured reservoirs [4];
see also [9]. An independent study of diffusion problems in fractured porous media
obtained by homogenization is given by Hornung and Showalter [13].

The remainder of the paper is as follows. In the next section, we will write
down the equations that describe the microscopic nature of the flow in a naturally
fractured reservoir. We will scale the equations by a parameter e, where e is the size
of the matrix blocks. This places the model in a series of problems from which, as e
tends to zero, we obtain our homogenized macroscopic model, presented in 3. In the
final section, we prove that the solutions of the microscopic model converge weakly
to those of the macroscopic model in appropriate Hilbert spaces and describe some of
the mathematical properties of the limit model.

2. The microscopic model. We consider the reservoir C IR3 to be a
bounded, two-connected domain with a periodic structure. More precisely, 2 is a
union of disjoint parallelepiped cell domains congruent to a standard one Q:

U + ( + Cl) n (Q + c2) whenever cl c2 E A,

where ,4 is an appropriate finite lattice of translations containing the origin and the
overline denotes closure (see Fig. 1). The cell can be decomposed into three pieces,
a compactly contained, two-connected domain m representing the matrix block part,
the surrounding connected fracture domain Qf, and a smooth internal boundary piece
Om (see Fig. 2).

FIG. 1. The reservoir f}, depicting its periodic structure.
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FIG. 2. The standard cell Q.

To homogenize the reservoir, we will let tend to zero the (linear) size e of the cells
(e 1 in the microscopic model). Extend Jt to an infinite lattice jt. For e > 0, let
the fracture and matrix domains be denoted, respectively, by

/2} f2 t U e(l + c) and 12n Y2 N U e(m + c).
cEA’ cEA’

To avoid unimportant technicalities relating to the boundary of , assume that the
e’s form a sequence for which 0/2 C 0Y2}.

Let us define some notation and make some physical assumptions before setting
up the microscopic model. Denote by p(x, t) and a(x, t) the density of the fluid in

/2} and Y2, respectively. Assume that the fluid is a liquid of viscosity # and constant
compressibility c; that is, the pressure p and the density satisfy the equations of state:

dp cp dp and da ca dp.

Of course we will assume that the fluid flows according to Darcy’s law in the
matrix/2n, where we will let k(x) k(x/e) and (x) (x/e) denote the porosity
and (possibly tensor) permeability, respectively. These quantities should be periodic
of period Q (reflecting the periodicity of the matrix blocks over f2--more generally we
could assume that the fixed properties of the matrix are of the form (x) (x, x/e),
varying over the reservoir in the first argument and periodic in the second).

We will also assume Darcy’s law is valid in’the fractures/2. Clearly this is not
strictly correct; however, this has been done in the petroleum engineering literature
[14], [18], evidently by considering the fractures to be partially filled with rock debris.
In any case, Darcy’s law should hold as e tends to zero [3], [5], [16], [19], [21]; our main
interest lies in determining the correct form of the interaction between the matrix
and fracture systems. So, let *(x) (.. 1) and K*(x) (very large) denote the porosity
and scalar permeability of the fracture domain, extended over all of/2. These four
quantities are uniformly positive (k being symmetric, uniformly positive-definite), and
each is assumed smooth and bounded.

Finally, choose some smooth and bounded reference density functions Pref(X) and
(7ef(X) aref(X/e), where O’ref(X) is periodic as above. To linearize the equations, we
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will approximate the effects of gravity as follows:

(pe)2 , Pref(2fle Pref), ((:re) 2 ’ O’reef(20"e 6ef)"

The flow in the two domains is then described by conservation of mass combined
with Darcy’s law. Using our assumptions, in the fracture domain we have

(2.1) *p V" [Vp + Cgpref(2p Pref)] f for x e , t > 0,

(2.2) [VP + cgPref(2P Pref)] "

(.a) o=0 fore}, t=0;

here, the subscript t denotes partial differentiation in time, 9 is the gravitational
eonsan vector, f(, t) represents external sources/sinks, u() is the outer unit normal
(to 0, in this case), and 0n() is the specified initial density.

Similarly in the matrix domain,

(2.a) =0 for0g, t>0,

(2.6) 0inig for z , t 0.

The two boundary conditions (2.2) and (2.g) represent conservation of mass flux and
continuity of pressure, respectively, between he wo domains. We should also assume
a no-flow Neumann condition on he fracture density on

We should make some remarks on the e scaling Nctors. They can be viewed as
coming from a dimensional analysis of the equations for an individual matrix block;
they provide the correct scaling for the flow as the block sie shrinks. That is, the
form of the matrix equations is preserved on the sandard cell independently of the
value of e, thereby giving a double porosity model in the limit. his will be seen
explicitly in 4. Alternatively, we may say that the flow between the matrix and
fractures is conserved in some sense, as it is prevented from degenerating or blowing
up as e 0 [4]. Essentially, the matrix permeability has been scaled by e, whereas
the gravitational term has been compensated by e-. We might instead decide not
compensate gravity, in which case the macroscopic model would have no gravitational
terms in the matrix equations.

g. he macroscopic model. We will show in the next section that, as the
scaling parameter e tends to eero, the microscopic model converges in some sense
he model described below.

We must first define some symbols. Define he macroscopic fracture porosity as

(a.1)" () I!l,()
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where [. denotes the volume of the set. Let us define the auxiliary functions wj(y),
j 1, 2, 3, periodic of period Q, as the solutions modulo constants of

(3.2) Awj 0 for y

(3.3) Vwj.v=-ej.v=-j foryEOQm,

where ej is the unit vector in the jth direction. Now we can define the effective
macroscopic fracture system permeability tensor K componentwise as

1 K*(x){,I,j+/ Owdy},(3.4) gij(x)-

where 5ij is the Kronecker symbol and
With fm being defined in (3.11) below, the macroscopic fracture density p(x,t)

satisfies

(3.5) p, V -- [Vp + cgpref(2p- Pref)] f +fm for x e Y2, t > 0,

(3.6) - [Vp + agpref(2p Pref)] ") 0 for x e 0, t > 0,

(3.7) P Pinit for x e/2, t 0.

As e tends to zero, we obtain an infinite number of matrix blocks, one for each x.
Hence, for each x Y2, we have a matrix density function a(x, y, t), which is deter-
mined from

Iv(y) O’ref(Y))] [ f(x, t)(3.s) + agaref(y)(2a

for y

(3.9) a=p(x,t) forye0Qm, t>O,
(3.10) a Pinit(X) for y e Qm, t 0,

t>0,

where Vy is the gradient with respect to the y variable. Finally, the matrix source
term fm is defined by

(3.11) fm(x, t) IQI (y)a(x, y, t) dy.

Except for some minor differences, this is exactly the general model originally
described in [3] and [10]. Two obvious but unimportant differences are that in the
original formulation of the model, the matrix equations do not contain either gravity
or external sources; these terms could easily be included. In any case, they are of little
mathematical consequence. The interesting differences are associated to the homog-
enization process itself. The original formulation (and, in fact, the actual problem)
had a finite number of finite-sized blocks; whereas in the homogenized version of the
model, there is a continuum of blocks having no size, since e tended to zero. This
gives rise to subtle differences in the form of the matrix boundary and initial condi-
tions (3.9) and (3.10) as well as a difference in the definition of the matrix source term
(3.11). However, there is no difference of any real substance. The boundary and initial
conditions of the matrix problems of both formulations are constant with respect to
the space variables of the block. Of course in its original form, some representative
value of the fracture density over the finite-sized block needed to be used. The matrix
source terms of both formulations represent the total average flow out of the matrix
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blocks; this flow needed to be placed explicitly over the entire extent of the finite-sized
block in the original version. In practice, the two formulations of the model would
be discretized in essentially the same way, since we would need to restrict to a finite
number of matrix block problems.

4. The convergence of the homogenization process. We begin by defining
some notation. Denote the Sobolev space of functions with derivatives of order m in
Lp by WIn,P, and set Hm Wrn,2. Let H0 denote the closure in H of C, the
infinitely differentiable functions with compact support. Denote by Wm,p(Wn,q) the
space of W’,q-valued functions in Wm,p. Let J (0, T], T > 0, be the time interval
of interest. We will make use of several bilinear integration forms. Denote integration
in space over the domain by (., )., where is some subset of 2, (, or 2 x , and
where determines which of the variables to integrate over. Also, denote integration
in space over and in time over J by (.,.).. Let us simplify the notation a bit by
setting

K*(x) A ke(x) k(y)
A(x)=. ()=. ()=--.

#c #c #c

I(X) C,gpref(X), ")’e(X) agef(X), (Y) agref(Y).

Finally, let X denote the characteristic function of .
Assume throughout that f L2(J; L2()), pinit e H(), Pref e WI,(), and

aref W’(Qm). The latter two conditions can be relaxed somewhat (see [3]).
THEOREM 1. For each e, there exists a unique solution to the microscopic model,

and p e H(J; L2())L(J;H()) and e H(J; L2())L(J; H()).
Proof. Recall that is the outer unit normal. Then for H(),

(4.1)

] A(x)[Vpe(x, t) + r(x)(2p’(x, t) Pref(X))] p (x) ds(x)

[ eA’(x)[eVa’(x, t) + ’(x)(2a’(x, t) aef(X)) (x) ds(x)
Jo

Hence, in weak form the microscopic model is

(4.) (..). + (A[V’ + r(, ref)],V) + (’.)

(4.3) (’f.). + (,’[,W’ + ’(’ ?f)], V). (/. )..

(4.4) ae=p’ forxe0, t>0.

Note that if we let

0e= pe forxE2,
a for x
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then (4.2) is a weak form of

e0 V. to’IV0 + (20 -Oreef)] f for X

e[VOe -4- e(2Oe Oreef)] b 0 for X e (, > 0,
0 Pinit for x /2, t 0,

where

t>0,

+ (1 x}) x;A +
fe XF "4-(1 X)-1, Oef XPref +(1

This is a single well-posed parabolic problem (with discontinuous coefficients). It is
known (and easily shown from the a priori estimates of Lemma 1 below) that there
exists a unique solution in Hi(J; L2()) L(J; Hx()). By restriction, we obtain
p and a as required.

For each e, we will define a dilation operator "" taking measurable functions on
$, r f, m, or blank, to measurable functions on x Qr. First let ce(x) denote
the lattice translation point of the e-cell domain containing x; that is, c eA is
such that x eQ + c(x). Since the cells are disjoint and fill up space (after dividing
up the boundaries of the cells in some nonoverlapping way), c is well defined. Then
we can define

(,) ( + (x)),
where the e (and the r) is implicit. We can now state our main result.

THEOREM 2. The solution (pe, a) of the microscopic model converges as e 0
to the unique solution (p, a) of the macroscopic model in the following sense:

Xf*p p in Hi(J; L2(/2)) weakly,
g

[Vp + F(2p- Pref)] in L2(J; n2()) weakly,xA[Vp + F(2p Pef)l

a in L2(; g(Qm x J)) weakly.

The proof will be accomplished in several stages. Throughout, C will denote
a generic positive constant, not necessarily the same at each occurrence, which is
independent of e.

LEMMA 1.

IlValln(g;(,)) <_ Ce-.
Proof. These are the standard parabolic energy estimates for (4.2); that is, the

estimates given by first taking o and then taking (which must of course
be done on a smooth dense subspace so that the computations can be performed).
Note that the domain/2 is fixed, so that C is indeed independent of e. [3

The main properties of the dilation operator that we will need are given by
Lemma 2.
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LEMMA 2. If e L2() and e L2(t2) (and r is m, f, or blank), then

(,) I1(,),

Moreover, if is considered to be an element of L( x Qr) that is constant in y,
then as e 0 in L2( x Qr) strongly.

Proof. The first two results are simple computations:

+e()

(, (+() (,.
The next two resulgs follow from the first two. The fifth result is another computation:

(,). (Y + C(X))(x) dy dx

+e()

(z) [-3 +c.(z) (x) dx] dz

The strong convergence result is clear from the Dominated Convergence Theorem
whenever C(), as then
c(x)) x. Since these functions are dense in 52(), the result follows from the
equivalence of norms.

Remark 1. A change of variables shows that the last statement of the lemma is
an integral form of Lebesgue’s theorem on the differentiation of the integral.

COROLLARY 1.

I[YI[L(T2;H(mJ))

__
C,

Now by Lemma 1 and Corollary 1, we can extract the following weak limits (for
a subsequence of the e’s):

X+*p +p in H(J; L(9)) weakly,

xA[Vp + F(2p Pref)] in 52(J; 52(9)) weakly,

5 a inL2(;H(QmxJ))weakly,
fie T in L2(;H(QI x g)) weakly,
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where - -(x, t) only, since QI is connected. In fact, we claim that T p. Any
o e C(2 J) is also in L2(;L2(J; L2(QI))) so

(,) (,) Isl(,).
Now Lemma 2 shows that the left-hand side is

(,), (xp,) (xp,);
furthermore,

(e, ).x <x;p,) lel((*)-p.) Izl(p. ),
so that p.

We will now find an equation satisfied by . This can be done easily using
Lemma 2. Take any E L(;L2(J;H(m))). Let

{ (z-ce(x)t)forzeem+C(X)4(x, , t) ’
0 for z + c(z).

Now for almost every fixed z , replace the test function in (4.3) by (x,., t) to
see that

{()(,t)4(, t)
a+c(z)

+ ()[W(, t) + (z)(2(, t) ef(Z))] V4(, z, t)} a

[ (, t)(x, , t) d.

Upon dilation (i.e., z ey + c(x)) and integration in x and t, we obtain

(,,).. + + (], )- ,
where , , 7, and ref are integrated over m by their periodicity. As 0, we see
that

This is a weak form of (3.8).
An equation for p and can also be derived easily. In (4.2) choose a test function
L2(J; H()) and then integrate in time. The result is that

(.- (A[Vp r( ,)], V).t,)} + + 2P
+ (,) + (eA[eVa + (2a f)],V) (f, ).

The first two terms on the left-hand side above tend to (pt,)+ ,V), whereas
the fourth term tends to zero by Lemma 1 since it has an extra power of . The third
term can be dilated to see its convergence by Lemma 2:

(,)a I1-(.) I1-(,.) --(fro,
Hence, we have shown that

(a.) (,v) + (, vv) (, v) + (, v), v e L(;; H(n)).
Next we will relate to p. To this end, let us define w; HI() by
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where E Hi(Q/) Hi(Q) is some bounded extension operator (for example, the
one of Calderdn [8]). Note that 5(x, y) egwj(y) and Vw(x,y) Vgwj(y). Also
let

1 / Oiwj(y)dy.Wij
f

LEMMA 3.

w ---. 0 in L2 ([1) strongly,

eVw 0 in L2(y2) strongly,

XfOiw w,j in L() weakly.

Proo]. For the first limit, note that

The second limi is similar, noting that

The above expression bounds the L2()-norm of X}&w, so this expression has some
weak limit. To see what this limit is, solve the elliptic problem modulo constants

-=a&w-wi fory

where Xa is the characteristic function of f. We can do this since the average of

Xa&wj -wij is zero. Note that @ H(). Now for

om the definition (3.2)-(3.3) of w we can see that

(4.) 0 -(v (w + ),) (wl + , re).}, e HJ(9).

For any C, take pA above. After adding and subtracting the same term
twice and after integrating in time, we have that

(4.7) (V, pV(A) Ar(2p Pe))} + (e, pV(A) vAF(2p Pe))i
+ (wl, vAlVe, + r(:, )]).} + (, vAlVe" + r(: e)])-} 0.

The first term converges by dilation:

(v, pV(A) Ar(2p,

I-(Vw,V(A) AF(2 ,))
II-(v, pV(A) Ar(2p-p))

3

(,,O,(Av) vAn(: .)).

The second term converges trivially to
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since X I.,,’1/11 in L2(2) weakly is easily shown from Lemma 2. The convergence
of the third term is found from (4.2) by taking the test function w. Integration in
time shows that

+ (,)+([w +(2 L)],v+w), (I,).
Lemmas 1 and 3 now show that

lim(Vw, 7A[Vp + F(2p Pref)])n} 0.
--0

Hence we conclude that the fourth term of (4.7) converges to

which is the distributional form of
K
..--_[v + r(- )].
c

Hence (4.5) is a weak form of (3.5)-(3.6), (3.11).
The following trivial proposition enables us to derive the boundary and initial

conditions satisfied by our limit functions.
PROPOSITION. If T X ---, Y is a continuous linear operator between Banach

spaces X and Y, and if in X weakly, then T T in Y weakly.
If To is the linear operator giving the trace for time zero, then [15] 7 Hl(2

j) _.. H1/2() is bounded. Hence

But
(}*) }*.i .

consequently, we have (3.7). For almost every x, we also have (3.10) since, for the
appropriate trace operator,

and
(’(X, y) finit(X, y) Pinit(X).

If now T H(Q., x J) -, H/-(OQ, x J), r m or , is the boundary trace
operator, then for almost every x

(x, u, ) a(x, u, )

and
,(=, u, ) ,(=, u, ) p(x, ) p(x, ).

This shows (3.9).
We now have a solution to the macroscopic model. To see that this solution is

unique, assume that p and a are the differences of two solutions. These then satisfy
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the macroscopic model’s equations with f pinit --- 0 and the gravitational pseudo-
source terms V. ((K/#)gpref) and V. ((k/#)garef) set to zero. Multiply (3.5) by p
and integrate in x to see that

(5 )(4.8) (P(, P) + [VO + 2cgppref], Vp (fro, P).

Now multiply (3.8) by a- p and integrate in both x and y to obtain

(5 )(.) (,,) -(,,p) + [v +],v 0,
x

ooICo to Cbe cocopc odel coeKe eqed,d Cbe pooobeoe

O coe, o cococ coeceC boId be be poie popee.
OboI ffoIE oCe. k o , e be beoe .

ProoI. o (.)-(.) e ee

(d,) -(d,)

(d,) + (d, ), +(), (d, ),
(d,) + (d,) +(d), + (d,),

o d Cbe eodc othe . e% be coC eco. be, Cb beK

oe Co be eo.. be Ceo Eo be %cCIE oCedeeooedeeee
(dcoecCed) Keoee. o exle, oe ceeo i co o Co
djoC eI, o K O.

o . II g aook, kn p (J;())n (J;())

odelK Cbe eCbod ocoC []. e Io oed o KeeICo o
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model that included gravity in the matrix (and had a more complicated definition of
the matrix source term in that the fracture density was assumed to vary linearly in
space over each block) [2]. This latter proof is the most convenient for the present
situation. It treats the matrix source term in much the same way as we did in proving
uniqueness of the solution; that is, it drops out of the equations after properly com-
bining (3.5) and (3.8). The external source in the matrix equations can be dealt with
by combining it with the gravitational pseudo-source term. By properly taking into
account the subtle differences between the homogenized and original formulations of
the model mentioned at the end of 3 (and by noting that the fracture flow is simply
constant in space over each block), the proof goes through easily. El
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TRANSITIONAL WAVES FOR CONSERVATION LAWS*

EL1 L. ISAACSON’, DAN MARCHESIN, AND BRADLEY J. PLOHR

Abstract. A new class of fundamental waves arises in conservation laws that are not strictly hyperbolic.
These waves serve as transitions between wave groups associated with particular characteristic families.
Transitional shock waves are discontinuous solutions that possess viscous profiles but do not conform to
the Lax characteristic criterion; they are sensitive to the precise form of the physical viscosity. Transitional
rarefaction waves are rarefaction fans across which the characteristic family changes from faster to slower.

This paper identifies an extensive family of transitional shock waves for conservation laws with quadratic
fluxes and arbitrary viscosity matrices; this family comprises all transitional shock waves for a certain class
of such quadratic models. The paper also establishes, for general systems of two conservation laws, the
generic nature of rarefaction curves near an elliptic region, thereby identifying transitional rarefaction waves.
The use of transitional waves in solving Riemann problems is illustrated by an example where the characteris-
tic and viscous profile admissibility criteria yield distinct solutions.

Key words, conservation laws, Riemann problems, nonstrictly-hyperbolic, admissibility, viscosity,
saddle-saddle connections, quadratic dynamical systems, line fields

AMS(MOS) subject classifications. 34D30, 35L65, 35L67, 35L80, 58F09

1. Introduction. Non-strictly hyperbolic systems of conservation laws possess
fundamental wave solutions that are distinct from classical rarefaction and shock
waves. These new waves are not associated with a particular characteristic family;
rather, they serve as transitions between classical wave groups. In the presence of such
transitional waves, the solution of a Riemann problem for a system of n conservation
laws can contain more than n wave groups. The purpose of the present paper is to
study the character of transitional waves and the crucial role they play in solving
Riemann problems.

For a particular model system of two conservation laws, Shearer et al. [35] found
it impossible to solve the general Riemann problem using only classical Lax shock
waves. However, the general solution exists and is unique provided that a limited
family of nonclassical discontinuities is allowed. For these crossing discontinuities,
neither family of characteristics is compressive, in contrast to shock waves. The same
type of discontinuity occurs in reactive gas dynamics as weak deflagration waves [5].
To solve another model system, Isaacson and Temple [21] use rarefaction waves that
switch from characteristic family 2 to family 1 at the locus where eigenvalues coincide.
Composite waves built from such discontinuities and rarefaction waves also arise 17],
14]. Thus the solution of a Riemann problem can involve waves that are not associated
with a unique characteristic family. We view these examples as instances of a new
class of waves, transitional waves. Thus a transitional shock wave is a crossing
discontinuity that conforms to an admissibility criterion, and a transitional rarefaction
wave changes from a faster family to a slower family. The nature of transitional shock
and rarefaction waves is the subject of this paper.
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As discussed in 2, we allow for any discontinuity that is the limit of traveling
wave solutions of the conservation laws as augmented by a parabolic term; this is
motivated by physical considerations. Admissible discontinuities correspond, then, to
orbits connecting singularities of a dynamical system associated with the parabolic
system. While a classical shock wave generalizes to an orbit between a node and a
saddlepoint, which is structurally stable under general perturbations, an admissible
crossing discontinuity corresponds to a saddle-saddle connection, which has stringent
stability restrictions. In particular, the class of transitional shock waves depends
critically on the viscous term in the parabolic equation. Furthermore, saddle-saddle
connections signal bifurcations of admissible discontinuities. Also possible are waves
corresponding to connecting orbits between nodes; however, these totally compressive
waves can be decomposed into classical shock waves.

In 3 we study transitional shock waves for conservation laws with quadratic
fluxes, which are simple models in which the new shock waves occur. The analysis is
based on an explicit calculation that establishes a direct relationship between transi-
tional shock waves and the viscous term: for a class of such quadratic models, a
saddle-saddle connection must lie along a straight line parallel to a direction associated
with the viscosity matrix. We provide a complete characterization of transitional shock
waves of this form in 3.1-3.3; circumstances under which these are the only transi-
tional shock waves are established in 3.3 and Appendix A. As a consequence, the
regions in state space where these waves play a role are easily identified. The case
where the viscosity matrix is the identity, which is commonly assumed in analyses of
traveling waves, is shown to have degenerate features.

In 4 we determine the behavior of rarefaction curves near a boundary between
elliptic and hyperbolic behavior in a general system of two conservation laws. The
transitional rarefaction waves are shown to arise from integral curves through isolated
points on this boundary. The method of analysis represents both the 1- and 2-family
rarefaction curves as a foliation defined by a single line field on a certain manifold.
For strictly hyperbolic conservation laws, this manifold consists of two separate sheets,
one for each family; in mixed-type problems, the two sheets are joined at the elliptic-
hyperbolic boundary. Examples of these manifolds are given in Appendix B.

We illustrate the use of transitional waves to solve Riemann problems in 5. The
essential construct is the transitional curve. The examples we study belong to a class
of quadratic models for which the Riemann problem has a unique solution using only
classical shock waves [21], [32]. We show, however, that some of the classical shock
waves used in these solutions do not admit viscous profiles, and that transitional shock
waves can be used in their place.

Finally, in 6, we summarize our results.

2. Transitional waves. In this section we study the structure of solutions of
Riemann problems. If the states in the initial data are close, the solution constructed
classically consists of several groups of waves, each group corresponding to a charac-
teristic family. Globally, however, the solution might contain transitional waves that
interpolate between families, as we describe in 2.1. To determine an appropriate class
of transitional waves, we invoke the admissibility criterion based on viscous profiles;
this criterion is discussed in 2.2.

2.1. Wave groups. We are interested in solutions of a system of conservation laws

(2.1) U+F(U) =0

governing the evolution, in one space dimension, of an n-dimensional state vector U.
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The function F is called the flux. The characteristic speeds for (2.1), i.e., the eigenvalues
of the Jacobian derivative matrix F’(U), are denoted Ai(U), i= 1,..., n. In the
hyperbolic region, where the characteristic speeds are real, we order them as

(2.2) a (U) .2(U) -’’, a (U).

The dependence of the characteristic speeds on U leads, in general, to focusing of
waves and formation of discontinuous solutions, so that (2.1) must be interpreted in
the sense of distributions.

Much of the structure of general solutions of (2.1) is reflected in solutions that
respect the invariance ofthe equation under the scaling transformation (t, x)--(at, ax).
Such scale-invariant solutions satisfy the initial conditions of a Riemann problem: at

0, the solution U must be a constant UL for x < 0 and another constant UR for
x > 0. Conversely, solutions of a Riemann problem are expected to be scale-invariant,
i.e., they depend on and x only through the combination sc x! t. Although Riemann
problems are only special initial value problems, the solutions of the general Cauchy
initial value problem may be viewed as a nonlinear superposition of scale-invariant
solutions [8].

A scale-invariant solution can be partitioned into several groups of waves; the
waves in each group move together as a single entity. More precisely, we define a wave
group to be a scale-invariant solution that contains no intermediate constant states.
Thus a solution of a Riemann problem comprises a sequence of wave groups moving
apart from each other, as in Fig. la. Wave groups are composed oftwo basic ingredients:
centered rarefaction waves and centered discontinuous waves (see Fig. lb). A centered
rarefaction wave associated with a characteristic family is constructed using integral
curves of the differential equation

(2.3) O= ri(U),

where r(U) is a right eigenvector corresponding to A(U). A rarefaction wave corre-
sponds to a segment of an integral curve along which Ai(U) is nondecreasing; it is
defined by inverting the relation A(U) :. A centered discontinuous wave is a jump
discontinuity that propagates at speed s and separates two constant states U_ and U/,
where U_, U/, and s satisfy the system of n equations

(2.4) -s[ U+ U_] + F(U+) F(U_) O,

called the Rankine-Hugoniot jump condition. (By convention, U_ is on the left side
of the discontinuity and U/ is on the right side.)

The class of allowable discontinuous waves must be restricted according to criteria
that reflect physical dissipation mechanisms neglected in the governing equations. For

discontinuity

X

(a) (b)
FIG. 1. Scale-invariant solutions: (a) a solution of a Riemann problem, comprising a sequence of wave

groups; (b) a centered rarefaction wave and a centered discontinuous wave.
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conservation laws that are genuinely nonlinear, Lax [25] has introduced the admissibil-
ity requirement that the characteristics of one family impinge on both sides of the
discontinuity, while the characteristics of the other families cross through the discon-
tinuity. For more general conservation laws, characteristics must be permitted to become
tangent to the discontinuity. Therefore we define a centered discontinuous wave to be
a Lax discontinuity of the ith family provided that the characteristic speeds are related
to the propagation speed as follows:

(2.5) x,( u/) <-_ s <- ;,( u_),

(2.6) x,_,(u_) -<_ s -<_ x,/(u/).

Remark. A Lax discontinuity is associated with a unique family except in one
case: an ith-family discontinuity for which Ai(U_) s Ai/l(U/) may be regarded also
as associated with family i+ 1. This ambiguity in nomenclature, however, does not
affect our results.

If we adopt the admissibility criterion based on characteristics and assume that
all characteristic speeds are distinct, then any wave, i.e., rarefaction wave or discon-
tinuity, has an associated family. Observe that (i) no wave can be preceded by a wave
of a faster family; and (ii) two waves of the same family must belong to the same
wave group. Therefore a solution of a Riemann problem can contain at most n wave
groups. In particular, no wave can appear strictly between a wave group containing
an /-wave and another group containing an (i+ 1)-wave. These facts [26] generalize
the classical picture [25] in which a solution of a Riemann problem consists of at most
n shock or rarefaction waves, separated by constant states, where each wave is
associated with a distinct family.

The characteristic criterion, however, is sometimes overly restrictive and at other
times too lax--a Riemann problem might have no solution or it might have many. An
alternative admissibility criterion is to require discontinuous waves to possess viscous
profiles, as described more fully in 2.2. This is the viscosity admissibility criterion.
In general, it is distinct from the characteristic criterion, since there exist Lax discon-
tinuities that do not have viscous profiles, while some discontinuities with viscous
profiles are not of Lax type. The viscosity criterion, too, can fail to guarantee existence
and uniqueness of solutions of Riemann problems, but we prefer it to the characteristic
criterion because it derives from certain physical effects that have been neglected in
the modeling equations. In this paper we adopt the viscosity admissibility criterion.

When discontinuities that are not of Lax type are allowed, or when characteristic
speeds may coincide, it is possible for the solution of a Riemann problem to contain
more than n wave groups. Consider, for example, a discontinuity satisfying

(2.7) x,(u_) < s < ;,+(u_),

(2.8) ,,( u/) < s < ,,/,( u/),

through which all characteristics cross. Such a crossing discontinuity can have a viscous
profile, as we show in 3.3. This wave can appear strictly between a wave group
containing an /-wave and one containing an (i+ 1)-wave (see Fig. 2a). As another
possibility, an integral curve of family i+ 1 might pass tangent to the locus where
hi+l(U) hi(U) and continue with an integral curve of family (see 4). This gives
a rarefaction wave that can lie strictly between/-waves and (i + 1)-waves, as in Fig. 2b.

In general, therefore, a distinct wave group can appear between one group
containing an /-wave and another containing an (i + 1)-wave. We call it an i, (i + 1)-
transitional wave group. A transitional shock wave is a crossing discontinuity that



TRANSITIONAL WAVES FOR CONSERVATION LAWS 841

qr.ossing

\T alscontnuity

//

(a)

transitional
n

\\/1// i+l

(b)

transitional
composite

i+l

x

transitional
composite

i_x

(c) (d)

FIG. 2. Transitional waves: (a) a crossing discontinuity; (b) a transitional rarefaction wave; (c), (d)
transitional composite waves. Light lines are characteristics.

conforms to the viscosity admissibility criterion, and a transitional rarefaction wave is
a rarefaction wave that changes from a faster family to a slower family. More compli-
cated transitional wave groups are also possible. For example, a discontinuity satisfying
hi(U_)<s= hi+l(U-), as well as (2.8), can adjoin an (i+ 1)-wave group on its left
[17], as in Fig. 2c. Similarly, a transitional rarefaction can adjoin an/-wave group on
tis right (see Fig. 2d) or an (i+ 1)-wave group on its left [14].

2.2. Viscosity admissibility criterion. Typically, (2.1) is an approximation to an
equation of the form

(2.9) U, + F( U), e[D(U) U,],

in the (singular) limit as e-0+. Here D(U) is the viscosity matrix, which models
certain physical effects that are neglected in the conservation law. We require that the
eigenvalues of D(U) have positive real part; this guarantees that short-wavelength
perturbations of constant solutions decay exponentially in time.

Physically realizable solutions of (2.1) are expected to be limits of solutions of
the parabolic equation (2.9). In particular, certain centered discontinuous waves arise
as limits of traveling wave solutions in the following way. A traveling wave depends
on and x only through the combination (x-st)/e, and it approaches limits U+
and U_ as sc +/-o. Therefore (2.9) can be integrated once to obtain the dynamical system

(2.10) -s[ U()- U_]+ F( U())- F(U_) D(U())

where the dot denotes differentiation with respect to sc. Taking the limit of (2.10) as

so. c shows that U+, U_, and s must be related by the Rankine-Hugoniot condition
(2.4), so that U+ and U_ are critical points for the dynamical system. As e-0+, the
spatial region over which the solution makes the transition from U_ to U+ shrinks to
a point at x st. Consequently, the traveling wave solution approaches a centered
discontinuous wave. Thus a discontinuity is said to have a viscous profile when the
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dynamical system (2.10) has a connecting orbit flowing from U_ to U/. It is natural
to regard a discontinuity as admissible only if it has a viscous profile; this is the
viscosity criterion for admissibility [5], [15], [7].

The critical points of a dynamical system are crucial to its study. For (2.10), a
critical point is a state Uc that satisfies the Rankine-Hugoniot condition for the given
state U_ and the speed s. The behavior of solutions in the neighborhood of a critical
point Uc is reflected in qualitative features of solutions of the linearization of (2.10)
about U:

(2.11) [-s + F’( U)]( U- U) D(U) O.

Such solutions are determined by the eigenvalues/x and corresponding eigenvectors
U, that satisfy

(2.12) [-s + F’( U)] U, =/zD(U) U,.

For example, U U +E,c, exp (/x:)U, when the eigenvalues are distinct. Thus the
character of the critical point is determined by the eigenvalues

Let us restrict ourselves now to systems of two conservation laws, so that (2.10)
is a planar dynamical system. A critical point is classified as an anti-saddlepoint (i.e.,
a node, focus, or center) or as a saddlepoint. (This assumes that it is simple, i.e.,
neither eigenvalue vanishes.) To illustrate the relationship between the nature of critical
points and the classification of discontinuities, we first discuss the case when D(Uc)
is the identity matrix; then the eigenvalues at a critical point U are /xi Ai( U)-s,

1, 2. This choice arises commonly in studies of viscous profiles for shock waves,
but it is a degenerate case for crossing discontinuities, as we show in 3.3.

A Lax shock wave of the first family has s < A1(U_) < A2(U_) and AI(U/) < s <
A2(U/), so that the critical points U_ and U/ of (2.10) are, respectively, a repelling
node and a saddlepoint. Similarly, U_ and U/ are, respectively, a saddlepoint and an
attracting node in the case of a Lax shock wave of the second family. Therefore an
admissible discontinuity of Lax type corresponds to a saddle-node connection. For
crossing discontinuities, which are defined by (2.7) and (2.8) with i= 1, the critical
points U_ and U/ are saddlepoints. Thus transitional shock waves correspond to
saddle-saddle connections. Finally, a connecting orbit that joins a repelling node to
an attracting node corresponds to a totally compressive shock wave:

(2,13) /1(U+) < s </1(U_),

(2.14) A2(U+) < s < a2(U_),

so that the characteristics of both families impinge on the discontinuity.
In the general case where D(Uc) is not a multiple of the identity matrix, the signs

of Ai(Uc)-S do not always determine the character of a critical point Uc. Indeed, a
critical point that is a node when D(U) I can become a focus when D(U) is
changed. However, saddlepoints are preserved provided that the determinant of D(Uc)
is positive; this can be demonstrated as follows. Because/z+ and/x_ are the eigenvalues
of D( Uc)-I[--Sq F’( U)], their product/x+/x_ has the same sign as that of (A+-s)x
(A_-s), which is negative. Therefore/x+ and/x_ must be real and have opposite sign.
Nodes, too, are preserved if the Jacobian matrix F’(U) is symmetric and D(U) is
symmetric and positive definite, since then D(U)-I[-s+F’(Uc)] is similar to the
symmetric matrix D( Uc)-I/2[--S "4- F’( Uc)]D(Uc) -1/2, but this is a rather restrictive
situation.
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When U_ and U/ are sufficiently close, the saddle-antisaddle nature of Lax shock
waves guarantees the existence and uniqueness of a connecting orbit [6], [4] (assuming
strict hyperbolicity and genuine nonlinearity). This connecting orbit is expected to be
structurally stable, in the sense that the orbit persists under small perturbations of U_,
U/, and s (subject to the jump condition (2.4)) and under changes of the viscosity
matrix D. By contrast, a connecting orbit between two saddlepoints is structurally
unstable.

To be precise, structural stability holds if the dynamical system is Morse-Smale
[ 12]. For example, the system is not Morse-Smale if some critical point is nonhyperbolic
(the real part of an eigenvalue is zero) or if there is a saddle-saddle connection; in
these cases bifurcation is expected. In the context of conservation laws, the critical
point U/ is nonhyperbolic if hi(U/) s for some i, i.e., at boundaries between different
types of discontinuities. (These points are marked as dots in Fig. 3 below.) More
generally, a boundary occurs if any critical point Uc, which corresponds to a discon-
tinuity with speed s from U_ to Uc, has an eigenvalue/z with vanishing real part. In
addition, bifurcation is expected if there is a saddle-saddle connection between two
critical points. For instance, consider a 1-shock wave from U_ to U/ such that an
orbit connects another saddlepoint U to U/; then U/ can be a boundary between
admissible 1-shock waves and inadmissible ones [34], [10]. (As discussed in 5, this
occurs in Fig. 8, with U_, U/, and U being points L, C, and A1.

We see that saddle-saddle connecting orbits have two related roles in solving
Riemann problems. The first is to cause bifurcations between admissible and inadmiss-
ible shock waves. The second is to act as transitional shock waves that appear in
Riemann solutions. The structural instability of saddle-saddle connections indicates
that only special crossing discontinuities should have viscous profiles. Thus the class

bifurcation lines / /

coincidence locus

FIG. 3. Bifurcation linesfor a quadratic model, and the Hugoniot locusfor a representative point U Dots
along the Hugoniot locus demarcate segments with different shock types. Also shown is the coincidence locus,
where the characteristic speeds coincide; inside this curve, the system is elliptic.
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of transitional shock waves is sensitive to the precise form of the parabolic terms in
(2.9): if the solution of a Riemann problem contains a transitional shock wave, then
the intermediate constant states in the solution are changed if the viscosity matrix is
altered. In particular, a numerical method for solving conservation laws might select
waves that are not physical if it relies on artificial viscosity. (This has been emphasized
to us by Schaeffer and Shearer [30].)

For completeness, we briefly describe the role of admissible totally compressive
shock waves in Riemann problems. (We refer to [18] for an example of a system of
conservation laws in which totally compressive waves arise; see also [32] for a dis-
cussion.) According to (2.13) and (2.14), U_ and U/ are both nodes, so that there is
an infinite number of orbits connecting them. These inequalities also imply that a
totally compressive wave cannot be preceded or followed by any other wave. In other
words, there is only one wave group when a totally compressive wave occurs. Thus
the utility of such waves for solving Riemann problems is limited: the set of right states

UR U/ for which the Riemann solution contains a totally compressive wave is
one-dimensional, comprising segments along the Hugoniot locus through U/ U_.

Let us presume that when UR is perturbed from this set, a solution of the Riemann
problem with data U/ and UR exists and depends Loc-Continuously on UR. Then the
perturbed solution must contain a 1-wave group with a 1-shock wave on its left and
a 2-wave group with a 2-shock wave on its right, with shock speeds approximately the
same as that of the totally compressive wave. In the limit, as UR moves back onto the
segment of totally compressive waves, the critical points corresponding to the Lax
shock waves remain joined by orbits. In particular, the dynamical system for the totally
compressive wave must contain other critical points besides U_ and U/; the repelling
node U_ is also connected to a saddlepoint, and a saddlepoint connects to the attracting
node U/. From this perspective, a totally compressive wave should be regarded as
containing 1- and 2-shock waves, not as a new type of shock wave.

3. Transitional shock waves in quadratic models. In this section, we examine
crossing discontinuities that possess viscous profiles. These profiles correspond to
saddle-saddle connecting orbits for the dynamical system (2.10). Our results are limited
to systems of two conservation laws with quadratic fluxes, which are described in 3.1.
Nevertheless, we believe that the results reflect the structure of transitional shock waves
for general systems of two conservation laws. (See 5 for further discussion.)

The motivation for our analysis derives from the theory of polynomial dynamical
systems in the plane" for certain quadratic systems, a saddle-saddle connecting orbit
must be a straight-line segment. In 3.2, therefore, we determine conditions under
which a discontinuity (not necessarily a crossing discontinuity) possesses a viscous
profile that lies along a straight line. Then, in 3.3, we state sufficient conditions for
a quadratic model to have the property that a viscous profile for a crossing discontinuity
must be a straight-line segment.

3.1. Quadratic models. A quadratic model is a system of two conservation laws

(3.1) U,+F(U) =0

in which the flux is a quadratic function: writing U (u, v)T and F (f, g),

(3.2) f(u, v)=1/2(au2+2bluv+ cv2) + dlu+ ev,

(3.3) g(u, v)=1/2(azuZ+2bzuv+cvZ)+dzu+ezv.
Evidently, a quadratic flux approximates the flux for a general system of two conserva-
tion laws in the neighborhood of a point. When the linear terms are absent, the two
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characteristic speeds coincide at U 0; more generally, any (nondegenerate) quadratic
model fails to be strictly hyperbolic somewhere in the u-v plane. Furthermore, elliptic
regions, where the characteristic speeds are complex, may occur. The Riemann problem
for quadratic models has been studied by Gomes, H. Holden, L. Holden, Isaacson,
Marchesin, Paes-Leme, Plohr, Rascle, Schaetter, Serre, Shearer, and Temple 19], [31],
[35], [18], [20], [21], [13], [29], [33], [32], [10], [14], [34].

In the study of Riemann problems, the solutions of the Rankine-Hugoniot condi-
tion (2.4) play an important role. For systems of two conservation laws, it is convenient
to eliminate the speed s from the Rankine-Hugoniot condition. With Uo U_ regarded
as fixed, this yields a single equation for states U U/ in the Hugoniot locus of Uo"
(3.4)

where

(3.5)

H.o,o)(U, v)=0,

H(uo.,o)(U, v)=(U-Uo)[g(u, v)-g(uo, Vo)]-(V-Vo)[f(u, v)-f(uo, Vo)]

is the Hugoniot function. Similarly, the shock speed s is given by

(U-Uo)[f(u, v)-f(uo, Vo)]+(V-Vo)[g(u, v)-g(uo, Vo)]
(3.6) s

(u Uo)2 + (v Vo)2

An example of a Hugoniot locus is shown in Fig. 3. For quadratic models, H is a
cubic polynomial in the two variables u and v. Moreover [18], the Hugoniot locus of
Uo is parameterized by angle in the polar coordinate system centered at Uo, except
when the Hugoniot locus contains a line through Uo. To explain this result, we first
introduce some convenient notation and terminology.

Associated to a given quadratic model are the functions a,/3, y, and c,/3, , which
are defined by

(3.7)

(3.8)

(3.9)

and

(3.10)

a(o) 1/2{(a2 + b) cos 2o +(b2-al) sin 2o + a2-b},

/3(q) 1/2{(b2 + c) cos 2q + c2 b) sin 2o + b2 c},

y(o) 1/2{(d2 + el) cos 2q + (e2- d) sin 2o + d2- e},

c7 (o) 1/2{(al- b2) cos 2 + (ba + a2) sin 2o + a -k- b2},

(3.11) /(o) 1/2{(bl- c2) cos 2o + (1 + b2) sin 2o + b + c2},

(3.12) (o)=1/2{(d,-ez)cos2q+(el+dz)sin2O+dl+e2}.

If we set U Uo+ R(cos o, sin o)r, then the Hugoniot function is

(3.13) H(,o,o)(U, v)=R2{1/2R[a(o)coso+fl(o)sin q]+a(O)Uo+fl(O)Vo+y(q)};

moreover,

(3.14) s=1/2R[(q)coso+(o)sin o]+(O)Uo+(O)Vo+,(o).
An angle o is called an asymptotic angle when

(3.15) a(p) cos q +/3(o) sin o =0,

and it is called a characteristic angle for a given state Uo when

(3.16) a(O)Uo+/3(O)Vo+ y(o)=0.
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The set of states Uo satisfying (3.16) constitutes the characteristic line (o) associated
with q. At points along such a line, one of the eigenvectors has inclination angle o.
The characteristic line associated with an asymptotic angle is called a bifurcation line
(see Fig. 3). Note that asymptotic angles and bifurcation lines depend solely on the
coefficients defining the model, not on Uo.

The parameterization of Hugoniot loci is a consequence of (3.13), as shown in
Proposition 3.1.

PROPOSITION 3.1 [18]. (a) Suppose that q is not an asymptotic angle. Then the
line through Uo at angle q intersects the Hugoniot locus of Uo at a state U Uo if and
only if is not a characteristic angle for Uo.

(b) Suppose that q is an asymptotic angle. Then the line through Uo at angle
intersects the Hugoniot locus of Uo at a state U Uo if and only if Uo lies on the
bifurcation line associated with q, in which case the Hugoniot locus contains this line.

Remarks. (1) If Uo belongs to the hyperbolic region, the Hugoniot locus through
Uo has two branches; these branches are tangent at Uo to the right eigenvectors of
F’(Uo). According to (3.13), then, (cos , sin q) r is a right eigenvector if and only if
q is a characteristic angle for Uo. By (3.14), the corresponding eigenvalue is A
,()Uo+ fl()Vo+ ().

(2) As demonstrated in Appendix B.1, the envelope of the characteristic lines is
the coincidence locus, i.e., points where the eigenvalues coincide. In particular, bifurca-
tion lines are tangent to the coincidence locus.

(3) The Hugoniot locus approaches infinity at the asymptotic angles (as in Fig.
3). If o is an asymptotic angle, so is q + 7r, and these two angles determine the same
bifurcation line. Because (3.15) is a homogeneous cubic equation in cos 0 and sin
there are up to three bifurcation lines, i.e., up to six asymptotic angles o (-r, 7r].
The viscosity angle is said to be simple if it corresponds to a simple root of the cubic.

(4) The Hugoniot locus for a state Uo has a secondary bifurcation point if and
only if Uo lies on a bifurcation line, in which case the secondary bifurcation occurs
on this line.

(5) For later purposes (see Lemma 3.4), we note that

(3.17) a(p) cos p +/3(p) sin p (-sin p, cos p)F"(0). (cos p)2sin p

(3.18) c() cos p +/(p) sin p (cos p, sin p)F"(0) (cos
\sin

When studying viscous profiles for quadratic models, we take the viscosity matrix
D to be constant; this is reasonable because quadratic models arise as expansions.
Then (2.10) becomes the planar, autonomous system of ordinary differential equations

(3.19) D/]() -s[ U(sc) U_]+ F(U()) F(U_).

3.2. Viscous profiles. A viscous profile for a crossing discontinuity is defined by
an orbit that joins two saddlepoints. For dynamical systems that are quadratic gradients,
Chicone [2-] has shown that every saddle-saddle connection is a straight-line segment.
With this in mind, we first construct all discontinuities (not necessarily crossing
discontinuities) that have straight-line orbits. This approach yields a large class of
transitional shock waves, as discussed in 3.3.

For convenience, we use the notation /] =1/2(U/+ U_) for the average of, and
A U U/-U_ for the difference between, two states U/ and U_. The construction
relies on an obvious property of quadratic functions.
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LEMMA 3.2. Suppose Q is a quadratic function such that Q(U/) Q(U_). Then

(3.20) Q(O+pAU)=Q(I)+1/2pEQ"(O) (AU)2.

PROPOSITION 3.3. Let F be quadratic, and suppose that s, U_, and U+ U_ satisfy
the Rankine-Hugoniot condition (2.4). Then the straight-line segment between U_ and
U+ is a connecting orbit for (3.19) if and only if there is a constant ix 0 such that

(3.21) ixDA U 1/2 F"(0) (A U)2.

The orbit is traversed from U_ to U+ if and only if ix < O.
Proof. An orbit connecting U_ and U+ along a line takes the form

(3.22) U(sc) U + p(sC)A U

with -1/2<p()<1/2. If the quadratic function O in Lemma 3.2 is defined by Q(U)=
-s( U- u_) + F(U) F(U_), then the dynamical system (3.19) becomes DO Q(U),
i.e.,

(3.23) tSDAU= Q( (J)+1/2p2Q"(]) (AU).
But 0 Q(U_) O(0) +-Q"(O). (A U) and Q"(0) F"(0), so

(3.24) 13DAU=1/2(P-1/4)F"(O) (AU).
This equation is satisfied if (3.21) holds and

(3.25) ,6 ix(p:’-1/4).

Provided that ix 0, (3.25) has a solution with p varying between -1/2 and 1/2. Conversely,
if p parameterizes a connecting orbit along a straight line, (3.24) shows that (3.25)
must hold for some ix 0, and therefore that (3.21) is satisfied. The parameter p
increases from -1/2 to 1/2, i.e., the orbit is traversed from U_ to U/, if and only if

ix<0. D
The quantity ix is related to the eigenvalues for the linearized differential equations

at the critical points, as we now show. Suppose that the straight-line segment from U_

to U/ is an orbit; then it must coincide with an unstable manifold for U_ and a stable
manifold for U/. Therefore, by (2.12),

(3.26) [-s + F’( U+/-)]A U ix:DA U

with ix+-< 0 =< ix_. Subtracting these two equations yields

(3.27) IF’(U/) F’( U_)]A U (ix/- ix_)DA U.

Since F’(U/) F’(U_) F"(0)A U, we obtain (3.21) with ix 1/2(ix/ ix_) -< 0. Moreover,
adding (3.26) shows that

(3.28) [-s + F’( 0)]A U 1/2(ix+ + ix_)DA U.

According to the midpoint rule for quadratic models [18], the left-hand side vanishes
when U_, U/, and s satisfy the Rankine-Hugoniot condition

l/2

(3.29) sAg F(U+) F(g_) F’( U + pA U)A Udp F’( U)A U.
a-1/2

Consequently, ix+ + ix_ 0, so that =/z+ =-/z_.
As the next lemma shows, solutions of (3.21) are related to the asymptotic angles

for the quadratic model with the flux function D-IF. Because these angles are deter-
mined by the viscosity matrix D as well as by F, we call them viscosity angles. Also,
the characteristic line () associated with a viscosity angle is called a viscosity line.
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LEMMA 3.4. Let U+ lie on the line through U_ at angle o, with U+ # U_. Then
(3.21) holds for some tz if and only if o is a viscosity angle.

Proof Let AU- R(cos o, sin o) r. Then (3.21) holds for some/z if and only if

(3.30) 0= (-sin o, cos o)D-1F"(0) (cos o)
2

\sin o

Comparing this with (3.17), we see that (3.21) holds if and only if o is an asymptotic
angle for the quadratic model with flux D-iF. I-]

The existence of straight-line orbits depends also on the eigenvalue/. To determine
a formula for/z, suppose that o is a viscosity angle and that U+ lies on the line through
U_ at angle o, say U+ U_ + R(cos o, sin o) r. Then (3.21) and (3.18) imply that

(3.31) /z 1/2R[cTD(o) cos o +/D(o) sin o];

here cTD and/t are the functions associated with D-IF that are defined (for F) in
(3.10) and (3.11). A viscosity angle o is said to be exceptional if cTo(o)coso+
flo(o) sin o 0: no straight-line profiles are possible at an exceptional viscosity angle
because k 0. Otherwise, if o is not exceptional, then the sign of/ is determined by
the sign of R. Thus/ < 0 on a particular open ray with respect to U_. For simplicity,
we say that U+ is correctly oriented with respect to U_ along the viscosity line if it lies
in this ray.

The construction of discontinuities with straight-line profiles proceeds as follows.
The line at each viscosity angle is drawn through Uo, and its intersection U with the
Hugoniot locus through Uo is found; then U and Uo are joined by a profile along this
direction. Of course, this intersection might not exist; the precise conditions are
consequences of the characterization of Hugoniot loci given in Proposition 3.1.

THEOREM 3.5. Assume that the viscosity matrix D is invertible, and consider a fixed
viscosity angle o for D that is not exceptional. Let (o) be the viscosity line associated
with o.

(a) Suppose that o is not an asymptotic angle. Then Uo is connected to some U # Uo
on the Hugoniot locus of Uo by a connecting orbit lying along a straight line at angle o
if and only if Uo : (o). In this case, the corresponding state U is unique.

(b) Suppose that o is an asymptotic angle. (Thus (o) is a bifurcation line.) Then
Uo is connected to some U # Uo on the Hugoniot locus of Uo by a connecting orbit lying
along a straight line at angle o if and only if Uo (o). In this case, the corresponding
states U comprise all of(o).

The connecting orbit is traversed from Uo to U if and only if U is correctly oriented
with respect to Uo.

Part (a) of this theorem is illustrated in Fig. 4, which shows three discontinuities
that possess straight-line profiles. Part (b) is nongeneric, but it arises when D is a
multiple of the identity, which is the simplest choice. Bifurcations of saddle-saddle
connections under cubic perturbations has been studied in the case D- I in [36].

3.3. Saddle-saddle connecting orbits. Theorem 3.5 characterizes when a discon-
tinuity in a quadratic model possesses a straight-line profile. To apply it to solving
Riemann problems, we must account for the wave type of the discontinuity, i.e., the
relationships between the propagation speed and the characteristic speeds on the two
sides ofthe discontinuity. Indeed, Theorem 3.5 allows a discontinuity with a straight-line
profile to be of either Lax or crossing type. Lax discontinuities with straight-line
profiles, however, constitute only a small subset of the Lax discontinuities with viscous
profiles. This is because saddle-node connecting orbits are structurally stable. By
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FIG. 4. Discontinuities with straight-line profiles. The dashed lines are drawn through Uo at the viscosity
angles; arrows indicate the direction of the connecting orbit. The discontinuity corresponding to point X is of
crossing type, while point is the right state of a 1-shock and point 2 is the left state of a 2-shock.

contrast, profiles for crossing discontinuities, which correspond to saddle-saddle con-
necting orbits, do not persist when the discontinuity suffers a generic perturbation.

In this section, we describe the set of crossing discontinuities with straight-line
profiles. Furthermore, for certain classes of quadratic models, we show that the only
crossing discontinuities with viscous profiles take the form constructed in Theorem
3.5. Within these classes, therefore, the set of points (UL, s, UR) corresponding to
transitional shock waves has codimension 3, whereas the set corresponding to Lax
shock waves has codimension 2.

Assume that the hypotheses of Theorem 3.5 hold. In both cases (a) and (b), any
point Uo in a certain set is connected to some U # Uo by a straight-line profile at angle
q. We define the transitional region for the viscosity angle q to be the subset of points
Uo for which at least one ofthese discontinuities is of crossing type. Thus the transitional
region is defined by

(3.32) h 1(Uo) < s < 2(Uo),

(3.33) hi(U) < s < 2(U),

and the requirement of being correctly oriented. In the situation of part (a), the
transitional region is an open subset of the plane, and to each of its points corresponds
a unique admissible crossing discontinuity for q. In fact, the transitional region is a
wedge, as’ we show presently. This generic case is illustrated in Fig. 5. Similarly, for
part (b), the transitional region is a ray of the bifurcation line ?(o), and to each point
in this set corresponds an open interval of admissible crossing discontinuities.

The precise form of the boundary of the transitional region is determined as
follows. We consider a particular viscosity angle q and allow the point Uo to vary;



850 E. L. ISAACSON, D. MARCHESIN, AND B. J. PLOHR

transitional map

FIG. 5. Transitional regions. A point in region T or T is the left state for a transitional shock wave. The
corresponding right state is given by the transitional map indicated by the dashed lines, which lie at viscosity
angles. Two of the six viscosity angles do not lead to transitional shock waves, so that there is no corresponding
transitional region.

the corresponding point U Uo+ R(cos q, sin q)T is joined to Uo by a straight-line
profile. The boundary of the transitional region consists of points Uo for which some
of the inequalities in (3.32) and (3.33) become equalities, so that the speed of the
shock coincides with the characteristic speed at either the left or the right state"
det I-s+ F’(Uc)] =0, with Uc being U0 or U. By (3.13) and (3.14) each of these two
equations is quadratic in Uo and Vo. Points Uo on the viscosity line satisfy these
equations, so that each factors into a product of linear polynomials, i.e., each solution
set is a pair of crossed lines. Note, however, that the solutions on the viscosity line
are irrelevant because R 0 along this line. We conclude that the boundary of the
transitional region is contained in two crossed lines. One ray of each line corresponds
to profiles that are correctly oriented, so that the transitional region is a wedge. In the
case of part (b), the wedge collapses to a single ray.

We now turn our attention to the question ofwhether all saddle-saddle connections
are straight-line segments, so that the transitional shock waves constructed above are
the only ones. This is true for certain classes of quadratic models and certain choices
for the viscosity matrix. To prove this, we draw upon results for quadratic planar
dynamical systems, of which (3.19) is an example. Such systems have been studied in
connection with Hilbert’s 16th problem (see, e.g., Chicone and Jinghuang [3]).

Some of the results we describe concern quadratic models that are strictly hyper-
bolic except at U=0. Schaetter and Shearer [31] have classified such models; they
have shown that a linear change of dependent variables U brings the system of
conservation laws to a normal form in which the flux is a gradient, i.e., F(U) C’(U).
The qualitative structure of solutions falls into four categories, corresponding to four
regions in parameter space, which are labeled Cases I-IV.
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When the flux is a gradient, the vector field on the right-hand side of the dynamical
system (3.19) is also a gradient: viscous profiles satisfy

(3.34) Dt](:) G’(U(:)),

where G is defined by

G(u, v)= C(u, v)-C(u_, v_)-1/2s[(u-u_)+(v-v_)]
(3.35)

-f(u_, v_)(u-u_)-g(u_, v_)(v-v_).

In particular, when the viscosity matrix D is a multiple of the identity matrix, the
dynamical system (3.34) is a quadratic gradient system in the plane. The following
result of Chicone [2] bears directly on our application.

THEOREM 3.6 (Chicone [2]). For a quadratic gradient system in the plane, an orbit
connecting two saddlepoints is a straight-line segment.

Note that where D is a multiple of the identity matrix, viscosity angles coincide
with asymptotic angles. Therefore part (b) of Theorem 3.5 yields the following.

COROLLARY 3.7. Suppose that the flux for a quadratic model is a gradient. Then if
the viscosity matrix D is a multiple of the identity matrix, any viscous profilefor a crossing
discontinuity must lie along a straight line. Furthermore, a crossing discontinuity connecting
U_ to U+ has a viscous profile if and only if U_ and U+ both lie on the same bifurcation
line and U+ is correctly oriented with respect to U_.

For general choices of D, however, viscosity angles differ from asymptotic angles,
so that part (a) of Theorem 3.5 applies instead. The class of discontinuities with
straight-line profiles then takes a different form: for each state U_ in a certain open
set, there is a finite set of states U/ corresponding to such discontinuities. In this sense,
the case where D is a multiple of the identity matrix is not representative of the generic
case. Extension of Corollary 3.7 to more general viscosity matrices requires generalizing
Chicone’s theorem. Recently, Gomes [9], [11] has proved one such generalization.

THEOREM 3.8 (Gomes [9], [11]). Consider a quadratic dynamical system in the
plane with more than two critical points at infinity; assume that the total topological index

of these critical points is neither 4 nor 6. Then any orbit connecting two saddlepoints is
a straight-line segment.

As shown in Appendix A, critical points at infinity for the quadratic system (3.19)
occur precisely at the viscosity angles. Furthermore, if the viscosity angle is simple
and nonexceptional, the topological index Ind () of the corresponding critical point
at infinity is

Ind()=-sgn[d{ao()cos+o()sin}’{do()cos+o(p)sin}].
On the basis of these results and part (a) of Theorem 3.5, we can extend Corollary
3.7 as follows.

COROLLARY 3.9. Consider a quadratic model together with a viscosity matrix D.
Suppose that there are six nonexceptional viscosity angles, and that , Ind () 6. Then
any viscous profile for a crossing discontinuity must lie along a straight line.

Note that Ind (q) is determined by D and the homogeneous quadratic part
F2 of F. Suppose that the quadratic model with flux D-1F2 is strictly hyperbolic except
at U 0, so that it falls into the Schaeffer-Shearer classification. Then there are six
viscosity angles in Cases I-III and two in Case IV. Moreover, Ind () is 6 in Case
I and 2 in Cases II-IV. Therefore the hypotheses of Corollary 3.9 are satisfied in Cases
II and III.
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We emphasize, however, that for some quadratic models, saddle-saddle connecting
orbits need not be straight-line segments. Azevedo 1] has given such an example: for
a certain quadratic model with an elliptic region, U_ and U/ can be chosen so that
there is a curved saddle-saddle connecting orbit from U/ to U_ even though the straight
line from U_ to U/ is not invariant. In this example, D I and the homogeneous
quadratic part of F falls into Case I.

4. Traasitioaal rarefaction waves. In this section, we study transitional rarefaction
waves for systems of two conservation laws. Such a wave arises when an integral curve
of family 2 is followed by an integral curve of family 1 (in the direction of increasing
characteristic speed). Of necessity, the two characteristic speeds coincide at the point
where these curves join. Suppose that the set of states U at which A 1(U) A2(U) forms
a smooth curve separating a hyperbolic region from an elliptic region. (Models for
which the coincidence locus separates two regions of strict hyperbolicity are possible
also; one example is discussed in Appendix B.2.) Figure 6 illustrates four conceivable
configurations of rarefaction curves in the vicinity of this curve. Transitional rarefaction
waves occur in Fig. 6b, d, while in Fig. 6a, c they do not. Note that solutions of Riemann
problems are not unique if the configuration resembles Fig. 6b: both UM and UT serve
as middle states in solutions of the Riemann problem with data UL and UR.

v hyperbolic v

;2 M 1

"’-- R
1--, 2 ,, "-,,

elliptic
u

(a) (b)

) u

v hyperbolic v hyperbolic

2 .21
elliptic elliptic

)u )u

(c) (d)
FIG. 6. Rarefaction curves near an elliptic region. In (a) and (c) there are no transitional rarefaction

waves; in (b) and (d), the curves through points such as T correspond to transitional rarefaction waves. For
genericfluxes, points such as Tare isolated, so that configuration (b), which causes nonuniqueness, does not arise.

In the following, we present a detailed picture of the behavior of integral curves
near the boundary of an elliptic region. We employ the approach of Palmeira [28],
who studied integral curves for quadratic models with compact elliptic regions. One
consequence of this analysis is that the configuration of Fig. 6a is generic, whereas
points such as T in Fig. 6b, d are isolated points for generic flux functions. Thus the
situation of Fig. 6b, in which solutions of Riemann problems are not unique, does not
occur generically. We emphasize that the present results are not restricted to quadratic
models" the flux functions need satisfy only smoothness and genericity assumptions.
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A rarefaction wave of a given family is constructed using a curve in state space
such that its tangent is a right eigenvector:

(4.1) F’(U)O=A,(U)O.
In the neighborhood of a point of strict hyperbolicity, where the eigenvalues are real
and distinct, such a curve is constructed by choosing a smooth field ri of right
eigenvectors and integrating the differential equation

(4.2) = ri(U).
This choice is not generally possible, however, near a point where eigenvalues coincide.

To address this problem, we adopt a global geometric approach. Note that the
matrix F’(U)-Ai(U) has rank n-1 in the strictly hyperbolic region, so that (4.1)
constrains to lie in a line. From this perspective, we can construct rarefaction waves
using integral curves of line fields. There are n distinct line fields defined throughout
the strictly hyperbolic region. As we explain below, however, two of these line fields
join smoothly at the boundary of this region, where eigenvalues coincide. In fact, when
n 2, the line fields may be regarded as projections of a single line field that is defined
on a larger space.

Remark. A line field in an n-dimensional manifold can be specified by intersecting
n- 1 fields of tangent hyperplanes, so long as they are linearly independent. It proves
convenient to regard any n- 1 fields of tangent hyperplanes as defining a line field;
in this case, points where the hyperplanes are not independent are called critical points
of the line field.

Let us now restrict ourselves to the case of two conservation laws. Recall that
lines through the origin in R2 form the one-dimensional real projective space RP1. A
point in RP may be identified with a normalized vector +(cos o, sin o)T, modulo sign;
as a coordinate for RP, therefore, we take o (-7r/2, zr/2] to correspond to the line
through the origin that lies at angle . In these terms, a line field on RE associates a
point in RP to each point in R2.

Following Palmeira, we introduce the space RE X RP of lines through points
U--(u, /))T RE. The map (U, )- U projects onto R2, making into a fiber
bundle. A line field on R2 may be regarded as associating a point (U, tc(U)) to
each point U RE. An integral curve :--> U() of such a line field is the projection of
the curve defined by :- (U(:), o( U(:))); this curve in is called the lift of the curve
in RE. By definition, /.7 lies at angle , so that -sin q ti / cos q t3 0. This means that
the vector , b) is constrained to lie in the plane defined by the differential expression

(4.3) -sin du + cos p dv O.

In other words, the tangent vector of the lifted curve lies in the tangent plane at U, )
given by (4.3).

The line fields of interest to us are associated with eigenvectors of the Jacobian
derivative matrix for the system of conservation laws. Let U, tp) be a point in ; then
(cos , sin )T is a right eigenvector of F’(U) if and only if

(cos re)o
(4.4) ( U, t) (-sin o, cos )F’( U)\sin
is zero. Thus we are led to study the surface = 0 in ; we call it the characteristic
surface for the system of conservation laws. The plane tangent to defined by (4.3),
when intersected with the plane tangent to the characteristic surface, defines a line
field on this surface. The integral curves of this line field project onto solutions of
(4.1) by virtue of (4.3). A portion of a characteristic surface is depicted in Fig. 7.
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characteristic surface integral curves

cdtical point v coincidence locus

2
2 2

hyperbolic \ elliptic
u

FIG. 7. A portion of the characteristic surface in the space . The surfacefolds along the coincidence locus,
which projects onto the boundary of the elliptic region. Typical integral curves are drawn on the surface; their

projections onto the u-v plane are rarefaction curves.

Recall that U, q) is a regular point of if (u, o, ) (0, 0, 0) at U, q), and
that v is a regular value of if all points (U, p) for which ( U, p)= v are regular.
The characteristic surface is a smooth, two-dimensional manifold in a neighborhood
of a regular point, so that the whole characteristic surface is a smooth manifold provided
that v 0 is a regular value. Sard’s theorem implies that regular values are generic if
the flux F is smooth, but in general the characteristic surface might have singularities
and self-intersections. The global structure of the characteristic surface is described
for some examples in Appendix B.

In working with general conservation laws, it is convenient to represent the 2 x 2
matrix F’(U) as

(4.5) F,(U)=(+a b+)-c d-

in terms of the functions a, b, c, and d of U (cf. [31]). Thus

(4.6) cos 2p a sin 2q c.

Furthermore, in analogy with (4.4), we define the function h on [9 by

(4.7)

A( U, )= (cos p, sin p)F’( U)(cs )sin p

a cos 2q + b sin 2p + d.

As seen from (4.4) and (4.7), if a point (U, q) lies on the characteristic surface 0,
then A(U, p) is the eigenvalue of F’(U) for the right eigenvector (cos p, sin p).
Moreover, the following relations are easily verified"

(4.8) (A d)2 + (,+ (7)2 a 2 + b2,
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(4.9) -1/2ff =A-d,
(4.10) -z

We define the coincidence locus to comprise points (U, q) on the characteristic
surface at which A l(U) A2(U) (see Fig. 7). The next result characterizes this locus.

PROPOSITION 4.1. The coincidence locus comprises points satisfying 0 and q
O. The following are equivalent at a coincidence point, provided that it is a regular point
of: (i) the projection of the characteristic surface is a fold; (ii) A # 0; (iii) c # 0; and
(iv) (a, b) s (0, 0).

Proof. The characteristic speeds coincide if and only if the discriminant
discrm F’(U) =4(a2+ b2-c) vanishes. According to (4.8), a2+ b2-c= (A -d)2 on
the surface = 0, so that by (4.9), coincidence occurs precisely when o 0.

In particular, the projection (U, q)-- U, restricted to the characteristic surface, is
singular at a coincidence point. This singularity is of fold type when # 0. By (4.10)
with ff 0, conditions (i)-(iii) are equivalent, and because a2 + b c at a coincidence
point, conditions (iii) and (iv) are equivalent.

Accordingly, the coincidence locus is a smooth curve through those coincidence
points for which the matrix

(4.11)

has rank 2. A sufficient condition is that the coincidence point be a regular foldpoint.
Vectors tangent to the coincidence locus belong to the kernel of this matrix. Note that
a tangent vector at a regular foldpoint cannot be vertical (i.e., have vanishing u and
components).

Corresponding to the integral curves in R2 used to construct rarefaction waves
are lifted curves lying in . In addition to satisfying (4.3), these lifted curves belong
to the characteristic surface 0, so that d-0 along them. Therefore we consider
integral curves of the line field in given by

(4.12) :u du + v dv +o dq O,

(4.13) -sin t# du + cos q dv O.

If such an integral curve starts at a point in the characteristic surface, then it lies
entirely within the characteristic surface, as shown in Fig. 7.

Integral curves of (4.12) and (4.13) can be obtained locally by integrating the
differential equations

(4.14) ti =- cos q,

(4.15) t =-5 sin q,

(4.16) q5 ou cos q + v sin o.
Indeed, this local vector field satisfies (4.12) and (4.13), and it vanishes when these
two equations are linearly dependent. (Note, however, that (4.14)-(4.16) do not define
a global vector field on " they are not invariant under the map q-- q + 7r.) Thus
critical points of the line field occur precisely when 0 and

(4.17) u cos q + sin q 0.

We say that a point on the coincidence locus is critical whenever (4.17) holds. Such
points play a significant role in determining the structure of integral curves on the
characteristic surface [28]. We emphasize, however, that for generic choices of the flux
functions in the conservation laws, critical points will be isolated points on the
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coincidence locus (cf. Appendix B.2). At generic points on the coincidence locus,
ti 0, t 0, and # 0; therefore the integral curve is vertical, and the projected integral
curve has a cusp (see Fig. 7).

Also of importance is the family to which a point on the characteristic surface
belongs. Noting that coincidence of eigenvalues occurs when A d, we define the
1-family region 1 in to comprise points for which , < d; similarly, A > d in the
2-family region 2. This definition is appropriate because of the following consider-
ation. Suppose that (U, 1) and (U, 2) are two points in the characteristic surface
that project onto the same point U; suppose further that U, ) e and U, 02) 2"
Then A(U, )<d(U)<A(U, o2). Consequently, A(U, o)=hl(U) and A(U, 2)
hE(U), while (cos 1, sin 0)r and (cos o2, sin o2) r are the corresponding right eigen-
vectors. If the system of conservation laws is strictly hyperbolic, then the characteristic
surface consists of two distinct sheets, belonging to the regions t and 2. More
generally, these sheets join along the coincidence locus, as in Fig. 7.

With this notion of family, we can state the main result of this section.
THEOREM 4.2. Consider a regular foldpoint on the coincidence locus, and suppose

that it is not critical. Then the integral curve through this point crosses the coincidence
locus transversally, and its projection, a rarefaction curve, has a cusp. Moreover, if the
integral curve is followed in the direction of increasing eigenvalue, then it leads from the
1-family region to the 2-family region.

Proof. According to (4.14)-(4.16), the integral curve is vertical at such a point:
ti 0, t 0, and ff 0. Therefore the integral curve is transverse to the coincidence
locus, whose tangent is not vertical. Also, the integral curve leads from
because the derivative of h- d along the curve is h 0.

Transitional rarefaction waves arise only when an integral curve leads from the
2-family region into the 1-family region when traversed with increasing eigenvalue. By
Theorem 4.2 this is possible only for integral curves through special points on the
coincidence locus: critical points, where (4.17) holds; nonfoldpoints, where :**-0
(which usually correspond to cusps in the coincidence locus, as projected onto state
space); and irregular points, where (:, :o) (0, 0) (at which the characteristic surface
need not be a manifold). Such singular points, being characterized by extra functional
conditions, generically are isolated points on the coincidence locus.

COROLLARY 4.3. For generic choices of the flux functions that define the system of
conservation laws, transitional rarefaction waves arise only from integral curves through
isolated points on the coincidence locus.

Rarefaction waves correspond to segments of integral curves along which the
characteristic speed does not decrease. To reflect this, the integral curves shown in
Fig. 7 have been oriented according to the variation of h. The orientation changes at
points where h’( U)r(U) 0, which are called inflection points by analogy with scalar
conservation laws. In the present geometric framework, the inflection locus is defined
to be points on the characteristic surface for which dh 0 in the direction of the
integral curve, i.e.,

(4.18) det -sin q cos q 0.

The following result helps elucidate the behavior of integral curves near critical points.
PROPOSITION 4.4. A regularfoldpoint on the coincidence locus is a point ofinflection

if and only if it is a critical point.
Proof. When ; 0, (4.18) becomes A, u cos o + ;o sin o 0.
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As illustrated in Fig. 7, the inflection locus passing through the critical point
permits a transitional rarefaction to occur even though neighboring integral curves
lead from family 1 to family 2.

The constructions of this section have been applied by Palmeira to quadratic
conservation laws [28]. (See Appendix B.1 for another presentation of these computa-
tions.) Furthermore, Palmeira shows that the results obtained for quadratic models
are stable under perturbations of the flux functions (in the C Whitney topology). This
is a first step in proving stability of solutions of Riemann problems with respect to
changes in the conservation laws.

5. The role of transitional waves in solving Riemann problems. A solution of a
Riemann problem consists of a sequence of rarefaction waves and discontinuities. For
various systems (e.g., [35], [13], [9], [10], [14], [34]), the general Riemann problem
cannot be solved globally if only Lax shock waves with viscous profiles are used" for
certain left states, there are regions of right states for which there is no solution. In
this section, we explain how transitional waves can be used to overcome this difficulty.
The transitional shock waves define a certain map in state space; for simplicity, we
describe this map for systems of two conservation laws, although a straightforward
generalization can be made to systems of arbitrary size. We begin by recalling the
classical method for constructing local solutions of Riemann problems [25], [26].

The 1-wave curve based upon a state Uo consists of those states to which Uo can
be joined by a succession of 1-waves; a similar definition holds for 2-waves. Near Uo,
each wave curve consists of a shock branch joined to a rarefaction branch (if Uo is
not on the inflection locus); an eigenvector of F’(Uo) is tangent to these branches at
U0. To solve the Riemann problem near a left state U/, the standard construction is
to build the 1-wave curve based on UL, and then to build the 2-wave curve based on
each middle state U4 on the 1-wave curve. This is illustrated in Fig. 8 in the vicinity
of UL. (In Figs. 8 and 9, 1-wave curves are thicker than 2-wave curves, with solid
curves being rarefaction curves and dashed curves being shock curves.) In this way,
all neighboring states UR are joined to U/ by a 1-wave followed by a 2-wave. To carry
out this procedure globally, detached branches of the wave curves must also be used.
For example, a state UR in the upper left corner of Fig. 8 is reached by a nonlocal
1-shock wve, U4 being a point on the Hugoniot branch above point C, followed by
a 2-wave. As mentioned above, however, there might be right states that are not reached
in this manner, such as points in the strip bounded by the 2-wave curves through B
and C. To complete the solution, transitional waves are employed.

First we describe the use of transitional shock waves. Based on part (a) of Theorem
3.5 for quadratic models, the class of transitional shock waves for generic flux functions
is characterized by a transitional map X defined on an open set T, the transitional
region. The transitional map carries each point U in T to a unique point U’-X(U)
in T’= X[ T] such that U and U’ are connected by an admissible crossing discontinuity.
We contrast this picture with that of Lax waves, where to each state there corresponds
a curve of states. More generally, there might be several transitional maps. (For
quadratic models, different maps are associated with different viscosity angles.)

Remark. We expect this map to be stable under small perturbations of the flux
functions and of the viscosity matrix. Techniques such as those used in [36] should
suffice to establish stability. This property is crucial to ensure that these new shock
waves have physical significance.

Transitional shock waves are used to solve Riemann problems in the following
manner. For a given left state U, the 1-wave curve based on U is built. If the curve
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FIG. 8. Solutions ofRiemann problemsfor a particuNr l@ state U. e system is a quadratic model with
an elliptic region; all shock waves admit viscous profiles for a viscosity matrix D that differs from the identity.
Points between B and C correspond to transitional shock wavesfrom points becween A and A. Poincs between
B and D correspond to nonlocal 2-shock waves from points between A and che bifurcation line, while points
above C are nonlocal 1-shock waves from

passes through the region T, then each state U4 on the curve in this region is joined
to its image state U4 X(U4) by a transitional shock wave. Of course, the speed of
this wave must exceed the speed of the 1-wave from U/ to U4. Under this restriction,
an image curve in the region T’ is generated. Finally, 2-wave curves are drawn from
points on this transitional curve, thus covering a region in state space. The procedure
just outlined can be generalized to systems of arbitrary size.

This construction is shown in Fig. 8. (The parameter values for the model in both
Figs. 5 and 8 are al 1/2, cl 1 b2, e 1 ---d2, and all others are equal to zero. The
viscosity matrix has components Dll 1.1, D12 0.1 O21 and D22 1.4. In particular,
the transitional regions are the same as in Fig. 5.) The 1-wave curve passes through
region T1, and the portion (AA2) is mapped onto the curve (CB). Therefore the strip
left uncovered by Lax waves is filled by solutions composed of three wave groups--a
1-wave, a transitional shock wave, and a 2-wave.

Note that because the transitional wave from A to C has the same speed as the
1-shock wave from L to A1, the points L, A1, and C are all critical points of the
dynamical system (2.10). This system has a saddle-saddle connection between A and
C, so that it is subject to bifurcation. Indeed, numerical evidence indicates that points
on the branch of 1-shock waves above C are joined to U/ by a node-saddle connecting
orbit, whereas points on the continuation of this branch below C are not, even though
they correspond to Lax waves. (Observe that 1-shock waves below C are faster than
at C, and that as the shock speed is increased, the saddlepoint near A1 shifts toward
UL. When the saddle-saddle connection from A1 to C is broken by increasing the
speed, the stable manifold for the saddlepoint near A1 shifts, blocking any connection
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FG. 9. Solutions of Riemann problems for a homogeneous quadratic model in Case II and a particular

left state U. All shock waves admit viscous profilesfor D L Points between B and C correspond to transitional
shock waves from point A.

for non!ocal 1-shock waves.) Similarly, the transitional wave from A2 to B is an
endpoint of the transitional curve because the critical point B is not hyperbolic. Points
on the curve joining points B and D are reached by (admissible) nonlocal 2-shock
waves from points between A2 and the bifurcation line.

The branches of 2-shock waves beginning at states above C end. when the speed
of the 2-shock wave coincides with the speed of the 1-shock wave. Such an endpoint
is a totally compressive wave on the Hugoniot locus through U/. Analogously, the
branches of 2-shock waves emanating from states between C and B end when the
speed of the 2-shock wave coincides with the speed of the transitional shock wave;
the endpoint is a nonlocal 2-shock wave from the state between A1 and A: that lies
on the left side of the transitional wave. The length of the 2-shock wave branch shrinks
to zero as B is approached, so that the locus of endpoints joins the totally compressive
waves to state B. This locus need not coincide with the branch of nonlocal 2-shock
waves from A that begins at B; between it and the nonlocal branch lie admissible
nonlocal 2-shock waves from states between A1 and A2.

The picture just described is different from that obtained in the nongeneric case
of Theorem 3.5: in part (b), the transitional region is not open, being open rays of the
viscosity lines, and the corresponding transitional shock waves comprise open segments
on these lines. This situation arises in several examples in which transitional waves
are used [35], [9], [10], [34] because D is taken to be the identity matrix. Parameter
and equation counting for saddle-saddle connecting orbits are inconsistent with this
picture [30]. This nongeneric case is illustrated in Fig. 9, which depicts the limits of
solutions in Fig. 8 as D approaches the identity matrix and the elliptic region shrinks
to zero (i.e., e 0=-d): the curve (AA2) collapses to a single point A, which is the
left state for transitional shock waves to points along (CB).
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Figure 9 represents part of the solution for a symmetric quadratic model in Case
II [21]; this solution enforces the viscous profile admissibility criterion. In [21] and
[32], solutions for Case II quadratic models are obtained using all shock waves obeying
Lax’s characteristic inequalities, regardless of whether these shock waves possess
viscous profiles. In fact, numerical evidence suggests that nonlocal 1- and 2-shock
waves that do not have viscous profiles appear in these solutions, such as nonlocal
1-shock waves on the Hugoniot branch below point C and nonlocal 2-shock waves to
points near (CB) in Fig. 8. This is an instructive example in which two distinct solutions
of the general Riemann problem arise from different choices of an admissibility
criterion. Each of these choices yields a solution that is complete and unique.

Remark. We expect that standard numerical methods employed in solving the
Cauchy problem for conservation laws are inaccurate if the solution involves transi-
tional or nonlocal shock waves. The reasons are as follows. First, many numerical
schemes spread a strong shock wave across several mesh zones, replacing it with many
weak shock waves, each approximated by the local rarefaction curve; but this approxi-
mation is not valid for nonlocal shock waves, which are noncontractable. (Methods
such as random choice [8] do not make this approximation.) Second, transitional
shock waves are sensitive to the precise form of the diffusion term (cf. Figs. 8 and 9).
In contrast to Lax shock waves, which are affected only by the overall magnitude of
the viscosity, the asymptotic states in a crossing shock wave are dependent on the
relative sizes of components of the viscosity matrix. Dissipative numerical schemes on
coarse grids calculate transitional shock waves that correspond to the numerical
viscosity, rather than the physical viscosity.

The usage oftransitional rarefaction waves in solving Riemann problems is simpler;
it resembles the degenerate case for transitional shock waves. As shown in 4, transi-
tional rarefaction curves emanate from isolated points on the coincidence locus. For
instance, in Case II quadratic models there is a single transitional rarefaction curve;
in Fig. 8 it passes tangent to the top of the elliptic boundary, with the 2-family portion
extending to the left, and the 1-family portion extending to the right. Suppose that the
1-wave curve through UL intersects the 2-family portion of the transitional curve at
UM; then the 1-wave from UL to U4 can be followed by a transitional rarefaction
wave from U4 to a point U, on the 1-family portion, which in turn can be followed
by a 2-wave. This construction is completely analogous to that used in specific examples
[21], [32].

In summary, a transitional wave can appear between a 1-wave group and a 2-wave
group in a solution of a Riemann problem. The procedure for constructing such
solutions is to associate a transitional wave curve to the left state U. This transitional
curve is obtained by applying the transitional map to the 1-wave curve in the case of
shock waves, and by following an integral curve in the case of rarefaction waves. More
generally, composite waves containing transitional waves along with Lax waves can
occur [17], [14] (see Fig. 2c, d).

6. Summary. Transitional waves, which are not associated with a particular
characteristic family, arise in non-strictly hyperbolic systems of conservation laws.
Because of such waves, the solution of a Riemann problem for a system of n conserva-
tion laws might contain more than n wave groups.

Transitional shock waves are discontinuous solutions that possess viscous profiles
corresponding to saddle-saddle connecting orbits. For transitional shock waves, the
association of U with UR is a map defined on a region in state space (for generic
viscosity matrices); this has been demonstrated explicitly for conservation laws with
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quadratic flux functions, where saddle-saddle connecting orbits are straight-line seg-
ments.

Transitional rarefaction waves are continuous solutions that switch from a faster
family to a slower one. Using a geometric framework, the generic nature of rarefaction
waves near an elliptic region in systems of two conservation laws has been established:
if a rarefaction curve intersects the elliptic boundary, then, except at isolated points,
it switches from a slower family to a faster one and forms a cusp; the exceptional
points are where the rarefaction curve is transitional and passes tangent to the elliptic
region.

Transitional waves play a significant role in solving the Riemann problem for
non-strictly hyperbolic systems. This is illustrated in a quadratic model for which the
general Riemann problem has two distinct solutions, both complete and unique,
depending on the admissibility criterion imposed on shock waves. One solution uses
all waves satisfying the characteristic criterion, some of which do not possess viscous
profiles; the other uses the viscous profile criterion and requires transitional shock
waves.

Appendix A. Proof of Corollary 3.9. In this Appendix, we establish the nature of
critical points at infinity for quadratic conservation laws.

Consider a quadratic dynamical system in the plane

(A1) ti P(u, v),

(A2) t Q(u, v),

where P and Q are quadratic polynomials in u and v and the dot denotes differentiation
with respect to the independent variable . The behavior of solutions is affected not
only by critical points (uc, vc) in the finite plane, where P(u, v)=0 and Q(u, vc) =0,
but also by the behavior of P and Q near infinity, i.e., the asymptotic directions of
the vector field.

To study the behavior near infinity, we make a (singular) change of independent
variables from to /by setting d/d R-d/d, where R (u2+ )2) 1/2. This allows
us to exploit the approximate homogeneity of P and Q for large R:

(A3) P(u, v)= RE{pE(U/R, v/R)+ O(R-)},

(A4) Q(u, v)= g2{QE(U/g, v/R)+ O(R-1)},

P2 and Q2 being the homogeneous quadratic parts of P and Q, respectively. When we
introduce polar coordinates, u R cos and v R sin o, and denoting p R-, a
straightforward calculation shows that

(A5) ’ cos o Q2(cos ,sin )-sin o P2(cos ,sin )+ O(p),

(A6) p’ -p{cos o P2(cos q, sin q) + sin o Q:(cos ,sin o)+ O(p)},

where the prime denotes differentiation with respect to r/. Therefore a critical point at

infinity occurs if and only if p 0 and

(A7) COS tp Q2(cos tp, sin o)- sin o P2(cos o, sin o)= 0.

Equation (A7) is a homogeneous cubic polynomial in sin o and cos o; its roots give
the asymptotic directions of the vector field. The eigenvalues of the linearization of
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(A5) and (A6) near a critical point at infinity are

d
(A8) tz -- {cos q Q2(cos o, sin q)-sin o P2(cos q, sin q)},

(A9) zp -{cos q P2(cos q, sin q) + sin q Q2(cos q, sin q)},
corresponding to the q and t9 directions.

For the dynamical system

(A10) D0(:) -s[ U(:) U_]+ F( U())- F( U_)

derived from a quadratic system of conservation laws, (P2, Q)T= D-F_, where F2
is the homogeneous quadratic part of the flux F. Let reD, flu, &U, and riD denote the
functions associated with D-1F that are defined (for F) in (3.7), (3.8), (3.10), and
(3.11). In these terms, a critical point at infinity occurs precisely when p 0 and

(All) ao(q) cos o +/3o(q) sin q=0,

and the eigenvalues at such a point are

1 d
(A12) o = d- {Oo((0) COS (0 " O((O) sin 0},

1
(A13) tzp - {CD(q) COS q +/D(q) sin q}.

By definition, an angle q satisfying (A11) is a viscosity angle; thus critical points
at infinity occur at viscosity angles. Furthermore,/z # 0 for a critical point at infinity
if the corresponding root of (A11) is simple, i.e., the viscosity angle q is simple, while
/xp # 0 if q is not exceptional. If/x/z # 0, then the topological index of the critical
point at infinity is Ind (q)=sgn (/x/x,). Consequently, we have demonstrated the
following.

LEMMA A1. Consider a quadratic model together with a viscosity matrix D. Then
critical points at infinityfor the dynamical system (A10) occurprecisely at viscosity angles.
If the viscosity angle q is simple and nonexceptional, then the topological index of the
corresponding critical point at infinity is

(A14)

Ind(q)=-sgn[-{aD(q)cosq+flD(q)sinq}{D(O)coso+o(q)sinq}].
Appendix B. Examples of characteristic surfaces. In this Appendix, we present

two examples of the constructions of 4 for rarefaction waves.

B.I. Quadratic models. The approach of 4 was developed by Palmeira [28] for
quadratic models with compact elliptic regions; the results carry over to general
quadratic models. Using the notation of 3.1, it is simple to verify that

(B1) (u, v, q)= a(q)u +/3(q)v + y(q),

(B2) A(u, v, q) (q)u +/3(o)v+ Z/(q).

Thus the characteristic surface 0 is ruled: each horizontal plane q const, intersects
the.surface in a straight line a(q)u+(q)v+y(q)=O, the projection of which is a
characteristic line. The surface is regular except when a (q) =/3 (q) y(q) 0 and

=0 (see (B4) below).
The coincidence locus is defined by the equations 0 and 0, i.e.,

(B3) a(q)u+(o)v+y(q)=O,

(B4) a’(q)u + fl’(q) v + y’(q) 0.
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Note that these are also the equations for the envelope of the characteristic lines. For
simplicity, we assume that the determinant aft’-fla’ does not vanish identically.
Then the linear equations (B3) and (B4) may be solved to express u and v on the
coincidence locus in terms of q: u Uc (q) and v vc (q), where

(BS) u -[t’-t’]/,
(B6) Vc -[ a’y’ ya’]/.
Despite appearances, and the numerators of Uc and Vc are linear, not quadratic, in
sin 2o and cos 2o. Thus the coincidence locus is a conic section; any asymptotes occur
at the angles o where fi (o) 0.

A coincidence point is a foldpoint unless 0. Evaluated on the surface 0,

1/4 (u, v, oU + toV + o,
where ao 1/2(a_ bl),/30 1/2(b2 cl), and 3/0 1/2(d_ el) are the #-independent parts of
a,/3, and 3’. Therefore a coincidence point is a foldpoint so long as aoUc()+/3oVc(q) +
Yo 0. A simplification occurs here also" aoUc +/3oVc + To -1/4r//fi with r/ constant.
Provided that r/# 0, all points on the coincidence locus are foldpoints.

In terms of the parameterization of the coincidence locus, any solution (u, v) of
(u, v, o)= 0 takes the form

(B7) u Uc(q)-8(q:,)"

(B8) v vc(o) + a(q) t

for some t R (except when (q) 0). Thus q and give global coordinates for the
characteristic surface, and t 0 defines the coincidence locus.

To determine the differential equations for integral curves in these coordinates,
we require formulae for the derivatives u’c and V’c. Substituting uc and Vc into (B3)
and (B4) and differentiating shows that

(B9) aU’c + SV’c O,

(B10) a U’c + ’V’c -4[aoUc + oVc + 3’0].

2 92Thus u -]r// and v at//
Expressed in global coordinates, the equation defining integral curves is

0 -sin du + cos dv

(B11) r cos o + 13 sin &

+{[a cos +13 sin ]r//2+ [a cos +/’ sin ]. } d.
Thus integral curves may be obtained (locally) by solving

(B12) b -[r cos + ]3 sin ],

(B13) t =[a cos q+/3 sin q]r//+ [a cos o +]3’ sin q].

These equations yield a first-order, linear differential equation for K as a function of
re. Critical points of the dynamical system (B12) and (B13) occur precisely when
cr cos q + 13 sin q 0 and K 0, i.e., at coincidence points for which r is an asymptotic
angle. In other words, the critical points occur where the bifurcation lines are tangent
to the coincidence locus.
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The inflection locus is defined by (4.18). To solve this equation in the present
case, note that A =-1/2; 1/2It//9- 9’. K] and that .K. Then the inflection
locus is determined by the equation

(B14) [(1/29’a + 9c) cos q + (1/2’/3 + /) sin q]. 1/2[a cos q +/3 sin ]r//9.

The quantities in parentheses in this equation simplify to linear expressions in sin 2o
and cos 2o.

B.2. Keyfitz-Kranzer models. Systems of conservation laws of the form

(B15) u,+[u(u, v)]x 0,

(B16) v, + IvY(u, v)]x =0

have been studied as models for elastic strings [23], [24] and for multiphase flows in
petroleum reservoirs [16], [37], [22], [27]. For such a system,

(B17)

(B18)

;(u, v, o) [-u sin o + v cos o ][ (u, v) cos o + u, v) sin o ],

h(u, v, o)= (u, v)+[u cos o+v sin o][u(u, v)cos o +o(u, v)sin o].

Therefore the characteristic surface is the intersection of two surfaces: the ruled
surface where rued(U, V, 0)=--U sin o+v cos o is zero; and the surface where
contact(lg, D, (0)-- (I)u(Ig /)) COS (0-[" (I)v(/,/, D) sin o is zero, which we call the "contact"
surface because of its relation to the linearly degenerate wave mode.

For a point (u, v, o) on the ruled surface, u cos 0 and v r sin o for some
R, so that q(U,D,()-"--Kcontact(U,D,(0 ). In particular, A=+u,+vv.
Similarly, for a point on the contact surface, , -t sin o and tz cos q for some
/R, (u, v, o)= tZ%ed(U, V, 0), and A =.

It follows that the coincidence locus, where both and vanish, comprises the
intersection of the ruled and contact surfaces, together with the vertical line u 0,
v 0. Necessarily, the characteristic surface fails to be regular at coincidence points,
where it is not a manifold; indeed, , and , as well as , vanish on the coincidence
locus. The projection of this locus onto the u-v plane is given by the equation

(B19) u,+v =0,

and it is bordered on both sides by regions of strict hyperbolicity, instead of separating
a hyperbolic region from an elliptic region.

Remark. In one sense, the system of conservation laws (B16) and (B17) is not
generic: the flux functions take a special formf(u, v) u(u, v) and g(u, v) v(u, v).
This form is not stable under general perturbations, which would break the intersecting
surfaces apart and remove the singularity. However, the conservation laws may be
regarded as generic, in a different sense, provided that the physical system being
modeled imposes this special form of the flux functions and allows for general
perturbations of .

Evaluated on the ruled surface, the equation defining integral curves is

(B20) 0 -sin o du + cos o dv do.
Thus an integral curve in this part of the characteristic surface is a horizontal line
o const., -u sin o + v cos o 0. On the contact surface,

(B21) 0 g [-sin o du + cos o dr] d,
which implies that const, along integral curves in this portion. All points on the
coincidence locus are critical points for the line field defining integral curves, so that
Theorem 4.2 does not apply.
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It may be verified that the determinant of (4.18), which defines the inflection locus,
vanishes identically on the contact surface; therefore the eigenvalue corresponding to
this part of the characteristic surface is linearly degenerate. On the ruled surface, the
equation for the inflection locus reduces to

(B22) u[cb + Uu + VCbv]u + v[+ Uu + vo]v O,
i.e., to the vanishing of the derivative of the eigenvalue along the rarefaction.

In summary, the behavior of rarefactions near the coincidence locus, which
separates two regions of strict hyperbolicity, is as follows. A rarefaction curve projected
from the contact surface is a level curve const., whereas a rarefaction curve projected
from the ruled surface lies along a line -u sin o + v cos o 0, o const. The two types
of rarefaction curves are tangent to each other at coincidence points, and generically
they cross the coincidence locus transversally. The corresponding eigenvalues are

’contact (I) and ’ruled (I) q- U(D + l.)t)v, respectively. Thus the contact curves are linearly
degenerate, while the other eigenvalue typically increases monotonically through
the coincidence locus. In particular, Arued switches from family 1 to family 2 as
the corresponding rarefaction curve is followed, in the direction of increasing eigen-
value, across the coincidence locus; at the same time, ’contact switches from family 2 to
family 1.
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ASYMPTOTIC ANALYSIS ON LARGE TIMESCALES FOR SINGULAR
PERTURBATIONS OF HYPERBOLIC TYPE*

W. ECKHAUS? AND M. GARBEY

Abstract. A uniform approximation of a linear hyperbolic-hyperbolic singular perturbation problem
for a large timescale under a "timelike" hypothesis is constructed. It is shown that the effect of a hyperbolic
perturbation is qualitatively the same as the effect of a viscous perturbation for a large timescale. The validity
is proved by the use of the energy method.

Key words, singular perturbations, hyperbolic equations, asymptotic analysis, large timescales

(1.1)

AMS(MOS) subject classification. 65

1. Introduction. We consider the following singular perturbation problem:

L[u] eL2[u]+ L,[u] f(x, t, e),
u(x,O,)=g(x),

Ou
-(x,O,e)=h(x),

where x is the space variable, x R, represents time, => 0, and e is a small positive
parameter. L2 is a strictly hyperbolic linear operator of second order:

L2[u] -+ Cl(X t)-x Ot
c2(x, t) xx [u]

with Cl < c2, and L1 is a nondegenerate hyperbolic linear operator of first order:

Ou+ Ou
[1 a(x, , b(x, , + a(x, t, u

with a(x, t, e)>= ao> 0. We suppose "time behavior" for L, and to apply the theory
of asymptotic developments, we need suitable regularity for the given functions f, g,
h, a, b, ci, d. This type of problem occurs in many physical models (see Whitham [6,
Chaps. 3 and 10, "Wave Hierarchies"]).

The initial boundary layer has been studied by several authors, in particular, Geel
and Dejager (see [3] and its bibliography) and Genet and Madaune-Tort (see [5] and
its bibliography and [8]). It has been established (see [3], [4]) that for time of order
1 (strictly), the solution of the reduced problem (formal limit of P):
(1.2) Po: L,[wo] f(x, t, 0), Wo(X, O)= g(x)
is a good approximation of u, the solution of P (outside the initial boundary layer),
i.e.,

U=Wo+Os(),

OWoUx=+Os(e), t[p, T], 0<p<T,
Ox

OWo +u,= O(e)
Ot

* Received by the editors June 26, 1988; accepted for publication (in revised form) July 25, 1989.
? Mathematisch Instituut, Utrecht, the Netherlands.
Universit6 de Valenciennes et du Hainaut-Cambresis, Valenciennes, France.
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where p is an arbitrary constant. The definition of the Os symbol is as in Eckhaus
1 ]" u w Os(e) means u w O(e) and u w # o(e). In this paper we are concerned
with the behavior of u for large timescales, namely, 1/t o(1). The contribution of
the perturbation cannot be neglected in this case, and the wave Wo does not describe
(even in first approximation) the evolution of u.

Let us explain the salient feature of our method, in the case of constant coefficients,
more precisely for the equation

/’au ou du+ 8u
(1.3) e\ xT] +--t b=ox 0 with Ibl< 1.

The last condition assures "timelike" behavior. See Fig. 1. Following Eckhaus [2], we
note that the solutions of the unpeurbed equation du/t+ b(u/x)=O, represent
"waves" that move with a constant speed b without changing shape. To extend the
obseation over a large period of time, we follow these waves using the characteristic
transformation x- bt. Let a(, t, e) u(x, t, e). We rewrite (1.3) as

(1.4) e (-( 1 b) 020-260 0t+7} +--=O.ot
Now there are only two significant scales of time"
(i) t= t/e, (a(, t, e)= u(x, t, e)).

Then formally

a+= o(),

which describes the initial layer already studied in Geel [3].
(ii) = , ((, , )= u(x, , )).

Then formally aa/az (1 b=)a=/a + O(e), which describes the behavior for a large
timescale. Note that the formal limit

ao aao_(-a=)
Or O2

is a forward diffusion equation if the subcharacteristics of (1.3) are "timelike." It may
seem surprising at first sight that solutions of a hyperbolic equation (i.e., with a finite
propagation velocity) are governed for long times by a parabolic equation. In fact, we

M(x, t)

x +t -t

x x
0

x
Z

FIG. 1. Timelike subcharacteristics.
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will show (as a by-product of our general analysis) that in the case of equation (1.3)
the solution of the reduced problem

O/0 0210
07.

(1 b2) O--, to(, 0) g()

is a good approximation of u (outside the initial boundary layer) that contains the
approximation Wo for strictly of order 1 and that is still valid for of order 1/e;
more precisely, we have that U=o+O(e) for t[p, T/e]; p, T>0; p, T arbitrary
constants.

The main body of our paper is devoted to asymptotic analysis of the general
problem P, with some suitable additional hypotheses on the behavior ofthe coefficients.

We will show that in the general case the perturbation also induces a diffusion
process similar to that for the simple case outlined above.

In the following we do the asymptotic analysis of P for large timescales in two
steps: first, we formally do the construction of the development to any order e m, m N,
of the solution u(x, t, e) of P and natural restrictive hypotheses appear on the behavior
of d, f, and subcharacteristics of P for large timescales. Second, by using the energy
method, we prove the correctness of the formal approximation with estimates for u
and its first derivatives in the maximum norm.

2. Asymptotic analysis. Construction of a formal approximation. We look for an
asymptotic approximation of the solution u(x, t, e) of the following initial value
problem:

u oZu ou]+c,(x, t)cz(x, t)E
Ot2

+((C1X t)+C2(X t))
OxOt -x]

Ou Ou+(2.1) +a(x,t,e)--?+b(x,t,e)_-- d(x,t,e)u=f(x,t,e), xR, t>-O,
Ot OX

where

(2.2)

OU
u(x,O,e)=g(x), _--7.(x, 0, e)=h(x), xeR

a (x, t, e) _-> ao > 0, for x R, _-> 0, and ao a constant independent of e.

The "timelike" hypothesis is expressed by

(2.3)
p+cl(x, t)<b(x, t, e)/a(x, t, e)<c2(x, t)-p,

forxeR, t>_-0, p>0independentofe.

The given functions a, b, d, ci, f, g, h are sufficiently smooth functions (the required
order of ditferentiability depends on the order of asymptotic approximation we wish
to obtain) that are uniformly bounded for x e R, t->_ 0.

To simplify the presentation, we will assume a(x, t) and b(x, t) are independent
of e. We introduce the transformation

(2.4) (x, t)-> ((x, t), 7"= te).

The function ; has yet to be determined. Let us put

a(x, t)- Ot’ fl(x, t)
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We rewrite (1.1) in new variables (t(, r, e)= u(x, t, e))"

o2 07 o
e(a + cfl)(a + cfl) 0---+ eL[] -x + ea--07.

(2.5)
Oa

+e2(2a+(c+c)fl) O-z+e302a (aa+b)
Oa

Or----5+ -+ da f O.

Now, we make the following remark. We know from [3] that Wo, the solution of the
reduced problem

(2.6)

OWo OWoa(x, t)--+ b(x, t)--x+ d(x, t, e)wo=f(x, t, e),

Wo(X,O)=g(x),

is a valid approximation of u for of order 1, namely, u Wo + Os (e) for [0, T], T
an arbitrary constant.

From Kaplun’s extension lemma, there exists an order function 6(e)= o(1) such
that Wo is still a valid approximation of u for of order T/3(e). Then asymptotic
analysis for large timescales is interesting if Wo does not explode or vanish exponentially.
For this purpose, we will assume

f(x, t, e)= efi(x, t, e), d(x, t, 8)= 8dl(X t, 8)

with fl, dl uniformly bounded for x R, t-> q, q an arbitrary constant independent
of e.

We rewrite (2.5) as follows:

(0 -1- Clfl)(O -- C2fl O---’JI L[)] -+ dla -fl q- a--

+e (aa+bfl) =0.
03"2

The idea is to follow the subcharacteristics; therefore we choose )(x, t) as a solution
of the initial value problem:

(2.7) a(x, t) -Of b(x, t) -x O, Y(x, O)= x.

Let

B(), r, s)= -(a + CI)(O + C2/)(X t),

C(, r, e)= L2[7](x, t),
(2.8)

D(;, % e)= dl(x t, e), F(), r, e)=f,(x, t, e),

gt(, % e)=a(x, t), E(;, ’, e)=(2a+(c,+c2)fl)(x, t),

and let B;; be the operator

021,1 OU
B;[u] Boy---5- C-- Du.

We rewrite (2.5), in a simpler form:

(2.9) -B[t] + i
O,J 02a e20-a+ eE + F.
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Moreover, we note with (2.7) that

B(,z,e)=- -a+cl -a c2

Then, from the "timelike" hypothesis (2.3), we have

(2.10) B(:, z, e)>pEfl2>-O,

and from the regularity of a, b and hypothesis (2.2), we deduce (see Appendix A.5)
that fl 0. Now, we assume that

(n) n O(1), C O(1).

Consequently, B bo> 0, bo constant. Then we have formally

(2.11) -B[ff] + 0= F+ O(e).

And the first term of an asymptotic development of u for a large timescale is a solution
of a nondegenerate parabolic problem:

-B[ao] + a a= F, ao(, 0)= g().

It is easy to see that (H) is equivalent to

0=O(1) and =02 O(1) uniformly, for xR, t[0, T/e];
Ox Ox2

T> 0 are arbitrary constant.

Thus our asymptotic analysis supposes that the subcharacteristics of P do not
converge or diverge or oscillate for large timescales (see Fig. 2 and the Appendix).
The detailed calculations for translating (H) in terms of hypotheses on a and b are
given in the Appendix. The cases ofdivergence or convergence need an entirely different
analysis. This local analysis will be the purpose of another paper.

On the basis of hypothesis (H), we look for a generalised development of u in
the form

a ao(, r, e)+ ea(, , e)+ ea(, r, e)+. ..

FIG. 2
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Putting ts, in (2.9), we find by identification in e, the set ofpartial differential equations

(2.12)
-B;;[o] + a F,

-B;;[I]+ =01 _E
02/0

Or oar’
and more generally for k > 1

We complete ts by the initial correction layer (see [3, Chap. 3, pp. 67-68])

k=0 k=0

where f t e. The /k are solutions of the ordinary differential equations

(2.13) Ot. - a(x, O) - *k(X,

where (I) k depends on Vo, /1, /k-1 and o= 0. It is easy to derive the following
set of initial conditions"

to(, 0)= g(:),

(2.14)
Vo(X, O)= __b (x, O) __0 ao(, O)+ h(x),Of a O

lk(;, O)-- --1)k_l(X, O), k>-l,

oo)=_a o)-b (x, o)
at Or a

k>_l

and the classical condition for boundary layer functions: limt_.oo vk =0, B is a
nondegenerate elliptic operator, and u is uniquely determined. We easily verify that
the Vk(X, ) are independent of e and of the following form"

(2.15)
v,(x, t)= Pk( f, X) exp (-a(x, O)t)
with Pk a polynomial in f and coefficients depending on x.

As a practical application, we remark that in the case where the characteristics
of P are "quasi-parallel" for large timescales, namely,

a(x,-)- ao o(1), b(x,f)- bo o(1),

(2.16)

Ci ( X, f) Ci,o O(1), ao, bo, Ci.o constants

and if we suppose in addition that d 0, our generalised development t, becomes a
classical development (ti independent of e). More precisely, we have in the first
approximation

bo.--x-mt,
do
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or

bo
fl-l, a

ao

We look for ff] in the form

k=O

and instead of (2.12), suppose the ai are solutions of the partial differential equations

(2.17) Cl’- c2’- 0)"-’’’’-’07" Ok

where Ik depends on to, t,. ,/k-1. Therefore, we obtain explicitly tas in the case
where the characteristics of P are "quasi-parallel" and d 0 for a large timescale.

To conclude this formal analysis, we have, using hypothesis (H), uniformly for
x R, [0, T e], T arbitrary constant:

(2.18) L[’"(:,u,s z,e)]=O(e "+2) for-o<<o, 0<z<T=

and

(2.19) L ek+lltk(X,) =O(e+) for-eo<x<oo, O <_- f_<- --5.
k=0

Then

(2.20) L[u] O(e"+’).

Moreover,

(2.21) U"a,(X, O, ,)= g(x)-[- ,n+llln(X, 0),

(2.22) Uas(X O, e) h(x)+ e"+ 0---2
ot or (’ o, e).

Consequently, u" is a uniform formal approximation of u, for x R and [0, T e],
T arbitrary constant.

3. Proof of validity. To prove the validity of our formal approximation, we look
for a priori estimates for the solution u(, r, e) of the following initial value problem;

oEu
C

Oil Ou oEu 2 dEll
L(u) -Bo:---5+ --+ a--+ Du + eE + e (:, "r, e)

O’r a: a,r a,r2

(3.1) u(Y, 0, e) if(Y),

O--U-u (:, O, e)=/(2), Y e g.

B, C, D, E, ti are defined in (2.8) and

(3.2) B -> bo > 0, ti => ao> 0.

Furthermore, B, C, ti, D, E are smooth uniformly bounded functions for x R, 0 <- z =< T.
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The main body of this section is the proof of the following a priori estimates.
LEMMA. For e sufficiently small, the solution u(, r, e) of the initial value problem

(3.1) satisfies the following pointwise estimate (uniformly valid in f):

suap lu(, z, e)[ <= C(f) exp (--) K(f),

su.p <= e-/2C(f)K’(f),

su.p <- e-3/ZCl(gl)K’(I),

with K(f)= I111. / I111,/ 1111, / I1,?11,, where is the L2 norm on the given domain,
and with K’(f)=sup, (F)+ e 1/2 sup, Iffl/ /= sup, I1/ g(), where is a part of
a strip of the upper plane bounded by two characteristics" = "p(t) and = 2(t) (see
Fig. 4), where ! =[A,

To establish these results we will use the classical energy integral method and we
multiply the differential equation (3.1) by the expression

OU OU
(3.3) 0. +0r -+ r/ u

where the functions 0, 3, r/must be determined; the result is the following expression:

1 0
(-B3u2 e(EO e3) u 2. + Crl + D3) u2

-2BOut. u.-2Brlu" u + 2eErlu." u}

2+e Ou,+ rl+OD-2e (Erl) u
1 0

(BO+eE3)u+2 Or

3U.,.U + 2e2rlu. u 1+ 2e 2

(3.4)

+ +Bn+- +C---
Or 2 u

+ -en+a0-e -e --+-- u
Or 2

+ (Bo)+co+aa eEn ea ou.u,+ -e --(n) u.u,
Or. (au+ 0u,+ nu).

The framed terms are some leading terms a priori of order e- that are impoant in
the following.

We write (3.4) in the form

(3.5)
1 0

2Or
1 0

O, + -:= Oa O, au + Ou, + nu ).
OX
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In a first approach, we could assume

I L(O, T, L(R)), , H’(R), f L2(R)

and integrate (3.5) in R x [0, T]. Under these conditions, we can derive an estimate
of the following form (using the L(0, T, L2(R)) norm)"

(3.6) -t-E
au

+lul c exp (kz)lFI

and complete (3.6) in a trivial way using the initial conditions. In what follows we use
a more complicated technique that also gives estimates in the maximum norm for
Ou/O and Ou/Or. Moreover, we only need to assume that

C(Rx[O, T]), e C’(R), fe C(R)
and

F, if, g,/ uniformly bounded for : R, 0 <_- r_-< T.

The idea is to work in the domain of dependence. More precisely, we rewrite (3.1) in
the new form"

(3.7) i.+(c*+c*) 33,r+C*l c’2 3)2j +a--O,r C.--+D.ox u F(, r, e)

where

c* a + c, )/ e and c*2 a + c2 )/ e.

It is easy to see that the characteristics of the second-order differential operator in
(3.7) are the same as the characteristics of L2. For e sufficiently small, "timelike
behavior" is verified, namely, with (2.3) and (2.7),

C
(3.8) p + c* <--< c*-p, / > O, / constant, independent of e.

We remark immediately that for a given M(Y, z), -> 0, the extent of the domain
of dependence of the initial conditions is of order O(e -1) (see Fig. 3).

Now, we can apply the technique used in Geel [3, p. 53] and integrate (3.5) in 1
(instead of R x [0, T]) where l) is a part of a strip of the upper plane bounded with
two characteristics y(t) and = y2(t) (see Fig. 4).

M (x,v)

I__. o1 -’1 ._1
FIG. 3
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D C

FIG. 4

Using Green’s theorem, we obtain

(3.9)

Then, for e sufficiently small, we must choose the functions (, 0, r/such that Q],
Q2-c]*Q], and c2*Q- Q2 are quadratic in u, u, and u and positive definite in f,
and we have good majorants for IQI and IQ31, by quadratic positive-definite expressions
in u, u, u in f. To reach this end, we put (see (3.4))

B 0 ml, m constant,

0. D + 8r/= m2, mE constant

O/O:(B O) + CO + O,

so we have

(3.10)

0 ml B-1,

r/- (mE-- ml B- D)ti-,
( =-(C" B-]" m)(i-,

and the constants m, m2 are left free.
We now have qo and M positive and independent of e such that for e sufficiently

small

(3.11) -Q3 o-e- u.,.-Q3

and

(3.12) 2 2 2[- 03l =< M(u; + e u+ u2) uniformly in f
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and

(3.13) ti0- e- > qo> 0.

We also have (with ml, m2> 0), M1, m positive, independent of e, such that for
e sufficiently small:

2 2(3.14) Q1 > m(u+ e u+ u
uniformly in

2 22 q.. e q- U2)(3.15) Q1

Finally, we easily verify that we can choose ml, m2 positive constants such that
there exists a positive constant m’ independent of e with

m 2 2 2)Q2 c* Q>--(u+e u+u
(3.16) uniformly in 12.

m’ 2 2c* Q1 Q2 > u2-k e U- + U2)

From (3.9) we now deduce the estimate

oc rn’ I c
2 2 2_1_e2 2m (u+ e u, + u2) d;+ (u; u, + u2) dr

D E

mfA’ ffcz2+82 2 2+ u u + u2) dr + qo u + u + u2) d dr

(3.17)
2+e 2 F2M2 (u; u+ u) d dz + d dr

2 2 2)" ) + e + u du+u,+u ddr + (u
A

Note that this formula is also valid for any similar region ’c (with the same
constant) (see Fig. 5).

FIG. 5
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Next we deduce

(3.18)

Let

K(f)= Eli, / I111, / 11, / I111,.

Then using Gronwall’s lemma, we derive from (3.18) the estimate

(3.19) (u+e u.---u2) d_-<exp K2(f)
./ ,2(t m

and it is easy to obtain the pointwise estimate, uniformly in f

(3.20) ]u(:, z, e)] < C(,)exp (Mz K(,)
\m/

where C(f) is independent of e. Applying (3.17) to a region f’ instead of (see
Fig. 5) and using the estimate (3.19), we have

(u + )
e B’

U+U dz<const, exp K2(f),

2 2 2 2)(u+e u+u d<const, exp K2(’).
e

We finally deduce a pointwise estimate for the first derivative of u.
Using (3.7), we have easily

(3.23) e20d..C,2 t9 [(u,+c,u)2]<_F2+const. U.+-’U
Integrating this inequality with respect to z, along the characteristic QP and using
(3.22) (see Fig. 4), we obtain

I(u/c* u)(x, , -1 max lgl + e-1/2 cnst" exp (-) K

+ e -3/: max IFI.

Or

(3.24) I(u + c*u)(:, "r, e)l < e

where C’(f) is independent of e and

-3/C,(12) K,(12)

K’(12) (e3/2 sup, Igl + 1/2 sup, Iffl+const. K(12)+supa Il).
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By an entirely analogous method we obtain

(3.25) I(u+c*u)(, , )1_-< -/c’()K’() uniformly in 12.

We have thus demonstrated all results stated in the lemma. D
To conclude this section, we apply our a priori estimate to the formal approxima-

tion u"s(x, t, e) constructed in the previous section.
Let z(x, t, e)= (u-us)(x, t, e)= (, r, e). We have with (2.18)-(2.22)"

[[]1 < const, e"+’ uniformly in R [0, T],

13(, 0)[ < const. E
n+l uniformly in R,

(3.26) rr (Y, 0)

Then

and

< const, e" uniformly in R,

< const, e "+1 uniformly in R.

K(f/) < const. 8,
n+l/2 K’(12) _-< const, e "+1/2

sup lz(, t)= O(

sup
Oz

(:, t) =o("),

sup (Y, t) O(e").

Using the fact that, for arbitrary m > n"

sup luam-

sup Ua-- Uas --O(E 1),

19 m_ (9
n+l),sup 7,o uo =o

we derive the following theorem.
THEOREM. Let D={(x,t),(Y,r)12}. Under the previous hypothesis and

definitions, we have the following approximation, uniformly valid in De for arbitrary
integers n > 0:

k =0 k =0

0 k Ok n-1

--u(x, t)= (, )+ *’-- (x,
OX k=0 k=0 OX

0 k 0 ,-1 0
-u(x, )=, a(,,)+ 2 +--a(,,)
Ot k=O k=0

=o 0--? (x’ t) + o(
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We also have (outside the initial boundary layer) in D* D\(R x[0, to]), where to is
an arbitrary small positive constant independent of e, the same estimate without the
boundary correction layer. In particular, we have

u(x, t)= ao(, z)+ O(e),
a

u.(x, t) #
a

uniformly valid in D*,

u(x, t) a o(, z)+ O(e)
cgt --Remark 1. We note that the estimate in the maximum norm for u of the lemma

is optimal: To show this for simplicity we take constant coefficients in P. Let us
suppose in addition that

02/0 2020
e + e L2(0, T; L2(R)).

Then for z u- o, we have K(O)= O(e) and the lemma implies that

u ao O(e).
Remark 2. Our result could be generalised to quasilinear problems ofthe following

form:

e c, + c [u]+ a(x, ,) a(x, , )+a(x, , u, )=o

with d of order e for large time.
Formally, we have instead of (2.11), with d(x, t, u, e)= ed(, f, , e),

_n[a] + a+ ,(, , a, e)= o(e),

and following Hsiao and Weinacht [7], we must suppose that the reduced problem
has a bounded classical solution (for r T).

To prove the validity, we can use a fixed point theorem [3, Chap. 2], with our
a priori estimate for the linearized operator:

e c, + c [u]+ a(x, t, e)+ b(x, t, )+d(x, t, O, e). u.

Appendix. In this pa we present some calculations for translating (H) into
conditions on the coecients a and b in L. First we will derive explicit formulas for
a and .

Yxo (t)

X
Xo

FIG. 6
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Let Y(xo, t) be a characteristic of L1 (see Fig. 6):

O__ Y(xo, t)= _b Y(xo, t), t),
Ot a

(A1)
Y(xo, O) Xo.

We know that ( Y(xo, t), t) Xo, and

O b O b
(A2) a /3

Ot a Ox a

It is sufficient to obtain/3; we have that

O OXo Ox
(A3) /3 and

Ox Ox OXo OXo
is the solution of

with a -> ao > 0.

0 Y(xo, t)

and

A= (Y(, so), )

Then

B= (Y(, so), :) dsC
11

where we note that (b/a)(x, t)=02/ax2[(b/a)(x, t)]. We finally have (H) equivalent
to

(A6)
A= 0(1)

B= 0(1)
uniformly for x R, [0, T e ].

As an illustration, let us choose the simple situation: a--- 1, b =- b(x). On a nonvertical
characteristic, we have

0)?
exp b’(Y()?, )) d’,

OX --,+o

0_ exp d(b(Y(, )))/b(Y(, )).
aX --,+

a,
(A7) m...0x const, b-(Y(Y, t)) and -0x2 const, b’(Y(Y, t))/bz(Y(Y, t)).

If b is zero in Xo, on the vertical characteristic x- Xo, we have

exp-b’(xo),(A8)
Ox

(Note that/3 0!.) Let

at 0X0 aX0
(A4)

a Y(xo, O)
=1

OXo
where we note (b/a)(x, t)=a/ax[(b/a)(x, t)]. Then, we have the formula

--=0 exp (Y(, :), :). d:(AS) fl Ox
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and if b’(xo) 0: 02/Ox2
"t+eo -b"(Xo) t. Therefore, in the particular situation: a -= 1,

b =-b(x), (H) is verified if

(A9) ]bl-->p > 0, p constant.

If zero belongs to the closure of the range of b there are many special cases where
(H) fails (see, for example, Fig. 7). We leave for a future publication the study of
these special situations and their local asymptotic analysis.

More generally, (H) is satisfied if we assume that

Ob. a -1 02b a -1

(A10) max + max LI(R)
xeR ON xR 022

but we can define a less restrictive hypothesis on the given functions a and b, when
b/a is decomposed into

b
(A11) (x, t) bo(x)" l(t).

a

On a nonvertical characteristic

a) 029
(A12) --’--0x const, b-l(Y(Y, t)) and --0x const, b. bffz(Y()?, t))

if b is zero in x Xo, on the vertical characteristic x Xo, we have

09
exp b’o(xo)l() d,(A13)

Ox ,-,+oo

and if b’(xo)=0" oY/Ox--- ’ bg(xo)l() d. Therefore, (H) is satisfied if

(A14) Ibo[>_-p>0 or lL(R).

b(x)

FIG. 7. Field of characteristics of L

x
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GLOBAL STABILITY OF A PREMIXED REACTION ZONE
(TIME-DEPENDENT LIIAN’S PROBLEM)*

CARLOS ALVAREZ PEREIRA" AND JOS] M. VEGAS

Abstract. Global stability properties of a premixed, three-dimensional reaction zone are considered. In
the nonadiabatic case (i.e., when there is a heat exchange between the reaction zone and the burned gases)
there is a unique, spatially one-dimensional steady state that is shown to be unstable (respectively, asymptoti-
cally stable) if the reaction zone is cooled (respectively, heated) by the burned mixture. In the adiabatic
case, there is a unique (up to spatial translations) steady state that is shown to be stable. In addition, the
large-time asymptotic behavior of the solution is analyzed to obtain sufficient conditions on the initial data
for stabilization. Previous partial numerical results on linear stability of one-dimensional reaction zones are
thereby confirmed and extended.

Key words, global stability, stabilization, reaction regions, premixed flames, nonadiabatic flames

AMS(MOS) subject classifications. 35B35, 35B40, 35B55, 80A25, 80A32

1. Introduction. We consider the time-dependent structure of a premixed n-
dimensional (n 1, 2, or 3) reaction zone which, after convenient nondimensionaliz-
ation, is governed by

(1.1) Ou/Ot=Au-(u/2)exp(mxl-u) for (x, t)sR"x]0, To[,

(1.2) u-0 if m<=0, uisbounded if m>0 asxl->-o,

(1.3) u xll is bounded as Xl->
2(1.4) u is bounded as x22+. + x,-->

(1.5) u(x, 0) (x) > 0 for x ,
where conditions (1.2) and (1.3) are assumed to hold uniformly for (x2," ", x,)
and for [0, T], for all T [0, To[ (for some To -< o), and condition (1.4) is assumed
to hold uniformly for (xl, t) Ix[0, T], for all bounded intervals Ic and all
T[0, To[.

Here, A is the Laplacian operator, and x (Xl,"" ", x,) (n 1, 2, or 3) are the
time and space variables, and u => 0 is a reactant concentration. The parameter m is a
measure of the heat flux (heat loss if m > 0 and heat gain if m < 0) from the reaction
zone towards the burned mixture, which is located at Xl =-; m is assumed to satisfy
-o<m<l, for the chemical reaction to be frozen (i.e., for the reaction term
(u/2) exp (mxl-u) to vanish) at the flesh mixture (i.e., at x +). The initial state

0 is assumed to satisfy the boundary conditions (1.2)-(1.4), which, of course, are
expected to be superfluous; they are written to emphasize that the solution of the
Cauehy problem (1.1)-(1.5) is physically meaningful only if it satisfies (1.2)-(1.4).

In this paper we will analyze the stability of steady states of 1.1)-(1.3) that depend
only on the Xl coordinate. Since the reaction term does not depend explicitly on the
x and x3 coordinates, it makes sense (mathematically) to consider the (spatially) one-
and two-dimensional eases in which u U(Xl, t) and u u(x, x2, t), respectively. But
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This research was partially supported by the Comisi6n Interministerial de Ciencia y Tecnologfa under grant
PB 86-0497.

" E.T.S. Ingenieros Aeronfiuticos, Universidad Polit6cnica de Madrid, 28040 Madrid, Spain.

884



GLOBAL STABILITY OF A PREMIXED REACTION ZONE 885

since the underlying physical problem is spatially three-dimensional, to obtain conclus-
ive stability results we must consider (1.1)-(1.5) in three space dimensions. It is not
at all obvious (although it will be true under certain conditions for (1.1)-(1.5)) that
initial inhomogeneities in the x2 and x3 coordinates disappear as t- c. Some results
in the literature [1] could perhaps be extended to include (1.1)-(1.5) if the spatial
domain R were replaced by a cylinder l-I =Rxf, with llc2 bounded, and if
boundary conditions of the Neumann type were imposed on x 91, provided that
the size of fl is sufficiently small. But to assume that the characteristic lengths in the
x2 and x3 directions are small (or even finite) is not justified from a physical point of
view. Therefore, we will consider (1.1)-(1.5) mainly for n 3, although the case where
n 1 will be considered also for technical reasons.

The one-dimensional, time-independent version of (1.1)-(1.3) was introduced by
Lififin [2], in a pioneering work on counterflow diffusion flames in the large activation
energy limit, and (1.1)-(1.5) is currently known in the literature as Lififin’s problem.
It has subsequently appeared in high-activation energy analysis of many other realistic
problems that are significant in both combustion and chemical reactor theory. For
example, it has appeared in the analysis of burning monopropellant drops [3]-[5],
chambered diffusion flames [6], two-step sequential reactions [7], [8], and tubular
nonadiabatic chemical reactors [9]; in all these instances, the parameter rn is different
from zero, but the adiabatic case (m =0) appears in a large number of problems [10],
such as the analysis of premixed flames [11]-[13] and porous catalysts [14], [15], to
cite only two examples.

Problem (1.1)-(1.5) is also of interest if the nonlinearity u exp (taxi- u) is replaced
by a more general one. For example, if we use Langmuir-Hinshelwood kinetic laws
for the chemical reaction, instead of the Arrhenius law that has been used to derive
(1.1), we obtain nonlinearities of the type [16], [17]

(1.6) uP + u)q or [uV/(a + u) r] exp (rex u),

where p-> 0, q > p + 1, a > 0, and m < 1 (the exponents p, q, and r are not necessarily
integers). These generalizations will be considered in remarks after some of the main
results.

A numerical analysis of the one-dimensional steady states of (1.1)-(1.3) has been
done by Lififin [2]. His results were rigorously proven true by Hastings and Poore
[18], [19], who showed that the solution is unique if either -<m <0 or 0<m <1/2,
while there is no solution if 1/2-< rn < (if rn 0, there is a unique steady state up to
translations in the space variable, as is easily seen by means of simple phase-plane
arguments). To derive stability results, we will need slightly more precise information
about the dependence of the steady state on m for 0 < m < 1/2, which will be obtained
in the Appendix, where a simpler proof of the results by Hastings and Poore [18],
[19] (partially based on their ideas) will also be given.

The first analysis of the stability of the steady states of (1.1)-(1.4) is due to Peters
[20], who computed numerically the maximum eigenvalue of the (self-adjoint) linear-
ized problem in the spatially one-dimensional case, and found that m > 0 is necessary
and sufficient for a strictly positive eigenvalue to exist. More recently, Stewart and
Buckmaster [21] performed an asymptotic analysis of the same linearized problem in
the limit rn- 0/, which is singular. Those results ignore the continuous spectrum of
the linearized problem, which has been calculated, for related spatially one-dimensional
problems on combustion, by Buckmaster, Nachman, and Taliaferro [22], by means of
a general theory developed by Taliaferro [23]. Unfortunately, Taliaferro’s results deal
with a weak notion of linear stability (a steady state is said to be stable if the maximum
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of the spectrum is nonpositive and zero is not an eigenvalue) and, anyway, do not
apply to the linearized problem associated with (1.1)-(1.3). Those results need comple-
tion also because they apply only to the one-dimensional case.

At this point, the boundary conditions (1.2), (1.3) deserve some attention. In this
analysis of the steady state problem, Lififin [2] imposed the following conditions at

(1.7) Ogl/OX -’> 0 as X -")--(X), Oll/OX 1 as xl .
Stewart and Buckmaster [21] maintain conditions (1.7) for the time-dependent problem,
while Peters [20] replaces them by

(1.8) U "- C as x - -t3o, u x ---) c2 as x oo

for some constants c and c2. In fact, conditions (1.2), (1.3), and (1.7) and (1.8), are
equivalent when applied to the one-dimensional steady state problem (see the Appen-
dix) and are seen to lead to equivalent linearized eigenvalue problems. But those three
conditions are not equivalent when applied to the time-dependent problem. We will
use conditions (1.2), (1.3), which are obtained from matching conditions in the singular
perturbation analysis that leads to (1.1)-(1.5), as may be seen.

In this paper we will obtain precise global stability properties of the one-
dimensional steady states of (1.1)-(1.5) for n-3. First, existence, uniqueness, and
some properties of the solution of (1.1)-(1.5) are considered in 2. In 3, sub- and
supersolutions of (1.1)-(1.5), and some properties of the steady state, from the Appen-
dix, are used to show that the (unique) steady state is stable and pointwise globally,
asymptotically attracting if-< m < 0, while it is unstable if 0 < m < 1/2. Comparison
methods do not yield good enough results on the critical adiabatic case m 0, which
exhibits infinitely many steady states due to translation invariance. In 4, a Lyapunov
function argument and a nonlinear change of variables will be used to analyze the
global stability of the steady states. In particular, we will obtain sufficient conditions
on the initial data for the solution of (1.1)-(1.5) to approach the set of steady states
as c, and for it to approach a given steady state.

2. Some preliminary results. In this section we analyze the well-posedness of
problem (1.1)-(1.5), as well as some basic properties of its solutions.

The following notation will be used. Let fl c R be a convex, smooth domain and,
for some T> 0,let QT x ]0, T[. Let Wpq(fl) (respectively, w2pq’q(QT) be the Sobolev
space of those (classes of) functions, u fl R (respectively, u Q- -) such that [Diulp

]p(respectively, IDtDxu is integrable in (respectively, in Qr) for all i= q (respec-
tively, for all and j such that 2i +j-<_2q). The norms of Wpq(fl) and wEpq’q(Qr) will
be denoted as

I1"11 ) and ll’ll2q’q)P,QTp,l-I

respectively. Wpqloc(Rn), (respectively, u,,2q,q,,p.loc x [0, To[)) will be the linear space of
those functions u’R-> (respectively, u’x[0, To[-->) such that u Wqp(B) for
all bounded balls Bc (respectively, u W2pq’q(Bx]O, T[) for all bounded balls
B and all T ]0, To[). For any nonintegral positive number r, cr() (respectively,
C’/(()) will be the H/Alder space of those functions u "12-> (respectively, u’Q.--->
R) having in l-I bounded, uniformly continuous derivatives up to order Jr] equal to
the integral part of r (respectively, having in QT bounded, uniformly continuous
derivatives DtFxu, for all and j such that 2i +j < r) and such that the [r]-derivative
is uniformly H/Alder continuous of order r-Jr] in 12 (respectively, the derivatives

jDtDu are uniformly H61der continuous, of order r-Jr], in the x variable if2i +j It],
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and of order (r-2i-j)/2 in the variable if r-2<2i+j<r). The norms of Cr()
and Cr’/2(Or) (see, e.g., [24] for their precise definition) will be denoted as

I’l and ].l (r’r/2)

respectively. Finally, C(R") (respectively, cr’/2(R"x [0, To[) will be the linear space
of those functions u ""+ (respectively, u "" x[0, To[ +) such that u Cr(B) for
all bounded balls B = R" (respectively, u C’/2(/ x [0, T]) for all bounded balls
B = " and all T ]0, To[).

We first show that (1.1)-(1.5) possesses a unique classical solution in 0_<- < To,
if -o0 < m < 1, with To oo if m -< 0.

THEOREM 2.1. If --o0 < m < 1, let r > 0 be a noninteger. If o C2+(") satisfies
(1.2)-(1.4), then (1.1)-(1.5) possess a unique classical solution u in "x [0, To[, where
To=oO if m<-_O and To=[2e(1-m)/m]exp(-ao) if O<m<l, with

ao sup {X 0(X)" X n}.

Furthermore, u c2+r’l+r/2(Rnx [0, To[ and is such that

(2.1) sup {0, xl- a(t)} <= u(x, t) <= U(x, t) for all (x, t) " x [0, To[,

where a is given by

2e(1 m) da/dt=exp (ma), a(0) ao,

and U > 0 is the unique solution of
(2.2) OU/Ot=AU in"x[0, oo[, U(.,0)=q in",

which satisfies (1.2)-(1.4).
Proof The solution of (1.1)-(1.5) will be obtained as the limit of the sequence

{Uk} defined inductively by

(2.3) OUk/Ot--AUk+(Uk/2) exp(mxl)=(Uk_l/2)[1--exp(--Uk_l)]exp(mxl),

(2.4) Uk(X,O)=(X),

where Uo U is given by (2.2) and each Uk satisfies (1.2)-(1.4). The coefficient of Uk
in (2.3) is unbounded but positive. Therefore, the linear problem (2.3), (2.4) is dissipa-
tive, and each Uk is well defined with Uk c2+r’l+r/2( x[0, 00[). This is proven by
using the estimates of Eidel’man [25, Thm. 3.1, p. 131] for the fundamental solution
of (2.3), in standard proofs ofthe solvability ofthe Cauchy problem for linear parabolic
equations (e.g., in the proof of Theorem 6.1 [24, p. 324]).

The sequence {Uk} satisfies, for each k-> 0,

(2.5) 0 . Uk+ Uk in R" x [0, oo[,

as is seen inductively by means of the Phragmn-Lindel6f (Ph-L) maximum principle
[26], [27], when we take into account that the function u u[1 -exp (-u)], appearing
in the right-hand side of (2.3), is strictly increasing for 0_-< u < o. Then the bounded,
monotone sequence {Uk} is pointwise convergent to a function u such that

(2.6) 0_-<u-<U inR"x[0, mE,

as it comes from (2.5).
Let us see that u c2+r’l+r/2( x[0, 00[), and that u is a classical solution of

(1.1)-(1.5). For each bounded, open ball B c ", let B’ be another ball such that/ c B’.
Local estimates of the solution of (2.3), (2.4) on Wp’1 and C2+s’l+s/2 [24, pp. 355, 352]
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imply that, for each T> 0, each integer p ->_ 1 and each noninteger s [0, r], there exist
constants, cl," ", c4, depending only on B, B’, T, p, and s, such that

(2.7) o llf -f, p,B’x]O,T[ dr- C2llglj Uillp,B’x]O,T[,

(2.8) luj Uil (2+s’I+s/2)B]O,T[ < c3[fj fil (s’s/2)B’x]O,T[ + C41Uj Ui[ (s’s/2)
B’x]0,T[

for all integers i, j>_- 1, where fk =(Uk_i/2)[1--exp (--Uk-)] exp (mxl). Since Uk U in
Wp’(B’ x ]0, T[) Lp(B’x ]0, T[) (monotone convergence theorem [28]) then fk -*f=
(u/2)[1-exp (-u)] exp (mxl), and (Uk} and (fk} are Cauchy sequences in the same
space. Then (Uk} is a Cauchy sequence in 21Wp’ (Bx]0, T[) (by (2.7)) and thus it
converges (to u) in the same space. Now, if we take p > (n + 2)/(2- r+ [r]), embedding
theorems [24, p. 80] imply that Uk - U in C’/2(/ x [0, T]), where a r-It]. Estimate
(2.8) with s a implies, by the same argument as above, that Uk U in C2+a’l+t/2( x
[0, T]) and, by repeating the argument if necessary (i.e., if r > a), (2.8) implies that
Uk - U in C2+r’l+r/2(/ x [0, T]). Then u C2+r’1+/2(/ x [0, T]) for every bounded ball
and every T>0 as stated, and u satisfies (1.1) and (1.5), as we see when taking limits
in (2.3), (2.4).

We now show that u satisfies (2.1) and, therefore, that it satisfies (1.2)-(1.4). It
is enough to prove that x-a(t)<-_u(x, t) for all (x, t)Rn x[0, To[ (see (2.6)); this is
true since, for all k >_-1,

x- a(t) <- Uk(X, t) for all (x, t) Rn x [0, To[,

as is seen inductively when the Ph-L maximum principle is applied to Uk(X, t) X + a(t),
and it is taken into account that w(x, t)- Xl- a(t) satisfies

Ow/Ot<--_Aw-max{O,(w/2) exp(mx-w)), w(x,O)<--(x)

for all (x, t) R"x [0, To[, as is easily seen.
Finally, we see that u is the unique solution of (1.1)-(1.5) in "x [0, To[. To this

end, first observe that any other solution of (1.1)-(1.5), u’, is such that u ’<- Uk in
n x[0, To[, for all k >_-0, as is seen inductively by means of the Ph-L maximum
principle. Therefore,

(2.9) u’<-u in a"x[0, To[,

and W u u’ satisfies

W/t-AW=(W/2)(-l)exp(mx-g) in g"x[0, To[,
(2.10)

W(x, 0)

for some function :-Rn x [0, To[ such that u’ _-< sr -< u in " x [0, To[. Then the Ph-L
maximum principle implies that W-<0 in nx [0, To[ (observe that the coefficient of
W in (2.10) is bounded above, since u and u’ satisfy (1.2), (1.3)), and (see (2.9)) the
conclusion follows.

Remarks 2.2. Some remarks about Theorem 2.1 are in order:
(A) The function u in the proof of Theorem 2.1 satisfies (1.1), (1.2), (1.4), (1.5)

for all (x, t) g x [0, [ if -< m < 1, but if 0 < m < 1 we have proved only that u
satisfies (1.3) for 0 -< < To; for -> To, u is a maximal (and not necessarily the unique)
solution of (1.1), (1.2), (1.4), (1.5). It seems that this result cannot be improved
significantly for arbitrary initial data. In fact, some numerical and asymptotic results
(see [29]) suggest that for (0 < m < 1 and) appropriate initial data, the maximal solution
of (1.1), (1.2), (1.4), (1.5), u, is such that u(x, t) 0 as x +, uniformly in
(X2, Xn Rn--1, if > T for some finite TI’, for such initial data, (1.1)-(1.5) cannot
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have a solution for all t-> 0. On the other hand, the proof of Theorem 2.1 is easily
extended to show that (1.1)-(1.5) possesses a unique solution in " x[0, 00[ if the
initial datum is such that o -> w(., 0) in ", where w C2+’1+/2(" x [0, 00[) for some
a > 0 and

Ow/Ot<-Aw-(w/2) exp(mxl-w) in

(B) The conclusion of Theorem 2.1 (existence and uniqueness of the solution of
(1.1)-(1.5) in" x [0, To[, for some To --< 00) remains true ifthe nonlinearity u exp (mxl
u) is replaced by a more general one, of the type

g(x,)f(u),

where g :- and f: [0, 00[ - are positive C-functions and:
(i) f(O)=O,f’(u) is bounded in 0 u <00.

(ii) g()f(+c)-O as :- 00, for any fixed e.
(iii) The boundary condition (1.2) at x =-00 is replaced by "u bounded" if

g(x) - 0 (as x - -00), and "u - 0" otherwise.
In particular, conditions (i) and (ii) are fulfilled by the first nonlinearity in (1.6) if
1 p < q, and by the second if a > 0, p => 1, and -00 < m < 1.

(C) If, for m 0, the boundary condition (1.2) at x--00 is replaced by u e as

Xl - -00, uniformly in x2, , x, and t, for some constant e such that 0 < c < 1, then
the conclusion of Theorem 2.1 remains true, as is easily seen. This fact will be used
in 3, where we will take a supersolution w of (1.1), such that lim w(x) -1/2 as xl - -00,
as initial datum.

Problem (1.1)-(1.5) defines a monotone flow, as shown in the following.
THEOREM 2.3. Under the hypothesis of Theorem 2.1, ifu and u2 are two solutions

of (1.1)-(1.5), defined in 0_-<t< To, such that Ul(’,0)U2(’,0 in , then Ul( t)_--<
u2( ", t) in , for all [0, To[.

Proof The monotone sequences that (in the proof of Theorem 2.1) define Ul, u2,

{Ulk}, and {Uk} satisfy Uk <----U2k in "x [0, To[ for all k >_-0, as is seen inductively by
means of the Ph-L maximum principle. Thus we have the conclusion.

As is usual in the literature, a function we C2’l("x[0, To[) is said to be a
supersolution (respectively, a subsolution) of (1.1) in 0-<t<To if Ow/Ot>-_Aw
(w/2) exp (mx- w) (respectively, Ow/Ot<-_Aw-(w/2) exp (mxl- w)) in " x[0, To[.
A sub- or supersolution of (1.1) is said to be steady if it does not depend on time.

THEOREM 2.4. Under the hypothesis of Theorem 2.1, if w >-0 is a supersolution
(respectively, a subsolution) of (1.1) in 0 <- < To that satisfies (1.2)-(1.4), and if u is a
solution of (1.1)-(1.5), defined in 0 <- < To, such that u(., O) <- w(., O) (respectively,
u(., 0) -_> w(., 0)) in ", u(., t) -< w(., t’) (respectively, u(., t) >-_ w(., t)) in , for all
tel0, To[.

Proof. If w is a supersolution (respectively, a subsolution) of (1.1), we define the
sequence {Uk}, given by (2.3), (2.4), with Uo w. As in the proof of Theorem 2.1, it is
seen that 0 <- Uk/ <= Uk <= W (respectively, w <- Uk <= Uk/l <= U) in " x [0, To[ for all k >- 1,
and that Uk--> U as k--> 00; then the conclusion readily follows.

THEOREM 2.5. Under the hypothesis of Theorem 2.1, if u(., O)=q :n ._> is a
steady supersolution (respectively, subsolution of (1.1), and satisfies (1.2)-(1.4), then
Ou/Ot<=O (respectively, Ou/Ot >--O) in n x[0, To[.

Proof. We consider only the case in which o is a supersolution. Theorem 2.4
yields: u(x, t)<= tp(x)= u(x, O) for all (x, t) "x [0, To[. Then, for each constant h
]0, To[, w(x, t) u(x, + h) is a solution of (1.1)-(1.4) such that w(., 0) u(., h) =<
u(., 0) in ". Thus, Theorem 2.3 leads to u(., t+ h)= w(., t)<= u(., t) in ", for all
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[0, To- h]. Therefore, for each fixed x ", the function u(x, t) is nonincreasing
and 0u/0 =< 0 as stated.

Remarks 2.6. (A) Theorems 2.3-2.5 stand when the nonlinearity of (1.1) is
modified as in Remark 2.2B, and also, if rn =< 0, when the boundary condition (1.2) at

Xl =- is modified as in Remark 2.2C.
(B) Theorems 2.3-2.5 give properties of the solution of (1.1)-(1.5) that are well

known for scalar parabolic equations in bounded domains (see, e.g., [30]).

3. Global stability results in the nonadiabatic case (m #0). In this section we
analyze global stability properties of the (spatially one-dimensional) steady state of
(1.1)-(1.4) under (spatially) three-dimensional perturbations, for -c < rn < 1/2, m 0.
Among the many different definitions of stability, we select the following [31]. Let X
be the set of functions u C2+r(3), for some r > 0, that satisfy (1.2)-(1.4), and let E
be a family of subsets of X. A steady state us of (1.1)-(1.4), such that us S for
all S E, will be called Y-stable if for any S E there exists S’ E such that u(., 0) S’
implies that u(., t) S for all > 0; us will be said to be -unstable if it is not Z-stable.
Below us will be a steady state that depends only on the xl coordinate, and the family

will be

(3.1) {S,t: a,/3 > 0},

where

Sa, {u X: Us(Xl-Ol)<u(x)<Us(X1-4f-j), for all x[3}.

Observe that if a,/3 > 0, then us(x1 a) < us(x1 +) for all xl R (Theorems A.4 and
A.8 of the Appendix), and S,, is a nonempty open neighborhood of us in X with the
order topology (i.e., the topology generated by the order intervals of the form ]Ul, u2[
{uX: Ul(X)<U(X)<U2(X) for all x3}) defined for Ul, u2X; see [31].

In connection with asymptotic stability, us will be said to be globally pointwise
attracting if u(., 0) X implies that u(., t)--> us pointwise as t-> .

We first consider the case m < 0.
THEOREM 3.1. If m<0, then (1.1)-(1.4) possesses a unique, spatially one-

dimensional steady state us that is E-stable (E defined by (3.1)), and globally pointwise
attracting.

Proof. We first show that (1.1)-(1.4) has a unique spatially one-dimensional steady
state that is globally pointwise attracting. To this end, let us consider the functions
Wl, w2:R-> , defined by

0 if y<=a,

w(y)=A(y-a)3/64 ifa<y<=a+4,

((y) ifa+4<y,

where A 2(x/-1)/3 and is the unique solution of

d2l/dy2=()l exp(A-l), l(a+4)=A, dl(a+4)/dy=3A/4,

f1/2 ifY<---b,
(3.2) w2(y)=1/2+(y+b)3[a-(y+b)/2] if -b < y <= -b + l,

[.y+b if-b+l <y.

It is easily seen that w satisfies (1.2), (1.3), w2 satisfies the boundary conditions
considered in Remark 2.2C of 2, wl, w2 C2/r() for every r ]0, 1[, w is a steady
subsolution of (1.1) if a_->lml-lln, and w_ is a steady supersolution of (1.1) if
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b _-> 1 + [1 + In ]/[m[. Also, for every function "R "-’> R satisfying (1.2), (1.3) (uniformly
for x_,x3l), and (1.4) (uniformly for x on bounded intervals of R), we have

(3.3) w(xl) <= (x) <- w2(xl) for all x 3,

provided that a and b are sufficiently large, as is easily seen.
Now, for i= 1 and 2, let ui: [0, [--> be given by

(3.4) OUi/Ot:O2Ui/Oy2--(Ui/2) exp (my--ui) in Rx[O, [,

(3.5) Ul->O, O<u_=<1/2 as y->- forO_-<t<,

(3.6) lui Yl bounded as y --> , 0_-< <,
(3.7) ui(y, O) wi(y) for -c < y <,
where conditions (3.5), (3.6) hold uniformly in 0 -< -< T, for all T ]0, [. The functions
Ul and u2 are uniquely defined by (3.4)-(3.7), and Ul, u2 C2+r’l+r/2(l X [0, [) (see
Theorem 2.1 and Remark 2.2C). Furthermore, if the initial datum of (1.1)-(1.5) satisfies
(3.3), then

u =< u =< u2 in 3 )< [0, OO[,

as is seen when Theorem 2.3 is applied. Also, for each y , the functions t--> ul(y, t)
and t--> u2(y, t) are monotonic (Theorem 2.5), and bounded since

(3.8) Wl=<U(’,t)-<u2(’,t)-<w2 in for all t>_-0,

as seen by means of Theorems 2.3 and 2.5. Then, for 1 and 2, ui(., t)--> pointwise
as t--> , for a certain function a:--> such that (see (3.8))

(3.9) Wl /1 /2 W2 in .
Thus, according to Lemmas A.1 and A.3 of the Appendix, the conclusion will follow
if we prove that and /2 are steady states of (1.1), since these two functions satisfy
the boundary conditions (A.4) for 0 1 (see (3.9)).

To prove that, for i= 1 and 2, t is a steady state of (1.1) (i.e., that it satisfies
(A.1)), let q C() (the space of functions of C(R) with compact support). We
multiply (3.4) by q, integrate from - to o in the y variable, and integrate by parts
twice to obtain

t)/Ot] dy

=I"(y)u,(y,t) dy-fd/(y)f(u,(y,t),y)dy,
wheref(u, y) (u/2) exp (my- u). We further integrate from zero to T in the variable
and divide by T, to obtain

d/(y){[u(y, t)- u,(y, 0)]/T} dy

(3.10) It"(y)(If u,(y, t) dt/ T) dy

d/(y) f(u,(y, t), y) at/T dy.
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But since, for each y R, ui(y, t) i(y) as oo, we have

(3.11)

[u,(y, t)-u,(y, 0)]/T0, u,(y, t) dt/T t,(y),

rf(u,(y, t),y) dt/T-f(a,(y),y) pointwise as Too.

Furthermore, the left-hand sides in the limits (3.11) are uniformly bounded in every
bounded interval of R (see (3.8)) and, in particular, in supp . Then if we let Too
in (3.10), the dominated convergence theorem [28] yields

Io "(Y),(y) dy= Ioo t(Y)f( ,(Y), y) dy,

for all 0 C(I). Therefore ti satisfies (A.1) as a distribution (observe that t L2,1oc([),
as we see by means of the dominated convergence theorem when taking into account
(3.8)) and, since the function y-f(a(y), y) belongs to L2,1oc(l), ti W22,1oc(). Also,
ti W2P,loc(R) for all p > 2, as is seen by reiterating the argument. Then embedding
theorems [28] imply that t C() and satisfies (A.1) as stated.

Finally, tl--t2 Us is E-stable, as comes out when Theorems 2.3 and 2.4 are
applied, and it is taken into account that, if c,/3 -> 0, then the functions x - u(xl )
and x - u(x +) are steady sub- and supersolutions of (1.1), respectively, as is easily
seen.

COROLLARY 3.2. If m < 0 and n 3, then (1.1)-(1.4) has a unique steady state us
which depends only on the X variable.

Proofi The steady state of Theorem 3.1 is necessarily the unique steady state of
(1.1)-(1.4) since it is globally attracting.

Remarks 3.3. (A) In Theorem 3.1 we have shown that, for every initial datum
satisfying (1.2)-(1.4), the solution of (1.1)-(1.5) is such that u(., t) - us pointwise as
t- oo. It may be seen that the convergence is uniform on compact subsets of 3, but
it is not uniform in 3 for arbitrary initial data. For example, if o depends only on
the xl variable, 0(Xl)- Xl has a limit as XlOO, and lim (O(Xl)-X) lim (us(x)-x)
as x oo, then the solution of (1.1)-(1.5) satisfies, for each > 0, lim (u(xl, t)- Xl)=
lim (o(x)-x) lim (us(x)-x) as Xl oo, as may be seen.

(B) Corollary 3.2 shows that, in addition to the (spatially one-dimensional) steady
state of (1.1)-(1.4) found by Lifin [2], there are no other steady states, possibly
depending on the x2 and x3 coordinates. For a more precise information about the
(unique) steady state of (1.1)-(1.4), see Theorem A.4 in the Appendix.

We now consider the case m > 0, in which (1.1)-(1.4) possesses a unique spatially
one-dimensional steady state (see Theorem A.8 in the Appendix), that is expected to
be unstable, according to the numerical results by Peters [20].

THEOREM 3.4. If 0 < rn < 1/2 and n 3, let us be the (unique) spatially one-dimensional
steady state of (1.1)-(1.4). Then:

(A) Ifthe initial state (1.5) satisfies q(x) >- us(xl + a) for some a > 0 and all x 3,
then the solution of (1.1)-(1.5) is uniquely defined for all >-0 and such that, for each
x3, lim u(x, t)=o as to.

(B) If a solution of (1.1)-(1.5) is defined for all t>-O and the initial state satisfies
p(x) <-_ us(xl a) for all x 3 and some a > O, then lim u(., t) 0 pointwise as

(C) The steady state us is ,-unstable (, defined by (3.1)).
Remark 3.5. Under the hypothesis of Theorem 3.4B, the solution of (1.1)-(1.5)

is uniquely defined in 0_< <o whenever the initial state satisfies u(x, 0)=> q(x) for
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all x " (q as given in Theorem 3.4B), as is seen when taking the solution considered
in Theorem 3.4B as w in Remark 2.2A. If the solution of Theorem 3.4B is not assumed
to exist for all >-0 but the other hypothesis is maintained, then the maximal solution
of (1.1), (1.2), (1.4), (1.5) (that exists for 0 =< < oo; see Remark 2.2A) satisfies the
conclusion, as is seen after slight modifications in the proof.

Proofof Theorem 3.4. (A) To prove that u is uniquely defined for all _>- 0, observe
that w u satisfies the required properties of Remark 2.2A. It is sufficient to prove
the remaining parts of the statement when (x)=u,(x+a) (Theorem 2.3); then
u(x, t)=u(x, t) does not depend on the x2 and x3 coordinates, and satisfies
cu(x, t)/Ot >=0 for all (x, t) x[0, oo[ (apply Theorem 2.5 and take into account
that the function x- u(x+) is a subsolution of (1.1) since c >0). To prove that
lim u(x, t)-oo pointwise as t- oo suppose, on the contrary, that for some finite c,
x , u(x t) <= c for all > 0. Then

u(x, t) <- c for all (x, t) ]-oo, x] x [0,

u(x, t) <= c +x x for all (x, t) [x, oo[ x [0, oo[,

as is seen by applying the Ph-L maximum principle on the intervals ]-oo, Xl[ and
]x, oo[. Then, for each x R, the increasing function t--> u(x, t) is bounded above
and, by the argument of the proof of Theorem 3.1, u(x, t) --> a(x) pointwise as --> oo,
where t is a solution of (A.1), (A.2) such that Us(X1)< as(Xl) for all x R. But this
is not possible, according to Theorem A.4.

(B) As in the proof of part A, it is sufficient to prove the result when o(x)=
u,(xr-a). Then the solution does not depend on the x2 and x3 coordinates, but is
defined for all t->0 (Remark 3.5), and, by the argument of the proof of part A
t-> u(x t) >= 0 is now decreasing), u(x t) --> (x) pointwise as t--> 0% where

satisfies (A.1) and 0 -< t(xl) < u(xi) for all x R. Then t(x) 0 for all x (Lemma
A.10 in the Appendix) and the conclusion follows.

(C) Apply parts A and B above.

4. Global stability results in the adiabatic ease (m =0). Let us now consider the
critical case m 0. Again, we are interested in the stability properties of the spatially
one-dimensional steady states of (1.1)-(1.4) (there are infinitely many due to translation
invariance; see Theorem A.2 in the Appendix) under spatially three-dimensional
perturbations. The last part of the proof of Theorem 3.1 is readily extended to yield
Theorem 4.1 below.

THEOREM 4.1. Ifm O, then every spatially one-dimensional steady state of (1.1)-
(1.4) is X-stable (Y as given in (3.1)).

The remaining part of Theorem 3.1 cannot hold in this case, since there is no
unique steady state now. We can easily be convinced that comparison methods alone
cannot lead us further in the analysis of asymptotic stability properties if m --0. Linear
stability of the steady states of (1.1)-(1.4) is easily analyzed for n 1. Although linear
stability results do not solve the problem, they are enlightening, and help us to avoid
the pursuit of ideas that cannot work in this case. For n 1, the linear eigenvalue
problem associated with a given steady state u of (1.1)-(1.3) is

(4.1) u"-f’(u)u=ou in -oo< x <oo,

where f(u)= (u/2)exp (-u). The steady state u, is easily seen to be such that u/u’,
u’"/u’, and f(u,) are bounded in -o<x<oo. We consider (4.1) in L2() (where
(4.1) is self-adjoint) and in C() (the space of real, bounded, uniformly continuous
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functions on R with the sup norm). The function u’s C(R) satisfies

(4.2) us -f’(us)us-O in-co<x<

and thus is an eigenfunction of (4.1) associated with to 0. Then the general solution
of the homogeneous equation (4.1) is easily calculated for to =0, and it is seen that
to- 0 is a simple eigenvalue in C() and that it is not an eigenvalue in L2(). Also,
if Re to ) 0, then any bounded eigenfunction of (4.1) belongs to L2(), as is seen from
its asymptotic behavior as x- +co (see, e.g., [32]); then to also in C(), and any
eigenfunction u of (4.1) is such that

(4.3) tof_ou2dx=-ff_oo[u’-uu/u’s]2dx
as seen after multiplication of (4.1) by u, integration from -oo to oo, substitution of
(4.2), and integration by parts. To obtain (4.3) observe that, since u L2(R), u" L2()
(see (4.1)), and u’ L2() as shown by interpolation inequalities (see, e.g., [28, p. 70]).
Equation (4.3) implies that every eigenvalue of (4.1) in C() or in L2() is such that
Re to-< 0. If the continuous spectrum of (4.1), or, were such that max Re cr 0, then
standard results on linear stability [33, p. 108, Exercise 6] would show that if u(., 0)
is in a certain neighborhood (in C()) of us, then the solution of (1.1)-(1.5) for n 1
approaches exponentially a translate of us as t-. Unfortunately, the continuous
spectrum of (4.1), in L2(R) and in C(), is or= ]-oo, 0]c [33, p. 140], and the result
above does not apply. Observe that the spectrum of (4.1) is equal to that of the heat
equation (which also has infinitely many steady states in C()), which, as is well
known, exhibits erratic behavior as t- c for appropriate initial conditions in every
neighborhood (in C()) of each steady state (see, e.g., [26, p. 349]). Finally, let us
point out that problem (1.1)-(1.3) for n-1 has some features in common with
one-dimensional reaction-diffusion problems exhibiting travelling fronts, which have
received considerable attention in the literature (see [33] and [34] and references given
therein).

We first consider problem (1.1)-(1.5) in one space dimension. The first part of
the following theorem contains an invariant principle that holds for a general class of
semilinear parabolic equations in a bounded domain, as is well known [33, 4.3]. There
are some more recent extensions of this principle (see, e.g., [35], [36]) that, unfortu-
nately, do not apply to (1.1)-(1.5). Observe also that the result of Theorem 4.2B implies
stabilization of certain solutions of (1.1)-(1.5) in a very weak sense, and resembles
well-known results for travelling fronts, such as those appearing in the celebrated
Kolmogorov-Petrovsky-Piscounov model equation [33, p. 134].

THEOREM 4.2. If n- 1, let the hypothesis of Theorem 2.1 be satisfied, and let us be
a steady state of (1.1)-(1.3). If the initial state (1.5) is such that us(x-a)<-_cp(x) <-

us(x+fl), tp’(x)O in -oox, for some finite constants ce and fl, and
W(), then the unique solution of (1.1)-(1.3), (1.5) is such that

(4.4)

(4.5)

us(x a) <-- u(x, t) <-- us(x + fl), u,(x, t) >-- 0 for all (x, t)

Ux u’s W6f3(l x [0, T[) for all T [0, oo[,

and satisfies the following properties:
(A) There exists a C bounded function ::[0, oo[-R such that u(x,t)-

us(x + :(t))- 0, uniformly on bounded intervals of , as t-oo.
(a) sc’(t)0 as tc.

Proof. The first inequalities (4.4) are readily obtained by applying Theorem
4.1. Then (4.5) is obtained by standard estimates on W22’’’ spaces (see, e.g.,
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[24, Chap. IV, 9]) applied to the (linear) parabolic Cauchy problem for Ux u’s which
is obtained by differentiating (1.1) with respect to x. Then lim (u,-u’s)=0 as x--> +o,
uniformly in 0_-< < T for all T [0, oo[, and the second inequality (4.4) is readily
obtained when the Ph-L maximum principle is applied to the equation obtained by
differentiating (1.1) with respect to x, and we take into account that q’(x)=>0 in
-co < x <. We now prove properties A and B.

(A) We define the energy integral

H(t)= I?oo [(u" u")2+ (1 +u,-u,u+u)exp (-u,) (1 +u)exp (-u)] dx,

which, when using (4.5), is easily seen to satisfy

H’(t) =-2 U
2 dx.

Then the function t--> H(t) is monotonically decreasing; since it is bounded below
(see (4.4)), it has a limit as t->co, and

(4.6) (u,, u’s)2 dx and dt u dx are bounded in 0

On the other hand, when differentiating (1.1) with respect to t, multiplying by u,,
integrating in the x variable from -o to co, and taking into account (4.4), (4.5) we obtain

(4.7)
2 dt

u, dx <-- u,x u, dx in 0-<t<c

for a certain positive, finite constant k. When we take into account (4.6), this inequality
yields

d f_ 2 dx is bounded above in0<t<.(4.8)
dt ut

Then, (4.6) and (4.8) imply that

(4.9) u, dx --> 0 as -> .
Now, when using HSlder’s inequality, (4.6) and (4.9) yield

0 <= UxU, dx < (u,,-u’)2 dx u2’ dx

+ u’,2 dx ut dx -0 as

uniformly on each bounded interval of . Then, when multiplying (1.1) by Ux and
integrating in the x variable from -c to x, we easily obtain

2(4.10) ux-l+(l+u)exp(-u)O as t-,

uniformly on each bounded interval of .
Finally, for each > 0, let us define (t) as the unique solution of the equation

(4.11) u(0, t)= u((t)).
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Since u’s(x)>0 in -oo<x<oo, t :(t) is a well-defined C2-function in 0<= <
(Inverse Function Theorem) and (see (4.4))

(4.12) -<-a<=:(t)<=/3<c inO<-t<.

Then, since u satisfies (4.10), (4.11), ux(x, t)>-O for all (x, t)Rx[0, o[ (see (4.4))
and, for each fixed >-0, the function x us(x + s(t)) satisfies (A.6), standard results
on continuous dependence on parameters of the solution of the Cauchy problem for
ordinary differential equations [32] imply that u(x, t)-us(x + :(t)) 0, uniformly on
bounded intervals of R, as c.

(B) We first observe that

u2 dx is bounded in 0<_-- t<,

as obtained from (1.1) when taking into account (4.4) and (4.9). Then for each
(x, t) x [0, oo[ we have

[u),(x,t)-u’s(x)]Z=2I(uc-u’s)(Uxx-u)dx
<= 2 (u, u’s)2 dx (ux, u)2 dx

and (see (4.6))

(4.13) Ux(X, t) is uniformly bounded in R x [0, [.

On the other hand, when integrating (4.7) from zero to c and taking into account
(4.6) and (4.9), we obtain

(4.14) dt Ux, dx is bounded in 0-< < c.

In addition, when differentiating (1.1) twice with respect to x and to t, multiplying
by ux,, integrating in the x variable from - to o, and taking into account (4.4), (4.5),
and (4.13), we obtain

1 d 2 2 2 2

2 dt ut dx <= k uxt dx + k2 Uxt dx ut dx

for certain finite constants kl and k2. If we integrate this inequality from zero to t,
and take into account (4.6) and (4.14), we get that

u, dx is bounded in 0

Then (4.9) yields

2 20 - ut(O, t)2 2 Utuxtdx<-2 ut dx ut), dx ->0 as t->c,

and, since u,(0, t)= u’s(s(t))’(t) and :(t) satisfies (4.12), the conclusion follows.
Observe that Theorem 4.2 does not imply that u approaches a steady state of

(1.1)-(1.3) as t. Nevertheless, if u(x, 0)-us(x)O as x +oo, for a certain steady
state us, then u approaches us as oo, as is proven below. To this end, let us assume
that the hypotheses ofTheorem 4.2 are satisfied (less than that is needed in the following
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analysis, but more generality will not be necessary and is avoided for the sake of
brevity). Let us introduce the function p :R x [0, oo[-->R by

us(p(x,t))=u(x,t).

Since u’s(x)>0 in -o<x <, p is a well-defined function of Cr’r/2(R x [0, [) for
some r> 3 (Inverse Function Theorem) and satisfies

(4.15) gp/gt=a2p/ax2+g(p)[(ap/ax)2-1] in Rx[0,

as is easily seen, where

g(p)= tt(p)/U(p)

is positive and uniformly bounded and

g’(p) [u’s(p)u"s’(p)- u(p)2]/U’s(p)2

is uniformly bounded. To prove that, take into account that us satisfies (A.1) and (A.6).
In addition, the function p satisfies

(4.16) x-a<-p(x, t)<=x+fl, px(x, t)>=0 in x[0,[,

from (4.4).
The required result will be easily obtained from the following two lemmas.
LEMMA 4.3. Under the assumptions above, if 0 <= px(X, O) <- 1 (respectively, 1 <-_

px x, O) < o in -o< x < oo, then 0 <- px x, t) <- 1 respectively, 1 <- p, x, t) < o for all
(x, t) x [0, o[.

Proof. Let us first show that there is a finite constant k such that

(4.17) O<-px(X, t)<-k for all (x, t)x[0, [.

px is nonnegative (see (4.16)) and, since px(x,O) is bounded in -<x<,
u’(x) exp (-x/x/) has a limit as x-->- (as is seen from the asymptotic behavior of
(A.1), (A.2)), and/9 satisfies (4.16), we have

(4.18) O<-_u,(x,O)=u’s(p(x,O))p,(x,O)<-_klexp(x/x/) in -o<x<

for a certain finite constant kl. Then we can see that

(4.19) u,(x, t) <- k2 exp (x/x/) for all (x, t) ]-o, Xo[ x [0, [,

where Xo is any point of such that us(xo+/3) < 1 (then u(x, t) -< 1 in ]-o, Xo] x [0, o[;
see (4.16)) and k2=max {kl, sup {Ux(Xo, t): t->0}} (k2 is finite; see (4.13)). To prove
that (4.19) holds, apply the Ph-L maximum principle in -< x <-Xo to the equation
obtained when (1.1) is differentiated with respect to x, and take into account
(4.13) and (4.18). Then p,(x,t)=u,(x,t)/u’s(p(x,t)) satisfies (4.17) since
(i) u’s(x)exp (-x/x/) and u’s(x) are bounded below by a strictly positive constantin
]-c, Xo] and in [Xo, oo[, respectively; (ii) the function x--> u’s(x) is strictly increasing
in -oo<x<; (iii) p satisfies (4.16); and (iv) u, satisfies (4.13) and (4.19).

Then the conclusion of the lemma readily follows when the Ph-L maximum
principle is applied to the equation obtained when (4.15) is differentiated with respect
to x, and it is taken into account that g and g’ are uniformly bounded, and that (4.17)
ho’lds.

LEMMA 4.4. If, in addition to the assumptions of Theorem 4.2, the initial condition
1.5) is such that tp (x) us (x) in k < x < oo, for somefinite constant k, then u (x, t) --> us (x)

pointwise as t--> o.
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Proof. Let the function p:R be defined by u(p(x))=(x); as above, p0 is
a well-defined function such that x a <= p(x) <- x + in -< x <.

It is easily seen also that there exist two functions, pl, p C(R), such that

(4.20) x a <- p(x) <= p(x) <= p(x) <= x + fl, -oo < x < oo,

(4.21) pl(X) x a, p(x) x + fl in -oo < x < kl,

(4.22) pl(X) p(x) p(x) x in k2 < x < oo,

(4.23) l<=dp/dx<oo, O<=dp/dx<-I in -oo<x <oo

for some finite constants kl and k2. Then the assumptions of Theorem 4.2 are satisfied
for the functions Ul and u2 given by (1.1)-(1.3) and

ui(x,O)=u(p(x)) in-<x<o fori=l,2.

Furthermore, since Ul(" 0) U(’, 0) U2(" 0) and Ul(" 0) U U2(" 0) in (see
(4.20)-(4.23)), Theorem 2.3 yields

(4.24) 1,/1(" t) " U(’, t) U2(" Ul(" t)_--< u-<-u2(’, t) in

for all _-> 0. Then the conclusion follows if we prove that

(4.25) ui(x, t) - u(x) pointwise as t-.
To this end, let us define, for i--1 and 2, the function p : x [0, o[- by ui(x, t)=
u.(p(x, t)); that function is again well defined and pi(x,O)=p(x) in -o<x<.
Then (apply Lemma 4.3 and take into account (4.23)),

(4.26) l<--Opl/OX<CX), OOpz/OX<=l in x [0, [,

and, since p satisfies (4.15) and Ou(x, t)/Ot u’(p(x, t))Op/Ot, we have, for 1 and
2 and for all t-> 0,

d
t)-u’(x)] dx= u:(p‘(x’

Ox

u’(o,(x,t)) x

Opi(x, t)

OZpi(x, t)

\ xt))-l] dx

l- f_ou(pi(x, tll dx

u(p,(x, t))L-I dx,

where the manipulations on the improper integral required to obtain the first equality
are easily seen to be justified. The third equality is obtained by integration by pas in
the first integral of the left-hand side, when taking into account that p(x, t) is bounded
and u’(p(x, t))O as x-, and that p,(x, t) 1 and u’(p(x, t)) 1 as x, for
all 0; the last equality is obtained when taking into account that

t))
Opi(X, t)

dx= foo d
Ot _o--dx [U’(pi(x, t))] dx= 1.
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Then the functions t->_oo(Us-U,)dx and t->_oo(u2-us)dx are monotonically
decreasing (see (4.26)) and nonnegative (see (4.24)) in 0 -< <

Therefore, for i= 1 and 2,

foo [ui-us]dxisbounded in0=<t<

since, in addition, ul and u2 satisfy property A of Theorem 4.2, (4.25) readily follows,
and the proof is complete.

Finally, we prove the main result of this section.
THEOREM 4.5. Ifm 0 and n 3, let us be a spatially one-dimensional steady state

of (1.1)-(1.3), and let the assumptions of Theorem 2.1 hold. If the initial state (1.5) is
such that

l.ls(Xl--Ol)(O(X) Us(Xl-[-) for all XER

for some finite constants ce and , and

lim (o(x)-us(xl))=O as Xl-,

uniformly for (x, x3)ER, then the solution of (1.1)-(1.5) is such that lim u(., t)-
pointwise as t- .

Proof. From the assumptions above, it is clear that, for each e > 0, there exist two
functions, q, q C(), that satisfy (1.2), (1.3), and

o(xl)_-< 0(x)_-< o(x) for all x e 3,
(4.27) o(xx)=us(x-a), o(x)=us(xl+fl) in -<xl< k,

o(xl) us(xl- e), q(Xl) us(xl + e) in k2 < Xl < c,
for some finite constants kl and k. For i= 1 and 2, let us define the functions
u:Nx[0, o[-N by (1.1)-(1.3) (with n=l) and

uT(xl, 0)=q7(Xl) in --O0<X <030.

Then (apply Theorem 2.3 and take into account (4.27))

(4.28) u(x, t) <- u(x, t) <- u(xl, t) for all (x, t)eN.ax[0,
and (apply Lemma 4.4)

(4.29) u(xl, t)-us(x-e), u(x,t)-Us(X+e) pointwise as t-.

Since (4.28) and (4.29) are true for all e > 0, the conclusion follows.
Remarks 4.6. Some remarks about the result above are in order.
(A) Theorem 4.5 is true also in one and two space dimensions (after obvious

modifications).
(B) The results of this section and, in particular, of Theorem 4.5, stand when the

nonlinearity of (1.1) is replaced by a positive ca-function f:[0, [-* such that
(i) f(0) =0, f’(u) is bounded in 0<-_ u <;
(ii) o f(u) du exists and is equal to 1,

as may be seen. In particular, conditions (i) and (ii) are fulfilled by the first nonlinearity
in (1.6) if eitherp=l or 2, orp>-3 and q>p+l, and by the second if m 0, a>0,
and p 1 or 2 or p-> 3, after multiplication by an appropriate positive constant.

5. Conclusions. In 2 we showed that problem (1.1)-(1.5) has a unique classical
solution in 0 _-< < To, with To c if m -<_ 0. If 0 < m < 1, then To c for appropriate
initial conditions, but the solution is not expected to exist in 0-< < c for arbitrary
initial data, as pointed out in Remark 2.2A.
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Global stability properties for m 0 were considered in 3, where some previous
partial numerical results on linear stability were confirmed and extended. In particular,
the unique spatially one-dimensional steady state of (1.1)-(1.4) was shown to be
unstable if 0 < rn < 1/2 and globally, asymptotically stable in a certain sense if rn < 0; in
the latter case, it was shown also that (1.1)-(1.4) does not have other steady states,
depending on the x2 and/or the x3 coordinates.

In 3 we obtained sufficient conditions on the initial data for the solution of
(1.1)-(1.5) to approach a given one-dimensional steady state.

Finally, let us point out that some questions about existence of more steady states
and about the dynamics of (1.1)-(1.5) for m => 0 remain unsolved. It seems that their
solution requires more powerful mathematical tools (and perhaps some numerics on
the two- and three-dimensional problems to get predictions) than those used in this
paper. We think that any effort towards a complete understanding of (1.1)-(1.5) is
worthwhile since, as was pointed out in the Introduction, Lifiin’s problem is ubiquitous
in combustion theory.

Appendix. Spatially one-dimensional steady states of (1.1)--(1.4). We consider the
one-dimensional steady states of (1.1)-(1.4) that satisfy the (slightly more general if
m =< 0) boundary value problem

(A.1) u"=(u/2)exp(mx-u) in -00< x <00,

(A.2) u bounded at x =-00, u- xl bounded at x +00,

where u > 0 in R.
If m 0, for each constant 0 such that 0 < 0 < 00, (A.1) is invariant under the

transformation

(A.3) x- Ox-(2/m) ln O, m m/O,

while the boundary conditions (A.2) become

(A.4) u bounded at x =-00, lu-Oxl bounded at x 00.

Therefore, problem (A.1)-(A.4), which will be considered below for convenience, is
not essentially more general than (A. 1), (A.2).

LEMMA A.1. Every positive solution of (A.1), (A.4) satisfies
U Uo, u’O as x -00, O < u’ < O in -oo<x<00,

(A.5)
u Ox c, u’ O as x +00

for some finite constants Uo >= 0 and c, with Uo 0 if m <-_ O.
Proof. Since u">0 in -00<x<00, the function xu’(x) is strictly increasing,

and the limits of u’ at x -00 and x +00 exist; these limits are zero and 0, respectively,
for (A.4) to be satisfied. Then u’> 0 in -00 < x < 00, and the limit of u at x -00 exists,
and it vanishes if m <- 0, for (A.4) to be satisfied. Finally, since 0 < u’ < 0 in -00 < x < 00,
the function x u(x)- Ox is strictly decreasing, and bounded at x +00, and thus it
must have a finite limit.

We first consider the case m 0.
THEOREM A.2. If m =0 and 0 1, then (A.1), (A.4) possess a solution u that is

unique up to translations, and such that

(A.6) u’>0, u’E= l-(l + u) exp (-u) in

If m =0 and 0< 0 < 00, 0 1, then (A.1)-(A.4) has no solution.
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Proof. Equation (A.6) is obtained after multiplication of (A.1) by u’ and integration
from - to x, when taking into account (A.5). A further integration of (A.6) easily
yields the desired result by phase-plane arguments.

The case m < 0 is considered next. We first prove the following uniqueness result,
which is used in the proof of Theorem 3.1 in 3.

LEMMA A.3. If m < 0 and 0< 0 < o, then there are not two distinct solutions of
(A.1), (A.5), u and u2, such that u(x) <- UE(X) in -o < x <.

Proof. Suppose, on the contrary, that uu2, and define Ui(x)-
u(x)E/2-F(u,(x)) exp (mx), for i= 1 and 2, where F(u)=[1-(1 +u) exp (-u)]/2.
Then U(x)=-mF(ui(x)) exp (mx), and

Ui(x)=-mI(ooF(u,(x))exp(mx)dx
(the improper integral is seen to exist). Since the function F is strictly increasing, the
function x UE(X)--UI(X), which does not vanish identically, is nonnegative and
increasing. Therefore, lim Ul(X)<lim U2(x) as x-oo, and this is not possible since
lim U(x)= lim U2(x --02/2 as x, from condition (A.5).

THEOREM A.4. If m < 0 and 0 < 0 < o, then (A.1), (A.4) have a unique solution
u such that u’(x) > 0 in -o < x <, u(x) 0 as x -, u(x) Ox c as x -, for
some finite constant c.

Proof If 0 1, the result is readily obtained from Corollary 3.2 and Lemma A.1;
if 0 # 1, the result is obtained by means of the transformation (A.3).

Remark A.5. Theorem A.4 contains the results by Hastings and Poore 18], who
proved existence and uniqueness of solution of (A.1) for m < 0, with boundary condi-
tions

(A.7) u’(x) 0 as x -c, u’(x) 0 as x o,

since, as we will see now, conditions (A.4) and (A.7) are equivalent when applied to
(A.1). In fact, we will see that both (A.4) and (A.7) are equivalent to the following
boundary condition:

(A.8) u(x) - 0 as x -, u(x) Ox - c as x - oo

for some finite constant c. That (A.4) implies (A.7) and (A.8) comes from Lemma A.1.
Formulae (A.7) imply (A.4) since, by the argument in the proof of Lemma A.1, any
solution u of (A.1), (A.7) satisfies (A.5). Furthermore, the function x- u(x)-Ox is
decreasing and thus it is bounded above as x . Then, u(x) <- wE(x) in -< x < o,
where wE is the supersolution of (3.2), if b is sufficiently large. By the argument of the
proof of Theorem 3.1, u (x) <- g(x) in -az < x < o, where t is the unique solution of
(A.1), (A.4). Since satisfies (A.5), u= (Lemma A.3) and satisfies (A.4). Finally,
any solution of (A.1), (A.8) clearly satisfies (A.4).

Now we consider the case m > 0.
LEMMA A.6. If m > O, for each Uo >-O, there is a unique solution, U(Uo; x), defined

in -az < x < az, of the initial value problem

(A.9) OEu/Ox2=(u/2) exp(mx-u), u-uo, Ou/Ox-O asx-o,

and it is such that
(a) u(0; x)=O for all xR; Ou/Ox>O for all Uo>0 and all xR.
(b) Ifuo> O, then the derivative OU(Uo; x)/OUo Z(Uo; x) exists in -<x <o and

is twice continuously differentiable with respect to x.
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(c) Ifuo> O, then the limits lim OU(Uo; x)/Ox (Uo) and lim OZ(Uo; x)/Ox h(uo),
as x->o, exist. In addition, the function Uo-> d/(Uo) is continuously differentiable and
satisfies d/(Uo) > m, #/’(Uo) h(uo) 0 in 0< Uo < c.

Proof. See Hastings and Poore 19], where this result is used to obtain uniqueness
for (A.1), (A.7) when m > 0 and 0 1.

LEMMA A.7. If m > O, the function of Lemma A.6 is such that
(a) 0(Uo)- 2m as Uo-Oo;
(b) (Uo)O as uoO;
(c) ’(Uo) ( 0 for all uo O.
Proof. (a) We multiply (A.9) by u/Ox, integrate from zero to +c, and integrate

by parts twice, to obtain (recall that 0U(Uo; oo)/Ox m),

[(uo)+Ou(uo; O)/Ox-2m][O(Uo)-OU(Uo; 0)/0x]

(A.10) =[1 + u(uo; 0)] exp [-U(Uo; 0)]

+ m exp [mx- u(uo; x)] dx.

(Equation (A.10) was used by Ludford, Yanitell, and Buckmaster [5] to prove that
(A.1), (A.7) has no solution if 0 1 and 1/2 <_- m < 1.)

Now, since the function x u(uo; x) is strictly increasing, we have

(A.11)
exp(mx-u) dx< (u/uo) exp(mx-u) dx

(2/Uo)[,(Uo)-ou(uo; o)/ox]

(use (A.9) to obtain the last equality). In addition, we multiply (A.9) by 8u/Ox, and
integrate from - to zero, to obtain

[OU(Uo; O)/Ox]=f u(Ou/Ox) exp (mx- u) dx

<foU(Ou/Ox) exp(-u)clx

< u exp (-u) du.

Then

(A.12) OU(Uo; O)/Ox-O as Uo-C,

and the desired result is easily obtained from (A.12), when we take into account (A.11),
(A.12).

(b) For each uo<l, let XlCR be (uniquely) defined by U(Uo;Xl) =1. Then
U(Uo; x) < 1 for x < Xl and integration of (A.9) from -o to x yields

oU(Uo; x)/ox [x (u/2) exp (mx-u) dx

< (u/2) exp (-u) ff exp (mx) dx

(u/2m) exp (mx- u)
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for all x ]-o, xl[ (the function u --> u exp (-u) is strictly increasing in 0 -< u -< 1).
Then (2m/u)(Ou/Ox) exp (u)<exp (mx) in -<X<Xl, and integration of this
inequality from -c to Xl leads to

2m2 u -1 exp (u) du < exp (mx).

Thus xl oo as Uo 0, and the conclusion follows from the next equation, which is
obtained by multiplying (A.9) by cgu/cgx and integrating from xl to oo

I(U0)2-- [0U(U0; X1)/0X]2-- U(0U/0X) exp (mx-u) dx

> exp (rex1) u exp (-u) du.

(c) Since O’(uo) 0 in O< uo < oo (Lemma A.6), parts (a) and (b) above yield the
result.

THEOREM A.8. (a) If m > 0 and 2m < 0 < o, then (A.1), (A.4) have a unique
solution u, and u’(x > 0 in -o < x < o, u x - Uo as x - -o and u x Ox -, c as x -> o,
for somefinite constants Uo and c such that Uo>0. If 0< O<-_2m, then (A.1), (A.4) have
no solution.

(b) If m > 0, let ul and u2 be the solutions of (A.1), (A.4) for 0 O and 0 02,
with 2m < 01 < 02 < (x). Then u2 < U as x --> -o.

Proof Apply Lemmas A.1 and A.7.
Remarks A.9. (a) Part (b) of Theorem A.8 is needed in 3 to analyze the

asymptotic behavior of some solutions of (1.1)-(1.4) as t--> when m > 0.
(b) Part (a) of Theorem A.8 contains the results by Hastings and Poore 19], who

proved existence and uniqueness of the solution of (A.1), (A.7) for 0 1 if 0 < m < 1/2
and nonexistence if m => 1/2, since, as in Remark A.5, conditions (A.4), (A.7), and

(A.13) u’->Uo as x->-o, u-Ox-,c as xc,
are equivalent when applied to (A.1). The equivalence of conditions (A.4), (A.7), and
(A.13) can be proved by the same argument in Remark A.5 using Lemmas A.6 and
A.7 and Theorem A.8.

The following result is needed in the proof of Theorem 3.4.
LEMMA A.10. If 0 < m < 1/2, let u be the unique solution of (A. 1), (A.2). Ifa solution

fi of (A.1) is such that

0 <-_ (x) < u(x) for all x ,
then x 0 for all x .

Proof. Since the function x- ’(x) is strictly increasing, there exist the limits of
t’ as x--o and as xo, and lim t’(x)-0 as x--c, lim 2’(x)- 0 as x o o, for
some 0 [0, 1]. Then t satisfies (A.1), (A.4) (Remark A.9b), the limit of as x -o,
30, exists and is finite (Lemma A.1), and 0 cannot be strictly positive (Theorem A.8).
Therefore, to-0 (Lemma A.6c) and t(x)- 0 for all x (Lemma A.6a).
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M. BERTSCHt AND S. KAMIN

Abstract. The system of two nonlinear equations which arises in plasma physics is considered. The
equations are of degenerate parabolic type. The global existence theorem for the Cauchy problem is proved.
The proof is based on the Lagrangian transformation, thus using a particular structure of the system.
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1. Introduction. Let p(x, t) and T(x, t) denote the density and ionic temperature
of a plasma that slowly diffuses in a strong magnetic field. To study the effect of the
nonlinear coupled diffusion of mass and heat in plasma, Rosenau and Hyrnan [RH1 ],
[RH2] introduced the simplified, one-dimensional system of partial differential
equations

p, (D,(p, r)p),
(pr), (pD(p, T)T), + TD(p, T)p

where D and D_ are power-type nonlinearities:

(1.1) D(p,Y)=dp,r, forp, r->_O, i=1,2.
Here di, ai, and/3 are constants that depend on the properties of the particular physical
process. In the isothermal case, i.e., where T is constant, the system reduces to a single
equation for p, the so-called porous medium equation, which has been studied exten-
sively in the literature (see, for example, [Ar]).

Observe that the equations are not uniformly parabolic: if, for example, a > 0,
D vanishes at p 0. We say that the equations are of degenerate parabolic type. In
this paper we are interested in a global existence result. However, even for nondegener-
ate quasilinear systems, most of the results in the literature concern local existence
JAm1], JAm2]. Recently, Amann [Am3] proved a global existence result for diagonal
nondegenerate systems in divergence form. We also mention a paper by Alt and
Luckhaus [AL] who consider a class of degenerate systems. However, this class does
not contain the system studied here.

Below we define a weak solution of our degenerate system, and we prove the
global existence of such a solution. To be more precise, we study the problem

(1.2) pt--(Dlpx)x in Q--Rx+,
(1.3) (I)

(PT)t=(pD2Tx)x+(TOlpx)x in Q,
p(x, O) po(x) for x ,
T(x, O) To(x) for x s oc R,

where

(1.4) o={X: po(X) > 0},
where po and To are nonnegative, bounded, and continuous functions on, respectively,
o, and where

To>--v>O ono,

* Received by the editors February 22, 1989; accepted for publication August 2, 1989.
f Dipartimento di Matematica, Universit di Torino, Torino, Italy.
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for some constant v. Instead of (1.1), we will assume that the functions Di Di(p, T)
are of the form

(1.5) Di(p, T)= p’’q(p, T) for p, T> 0,

where a > O, a2>--1 and where (01 and (02 are smooth functions on [0, c] x (0,
which satisfy

(1.6) o, > 0 in [0, c) x (0, ), 1, 2.

It will turn out that the initial condition To--> v implies that the solution (p, T) of
problem I which we will construct below satisfies T->_ v for all later times. Physically,
the strict positivity of T(x, t) seems to be consistent with the fact that the temperature
in a plasma is high. Mathematically, however, combined with condition (1.6), it is a
considerable restriction: it implies the strict positivity of o(p(x, t), T(x, t)), which
means that the degeneracy of the parabolicity in (1.2) and (1.3) is only caused by the
p-dependence of Di(p, T).

In view of (1.3), a natural quantity to consider is the energy density E pT. Since
we assume that all physical quantities are bounded, it follows that E vanishes if p 0.
Therefore it seems reasonable not to prescribe T on the set where p vanishes. Physically,
this means that we do not have to define the temperature in a vacuum. This will also
be reflected in the definition of a solution: we will define the temperature T only in
the positivity set

(1.7) [2 t
to

where

(1.8) , {X E : p(x, t) > 0}

(for the definition of a solution we refer to 2, where we also give the precise
assumptions on the data). In [BK1] it has been proved that the set t does not shrink
when time evolves.

Observe that mathematically the definition of the weak solution, and in particular
our choice not to define T outside the set , can only be justified by proving the
existence and uniqueness of such a solution. Unfortunately, the uniqueness problem
is still completely open. It is clear, however, that uniqueness certainly should fail
if we would define T outside , because we could choose T in an arbitrary way
outside .

In 3 and 4 we prove that problem I has a solution. In 3 we reduce the problem
to a nondegenerate problem in a bounded domain. The latter one we solve in 4.

In the case of the power-type nonlinearities (1.1), Hyman and Rosenau have
constructed separable solutions of a closely related system in a bounded domain, and
they observe that the large-time behaviour of these solutions depends strongly on the
parameters.

In a forthcoming paper [BK2] we will give a detailed analysis of the asymptotic
behaviour of the solution (p, T) of problem I in the case where the functions o in
(1.5) do not depend on p. It turns out that this behaviour depends critically on the
sign of al- a2, where al and a2 are defined by (1.5).

2. Preliminaries. Throughout the paper we will use the following assumptions on
the data of problems I and II.
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H1. ql, 02 C2([0, 00) (0, 00)) and satisfy qi > 0 in [0, o0) x (0, 00); al > 0 and
a2 > 1; the functions D1 and D2 are defined by (1.5).

H2. po C() f’) L(R), po >- 0 and po 0 on , and oc is defined by (1.4).
H3. To C(o) L(o) and To >= , on o for some u > O.
Next we define what we mean by a solution of problems I and II.
DEFINITION 2.1. A pair (/9, T) is called a solution of problem I if:

(i) pc C(() fq L(Q), T C()f3L(), where c 0 is defined by (1.7);
(ii) tg-->0in Q, T>_-einforsomee>0;
(iii) (pa,+I/2)x Loc(O), Pa2+/2Tx L2(S) for any bounded set S c ;
(iv) for any ff cL(t) with compact support

o

(2.2) fO(x) T(x)d/(x’O)dx+II{oTt-oa2+l2(fl’T)Txqtx
p’, Tq,(p, T)pqx} dx dt O,

where o is defined by (1.4).
3. Existence. In the present and following section we prove that problem I has a

solution.
THEOREM 3.1. Let hypotheses Ha-H3 be satisfied. Thenproblem I possesses a solution

(p, T). In addition, p and T are classical solutions in the set , i.e., p, T C2"() and
satisfy (1.2) and (1.3) in .

Remark. In [BK1] it has been proved that the solution which we construct in
Theorem 3.1 has the property that the set , f){t} is not shrinking in time. In
particular, if po>0 in , then =x[0, oo), and thus, by Theorem 3.1, p and T are
classical solutions.

To prove Theorem 3.1 we first approximate problem I by a system ofnondegenerate
parabolic equations. In 4 we will prove existence for this nondegenerate system.

We introduce some notation:

(3.1) p*=sup{po(X),X[}, T*=sup{To(x),xo}.

Proof of Theorem 3.1. We fix an arbitrary -> 0. It is enough to prove existence
for [0, ’].

For any e(O, 1/2p*) there exists a constant L>0 and functions po, To
C([-L, L]) such that

(i) e<-_po<-_p * and u<- To<- T* in [-L,L],
(ii) Lcas e0;
(iii) Po Po in Cloc() as e 0 and To To in Coo(o) as e x 0;
(iv) p(+L)= T(+L)=O.
We consider the approximating problem:

p (D,p), in Q,-= (-L., L) x (0, -]
(pT), (pD2 T,,)x + (TDp,) in Q,

(I) px(+L,t)=T(L,t)=O for0<t_-<r
p(x, O) po(X) for -L < x < L
T(x, O) To(X) for -L, < x < L.

Since po --> e > 0, the maximum principle implies that a smooth solution ofproblem
I will satisfy p _-> e in Q. Therefore, problem I is no longer degenerate parabolic.
This will be used to prove the following existence result for problem I.
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LEMMA 3.2. Let Po and To be as above. Then there exists a classical solution
(p, T) ofproblem I, i.e., there existfunctions p, T c2’l(t,) which satisfy pointwise
the equations and boundary and initial conditions ofproblem I.

The proof will be given in 4.
We establish some a priori estimates for (p, T).
LEMMA 3.3. Let p and 6 be defined by Lemma 3.2. Then
(i) e<=p<=p* and v<- T<= T* in Q,;
(ii) There exists a constant > 0 that does not depend on e such that for any

O<L<L-I

,,,+1 dx + 1(3.2) (p’,+l/2)2x dx dt < c Po
L,L) (0,’) d-L--1

a2+l 2(3.3) p Tx dx dt <- c po dx + 1
-L,L) (0,’) ,/-L-1

Proof. Observe that the two equations in the system can be written as

(3.4)
(3.5)

Pt (Pa’I(P, T)px),,

pE (pa2+lo2(p, T) T,)x + pall(p, T)pxT,,.

Hence part (i) follows at once from the maximum principle.
Let q C2(R) satisfy

0<-0<=1 onR; lOx[=<2 ona;
(3.6)

O(x)=0 iflxl-_>L+l; O(x)=l iflxl<-_L.
We multiply equation (3.4) by p,O2 and integrate by parts over Q.,. Then

al II ,,+1/2.,. 1 I_(a .._1/2)2 (01(/3e )x’ dx dt+ O2(x)p’+’(x, z) dx

(3.7)
2

al+l
q Po dx- (l(pae’+l/2)xoae’+l/2x dx d,al+1/2 O,,,

and, if we apply Cauchy-Schwarz and Young’s inequality to the last term at the
right-hand side, and use the properties of given by (3.6), it follows easily that

(p,+,/2)2 02 dx dt < c 2pe+l dx + 1

Clearly this implies (3.2).
Finally, to prove (3.3), we multiply (3.5) by TO2. Integrating by parts over Q,,

we find that

b2pa+lo2T2ex dxdt+ q2(x)p(x, r)T2(x, r) dx

d/2poTg dx + 02 ptT +p;’lp.EEx dx dt(3.9)
2

-2fl P:2+l2TTxOCxdxdt.
Qe,

Multiplying equation (3.4) by @2T2 and integrating by pas over Q,, we find
that the second term at the right-hand side of (3.9) is equal to

i _f[ pa’tplpxT2bbxdxdt
Q,,
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which can be controlled by (3.8)" since al > 0 we obtain that 1II <= + c

_
po dx.

Again applying Cauchy-Schwarz and Young’s inequality to the last term in (3.9), and
using that a2> -1, we arrive at (3.3), and the proof of Lemma 3.3 is complete.

Using Lemmas 3.2 and 3.3 we can construct a solution (t9, T) of problem I.
Let (p, T) be defined by Lemma 3.2. By Lemma 3.3(i), {p} is a family of

equibounded solutions of the equation

where

Since

pt=(A(x,t) aP P)

A(x, t)=-p,(p(x, t), T(x, t)).

O<A-<_A(x, t)<-A+

for some constants A- and A/ independent of e, it follows from a result of DiBenedetto
[dB] that the functions p are equicontinuous on bounded subsets of R [0, r]. Hence
there exists a sequence ei 0 as i--> and a nonnegative, bounded, and continuous
function p on R [0, r], such that

(3.10) p,--> p uniformly on compact subsets of [0,

Let Q= (0, r], and let be defined by (1.7). In view of the estimates in
Lemma 3.3 we may assume that the sequence ei is chosen such that for all p [1, c)

(3.11) T,--> T weakly in LlPo(Q) as -> oo

for some bounded and nonnegative function T on Q, and that

_a+1/2, pa+l/2)x(3.12) (pa+l/E)x Loc(Or) and (p, )x --> weakly in L2o(t,) as i-->

and

(3.13) TxLo(O() and T,->TweaklyinLEo(fqO) asi->oo.

We claim that the pair (p, T) is a solution of problem I on [0, -].
LEMMA 3.4. The functions T, defined by Lemma 3.2, are locally uniformly con-

tinuous in 0 Q,.
The proof will be given in 4.
Remark. Locally in , p is bounded away from zero. Hence Lemma 3.4 is

essentially a result about the nondegenerate system.
Lemma 3.4 implies that T C( f’)Q). Furthermore, we may assume that

(3.14) T,-> T in Co(fq Q) as i-->oo.

It remains to prove that p and T satisfy the integral identities (2.1) and (2.2).
So let , C’a(O) have bounded support in x[0, -). Let ei be so small that

supp Q,,,. In view of (3.10), (2.1) follows if we show that

(3.15) p, P(Pe, T.)P,xqtx -> PaPl(P, r)pxqx as -> oo.
Q,, [o,]

Let 6 > 0 and define the sets U and U- by

U {(x, t) = supp q" 0 -< p(x, t) <-
(3.16)

U- {(x, t) supp q," p(x, t) >
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By (3.10), there exists an eo> 0 such that

0<p,-<_28 in UfqQ,, ifei=<eo
and

p, 1/28 in U- f’) Q,, if ei <_- eo.
Hence, by (3.2),

(3.17) [ a,p, l(p,, T.)p,xx < x/- if e, < eo
u-dn Qi,

for some > 0 which may depend on supp , but which does not depend on e and &
In addition it follows from (3.10), (3.12), and (3.14) that, for > 0 fixed,

P, ,(P, r,)p,xx P’I(P, r)pxx as ,
and, ombinin this with (.17) and lttin S 0, w find (.1).

From similr produr it follows that

[o,]

Hence, to prove (2.2), we have to show that

(3.18) fl P:+’2(P"Te’)Te’xOxff paE+lE(p,T) TxO asi.
Q, [o,z]

Let U be defined by (3.16). By (3.10), (3.13), and (3.14),

ff p:?+’2(p,, T.,T.xxff p:+’E(p,T, Txx asi.
vno,, v

In addition there exist constants o, 0 whiCh do not depend on s and S, such that

"+’(,,T,) T,x < o ,
unQ, unQ,, UnQ,

1(32+1)/2

where we have used (3.3). Here 1 may depend on supp ft. Since a2>-1 we arrive at
(3.18) if we let 0.

Finally we have to show that the solution (p, T) which we have constructed above
is classical in , i.e., that p, T C21(). This is an immediate consequence of the
following lemma.

LEMMA 3.5. The functions p and T,, defined by Lemma 3.2, are equibounded in
C2+a,l+a/2[) for a (0, 1).loc

Again the proof will be given in 4.

4. The nondegenerate system. The main result ofthis section is that the nondegener-
ate system I, has a smooth solution, i.e., we will prove Lemma 3.2.

Most of the results in the literature about nonlinear, uniformly parabolic systems
concern the local existence of solutions (by local we refer to local with respect to the
time t). See for example [Aml]. For the global continuation of these solutions a priori
bounds that are stronger than the available estimates are often needed.
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To prove global existence for our system, we will exploit its particular structure.
The main obstacle to prove global existence is the occurrence of the cross-diffusion
term (TDlpx)x in the second equation. Physically this term represents the transport of
heat due to the diffusion of mass. Therefore we expect that this term disappears if we
use mass or Lagrangian coordinates. Indeed, defining the new coordinates (y,_t) by

(4.1)
y= O(s, t) ds

Le for-L-<_x<=L, 0<-t<-r,
t=t

we will see below that we end up with a system in diagonal form. Recently this
Lagrangian transformation has been applied to obtain several results about scalar
nonlinear diffusion equations. See, for example, [BvDEZ], [BdP].

Let (y, _t) be defined by (4.1). Then

(4.2) O<--y<-M =- poe(X) dx forall t6[0, z],

where we have used the conservation of the "total mass" r_ p(s, t) ds.
From now on we will omit the subscript e. Assuming that p is a smooth solution

of (1.2), we obtain from (4.1) that

(4.3) yx p and Yt Dp pDlpy.

Then

pt p_ + pyy p_ + pDp2y

and, on the other hand

p, (D,px), (pDlpy)yp p2(DlPy)y + pD,p2y.

Hence

(4.4) p_ p(D,py)y in G (0, M) x (0, r],

or, since p >= e > 0,

Similarly, we compute

pT p+ pTyy, p+ p2Dlpyty

and

pT (pT)t p,T= (pD2 Tx), + D,pxTx

p(p2D2 Ty )y + p2DlpyTy.

Thus, since p > 0, T satisfies

(4.6) T_ (p2D2 Ty)r in G.
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We define

(4.7) u(y, t._) -/9-1(X, t), v(y, t_) =-- T(x, t),

and

(4.8) A(u, v)=- p2D(p, T), B(u, v)=- p2D2(p, T).

By (4.5) and (4.6) and writing =_t, we arrive at the problem

u, (A(u, l))Uy)y in G

(II)
v,= (B(u, v)vy)y in G
Uy(y, t) Vy(y, t) 0 for y O, M;
u(y, O) uo(y); v(y, O) vo(y) for 0 < y < M,

where uo(y) pl(x) and vo(y) To(x).
Lemma 3.2 is a consequence of the following result.
LEMMA 4.1. Let Uo, Vo C3([0, M]) and let s+ be such that

0<t_<_

s_ <- Uo_-< S+, s_ <- Vo <- s+ in (0, M).

If A, Be C2([s_,s/]x[s_,s+]) and A, B>0 on [s_, s/]2, then problem II possesses a
classical solution (u, v) {C2’1()}2, and

s_<=u<-_s+, s_<-_v<=s+ inG.

Remark. Lemma 4.1 is a consequence of general results about diagonal systems
in divergence form [Am3]. Below we will sketch a more elementary proof.

Proof of Lemma 4.1. Let Y be the convex, closed subset of the Banach space
X {C(t)}, defined by

Y= {(u, v)X; s_<=u, v<=s+}.

We define a map T" Y Y by

T(a, )= (u, v),

where u, vC(,)f’lL2(O, -; HI((0, M))) are the (weak) solutions of the linear
problems

u, (A(a, )Uy)y in G
(IIIa) Uy(O, t)= uy(M, t)=0 for (0, ]

u(y, O) uo(y) for y (0, M),

respectively,

(Ilia) vy(O, t)= re(M, t)=0
v(O,y)=vo(y)

in G
for (0, -]
fory (0, M)

(to prove that T(, ) Y we have to show that s_ _-< u, v-< s+ in G, but since u and
v are only weak solutions this does not follow at once from the maximum principle;
therefore we approximate u and v by classical solutions u, and v, which are obtained
by replacing A(, ) and B(, ) by approximating smooth functions A, and B, we
leave the details to the reader).
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By classical results [LSU] about linear equations,

(4.9)

for some constants a (0, 1) and > 0 (to be more precise, (4.9) can be considered
as an interior estimate if we extend u to the domain I-M, 2M] x [0, -] by reflecting
u around the lines y 0 and y M; this interior estimate is given in [LSU, Chap. III,
Thm. 10.1]). By (4.9) and the theorem of Arzelh-Ascoli, TY is compact, and, by
Schauder’s fixed point theorem [GT, Cor. 10.2], T has a fixed point in Y, Which we
denote by (u, v).

We can consider (u, v) as a weak solution of problem II. To prove that u and v
have the required smoothness, it is enough to prove that A(u, v) and B(u, v) belong
to cl+q(/2(), i.e., that

(4.10)

We define w" G-) R by

u, v C+"’"/z( d).

(4.11) w(y, t)= u(s, t) ds.

Then w is a solution of the problem

w, A(u, V)Wyy in G

w(O, t)= 0 and w(M, t)= uo(y) dy for e (0, z]

w,(y, O)= Uo(S) as for y e (0, M).

Since A(u, v) C"’/2(t) for c (0, 1), it follows from the Schauder-type a priori
estimates [LSU], IF] that w C2+’1/"/2(t). Hence (4.10) follows for u. The proof for
v is identical.

Remark 4.2. Except for the proof of (4.10), the proof of Lemma 4.1 can be
generalized to arbitrary space dimensions. In particular, we obtain existence of weak
continuous solutions of systems of the form

u, div (A(u, v)Vu) in f x (0, ]

v div (B(u, v)Vv) in f x (0, z]

+boundary and initial conditions.

Remark 4.3. In this section we have used the transformation to Lagrangian
coordinates to prove existence of solutions of problem I,. We always assumed that

(4.12) p(x, t) ->_ e > 0 in Q.

but it would be slightly misleading to suggest that we only need (4.12) to avoid the
degeneracy of the parabolicity. Actually a condition like (4.12) is already necessary
to make the transformation to Lagrangian coordinates work. Even in the case of the
scalar heat equations (i.e., D 1), we cannot relax it to, for example, the condition
that p > 0 for > 0. For details, we refer to [BdPU, 4].

Finally we give the proof of Lemmas 3.4 and 3.5, announced in 3.
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Proof of Lemma 3.4. Let (Xo, to) 6 f) Q and Br {x, t" (x Xo)2 + (t to)2 < r2}.
Let r be small enough so that p >= 26 in Br. Then

(4.13) p _>- 8 in B
for all e small enough.

Step 1. The functions y y are uniformly H61der continuous in B. By (3.2) and
(4.13) we have

for some c which may depend on r but does not depend on e. From (4.14) it follows
that for {(Xl, x2) x (tl, t2)} c B, with Xl < x2 and tl < t2

(4.15)
y(x, tl) dx- y(x, t2) dx Dp, dx dt

_< (p)2 dx dt v/t t <= 2/t2- t.

Moreover

Oy

and therefore

(4.16) ]y(x + Ax, t)-y.(x, t)[ _--< cglAx [.

Using (4.15) and (4.16) we get that for every a small enough

lYe(X, + At) y(x, t)[ < y(x, + At)
1 f’+’ y(s, + At) ds

+ y(x, t)
1 f+ y(s, t) as

1 x++-- [y.(s, t+ At)- y(s, t)] ds
O

Let a IAtl 1/4. We obtain

(4.17) lye(x, + At)-y(x, t)l ClAtl 1/4.

The H6lder continuity follows from (4.16) and (4.17).
Step 2. Let Yo y(xo, to), t_o to and Im (B) be the image of B in the y, _t plane.

Then Im(Br) contains a rectangle ly-Yol</3, [_t-_tol<At where /3 and At do not
depend on e. For the proof we notice first that if Ix-xol < -/2, It-to[ < -/2 then
(x, t) B. Therefore for It- tol < -/2 and for all x

(4.18) ly(x, t)-y(xo, t)l- p(s, t) ds
Xo

Let/3 be some positive number which we choose later and At < -/2 be so small that

(4.19) ly(xo, t)-yol</3 forlt-tol<At.
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By Step 1 such At exists and does not depend on e. Next we take the rectangle in y,
_t plane K. {(y, t)" ly-Yol<,lt_-tol<At}. We have using (4.18), (4.19) for (y, t)e

>=ly(x, t)-yol>-ly(x, t)-y(xo, t)l-ly(xo, t)-yo[

>_- " min {Ix- Xol, 1/2r}-/3

and hence

2/3 => 8 min {IX-Xol, }.
Take/3 < 6r; then min {Ix Xol, r/2} Ix Xol and therefore

2/3 1
6 2

Finally K. c Im (B) and/3, At do not depend on e. Note that the last assertion means
the equicontinuity of the inverse transformation x x(y, _t), =_t at the point Yo, _to.

Step 3. We may now apply Theorem 10.1 [LSU, Chap. III] to the solution of
uniformly parabolic equations (4.5), (4.6) in K.. As a result, we get that the functions
p(y,_t), T(y,t_) are uniformly H61der continuous in the interior domain / (C) K.,
dist (K., 0K.) > 0. Combining this result with Step 1, we obtain that p,, T are locally
uniformly H51der continuous in the x, variables near (Xo, to) and thus the functions
T, are locally uniformly H/51der continuous in f)(0, z).

Moreover, proceeding as in the proof of (4.10), it follows that

(4.20) t2+a,l+a/2t’Reand T are uniformly bounded in -loc

as functions of y, _t.
Step 4. To complete the proof we have to show that T are locally uniformly

continuous in down to 0. This follows from the standard arguments, using the
previous considerations and the equicontinuity of To. in o.

ProofofLemma 3.5. We proceed as in the proof of Lemma 3.4 and introduce the
sets K, and KK,. By Step 1 of the proof of Lemma 3.4 the ball B=
{(x, t): (x Xo)2 + (t to) 2 < 2} belongs to/. In view of (4.20) it is enough to prove that

(4.21)

are uniformly bounded in, respectively,

C’+’’’/2(B) and C""/2(B).

But Y(x, t) y(x, t) -y(xo, to) are uniformly bounded in B and satisfy the equation

oY D
Ot OX2

where D Dl(p(x, t), T(x, t)) are uniformly bounded in C’/2(B). Hence, applying
once more a priori estimates for linear uniformly parabolic equation [LSU], [F] we
obtain (4.21). This completes the proof.
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AN INTEGRAL EQUATION METHOD FOR A PROBLEM WITH MIXED
BOUNDARY CONDITIONS*

WILLIAM Mc LEAN"

Abstract. Consider the problem of finding a complex function f u + iv, which is holomorphic in a
given domain, with the real part u taking prescribed values on one part of the boundary, and the imaginary
part v taking prescribed values on the remainder of the boundary. (This is essentially equivalent to solving
Laplace’s equation subject to mixed Dirichlet and Neumann boundary conditions.) By virtue of the Cauchy
integral formula, the unknown boundary values of u and v satisfy a 2 x 2 system of singular integral equations,
which can be solved in a certain class of weighted Lp spaces, by applying a result of I. Gohberg and N.
Krupnik. The values of both u and v are then known over the whole of the boundary, and so f can be
computed using the Cauchy integral formula.

Key words, mixed boundary conditions, singular integral equations

AMS(MOS) subject classifications. 45F15, 35C15

1. Introduction. Let 0 < a < 1, and suppose F is a simple, closed C1’ curve in the
plane. (Thus, F satisfies the Lyapunov condition, see, e.g., Mikhlin [12, Chap. 18].)
The complement, R2\F, consists of a bounded (interior) component lli and an
unbounded (exterior) component fie. It is convenient to take the usual one-point
compactification R2U {o} of the plane, and to allow fie. In this way, both li and
fie are simply connected and have compact closure.

The curve F is given a counterclockwise orientation, and the forward unit tangent
vector is denoted by z. The unit normal vector v is chosen to point into "i SO that, at
every point of F, the ordered pair of vectors (z, u) is a right-hand basis for R2, i.e., the
cross product r x u (0, 0, 1) R3. Also, to simplify notation, 2 will be freely identified
with the complex plane C by writing a typical vector as x (x, x2)- Xl / ix2.

In what follows, we consider the problem of finding a complex function f- u / iv
which is holomorphic in f/i, and satisfies mixed boundary conditions of the form

(1.1) ulr,-glr, vlr-glr.

Here, F and F2 are nonoverlapping sub-arcs of F satisfying F U F2 F, and g is a
given function defined on F. A classical treatment of this problem for the case when
F is the unit circle may be found in [14, 94].

The requirement that f be holomorphic is equivalent to assuming u and v are
conjugate harmonic functions, i.e., they satisfy the Cauchy-Riemann equations

Ou Ov Ou Ov

OX OX2 OX2 tX

everywhere in gli. Our problem could be formulated in terms of u alone. Indeed,
provided u and v are sufficiently smooth at the boundary, the Cauchy-Riemann
equations hold along F in the form

(1.2)
Ou Ov Ou Ov

O" Ou au

* Received by the editors December 23, 1987" accepted for publication (in revised form) August 8, 1989.
f School of Mathematics, University of New South Wales, Kensington 2033, Australia. This research

was carried out while the author was a Queen Elizabeth II Fellow at the University of Tasmania.
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and therefore, if we let h =-dg/dz, then u satisfies

Au =0 on "i,

(1.3)
u=g on F,

on F,

where A (tg/tgx1)2-{--(tg/tgx2)2 is the Laplacian. Thus, we can think of u as a solution
of the mixed Dirichlet and Neumann problem for the Laplace equation. Note that

hit determines glr2 uniquely up to an additive constant, reflecting the fact that, given
u, the harmonic conjugate v is unique up to a constant.

Before discussing our own approach to problem (1.3), we will briefly review some
established results. For j-1 and 2, let H1/E(Fj) denote the Sobolev space consisting
of the restrictions to Fj of functions in H1/E(F), and let -I/2(Fj) denote the dual of
H1/E(F) (cf. Costabel and Stephan [3, pp. 178-179]).

Suppose glr, H1/2(F1) and hit /r-1/E(F2), and let

F= {C@ 6 Hl(-i) lr, =0}.

By using the trace theorem to extend g to a function in Hl(i) and then putting
u w+ g, we can reformulate (1.3) as the following variational problem: find w e
satisfying

(1.4) Vw. V dx Vg. V dx- hldt[ for all .
i

(Throughout this paper, we use the notation V (O/Xl, /x2) for the gradient
of the function . Also, the arc-length measure on F is denoted by ]dt], since this is
consistent with writing rf(t) dt for the contour integral offalong F.) The Lax-Milgram
theorem implies that there exists a unique function w satisfying (1.4), because the
Dirichlet bilinear form is coercive on ; see Ciarlet [1, p. 21]. Hence, there exists a
unique variational solution u H(i) of the original mixed boundary value problem
(1.3). The same analysis also works in the case when F is a polygon rather than a
smooth curve; see [3, p. 181] and [7, Chap. 4].

In applications, we are usually interested in the variational solution, because this
has finite energy, i.e., V u L2(i). Later, in Example 5.5, we will construct an infinite
number of singular eigensolutions of the mixed problem, each of which is physically
spurious in the sense that its gradient fails to be square-integrable near one or another
of the so-called collision points, where F and F: meet. This fact must be taken into
account when discussing nonvariational solutions of (1.3), since it obviously affects
the question of uniqueness.

If the function u is harmonic on i and, say, is in C:(i), then a well-known
argument [8], [16] involving Green’s second identity implies

lfrV(t).(z-t) lfr (1(1.5) u(z)= iz tl u(t)dt[- log
lz- Ov

(t)[dtJ

for z 6 i, and

(1.6) u(z)=lfr v(t) (z-t)
r Iz- tl u(t)ldtl-lcr log IZ_ tl cv (t)ldtl

for z F. More generally, it can be shown [3, pp. 183, 208] that these formulae are
valid for any variational solution u of (1.3). If the boundary conditions from (1.3) are
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substituted into (1.6), then we obtain a 2x2 system of integral equations for the
unknown functions Ou/Oulr and ulr. This system determines an invertible linear
operator [3, p. 212]

,ulw (gl, hl=)
F1

-/-(r) x H/(F_)- H/(rl) -/(r),
provided F has the following property: the homogeneous, first-kind integral equation

log i qg(t)ldt 0, z e F,

has only the trivial solution q(t)=0. (This property fails to hold only when F is
"exceptional" in a certain sense [8, p. 52], [10, p. 142].) Finally, if the solutions of
the boundary integral equations, together with the boundary conditions from (1.3),
are substituted into the right-hand side of (1.5), then the variational solution is recovered
[3, p..213].

In this paper, we will solve (1.3) using an integral equation method different from
the standard one just described. The Cauchy integral formula will take the place of
(1.5) and, by applying boundary conditions (1.1), a 2 x 2 system of singular integral
equations will be obtained for the unknown functions v[r, and U[r2. This system will
be solved in weighted Lp spaces by applying a theorem of Gohberg and Krupnik [6].
Our approach avoids the use of half-order Sobolev spaces, but the price of this
simplification is the severing of a direct connection with the variational solution.

Now for an overview of the paper. In 2, a result on Lp boundary values of
harmonic functions is stated, and a class of weighted Lp spaces is introduced, along
with some miscellaneous notation and terminology. Following this, in 3, we summarize
a large number of results from the Lp theory of layer potentials and the Cauchy
integral--material that is referred to many times in subsequent sections. Next comes
a very brief section devoted solely to describing the result of Gohberg and Krupnik
[6] concerning the index of a singular integral operator with piecewise-continuous,
matrix-valued coefficients. The fifth--and longest--section treats the integral equation
method itself, with the main results on existence and uniqueness ofsolutions in weighted
Lp spaces being stated as Theorem 5.4. The final section is devoted to the analogous
mixed boundary value problem for f holomorphic in the unbounded region e. Here
some additional complications arise, connected with the value of f at infinity.

2. Preliminaries. The scalar product in 2 will be written

x" y x,y, + x2y2 }(y),

where x (x1, x2) and y (Yl, Y2).
In order to discuss nontangential limits on F of functions defined on i and/or

fe, fix an angle 0 such that 0< 0 < 7r/2, and a number e > 0. For F, define the
interior cone with vertex t, axis 9(t), half-angle 0 and height e, by

Ci(t)={x2:lx-tlcos0<9(t)’(x-t)<e}.
Similarly, define the exterior cone

Ce(t)={x2: Ix-tl cos o<-v(t). (x- t) < e}.

It is assumed e is chosen small enough to ensure that the corresponding interior and
exterior cones with height 2e are contained in ’i and f, respectively.



920 WILLIAM MCLEAN

DEFINITION 2.1. If the function u is defined on i, then the interior nontangential
maximal function ui*" F [0, oo] is defined by

ui*(t) sup ]u(x)[, r,
el(t)

and the interior nontangential limit of u at is denoted by

ui(t)- lim u(x), F,
xECi(t)

whenever this limit exists.
If u is defined on e instead of on i, then we define u and u in the obvious

way, using exterior cones instead of interior cones. We also define the two-sided
nontangential maximal function u*= max {u, u}.

The significance of these notions can be seen from the following result.
THEOREM 2.2 [4], [9]. Suppose 1 < p . Ifu is harmonic on fli and ifu Lp(F),

then ui(t) exists for almost all F. Moreover, ui Lp(F), and u equals the Poisson
integral of u.

We will say that u is harmonic on , if u is harmonic on {} in the usual
sense, and if, in addition, u is bounded at . With this convention, Theorem 2.2
remains true for the exterior case. Indeed, if u is harmonic on , then the function
z u(1/z) is bounded and harmonic on a punctured neighbourhood of the origin,
and therefore has a removable singularity at z 0. This observation also shows that u
admits a single-valued harmonic conjugate on .

From this point onwards, we will always assume implicitly that the number p
satisfies 1 < p <. The norm in Lp(F) will be written

II/11, I/(t)l’ldtl

and, more generally, we will introduce a class of weighted Lp norms as follows. Fix
distinct points t<),..., t<r) lying on F, and fix real numbers fl,..., fl satisfying

1 1
(2.1) --<fl<- forljr,

P q

where q is the conjugate exponent to p, given by l/p+ 1/q 1. Define the weight
function

.2) <t It- t)l’, r,
j=l

and define the space Lp(F, p) by putting

Ilfll ,r.o pfll p(t)f(t)lldtl

As is easily verified, condition (2.1) implies that there exist P0 and p such that
1 <PoPPl< and

(r) (r, ) o(r),
with the inclusions being continuous. Fuhermore, it is not dicult to show [13, p.
53] that Lq(F, p-l) is the topological dual of Lp(F, p) with respect to the usual pairing

(2.3) (g,f> j g(t)f(t)ldtl.

Obviously, Lp(F, p)= Lp(F) when fl fl=0, i.e., when p 1.
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Given a bounded linear operator A" Lp(F, p) Lp(F, p), its transpose is the
bounded linear operator A"Lq(F, p-l)_> Lq(F, p-l) defined by

(Atg, f) (g, Af), g L.(r, p-’), f L (r, ).

The nullity n (A) and deficiency d (A) of A are defined by

(2.4)

where

n(A) dim ker A,

d(A) dim Lp(F, p)/im A,

ker A {u Lp (F, p): Au 0},

im A= {f Lp(F, p): f= Au for some u Lv(F, p)}

are the kernel and image of A, respectively. If im A is closed, and if both n(A) and
d(A) are finite, then A is said to be a Fredholm operator (or, sometimes, a Noether
operator), and the integer

(2.5) indA=n(A)-d(A)

is called the (analytical) index of A. In this case, A is a Fredholm operator on
Lq(F, p-), and [11, p. 42]

(2.6) n(A) d(A’), d(A) n(A’),

so ind At= -ind A.

3. Operators and potentials associated with the Cauchy integral. In this section,
we fix some notation, as well as gathering together certain established results which
will be used repeatedly in later sections. Recall that it is assumed 1 < p <

The starting point for our considerations is the Cauchy integral formula

1 Irf(t dt,f(z) =- t--"
which is valid if, e.g., the function f is holomorphic in a neighbourhood of ’i- An
elementary calculation shows

1 dt 1 {v(t).(z-t) r(t).(z-t)}(3.1)
27ri z 2 7r z Z + z -l- [dtl,

and this equation provides part of the motivation for the following definition.
DEFINITION 3.1. Suppose Lp(F). For z F, let

1 Ir r(t)" (z--t)
q( t)ldtl,

Vq(z) =-- log
z-

q(t)ldtl’

1 IrV(t)’(z-t)W(z) -- Iz- tl
q(t)ldtl,
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and for z F, let

1 , z(t)" (z-t)
Rq(z) i:Sl #(t)ldtl,

SP z
l q

z
at,

1 (t). (z-t)
T(z)

iz_tl
(t)ldtl.

In the definitions of R and S, the slash through the integral sign indicates that
the Cauchy principal value must be taken. By contrast, the operator T is only weakly
singular, because

v(t). (z-t)=O(Iz-tl+) for z, tF.

This bound is a simple consequence of the assumption that F is C 1’.
Both U and W are harmonic on U. Also, V is harmonic on kF, but since

(3.2) V(z) (t)ldtl log
Izl

O(z- as z,

it follows that V is bounded at if and only if r (t)ldtl 0. Note that the gradient
of V is

l r t-Z
VV(z): it_zl

(t)ldtl,

Traditionally, V and W are called, respectively, the single and double layerpotentials
of .

The transposes of the operators R and T with respect to the pairing (2.3) are,
formally,

R’(z)
1 (z) (t-z)

i_zl= (t)ldtl,

1 (z). (t-z)Try(z)=
it_zl

(t)ldtl,

where z F, and it follows from (3.1) that R, S, and T are related by

(3.3) s r+ m.
The next theorem gives the interior and exterior boundary values in Lp(F) of the

potentials introduced above. As usual, C(F) denotes the Banach space of continuous
functions on F, equipped with the maximum norm.
TOM 3.2 [5], [9], [13]. Suppose Lp(F). e bounds

hold, and V is continuous across F, with



AN INTEGRAL EQUATION 923

The operators

are bounded, the operator

is compact, and the relations

R, S" L(F, p)- L(F, p)

T" L(r, p)-, L(r, p)

Uo) 1/2Ro Vo )o,
’. (V Vq:,) 1/2Rtq ’. (V V),

W)i 1/2(I + T),
u. (V V) (I +
(W)=(-I+ T),
u. (V V) (-I +

are valid, where I denotes the identity operator. Finally, the Cauchy integral

1 J-v (t) dr, zr,(.) ()= ,
satisfies the estimate II*ll, cllll,, as well as the Sokhotski-Plemelj formulae

(+ s),
(3.6)

.=(-+s).
Here, the generic constant c > 0 is independent of , but is dependent, e.g., on

the veex angle 0 of the interior and exterior cones used to define the nontangential
maximal functions.

The following technical lemma will help in establishing fuher propeies of the
operators appearing in the preceding theorem and will be used again in 5 and 6.

LEMMA 3.3. Let L(F). e single layer potential u V satisfies

(3.7) I1 dx

Moreover, if Ir ldl =o, then

(3.8) Iul= x= u= latl.

Proof First suppose that is HOlder continuous on F, so that 7u has unique
continuous extensions from to , and from to (see, e.g., Smirnov [15,
p. 594]). Since u is harmonic,

7.(uVu)=]Tul on

and thus, by the divergence theorem,

[Vu[2 dx= (-) (uVu)i]dt[:- ,i Idtl,

which establishes (3.7).
Introduce {x : Ixl < r} and F {x 2. ix r} for all r sufficiently large;

then, once again, the divergence theorem implies

(3.9) IVul2 dx u dtl+ u--[dtl,
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with v on Fr being the outward unit normal to f,. If Jr ldtl =0, then, by (3.2), we
have u(x)= O([x] -1) and Vu(x) O([x[ -2) as Ixl-, hence r, u Ou/Ou [dt[ O(r-2)
and (3.8) follows from (3.9) by sending r-. (Note that if r (t)[dt[#O, then
u(x)= O(loglx[) and Vu(x)= O(Ix1-1) as Ixl, so r, u Ou/Ou Idtl O(log r) as
r-- oG.)

Now consider the general case, where Lp(F). Since u V is continuous on
F, and since F is C 1’, it can be shown [10, p. 136] that

[V u] 2 dx fr tpuldt[.
iU

By H61der’s inequality and (3.4),

qul dtl

and therefore

(3.10) IVul -<-cll ll .
iU1"

Choose a sequence of H/51der continuous functions n converging to in Lp(F). Put
un V, then, as we have just seen,

(3.11) IVuol dx=- (u.),\-Z-Z./ Idtl.

Replacing by p,-q in (3.4) and (3.10), it follows that u, --> u in C(F) and Vu --> Vu
in L2(’),i). Moreover, Theorem 3.2 implies

(Su,,/Ov)i=1/2(-I + Tt),, - (OU/OV)i=1/2(--I +
in Lp(F), and therefore (3.7) follows by sending noo in (3.11). A similar argument
can be used to prove (3.8), since if [.r (t)ldt] 0, then the H/Slder continuous functions
q, can be chosen in such a way that r ,,(t)ldt] =0 for every n. E!

The results of the next theorem are all well established, but there does not appear
to be a single convenient reference for them. Thus, most of the proof is outlined.

THEOREM 3.4. The identities

(3.12) S2 I, R2 T2- I, RT+ TR O,

hold on Lp(F, p ), and the operators

S, I+ T: L (r,
are invertible. Moreover,

R, I- T L(r, p)--, L(r, p)

are Fredholm operators with zero index, and

ker R ker (I T) span { 1 }.

Finally, there is a real-valued function tp Lp(F) such that

ker R ker (I Tt) span { }

and

(3.13) f @( t)ldtl 1.
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Proof The books [6] and [13, pp. 46, 51] both contain proofs that S2= I on
Lp(F, p), and (3.3) implies

S2 T-R) + i( TR + RT),

so the second two identities in (3.12) follow immediately from the first one. Obviously,
S is invertible with S-l= S, and the operators I + T are Fredholm with zero index
because T is compact. Similarly, R is Fredholm with zero index because, by (3.3), it
differs from the invertible operator -iS by the compact operator iT.

To prove the remaining assertions, we begin by observing that if p 1, then the
Cauchy integral (3.5) satisfies (z)= 1 for all z ei, and hence the first of the
Sokhotski-Plemelj formulae (3.6) implies S1 1. Thus, it follows from (3.3) that
1 ker (I- T) and 1 e ker R.

Next, we claim ker (I + T’)= {0}, which implies I + T is invertible since ind (I +
T)=0. Let oker(I+Tt); then .roldtl=(o, 1)=(-T’,l)=-(o, T1)=-(o, 1)
-[.r ldtl, and hence r ldtl--0. Thus, if u Vo, then the second part of Lemma 3.3
shows Vu=0 on fe, since (Ou/O,)e=1/2(I+ T’)o =0. Therefore, u is constant on
and, since u(oo)=0 by (3.2), we conclude u =0 on fe. Hence, ui ue=0 on F, and
so, by the maximum principle, u =0 on fi, implying o =(Ou/Ov)e-(Ou/Ov)i=O.

Suppose o ker (I T’) and .r ]dt]- 0. If u Vo, then Lemma 3.3 implies Vu 0
on f/i, since (Ou/Ov)i=-1/2(I Tt)q=0. Thus, ue=ui is constant on F, and since
u(z) O(z-1) as [zinco, it follows by the maximum principle that u =0 everywhere
in R2. Hence, p (Ou/Ov)e-(Ou/Ov)i =0, and using this observation, we will now show
n(I-T’) <- 1--recall the notation in (2.4). Let 01 and q2 be nontrivial elements of
ker (I-T’); then r Olldtl # 0 and [.r o2ldtl O, so there exist nonzero scalars A and

’2 such that the function p hlp + )t2tp2 ker (I- T’) satisfies r qldt[ =0. Arguing as
before, we see p 0, which means and P2 are linearly dependent.

Remembering 1 ker (I- T) and ind (I- T)= 0, it follows that 1 _<-n(I- T)=
n(I- T) <- 1, and consequently ker (I- T) =span {1} and ker (I- Tt) =span {@}, for
some function @ Lp(F) which is not identically zero. Moreover, r d/Idt]O, as
otherwise the argument of the previous paragraph would show @ 0; hence we may
assume (3.13) holds.

Finally, suppose q ker R; then 0= R2p (I + T)(I- T)p and so (I- T)q =0,
which shows ker R ker (I-T). Also, ker R t, because if u V@, then, arguing
as before, u is constant on fi and hence Rtg/=2(Ou/Or)=O. Since indR=0,
we see l<-n(R)=n(R)<-n(I-T)=l, and thus kerRt=span{@} and kerR=
span { 1 }.

4. Systems of singular integral equations with piecewise continuous coefficients. We
will describe a result of Gohberg and Krupnik [6], which is fundamental to the analysis
of the integral equation method in 5 and 6.

Let PCnn(F) denote the set of piecewise continuous functions defined on F and
taking values in C nn, the set of n xn complex matrices. Thus, aPC""(F) if
a :FC" is continuous except at finitely many points, and if, for each point of
discontinuity x F, both one-sided limits

a(x+0)= lim a(t)
t-

exist. Here, the + direction is that of the forward unit tangent vector z. With each
function a PC""(F), we associate a continuous, closed, oriented curve Cp.,(a) as
follows.
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First, for 0 < 8 < 27r, define the function ca [0, 1 --> C by

ei(-)g sin (Tr- 8)/z 8 r,

c(/x) ei(-) sin (Tr-8)
/x, 8= "n’.

This function parametrizes a circular arc or, in the case 8 7r, a straight line, beginning
at zero and ending at 1. When 0 < 8 < 7r, the arc coincides with the locus of points in
the lower half-plane, at which the interval [0, 1] subtends an angle & Otherwise, i.e.,
when r < 8 < 2r, the arc consists of the points in the upper half-plane at which the
angle subtended by [0, 1] is 27r-8.

Let t(1), , t(r) and ill," ",/3r be as in the definition (2.2) of the weight function
p, and put

27r/p if F\{t(l, ", t(r)},
8(t)

2r(flj + l/p) if t<j) for some j {1,. ., r}.

Given a PCnn(F), define ap,, F x [0, 1] --> C n" by

ap,,(t,l)=(1-c<t)(l))a(t-O)+ct)(t)a(t+O), tr, 0<_-<_-1,

and observe that ap, p(t,/)= a(t) whenever a is continuous at t. The curve Cp,,(a),
which was mentioned earlier, is defined as the range of the function (t,/)->
det ap,,(t, I), where (t,/) F x [0, 1]. Note that the orientation of F induces an orienta-
tion of Cp.,(a) in a natural way. If Cp,,(a) does not pass through the origin, then the
function a is said to be p, p-regular, in which case we can define

indp,,(a)- winding number of Cp, p(a) about 0.

This integer is called the p, p-index of a.
Next, we introduce the operators

P=1/2(I/S), Q=1/2(I-S),

which obviously satisfy

(4.1) P+Q=I, P-Q=S.

Furthermore, because S2= I, it follows that P and Q are projections, i.e., P2-P and
Q2: Q. Finally, we define the n x n diagonal operators P-diag (P, , P) and
Q=diag(Q,..., Q), which are bounded on the n-fold product space L(F,p)=
L,,(r, ,) x ,(r, ,).

THEOREM 4.1 [6], [13, p. 129]. Suppose a, b PC’(F). The operator

A= aP+ bQ" L,(r, p)-> L,(r, p)

is Fredholm if and only if b-la exists and is a p, p-regular function in PCnn(F). In this
case, ind A -indp,, (b-la).

Actually, the conclusions of Theorem 4.1 are valid even when F is only piecewise
C’, i.e., when F is permitted to have finitely many corners (but no cusps).

5. The interior problem. Let t() and t<2 t<o be two distinct points lying on F.
We think of t<o as the starting point and t:) as the finishing point of F, as it is traversed
in the counterclockwise sense. For j 1 and 2, let Fj denote the open sub-arc of F
from t(j_) to t<j), so that

r r, u ( t(,)} u r u ( t(_)}
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is a disjoint union, and, as in the Introduction, F1 U F2 F. The notation of 4 applies
with r--2, and thus the weight function p is given by

(5.1) p(t)=[t-t<l)lOlt-t<2)l 2, tF.

Guided by Theorem 2.2, a precise statement of the interior problem, described
informally in 1, is as follows:

Pi Given g s Lp(F), find a function f= u + iv which is holomorphic in 2i, has its
(interior) nontangential maximal function fi* Lp(F), and satisfies the mixed
boundary conditions

Ui]r, g[r,, vilr2 glr2

The results of this section will imply that Pi has a unique solution when 2 < p <
First, we investigate more closely the Cauchy integral formula.

THEOREM 5.1. Iff U + iv is holomorphic in l’Ii, and iffi* Lp(F), then

(5.2) f(z) 1-2ri Ir fi(t-)t-z dt,

and Pfi =fi, or, equivalently,

(5.3)

and

(5.4)

(5.5)

U--" Wu Uvi)
on ’i

V-" Wvi+ UuiJ

(I- T)ui =-Rvi,

(I- T)V Rui.

Conversely, if one of the equations (5.4) and (5.5) is satisfied by functions Ui, Vie
Lp(F), then the other equation is automatically satisfied, and ui + ivi equals the interior
nontangential limit of its Cauchy integral, almost everywhere on F.

Proof. Suppose f is holomorphic in i, with fi* Lp (F). Let An be a sequence of
simple, closed C 1’’ curves, and Yn" F--> An a sequence of invertible CTM mappings,
such that An c i and

(5.6)
yn(t) Ci(t) for all F,

yn (t) --> and y’(t) -> 1 uniformly for F.

(For example, take a conformal mapping of ’i onto the unit disk, and let An be the
inverse image of the circle with radius 1-1/n and centre zero. The function Yn can
then be defined by requiring the images of and yn(t) to both lie on the same radial
line. To verify that An and yn have the required properties, use the fact that the
conformal mapping is CTM on i.) If z fli, then for all n sufficiently large,

11A f(t)
dt= 11rf(Yn(t)) y’(t) dt.(5.7) f(z) 2r-- t-z 2r-- yn(t)- z

It follows from (5.6) and Theorem 2.2 thatf(y,(t))->f(t) for almost all F, and that
If(Yn(t))l =<fi*(t) for all F. Therefore, we obtain (5.2) by sending n--> oo in (5.7) and
applying the dominated convergence theorem. The first of the two Sokhotski-Plemelj
formulae (3.6) now implies Pi=fi. Also, using (3.3), it is easy to see that (5.2) is
equivalent to (5.3), and that Pf =f is equivalent to (5.4) and (5.5).
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The second part of the theorem follows from the first of the Sokhotski-Plemelj
formulae (3.6), once we show that if ui and vi satisfy (5.4), then they must also satisfy
(5.5), and vice versa.

Suppose (I-T)ui=-Rvi; then R(I-T)ui=-R2vi, and hence (I+ T)Rui
(I + T)(I- T)vi by (3.12). Since I + T is invertible on Lp(F), we conclude that Rui
(I- T)ti. A similar argument shows (5.5) implies (5.4). E

It is also possible to derive (5.3)-(5.5) from the boundary integral relations (1.5)
and (1.6), using integrations by parts and the Cauchy-Riemann equations (1.2).

Using Theorem 5.1, it is a simple matter to reformulate the interior problem Pi as
a 2 x 2 system of singular integral equations. Denote the characteristic function of Fj
by Xj, i.e., let

10 if F,(5.8) Xj(t)
if F\F,

for j 1 and 2.
THEOREM 5.2. Let g Lp(F), and put g xjg for j 1 and 2. Iff= u+ iv is a

solution of the interior problem Pi, then the functions

(5.9) (#1 Xl/)i, (#2 X2ui

satisfy

(5.10) [RX2 I (#1 I T

X1 (#2 X2 X1 g2

and

(5.11)
I-T R R -(I-T) gl

X2 X1 (#2 X2 X1 g2

Conversely, if(#1, (#2 Lp(F) satisfy either (5.10) or (5.11), and iffi tli4- ioi where

(5.12) Ui gl + (#2, l)i-- (#1 "{" g2,

then equation (5.2) defines a solution f of Pi.
Proof. Suppose f= u+ iv is a solution of Pi. The definitions (5.9) imply (5.12),

and when the latter are substituted into (5.4), we find

(5.13) R(#1 + (I T)(#2 -(I T)gl Rg2.

Combining this with the equation

X2(#14- X1(#2 0= X2gl 4- xlg2,

we obtain the system (5.10). Similarly, (5.11) follows from (5.5).
Conversely, if (#1 and (#2 satisfy either of the systems (5.10) or (5.11), then the

functions ui and vi satisfy (5.4) and (5.5), and, in addition, Uilr glr, and Vilr2 glr2.
The second part of Theorem 5.1 now shows that the Cauchy integral of ui 4-ivi is a
solution of Pi. [-1

We will now show that the number of solutions in L(F, t9) of (5.10) and (5.11)
is determined by the values of

(5.14) t$(tj)) 27r(/3 + 1/p), j 1, 2.
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In view of assumption (2.1), we have 0 < 6j < 2r for j 1 and 2, and it turns out that
three cases need to be distinguished:

1. 0<6j<rforj=l and 2;
2. Either 0 < 61 < r and ,r < 62 < 27r, or 7r < 61 < 27r and 0 < 62 < r;
3. ,r<6<2r forj=l and 2.
Note if/31 =/32=0, i.e., if Lp(F, p)= Lp(F), then case 1 occurs when 2 <p <

case 2 is impossible, and case 3 occurs when 1 < p < 2.
THEOREM 5.3. Let A denote any one of thefour 2 x 2 operators appearing in (5.10)

and (5.11). The linear mapping

A" L(r, p)- L(r, p)

is bounded, and

ker At= span {[$, 0]’},
where the function is as in Theorem 3.4. A necessary and sufficient condition for A to
be a Fredholm operator is that 6 # ,r for j 1 and 2. When this happens,

-1 in case 1,
ind A 0 in case 2,

1 in case 3

and, consequently,

(5.16)

Proof Only A

O in case 1,
n A 1 in case 2,

2 in case 3.

I--T
x, will be discussed--the other three operators can be

treated in a similar fashion.
Suppose [ol, (2] E ker At, i.e.,

(5.17) RtI + X2o2 O,

(5.18) (I- Tt)ql ""/’1(02 O,

and put u Vol + A, where A is a constant which will be determined later. Together
with Theorem 3.2, (5.17) and (5.18) imply

(5.19) (Ou/Or)ilr, 1/2Rtllv, O,

(5.20) (Ou/Ov)ilr2 -1/2(I T’),Ir O.

It follows from (5.19) that ui is constant on F1 so, after making an appropriate choice
of A, we can assume ulr, =0. Thus, (5.20) and (3.7) now imply u is constant on li,
hence R’ol (I- T’)ol =0 on all ofF. This shows Ol E ker R’= ker (I- T’)=span {}
and o2 X1o2 + X2o2 0, thereby establishing (5.15).

To prove the remaining assertions, we use (3.3) and (4.1) to write A in the form

A=aP+bQ+K,

where

a
X2 X1 X2 X1 0 0

The operator K is compact on L(F, p), and therefore has no effect on the Fredholm
property and the index of A. (Note that this is no longer true if F is permitted to have
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corners; cf. Costabel [2].) An elementary calculation shows

l if F

(5.21) det (b-a).,(t,)= ,()-1 if t=

if tCF:. 1 2a(/.) ir t).

Bearing in mind the description of the curve ca() given in 4, it is not difficult
to verify that

1 incase 1,

indv,,(b-a) 0 in ease 2,
-1 in ease 3,

and that b-a fails to be p, -regular precisely when 5 r or .5: or. The second part
of the theorem now follows from Theorem 4.1, noting that n(A)= n(A)+ind A by
(2.5) and (2.6).

The final theorem for this section establishes the solvability of (5.10) and (5.11),
and hence of the interior problem Pi. An argument similar to the proof of the second
part of Theorem 5.1 shows that every solution of (5.10) is also a solution of (5.11),
and vice versa, and therefore it suffices to discuss only the first of these equations.

THEOREM 5.4. Assume 7r for j= 1 and 2, and consider (5.10). For every
right-hand side [g, g:]t L(F, p), there exists a solution [ql, tP] L(F, p), and if
glr2=0 and g:lr =0, then likewise qllr:=0 and 21r, O. The homogeneous equation,
for which g g: O, possesses a solution space of dimension O, 1, and 2 in cases 1, 2,
and 3, respectively. Moreover, in case 1, the linear operator [q, qE]t->[g,g2] is a
continuous isomorphism of L(F, p) onto itself.

-t-7- R] as operators on L(F, p). RecallProof. Consider A [xR -r] and B
that if the subspace im A is closed, then it consists precisely of those elements of
L(F, p) which are orthogonal to ker At. From Theorem 5.3, we know that im A and
im B are both closed, and that ker A span {[, 0] t} ker Bt; therefore im A im B.
The assertions of the theorem now follow from (5.16).

Before going on to discuss the exterior problem, we will rewrite (5.10) in an
alternative form, and give an example in which the nontrivial solutions of the
homogeneous problem can be found explicitly.

For j 1 and 2, define Lp(Fj, p) in the obvious way, by setting

[Jill .(r,o)= p(t)f(t)lldtl

where, once again, p is given by (5.1). For j,/{1,2}, we define operators
Rj, T.t" Lp(F.p) Lp(Fj, p) by

1 4 r(t).(z-t)
Rj,,(z)-

at, [z- t[ 2
q(t) Idtl,

1 f v(t)" (z-t)
Iz-tl= ldtl,

and
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where z Fj, and put

991-"

Using (5.4), the interior problem P can now be reformulated as a 2x2 system of
integral equations on F x F2, namely

kR I-

If we agree to identify any function defined on F with its extension by zero to F, then
every solution [,] of this system is also a solution of (5.10), and vice versa,
assuming glr=0 and glr, =0. Therefore, Theorem 5.4 shows that, for example, in
case 1, the system (5.22) determines a continuous isomorphism [,][g, g]’ of
L(F, O)x L(F, O) onto itself. Arguably, (5.22) is more natural than (5.10), even
though the latter can be analysed directly using Theorem 4.1.

EXAMPLE 5.5. Let i {z e C: [z[ < 1}, and put t(x) 1 and t(2) t(o) -1. Thus, F
is the lower half of the unit circle, and F2 is the upper half. The M6bius transformation
w i(1 + z)/(1- z) defines a conformal mapping zw of the unit disk fl onto the
upper half-plane {w C: w> 0}. Under this transformation, F is mapped onto the
positive real axis, and F2 is mapped onto the negative real axis, with t() and
t(2)0. Write w r e; then the function

w iw+1/2= r+l/Z[-sin (m +)0 + cos (m +)0]
is holomorphic for w > 0, has zero real paa when 0 0 and has zero imaginary pa
when 0 . Therefore, if the z-plane is cut along the real axis from - to -1, and
from + 1 to +, then any branch of the function

f(z) i[i(1 + z)/(1 z)] +1/2

is holomorphic in i and satisfies the homogeneous, mixed boundary conditions

uil r, 0, vii r 0,

where, as usual, u =f and v=f If 1 <p<2 and m is either zero or -1, then
f Lp(F) and hence f is a nontrivial solution of the homogeneous interior problem.
More generally, f Lp(F, p) either when
and m 1.

6. The exterior problem. We will say f is holomorphic in fe, if, in addition to
being holomorphic in e\{oo} in the usual sense, it is also bounded at infinity. In such
a case, the function z-->f(1/ z) has a removable singularity at z 0, and hence f(oo)=
limz_.oof(z) exists (cf. the discussion immediately following Theorem 2.2). With this
convention, a precise statement of the exterior problem is as follows"

P Given g Lp(F), find a function f u + iv which is holomorphic in f, has its
(exterior) nontangential maximal function f* Lp(F), and satisfies the mixed
boundary conditions

Uelr glr,, Vel r_ g]r2-
As with the interior problem, it will be seen that P has a unique solution when
2 <p < oo. The analysis of Pe is a little more complicated than that of P, owing to the
changed form of the Cauchy integral formula.

THEOREM 6.1. Iff is holomorphic in f, and iff* Lp(F), then

1 [ f(t)
dt, zel’e(6.1) f(z) =f(oo)-2r--- Jr t------
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and Qfe=fe-f(). Moreover,

(6.2) f() (, fe),

where is as in Theorem 3.4.
Proof. Suppose f satisfies the hypotheses of the theorem, and let

{z e f" [z[ < r} and F, {z e C: [z[ r}. Given z f, an argument similar to the proof
of Theorem 5.1 shows that, for all r sufficiently large,

1 fr f(t)dt_ 1 I f(t
(6.3) f(z) =-i z 2r-- Jr -z dt,

and since f(t) -f(c) + O(t-i) as - o, it follows that

1 Ir f(t) dt=f(o)+ O(r-1).
2ri ,, t-z

Therefore, by sending r-o in (6.3), we obtain (6.1).
The second of the two Sokhotski-Plemelj formulae (3.6) now implies Qfe

fe-f(o), and since Qt@ =1/2[(i_ Tt)q_ iRt@] =0, we see

(tp, f-f(c)) (p, Qf) (Q’tp, f) o.
This establishes (6.2), because (,f()} =f(c).

Introduce the linear functional

L(u) 2(, u)= 2 fr O(t)u(t)[dt[;

then, whenf u + iv, the equation Qf =fe-f() is equivalent to the pair of equations

(6.4) (I + T)u- L(u) Rv,

(6.5) (I + T)ve- L(ve) -Rue.
Moreover, an argument similar to the last part of the proof of Theorem 5.1 shows that
every pair of functions He, ve Lp(F) that satisfies (6.4) automatically satisfies (6.5),
and vice versa. Consequently, we arrive at the following reformulation of the exterior
problem, where, as before, Xj is defined by (5.8).

THEOREM 6.2. Let g Lp (F), and put gj x2g for j 1 and 2. Iff u + iv is a
solution of the exterior problem P, then the functions

and

,)(2 X1 (2 ,)(2 ,)(1 g2

Conversely, iffunctions Pl, tp2 Lp(F) satisfy either (6.6) or (6.7), and iffe He/ ivy,
where

Ue-" gl q- P2, Ve-- (01 - g2,

then the function f, defined by (6.1) and (6.2), is a solution of
As with the interior problem, the number of solutions in LEp(F, p) of (6.6) and

(6.7) depends on the values of 61 and 82 in (5.14).

(6.6)
R L (I+T) o, (I+T) L
,)(2 X1 (02 X2 X1 g2

satisfy

(01 X De, (2 ,,’2 l’l
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THEOREM 6.3. All of the assertions made in Theorem 5.3 about the 2 x 2 operators
in (5.10) and (5.11) remain true for the 2x2 operators in (6.6) and (6.7).

Proof. Only A= [xR xl 7")] will be discussed--the other three operators can be
treated in a similar fashion.

Suppose [1, p2]’ ker A’, i.e.,

(6.8) R’pl -- ,2(02 0,

(6.9) 2(q,, 1)q- (1+ T’)q +Xq2 0,

and put u= V(ql-(q, 1)q)+ A, where A is a constant whose value will be chosen
later. The results of Theorem 3.4 imply

(Ou/O’r)e= 1/2Rtql
(6.10)

(Ou/Ov)=1/2(I + Tt)q,-(ql, 1),

and therefore, by (6.8) and (6.9),

(6.11) (Ou/O’r)elr=O, (Ou/Ov)e[r2=O.
The first of these equations implies u is constant on F1, so an appropriate choice of
h gives U[r, 0. Combining this fact with the second equation in (6.11), and noting
that r (Ol-(o, 1)g)ldt[ =0, we see from Lemma 3.3 that u must be constant on
in fact, ulro u(o) h. Equations (6.10) now imply rpl ker R’ span {g}, and hence
it follows from (6.8) and (6.9) that X2o2 0-XlO2, so o2- 0. This completes the proof
of (5.15).

Next, write A in the form

A=aP+bQ+K,

putting, in view of (3.3) and (4.1),

a-- b--
X2 X1

We find that

b-a
2ix2

X 0 0

0] 0
on F

2i
on F,

and det (b-la)p.o(t, tz) is the same as in (5.21). Thus, the remainder of the proof simply
repeats that of Theorem 5.3. 13

We claim that every solution of (6.6) is also a solution of (6.7). Indeed, if both
sides of the equation

Rpl + L(2) (I + T)2 (I + T)g- L(gl)- Rg

are multiplied on the left by -R, then the results of Theorem 3.4 imply

(I- T)[(I + T)tPl + Rq] (I- T)[-Rg,-(I + T)g2],

and so there is a constant h such that

(I+ T)pl + Rq2=-Rg-(I+ T)g2+ h.

Applying the functional L to both sides of this equation, and using known properties
of the function , we find h L(1 + g2), as required. A similar argument shows that
every solution of (6.7) is also a solution of (6.6), so it suffices to discuss only the latter
equation, and the reader may easily verify the following theorem.
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THEOREM 6.4. All of the assertions made in Theorem 5.4 about (5.10) remain true

for (6.6).
Just as with the interior problem, it is possible to reformulate the exterior problem

as a 2x2 system of integral equations on F1 x F:, instead of using (6.6) or (6.7), but
we will not bother to do this. Moreover, when F is the unit circle, the nontrivial
solutions of the homogeneous exterior problem can be exhibited explicitly as follows.

EXAMPLE 6.5. Let F1 and F: be the same as in Example 5.5, and note that
Ie {z C" Izl > 1} LI {o}. The conformal mapping defined by z-- w i(1 + z)/(1 z)
takes le onto the lower half-plane {w C" w < 0}, and, once again, we put

f(z) i[i(1 + z)/(1 -z)] ’+1/:,
where m is any integer. This time, however, the plane is cut along the real axis between
-1 and +1. Then any branch of f is holomorphic in fe with f(o)= i(-i) re+lIE, and
satisfies

Uelr, =0, Velrz 0,

where, as usual, u Rf and v f. Thus, for 1 < p < 2 and m 0 or -1, the function
f is a nontrivial solution of the homogeneous exterior problem. Also, fe Lv(F, P)
when r < B < 27r and m 0, or when 7r < 8z < 2r and m =-1.

REFERENCES

1] P. G. CIARLET, The Finite Element Methodfor Elliptic Problems, North-Holland, Amsterdam, 1978.
[2] M. COSTASEL, Singular integral operators on curves with corners, Integral Equations Operator Theory,

3 (1980), pp. 323-349.
[3] M. COSTABEL AND E. STEPHAN, Boundary integral equations for mixed boundary value problems in

polygonal domains and Galerkin approximation, in Mathematical Models and Methods in Mechanics,
Banach Center Publications, Vol. 15, PWN-Polish Scientific Publishers, Warsaw, Poland, 1985, pp.
175-251.

[4] B. E. J. DAHLBERG, On the Poisson integral for Lipschitz and C domains, Studia Math., 66 (1979),
pp. 13-24.

[5] E. B. FABES, M. JODEIT, JR., AND N. M. RIVIIRE, Potential techniques for boundary value problems
on C domains, Acta Math., 141 (1978), pp. 165-186.

[6] 1. GOHBERG AND N. KRUPNIK, Einfiihrung in die Theorie der eindimensionalen singuliiren
Integraloperatoren, Birkh/iuser, Basel, Switzerland, 1979.

[7] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[8] M. A. JASWON AND G. T. SYMM, Integral Equation Methods in Potential Theory and Elastostatics,

Academic Press, New York, 1977.
[9] C. E. KENIG, Elliptic boundary value problems on Lipschitz domains, in Beijing Lectures in Harmonic

Analysis, Ann. Math. Stud., 112, E. M. Stein, ed., Princeton University Press, Princeton, NJ, 1986,
pp. 131-183.

[10] J. KRAL, Integral Operators in Potential Theory, Lecture Notes in Math. 823, Springer-Verlag, Berlin,
New York, 1982.

[11] S. G. KREIN, Linear Equations in Banach Spaces, Birkh/iuser, Boston, 1982.
[12] S. G. MIKHLIN, Mathematical Physics, An Advanced Course, North-Holland, Amsterdam, 1970.
[13] S. G. MIKHLIN AND S. PR(3SSDORF, Singular Integral Operators, Springer-Verlag, Berlin, New York,

1986.
[14] N. I. MUSKHELISHVILI, Singular Integral Equations, Noordhoff, Groningen, the Netherlands, 1953.
[15] V. I. SMIRNOV, A Course of Higher Mathematics, Vol. IV, Pergamon, Oxford, 1964.
[16] W. L. WENDLAND, E. STEPHAN, AND G. C. HSIAO, On the integral equation method for the plane

mixed boundary value problem ofpotential theory, Math. Methods Appl. Sci., (1979), pp. 265-321.



SIAM J. MATH. ANAL.
Vol. 21, No. 4, pp. 935-953, July 1990

1990 Society for Industrial and Applied Mathematics
007

MULTIPLE COUPLING IN CHAINS OF OSCILLATORS*

N. KOPELL’, W. ZHANGt, AND G. B. ERMENTROUT

Abstract. Chains of oscillators with coupling to more neighbors than the nearest ones are considered.
The equations for the phase-locked solutions of an infinite chain of such type may be considered as a

one-parameter family of (2m 1)st-order discrete dynamical systems, whose independent variable is position
along the chain, whose dependent variable is the phase between successive oscillators, and where m is the
number of neighbors connected to each side. It is shown that for each value of the parameter in some range,
the (2m- 1)st-order system has a one-dimensional hyperbolic global center manifold. This is done by using
the theory of exponential dichotomies to show that the system "shadows" a simple one-dimensional system.
The exponential dichotomy is constructed by exploiting an algebraic structure imposed by the geometry of
the multiple coupling.

For a finite chain, the dynamical system is constrained by manifolds of boundary conditions. It is shown
that for open sets of such conditions, the solution to the equation for phase-locking in long chains stays
close to the center manifold except near the boundaries. This is used to show that a multiply coupled system
behaves, except near the boundaries, as a modified nearest-neighbor system. The properties of the nearest-
neighbor and multiply coupled systems are then compared.

Key words, oscillators, exponential dichotomy, neural networks, central pattern generator, invariant
manifold, singular perturbation

AMS(MOS) subject classifications. 34, 58

1. Introduction. Chains of oscillators with nearest-neighbor coupling have been
investigated in [1]-[3]. We showed [2], [3] that the phase-locked solutions of such
chains could be approximated, when there is a large number of oscillators, by a
discretization of a solution to a singularly perturbed second-order two-point boundary
value problem. Thus, over much of the chain, the solution behaves like a solution to
a first-order "outer equation"; the particular "outer solution" that is expressed is
determined by the boundary conditions for the BVP.

In this paper, we consider coupling that extends beyond nearest neighbors to
multiple neighbors. We will show that the new equations for the phase relationships
among the phase-locked oscillators are of order 2m, where m is the number of neighbors
on each side to which any oscillator away from the boundaries of the chain is connected
(see Fig. 1.1). Nevertheless, if the boundaries are ignored, it still holds that there are
solutions to this 2mth-order equation that behave like one of a family of solutions to
a simple one-dimensional "outer equation." When the boundary effects are taken into

FIG. 1.1. Schematic diagram ofa chain of oscillators, with each oscillator coupled to m neighbors on each
side. In the figure m 2, and only .the connections to and from oscillator k are explicitly shown.
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account, they again determine which outer solution is chosen. We also compare
properties of nearest-neighbor and multiple coupling, and derive some differences that
may be important for applications, in particular to the neural network that is the central
pattern generator for locomotion in fishlike species [4].

As in 1]-[3], each oscillator of the chain is described by a differential equation
of arbitrary dimension, whose only restriction is that it has a stable limit cycle solution.
The oscillators may be different from one another, but they must vary in a gradual
way along the chain, i.e., if there are N+ 1 oscillators, and if the kth oscillator is
described by

(1.1) X’k Fk(Xk)

then Fk+l- Fk -’O(1/N).
The coupling is assumed to be pairwise among neighbors whose indices differ by

no more than m. (For nearest-neighbor coupling, m- 1.) That is, the full equations
have the form

(1.2) X Fk(Xk) + Gf(Xk+, Xk) + Gf(Xk_, Xk).
j=l j=l

The number of coupled neighbors is assumed to be small relative to N. The chain is
finite, so k-1,..., N/ 1; the first m and the last m equations must therefore be
modified. This can be done in various ways, as will be described in 4. Equations
(1.2) may be generalized to allow the strength of coupling to vary with position along
the chain as in [3], but we will not do so here.

In the absence of the coupling terms, there is an N+ 1-dimensional invariant
torus that is the product of the limit cycles of the individual oscillators. The coupling
is not assumed to be "weak," but it is assumed to be not so strong as to upset the
existence of an invariant manifold. If the limit cycles are relatively robust, this is not
a restrictive hypothesis. (The size of the allowable perturbation that maintains the
existence of the invariant manifold is related to the size of the Floquet exponents and
is independent of the number of oscillators. See the Appendix of [2] for further
discussion.) With this assumption, (1.2) on the invariant torus takes the form

(1.3) O’k tog + hf Ok+ Ok) + , hf Ok- Ok).
j=l j=l

Here, Ok is the phase and tOk is the frequency of the kth oscillator, h and hi- are
2r-periodic scalar functions of their arguments. The derivation of (1.3) is similar to
that of the special case m 1, which is in [1].

The more restrictive hypothesis to be used in developing the continuum description
of the equation is that the phase-locking behavior is not significantly changed if the
method of averaging is applied to (1.3). This is automatically valid if the coupling is
sufficiently weak [5], and may sometimes fail drastically if it is not [6]. However, weak
coupling is not necessary for the application of the method of averaging; as discussed
in [7], there are other hypotheses under which the averaged equations differ from the
full ones by a small amount that does not affect the existence of phase-locked solutions.
The great advantage of the averaged equations is that the coupling terms in (1.3) are
replaced by terms that depend only on the differences of the phases. The equations
then have the form

(1.4) O’k=tOk + H’(Ok+--Ok)+ H;(Ok_-Ok)
j=l j=l
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where H+ and H- are 27r-periodic functions of their arguments [1], [2]. It is (1.4)
that we will be investigating. The hypotheses on H+/-, which are quite general, are
essentially as in [2], [3] and will be spelled out in 2. We will be particularly interested
in phase-locked solutions, i.e., solutions for which 0, is independent of k; for equations
of the form (1.4), 0, is also independent of t. It will be useful to consider equivalent
equations, with the variables {Ok} replaced by {(k--Ok+l--Ok}" If 0, =12, an unknown
constant independent of k, (1.4) becomes

(1.5) fl=tOk+ Y Hf(Ckk+S-,+’" "+qb)+ Y H-(--Ckk-S k-1).
j=l j=l

In (1.5), I is the frequency of the phase-locked ensemble of oscillators. In general,
even if all the oscillators have the same uncoupled frequency, f need not equal this
common frequency [2], [6] (see 2).

In addition to the hypotheses on H; and Hi-, 2 contains some frequently used
notation and a brief review of the analogous theory for nearest-neighbor coupling. We
also define a simple one-parameter family of "outer solutions" {k} for (1.5), para-
meterized by I, that generalize the one-parameter family of outer solutions for m 1.
The main analytic results of the paper are given in 3. We show that {bk} have the
property that, for each such outer solution (for a range of f), there are solutions to
(1.5) that stay arbitrarily close for 1 -<_ k-<_ N, i.e., that shadow the outer solution. Thus,
except near the boundaries, the complicated equation (1.5) is shown to have solutions
that behave in a quite simple manner. This is demonstrated by exploiting the special
structure of (1.5) to show that the linearization of (1.5) around each outer solution
{k} is hyperbolic. We then make use of a discrete version of the theory of exponential
dichotomies [8], [9] which implies the appropriate shadowing lemma.

Section 4 discusses the structure of the solutions to the full equations, with
constraints due to finite boundaries. For nearest-neighbor (rn 1) coupling, it is shown
in [2], [3] that, if the solution to the associated boundary value problem stays within
certain limits, there is a (unique) solution to (1.5) and associated boundary conditions

(1.6) = to, + H+(4,), = tON + H-(bN-1).

This solution behaves like the outer solution of the continuum boundary value problem
except near zero or N, where there is a discrete version of a boundary layer. (See 2
for a brief review .of that theory.) For m > 1, there is no longer a natural continuum
boundary value problem whose solution is the limit of the solution to (1.5) (with some
analogue of (1.6)) as N- oo. However, the problem for a finite chain of oscillators,
multiply coupled, can still be formulated in terms of a dynamical system, with boundary
value conditions reminiscent of Sil’nikov type problems 10]. Furthermore, for an open
set of choices of boundary conditions, the solution, if it exists, is locally unique and
close, over most of the interval [0, N] to one of the outer solutions {k}. For rn > 1,
there is generically a boundary layer on each end. The value of 11 associated with the
solution is defined implicitly by the intersection of certain manifolds, and is not
computed explicitly, unlike the case m 1 [2], [3]. Nevertheless, approximations to f
can be computed, and we show how. We have not for rn > 1 ruled out global nonunique-
ness for a given set of boundary conditions, e.g., a pair of solutions corresponding to
different frequencies f.

In 5 we compare nearest-neighbor coupling and multiple coupling. Using the
approximations to f/mentioned above, we show that one effect of multiple coupling
is to reduce the phase differences {bk} from what they would be for nearest-neighbor
coupling. We note that this is not an effect of merely strengthening the coupling; for
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example, if the frequencies tOk are constant, the phase differences are independent of
the strength of coupling for nearest-neighbor coupling [2]. A second effect is that the
solution becomes more stable to perturbations of parameters of the problem such as
local natural frequencies tOk. Both of these effects are relevant to the functioning of
the locomotion central pattern generator mentioned above.

2. Outer solutions and review of nearest-neighbor theory. In this section, we first
introduce some notation and give the equation defining {Ok}. Before further analysis,
we then review some of the theory for chains with nearest-neighbor coupling [2], [3].

Let f and gs, 1 _-<j _-< m, be defined by

(2.1) f ck + gs ck H. ck ), fs ck gs ck H-(- ck ).

For each f, define {Ok} by

(2.2) D, w + 2 Efs (jOt,) =-- Ok + 2F(Ok).

This solution exists provided that {O} stay in the region in which F(4) is monotone,
and hence invertible. Note that in the kth equation, the same is used in the argument
for each fs. The {O} will be the analogue of the "outer solution" for a singularly
perturbed equation, as explained later. We will assume the following.

H1. There is a closed interval I e S such that F’(b) # 0 for b e/, and the relevant
solutions to (2.2) stay in that interval. More strongly, for each j, fj (job) O, with the
same sign for all j.

H2. For each j, Ifj (j4)] < gj(jcb), so that H.(jcb) is monotone increasing and

H-f(-job) is monotone decreasing in L
Note that if these conditions are valid for some f, they hold for an open set of

f. The techniques of 3 also require that Iw wsl remain sufficiently small for all j, k.
As a simple example, consider H+(b) H-(b) A cos b + B sin b and H

ash+, a > 0. (See [1] for oscillators and coupling that give rise to such functions H+.)
Within a region around b 0, H is a monotone increasing function of b. To keep
f’(jck) =-A sin (jb)# 0, it is necessary to restrict 1 to one side of b 0. This is easy
to do for a range of f if A # 0, and for all k, Iw Ol] is not too large.

If m 1, (2.2) is

(2.3) =tOk+2f(k)

and (1.5) is

(2.4) f=wk+f(k)+f(dpk-1)+g(dPk)--g(dpk-1).

By subtracting the equations of (2.4) pairwise, we can rewrite that set of equations as

(2.5) O=(wk+’--Wk)+f(dpk+l)--f(dpk)+g(dpk+)--2g(dk)+g(qbk_l).

It is shown in [2] that for N large (2.5) formally approaches the continuum equation

1
(2.6) 0 =/3(x) + 2f(b),+g(b),x

where 0-<_x=<l and 3(x) is a continuum limit for {fl(k/N)=flk=--(Wk+--Wk)/N}.
For N large, (2.6) is a singularly perturbed equation with "outer equation"

(2.7) 0 =/3 (x) + 2f(b),

whose integrated form is

(2.8) O w(x) +f( ck
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where to(x) o fl(s) ds and f is a constant of integration. Thus, (2.2) is an extension
to multiple coupling of a discrete version of (2.8).

In [2], we showed that the solution to (1.5), (1.6), when it exists, converges as
N to the solution to (2.5) with the boundary conditions

(2.9) n-(-)=0 atx=0, H+()=0 atx=l.

(The convergence is nonuniform near the boundary layer; better convergence may be
obtained by using more refined, but more complicated, boundary conditions [3].) It
can be seen that (2.9) is the natural limit of conditions (1.6), which, taken together
with (1.5), are equivalent to H-(-bo)= 0 H+(tN+I). The proof mimics, for discrete
equations, a proof of the existence of a solution to (2.6), (2.9). In addition to the outer
equation (2.3), we define an "inner equation"

(2.10) 0 =f(

We show that there are solutions to (1.5) that "shadow" the outer solutions (2.3) and
solutions that shadow the solutions to (2.10) for k-<0(x/) (or N-k_-<0(x/-)). By
properly choosing these shadowing solutions and matching them at two successive
values of k, we can construct a solution to (1.5), (1.6) with rn 1. By the construction,
the convergence result is then clear.

The frequency of the locked ensemble can be read off from the outer equation
(2.7). For example, if the outer solution satisfies
at x 1) then, as Nc, the ensemble frequency tends to the value given by (2.8)
i.e., f to(0) +f(6L) (respectively, f= to(l) +f(bR)).

In [3], the results of [2] for m 1 are extended to deal with cases in which the
outer solution {Ok} is allowed to be on both sides of the "turning point" of (2.6), i.e.,
f’ F’ is not required to be bounded away from zero on the outer solution. This leads
to the possibility of "phase transition"-like behavior in the solutions in which, in the
limit as N o, the solution to the boundary value problem changes discontinuously
as some parameters are changed continuously. By requiring that F’(b)# 0, we are
avoiding that extra set of complications.

3. The hyperbolic structure of the outer solutions and the shadowing lemma. In this
section, we generalize the part of the above proof for m 1 dealing with solutions to
(1.5) that shadow outer solutions. We first show that if (1.5) is linearized around an
outer solution the resulting linear system with nonconstant coefficients is hyperbolic
at each k, with the dimensions of the splitting independent of k. This can be done in
the absence of further information about {f} and {g} by exploiting the structure of
the equations to show that the characteristic polynomial of the linearization at each
has a special form that allows us to compute the number of eigenvalues less than and
greater than 1 in absolute value.

Using Taylor series and the definition (2.2) of {}, (1.5) can be rewritten as

0= (f+gj)’(jOk)(+... + Ck+j-l--jgPk)
j=l

(3.1) + (f-gj)’(jdPkl(k-, +’" "+ bk---jk)
j=l

+E 0((,-1(-11

where the last term denotes all the nonlinear pas of the Taylor expansion. We turn
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(3.1) into a first-order system using the 2m- 1 coordinates

Zk,1 Tlk+
Xk,1 k-1,

Zk,m-1 ’k+m-1
Xk,m_l ,ik_m+

In these coordinates, (3.1) is a first-order system. The first 2m- 2 equations come
from the definitions of the new variables and are given simply by

i> 1,Xk+l,i Xk,i_l

Xk+l,1

,ik+ Zk,1,

Zk+l, Zk, i+ < m- 1.

To compute the last equation, we use the (k + 1)st equation of (3.1), and note that for
j> m,

J
(k+, A-. q- dpk+j-jdPk+,) E

i=1

Zk, "Ji- -t" Zk, "4- E
i=1

For j m,

(bk+l +’" "+ Ck+m--jk+l) Zk,, +’" "+ Zk,m-1 -[- Zk+l,m- "4- (f)k+i--f,)k+l).
i=1

Similarly,

j--1

(dpk +" "+ qb-j+,--jOk+,) ’Ok + Xk,, +" "+ Xk,j-, + E (Ok-i--Ok+l)"
i=0

We note that the sums involving terms of the form +/-i-I,+ are all O(1/N), since
j is assumed to be small relative to N.

We now let V (respectively, W) denote (f + gj )’(jtk+l) (respectively, (f-
gj)’(jk+l)). Then the (k+ 1)st equation of (3.1) may be rewritten as

O WmXk, --- Wm -- Wm Xk, 2 -Jl- -- ( Wj) lk
j=l

j=l

+o(/l+ a(x,,, n, ,
where N is at least quadratic in its variables. Thus, the linearization L+I of (1.5) at

/ is a (2m-1)x(2m-1) matrix with l’s to the right of the main diagonal and
zeros elsewhere in the first 2m- 2 rows. The last row is

Vm Wm Wm -- Wm_ Wj, Vj, Vm -l- Vm_
j=l j=l

From the simple form of this matrix, it is easy to see the following lemma.
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LEMMA 3.1. Let C(A) --- V, det (AI- Lk/I). Then

(3.3)

C i Vml2m -l- Vm " Vm l2m 2 "-t -31- ( Vj) I
j=l

j---1

Recall that, by hypothesis, V > 0 and W < 0 for all j and all k" We can use this
to compute the number of eigenvalues having absolute value less than 1 (respectively,
greater than 1). We will show the following lemma.

LEMMA3.2. C(A) has no zeros on [hi 1. If2F’= j__ (jW +jV > O (respectively,
less than zero), there are m eigenvalues inside AI- 1 and m- 1 eigenvalues outside

AI- 1 (respectively, m 1 inside and m outside Al- 1).
Proof. The main tool is the theorem of Pellet [11], [12] which can be proved by

an argument using Rouch6’s theorem. The case we use can be stated as follows.
THEOREM [12]. Suppose a polynomial

P A ao + a A +. + apA p +" + anA
with real coefficients satisfies ai > 0, p, ap < 0, and P(A) has two positive roots at r
and R, with r < R. Then P has exactly p zeros in or on the circle AI_-< r and no zeros in
the annulus r < A < R.

First, suppose j--1 (jW +jV )> 0. To use Pellet’s theorem, we let

P(A) (A 1)C(A)

Vmt2m dl_ Vm_ A2m- nt- -_ Vli m+ -l.- [ , Wj Vj ] i Wl,m-1 Wm.
j=l

Since V > 0 and W is negative, P(A satisfies ai > 0, m, a,, < 0. Also P(1) 0. To
see that there is another root r<l=R, note that P(0)>0. By hypothesis, C(1)=
Y’-=I (jW +jV) > 0, so C(A > 0 in a neighborhood of A 1. Hence P(A) < 0 .for real
A < 1 and P(A)> 0 for A > 1. This ensures the existence of the root r < 1 of P(A). By
Pellet’s theorem, P(A) has exactly m roots satisfying IA[ <- r< 1 and no more inside

Ixl- 1. Thus C(A) has exactly m roots inside [AI 1.
We now show that there are m- 1 roots outside IAI 1. Let

A WmA 2 Wm .df- Wm A 2 2 ( - Wj) Aj=l

The roots of C(A) are the inverses of the roots of C(A), so it suffices to show that
t(A) has m 1 roots inside I1 1. Let y R satisfy

max j+lj=l,-..,m--1
..i=l E
<3,<1

and let
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By construction of % all coefficients of A p, p m, are positive, and the coefficient of
A is negative. P(y)=0. To see that there is another root R > 1, note that P(A)> 0
for A real and sufficiently large. Furthermore, since C (1) C (1) < 0 and y < 1,
P(1) < 0. Hence P has another root R > 1. By Pellet’s theorem, P(A) has exactly m
roots satisfying IAI-<- Y, and no more roots inside ]AI 1. Thus (A) has exactly m 1
roots inside ]AI 1.

If ’.j= (JW +jV) < 0, the proof is similar.
Remark. Similar arguments are used in 11] to prove a refinement of this lemma.

The conclusion also follows from the work of Berwald 13].
The previous two lemmas imply the following theorem.
THEOREM 3.1. The linearization Lk of (1.5) around each fJk E I defined by (2.2) is

hyperbolic. Furthermore, the eigenvalues of the linearizations have absolute values that
are bounded uniformly away from 1.

Proof. The hyperbolicity is immediate from the previous lemmas. The uniformity
holds provided that V, W, and jW /jV are bounded away from zero. This is true by
hypotheses H1 and H2 of 2.

We now wish to use Theorem 3.1 to show that there are solutions to (1.5) that
stay arbitrarily close to any outer solution defined by (2.2) that satisfies k E L This
follows from a general theory involving exponential dichotomies for discrete systems
[9]. For a linear difference equation

(3.4) Uk/l MkUk

let

t( k, l)= Mk-l M! if k> l,

=I if k=l,

=MI’’’M-_ll ifk<l

be the transition matrix. Equation (3.4) has an exponential dichotomy on the natural
numbers Z if there are positive constants K, a, and a family of projections Pk, k Z,
such that

(i) Pk/lMk MkPk for all k Z,

(ii) It(k, l)Pll <- K e-’(-l) for =< k,

It(k, l)(I- PI)I <- K e-’<’-k) for -> k.

Thus, there is a family of projections that commutes with the operator of the equation.
The projections are bounded and the solutions of (3.4) that lie in the range of {Pk}
decay exponentially, while those in the nullspace of {Pk} grow exponentially. For
Mk M, M a hyperbolic matrix, it is easy to show that (3.4) has an exponential
dichotomy on Z. Furthermore, perturbations ofsystems having exponential dichotomies
also have exponential dichotomies [8],[9]. That is, if Mk M+Dk, and IDol is
sufficiently small uniformly in k, then (3.4) has an exponential dichotomy on Z. (See
[9] for precise estimations on Dk and the constants for the exponential dichotomy for
{Mk} in terms of those of the constant coefficient case.)
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Consider now the Taylor series expansion (3.2) of (1.5) around a solution {(I)k
of (2.2). Written as a first-order system with

Uk (Xk,m-1 ," ", Xk,1, k, Zk,1 ," ", Zk,m-1),

(1.5) has the form

Uk+ LkUk + R Uk q- rk

where R(Uk) is at least quadratic in components of Uk, and rk is 0(l/N).
Equation (1.5) may be considered as a system for all k Z by defining tOg- tO1

for k-< 0, (.Ok ton for k _>-N + 1. If the frequencies {tog} are constant, then each outer
solution {@k} is also constant, and hence the linearization Lk of (1.5) around {k}
is also constant. Thus, if the frequencies are sufficiently close to some constant, and
the linearization associated with that constant is hyperbolic, the linear homogeneous
system associated with (3.5) has an exponential dichotomy.

We wish to show that the outer solution {k}, which in the above variables is
Uk =--0, is shadowed by a real solution of (3.5); more specifically, for N sufficiently
large, there is a solution {/k} of (3.5) such that II,kl is 0(1/N) uniformly in k, 1 -<_ k_< N.
This will imply that there are a family of solutions {bk} to (1.5), depending on N, such
that Ik--dPkl is 0(l/N) as N->.

The result we need is a consequence of a general result for systems of the form
(3.5) [9], which requires bounds on the {rk} and a Lipschitz constant for R(u) in terms
of the constants defining the exponential dichotomy for the associated linear system.

LEMMA [9]. Let {Mk} be a sequence of n n matrices, k Z. Suppose that Uk+
MkUk has an exponential dichotomy on Z, with constants K, a, andprojections Pk. Suppose
that G" R" --> R" satisfies G(O) =0, and there are Ix, A>0, such that IGk(U)--Gk()I <
Ixl u- l uniformly in k for lul <A, ]fi] <A. Let Sk be a sequence of n-vectors. Suppose
further that

(3.6)
2K l + e-’)(1- e-’)tx <__ l

2K (1 + e-’)(1 e-)ls,,I <= a.
Then

(3.7) Uk+l MkUk + G(Uk)+ Sk

has a unique solution {Uk} such that lUk[<A for all k. Moreover,
2K (1 + e-S)(1 e-s) supj,z Isl.

As discussed above, {Lk}, suitably extended, has an exponential dichotomy on Z,
provided that {tok} are sufficiently close to some constant for which the associated L
is hyperbolic. To apply the lemma to (3.5), we must show that R(u) and {rk} satisfy
the inequalities of (3.6). Indeed, we will show that they hold for N sufficiently large
no matter what are the constants K and a associated with the exponential dichotomy
of the linear homogeneous equation. We let A 1/x/-. Since each rk is 0(l/N),
uniformly in k (even in the extended system), the second inequality of (3.6) holds for
N sufficiently large. Since R(u) is at least quadratic in the components of u, there is
a Lipschitz constant Ix for R that is 0(1/x/-) if u, fi are restricted to have norm less
than or equal to A. It follows that the first inequality of (3.6) also holds for N sufficiently
large.

We have now established the following theorem.
THEOREM 3.2. Suppose fl, {tOK }, H satisfy H 1 and H2, and {(.ok} are sufficiently

close to a constant so that {Lk} of (3.5) has an exponential dichotomy. Then there is a
solution to (1.5) that shadows the solution to (2.2) within 0(l/N).
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4. On the structure of the solutions for a finite chain. As seen in 2 and 3, for
each l’l in some range, (1.5) may be thought of as a first-order system of equations of
dimension 2m- 1. By extending this system as in 3, we may think of (1.5) as defined
for all k. For each fl in some region, there is a solution to (2.2) that is constant for
k <0 and k> N, and a unique solution {b} to (1.5) that shadows it for all k.

We have seen that, with suitable restrictions on {ok} and fl, the linearization of
(1.5) around a solution {} to (2.2) is uniformly hyperbolic, and the linear difference
equation (3.1) has an exponential dichotomy. Since b- approaches zero uniformly
in k as N->, by the perturbation property ("roughness") of exponential dichotomies
[8], [9], the linearization of (1.5) around {b} also possesses an exponential dichotomy.
(Note that the equations analogous to (3.5), but linearized around {b} instead of
{}, have no inhomogeneous term rk.) It is then possible to construct a stable manifold
for each such {b}; although stable manifolds are usually defined for fixed points of
an autonomous dynamical system, the usual definition and usual proof are essentially
unchanged if the fixed point is replaced by a compact orbit of a nonautonomous system
and the linearization around that orbit possesses an exponential dichotomy on Z. The
dimension of this stable manifold is the number of eigenvalues of the linearization
having absolute value less than 1. For definiteness, we assume that we have an outer
solution {b} for which this number is m- 1 rather than m. (Similar arguments will
work for the other case.)

A finite chain differs from an infinite chain described by extensions of (1.5) by
having modified equations at each of the ends. The most straightforward way to modify
the equations is to remove all terms that involve nonexistent oscillators. That is, if
there are N oscillators whose phases are denoted by 01,"’, 0N, then only terms
involving bl,..., bN- are retained in the equations. For m 1, this leads to (1.6).
For a chain coupled to m neighbors on each side, it involves a modification of the
first rn and the last m equations. A modification of the k =j equation of (1.5), 1 _-<j _-< m,
is a restriction on b,. ., b,+j_. We may think of these m restrictions as confining
the variables 7,, Xm,i, Zm, to an m--1-dimensional submanifold M1 of its 2m-1-
dimensional space. Similarly, modifications of the last m equations define an m- 1-
dimensional submanifold ME of

The structure of the resulting boundary value problem is very close to that of the
classical Sil’nikov problem [10], [14]. In the latter, an ordinary differential equation
with a hyperbolic critical point p is given. At 0, the solution is required to lie on
a given manifold transverse to the stable manifold of the critical point and of com-
plementary dimension; at t, the solution is required to be on another given manifold
transverse to the unstable manifold of the critical point and of complementary
dimension. Then if tl- to is sufficiently large (the bound depending on the constants
associated with the exponential dichotomy of the linearized system around the critical
point, and the size of the given manifolds), there is a unique solution with the required
properties (see Fig. 4.1). As tl- t0--> , the solution approaches the constant solution
p except for boundary layers at each end.

The result required here is different from the Sil’nikov problem in that we deal
with discrete nonautonomous systems instead of continuous autonomous ones. Further-
more, there is a one-parameter family of systems instead of a single system. However,
as long as there are exponential dichotomies for the nonautonomous systems, the idea
is essentially the same. The dimensions are required to be such that the following
hypothesis holds.

H1. Either the stable manifold WS(fl) intersects the manifold MI(I’I) of initial
conditions for only one value of the parameter or the unstable manifold intersects the
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FIG. 4.1. The geometric solution to the Sil’nikov problem. The manifold M of conditions at to is swept
forward under the flow and becomes C close to the unstable manifold ofp. The manifold Me of conditions at

t= tl is swept backwards under the flow and becomes C close to the stable manifold. For t=(t-to)/2 the
images intersect in a point Q whose trajectory is the required solution.

manifold ME(fl) of end conditions at exactly one value of the parameter (see Fig.
4.2a-c).

Let rio denote the above value of the parameter and, for the sake of definiteness,
assume that it is determined as the intersection of M1 with the stable manifold
corresponding to 120. We require the next hypothesis.

H2. For each II in a neighborhood of llo, the unstable manifold WU(fl) has a
nonzero transverse intersection with ME(f1) (see Fig. 4.3).

Under hypotheses H1 and H2 there is a locally unique solution to the boundary
value problem. Theorem 4.1 below states this in a more general form that allows the
parameter space to be of any dimension. A similar result is true if Do is determined
at the opposite end of the interval.

THEOREM 4.1. Let

(4.1) Uk+l Ak,Uk + Rk,a(Uk) =-- T(Uk),

U R n, be a parameterizedfamily ofdifference equations, where A and R depend smoothly
on the parameter [l Rj and Rk,a is at least quadratic in u and uniformly bounded in k.
Suppose that for each value of the parameter in some range, (4.1) has an exponential
dichotomy on Z, with the families ofprojections varying smoothly with fl. Let p and q be
the dimensions of the contracting and expanding subspaces, respectively, so p + q n. By
the "center stable manifold" ofdimension p +j we mean the union of the stable manifolds
of (4.1) over all relevant fi, and similarly for the unstable manifold. Suppose further
that at k kl, the solution is required to lie on an n-p-j-dimensional manifold MI(fl)
and that the intersection in R x R of the center stable manifold with MI [_J M (II)
is a unique point Q. Also, at k ks, the solution is required to lie on an n- q-dimensional
manifold M(fl) satisfying H2. Then for ks-kl sufficiently large, there is a unique
solution {Uk} satisfying uk--> 0 as k-ks-->oo, except possibly in regions ofsize 0(1/v/-)
around k k and k ks. In that limit, the solution approaches Q at k kl and, except
for a boundary layer near k ks, the solution approaches the center stable manifold.

Proof. We first choose a set of coordinates in which the calculations become easier.
Fix fl. In the presence of an exponential dichotomy, a k-dependent change of coordin-
ates may be made so that the new linear part Ak. is block diagonal, with the upper
left-hand block of size p x p having eigenvalues with absolute value less than 1, and
the lower right-hand block is of size q x q having eigenvalues with absolute value
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(a)

(b)

(c) M(D.)

FIG. 4.2. The dynamics at k k and the manifold Mr(13) for (a) 13 =13o, (b), (c) 13 # 13o. In this figure,
j and dim Mr (13) is one less than the codimension of W (13).
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M:(.Q)

FIG. 4.3. The dynamics at k kNfor f near lo. ME(I) has a .transverse intersection with W"(fl).

greater than 1 [8]; this can be done in a way that is smooth with respect to . (The
proof in [8] is for continuous equations, but works as well for discrete systems.)
Without loss of generality, we may now assume that Ak,a is of this form.

For each f, the n -p dimensional manifold Mx is transverse to the stable manifold
W(f). It follows from the A-lemma [16] that for k sufficiently large, the image under
T of MI is arbitrarily C close to W"(f), along with its first derivatives. Similarly,
the n-q-dimensional manifold M(O) is transverse to W(f), so by the A-lemma,
its image under Tk for sufficiently large k is arbitrarily C close to W(O). (Note:
the A-lemma is usually stated for autonomous systems. However, the proof remains
valid for nonautonomous systems (4.1) provided that the contracting and expanding
subspaces are independent of k and the eigenvalues of Ak,f are bounded away from
the unit circle uniformly in k.) Thus, for N sufficiently large, the image of Mt at
k [N/2] transversely crosses the image of M(f) at k [N/2]. (Here [. denotes
"least integer in.") Since this is true for each 11, the intersections determine a j-
dimensional space in Rx R, parameterized by f.

On this j-dimensional manifold, each point is assigned a parameter 12 in an
additional way. In other words, by construction, it is the intersection ofM (.J Mx (12)
with the manifold M(O), and hence occurs on M(f) for some . Thus there are
two maps from a region of R to R given by these two assignments. Denote the first
by c and the second by/3. The required solution must satisfy a(f)= fl(f).

By construction, a(l))=. To estimate /3, we note that by the A-lemma, the
backward image of any manifold transverse to W(f) (in particular M(f) for any
12) approaches W(f), and hence intersects M at a point approximately independent
of f. This implies that dfl/dl2 has a small Jacobian, and hence, by the Implicit
Function Theorem, there is a unique 1), depending on N, such that c(f) fl(f). This
solution has the limiting properties (as N oo) stated in the theorem. [3

Remark. If m 1, under some restrictions on {tOk} there is exactly one solution
to the BVP (2.5), (1.6). In particular, either the outer solution satisfying H-(-bl)= 0
can be matched to a boundary layer near k= N or the outer solution satisfying
H/(bv) 0 can be matched to a boundary layer near k 1. In [3], there are explicit
and easily checked formulas to determine which side of the chain has the boundary
layer, and what is the determining frequency f.

For m > 1, we do not have such formulas, nor do we yet have a uniqueness result.
Furthermore, there are generally boundary layers at both ends. However, there is still
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some structure that helps us to compute our solution without fully solving the equation
numerically. Let O/ (respectively, O-) denote the set of outer solutions satisfying H1
and H2 along which F’> 0 (respectively, F’< 0). By Lemma 3.2, on O/ (respectively,
O-). the stable manifold has dimension m (respectively, m-l) and the unstable
manifold has dimension m-1 (respectively, m). Thus, the center stable manifold at
k rn corresponding to O- intersects an open set of initial manifolds M1 at a single
point. Similarly, the center unstable manifold at k= N-m corresponding to O/

intersects an open set of manifolds ME at a point. Suppose that the other boundary
manifold (ME if F’< 0, M1 if F’> 0) intersects the outer solution corresponding to
that point. By Theorem 4.1, for N large there is a solution to (1.5) that passes close
to that point. If the value of f at that point can be computed, an approximate solution
is easily found from (2.2).

Suppose for definiteness we consider O-. Due to the nonlinearity of the boundary
layer, it is not easy, given any set of initial conditions, to compute the intersection of
the initial conditions and the center stable manifold. Indeed, our abstract proof is for
an open set of initial conditions and does not necessarily apply to any particular set.
However, the exponential decay property of trajectories on a stable manifold allows
us to compute a plausible sequence of approximations to that intersection. As an
example, consider (1.5) modified as described above to omit all terms containing Ok
for k [ 1, N]. Also, for simplicity, assume that tOk is independent of k. The approxima-
tion procedure is as follows: For any j->_ 1, replace all bk, k >j, in the modified (1.5)
by an unknown b independent of k. (The approximation assumes that the trajectory
"reaches" the outer solution, which is constant, in j+ 1 steps.) Then the first j + 2
equations of the modified (1.5) have in them j + 2 unknowns b, , bj, b, I. These

TABLE
m=2.

2 -.46365 -.59544
3 -.23103 -.41889
4 -.31779 -.46224
5 -.27365 -.45055
6 -.29339 -.45382
7 -.28468 -.45297
8 -.28848 -.45320

true -.28733 -.45315

TABLE 2
m--5o

2 -.46365 -.71250
4 -.15411 -.90279
5 -.11566 -.82677
6 -.09261 -.78427
8 -.14142 -.85154
10 -.12797 -.84314
20 -.13314 -.84534
true -.13314 -.84534
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j / 2 equations may be solved independently of all of the other equations. If m 1, it
may be checked that this procedure with j 1 produces thl th and [l to1 + 2f(thR),
which is the correct answer for nearest-neighbor coupling. We have not been able to
show that roots exist for this approximation, nor have we been able to show that it
converges to the correct roots. Nevertheless, numerical solutions to these appear to
converge to a unique root that is in good agreement with the frequency obtained by
integrating the full equations. For m 2, we need only solve the reduced system up
to about j 8, and. in Table 1 we show the results of a typical example. The advantages
of the approximation are most evident for m small; indeed, we need solve only eight
equations instead of N >> m differential equations. For m larger, the approximation
takes longer to converge; m 5 requires j 10-20.

5. Nearest-neighbor coupling vs. multiple coupling. Away from the boundaries, the
solution to (1.5) with modified end conditions behaves like one of a family of outer
solutions, at least for an open set of boundary conditions. Thus, we first compare outer
solutions (2.2) with those of the case m 1 given by (2.3).

One effect of coupling m neighbors is to strengthen the coupling and thereby
diminish the effects of any possible frequency differences. That is, for fixed fl, the
solution {k} to (2.2) or (2.3) deviates from being constant if {tok} is not constant. In
(2.3), the deviation of the {k} from constancy depends as well on the size of f’;
doubling f leads to the same solution as halving [l and each tok (and thus halving the
total frequency difference). In (2.2), the dependence is similar. That is, F’(dp)=
f(b)+2f((2b)+...+ mf(mb); provided the solution stays in the region in which
f(j4’) all have the same sign, IF’(b)[ grows with increasing m, and thus a fixed total
frequency difference in the {tOg} produces a smaller difference in the {k}.

The multiple coupling has another important consequence besides lessening the
effects of frequency differences, a consequence that shows up even when tOg is indepen-
dent of k, and even if the coupling strength is normalized in such a way that the F
obtained from (2.2) has the same magnitude as the f in (2.3) (e.g., the difference
between the maximum and minimum values of F is the same as that of f). More
specifically, the phase differences {k} decrease as M is increased. This is most easily
seen by taking a simple isotropic example Hr.(O) c(m, p)pJ-(sin (0)+ a cos (0)),
where c(m, p) y(p 1)/(p’ 1), p _-< 1, y > 0 is the normalization. This allows us to
let the strength of coupling decrease as the distance between oscillators increases. If
p-1, then c(m,p)= 1/m. We may explicitly compute F(b) by summing the series;
we obtain

(5.1) F(cb)= ac(m, p)
pm+l cos (mdp)-p-p cos ((m+ 1)th) +cos

2p + 1-2p cos (b)

A similar but more complicated expression arises in the anisotropic case, e.g., one in
which the strength is different for Hf and Hr. In Fig. 5.1, we sketch F(b) for various
values of m. As can easily be seen, the function F() is much narrower than f()
although it has the same amplitude. Furthermore, if th (-r/2m, r/2m), f](jb) and
F’(b) have the same sign. With normalized coupling strengths as above, both forms
of coupling (multiple and nearest neighbor) support similarly-sized frequency differen-
ces, but the resultant phase differences are considerably smaller for the multiply coupled
case. For comparison, in Fig. 5.2 we sketch an example of F(b) with anisotropy
(a =-.5, y+= .6, y-= 1.0) that shows the same narrowing effect.

Note that as the number of neighbors increases the function F becomes more
narrow, even if normalized to keep the same amplitude. In particular, as m-> o, and
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FIG. 5.1. F(b) as a function of d for three values of m and f(b) -.5 cos b (isotropic medium). The
short dashes trace the m curve, the long dashes m 2, and the solid line m 3.

FIG. 5.2. F(b) as a function of dp for f(b) -.4 cos th -.2 sin b (anisotropic medium), and m 1, 2, 3.
The dashed and solid curves have the same meaning as above.

p 1, F(b) in (5.1) tends to a function that is zero everywhere except at the origin,
where it is 1. Thus, for large m, the function F tends to a narrower and narrower
peaked function. (We still consider m small relative to the number of oscillators.) For
a fixed number of neighbors, F(b) becomes wider as p decreases. As p- 0, m fixed,
and with the amplitudes normalized, F(b)-f(b), the nearest neighbor case. For/9 < 1,
as m -, F(b) tends to a peaked function that is narrower in width thanf(b) cos (b).

It follows from the narrowness (i.e., the larger size of F’ compared with f’) that
changes in tOk produce smaller changes in phase differences for F than for f. We now
give simulations to show how the effects of frequency differences are diminished by
multiple coupling even when F is normalized. In the next several figures, we fix the
frequency gradient and compare the phase differences for one-neighbor, two-neighbor,
and five-neighbor coupling. We normalize so that the amplitudes of F(b) are equivalent.
In Fig. 5.3, we show the results of isotropic coupling with p 1 (no damping in the
coupling strengths) for m 1,2, and 5. (H.(O)=sin (0)-.5 cos (0).) The chain has a
linear frequency gradient from to1 1 to tOloo 0.5. There is very little difference in the
general shapes of the phase-difference curves, but the magnitude of the curves are
quite different, as are their slopes; clearly, the slope is smallest for m 5, so the effect



MULTIPLE COUPLING IN CHAINS OF OSCILLATORS 951

,’ ..... m--5 ,;

t00

FIG. 5.3. b as a function of k in an isotropic medium with a frequency gradient: (.O

k 1," ", 100. The graph is drawn for m 1, 2, 3 as in Figs. 5.1 and 5.2.
1- .005k, p 1,

of the frequency gradient is smaller. Note that even with a large frequency gradient,
the phase differences at each point away from the boundary stay between zero and
-Tr/2m, i.e., in the region for which f](jb) all have the same sign as F’(b). The
phase-locked frequency of the chain is similar in the three cases (0.098, 0.087, and
0.066 for m 1, 2, and 5, respectively). One curious effect is that the boundary layer
on the right is sharpest for the nearest-neighbor case and gets coarser as m increases.

Figure 5.4 depicts the phase differences for different values of p for five neighbors.
All parameters except p are as in the previous figure. As we derived from (5.1) above,
the magnitude of the phase differences is larger for p 0.8 and smaller for p 1.25.
Small amounts of anisotropy make little difference in the qualitative picture when
there is an imposed frequency gradient; in the absence of such a gradient, differences
from the isotropic case are dramatic (see, e.g., [2]).

Although the mathematical results in this paper assume that the frequencies in
the chain slowly vary, a similar argument could be formally applied to the situation
in which the frequencies are close but randomly distributed. Nearest-neighbor coupling

,,’/,
,.,..,,..,., ii

\!

m.
_! I,,

I00
k

FIo. 5.4. Chk as a function of k in an isotropic medium, rn 5, three values ofp and other parameters as
in Fig. 5.3. Long dashes trace the p .8 curve, short dashes p--1.25, and the solid curve p- I. (Note that
p 1.25 means that distant neighbors have stronger interactions than nearest neighbors.)
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m /

k
oo

FIG. 5.5 tk versus k for an anisotropic medium, with tO chosen randomly from the interval [.7, ]. The
lower graph is m and the upper is m =5. H+(b) .8H-(b), H-(b) =-.5 cos b +sin b.

does not buffer as well against these effects as the multiply coupled situation. This
result is shown in Fig. 5.5, where we depict the phase differences for a chain whose
frequencies are randomly chosen from the interval (.7, 1). We compare coupling to
nearest neighbors with coupling to five nearest neighbors. (H+(b)-
.8(sin (b)-.5 cos (d))/m, H-(b) (sin (b)-.5 cos (qb))/m, m= 1 or 5.) The multiple-
coupling case shows an average phase shift that is closer to zero than the nearest
neighbor case ((b)= -.119 for five neighbors versus (b)= -.409 for nearest neighbors).
The variation is also less for the multiply coupled case (trs= .087 vs. trl- .136). If we
repeat the calculation for mean and standard deviations ignoring the last five oscillators
(where there is a boundary layer), similar quantitative results are found ((b)5 -.130,
tr5 =.071; (t)l---.428, o- =.090).
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SUBHARMONIC BRANCHING IN REVERSIBLE SYSTEMS*

A. VANDERBAUWHEDE"

Abstract. The branching of subharmonic solutions at a symmetric periodic solution of an autonomous
reversible system is studied. Here "symmetric" means "invariant under time reversal." It is shown that
generically each such symmetric periodic solution belongs to a one-parameter family of similar periodic
solutions. Along such a family solutions having multipliers that are roots of unity can be met generically.
It is shown that at such solutions further branching of subharmonic solutions will generically occur.

Key words, periodic solutions, reversible systems, period-doubling, subharmonic branching, Lyapunov-
Schmidt method
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1. Introduction and preliminaries. In this paper we will consider autonomous
systems of the form

(1.1) =f(x)

satisfying the following hypotheses"
(H0) (i) x e R2" and f: R2" R2" is sufficiently smooth.

(ii) There exists some R e (R2"), with R2= ! and dim Fix (R) n,
such that

(1.2) f(Rx) -Rf(x) Vx R-".
Some of the results that we will state further on require only a finite smoothness for
f (i.e.,f Ck for some sufficiently large k < ), whereas others, in particular those on
cascades of subharmonics, require f to be C-smooth.

In (H0)(ii) we have used the .following notation: If X is any Banach space and
sg c 5f(X), then we define

(1.3) Fix sC) := {x X Ax x, VA sg}.

The hypothesis (H0)(ii) is satisfied in a natural way for oscillation systems; these are
systems of the form

(1.4) y g(y),

with y R" and g:R" Rn. System (1.4) reduces to (1.1) by putting

x= f(x)=
g(x,) (Xl)for x=

X2

Condition (1.2) implies that if x(t) is any solution of (1.1), then so is (t):= Rx(-t).
For this reason we call systems satisfying (H0) reversible (or more precisely, time-
reversible) systems.

* Received by the editors March 11, 1989; accepted for publication (in revised form) August 2, 1989.
Part of this work was done while the author was visiting at the University of Nice, Nice, France.

" Instituut voor Theoretische Mechanika, Rijksuniversiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium.
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The condition R2= I implies that {/, R} forms a (compact) group of linear
operators acting on R2". By a general result (see, e.g., Bredon 1] or Vanderbauwhede
[9]) we may then assume that this action is orthogonal, i.e., RRT"= I, and hence also
R R. The starting point of our analysis will be a nonconstant symmetric periodic
solution of (1.1); more precisely, we assume the following hypothesis:

(H1) (i) Equation (1.1) has a nonconstant periodic solution Xo(t), with minimal
period To > 0, satisfying

(1.5) Rxo(-t)=Xo(t+qb) tR

for some b R.

Later we will complement hypothesis (H1) with a second part, (H1)(ii). Condition
(1.5) means that the companion solution Rxo(-t) of x0(t) has the same orbit as Xo(t)
itself; we call such solutions symmetric. By shifting the origin of time (i.e., by replacing
by t-ck in this case) we may, without loss of generality, assume that b =0 in

(1.5), and hence

(1.6) Rxo(-t)=Xo(t) ItR.

The problem we want to discuss in this paper is then the following: Given an integer
q-> 1, describe all periodic orbits of (1.1) with the properties that:

(a) Their orbits lie in a neighborhood of the orbit of x0(t), which we denote by

(1.7) Ko := {Xo(t)[t R}.

(b) They have a period near qTo.
The case q 2 corresponds to period-doubling, whereas for q >-_ 3 we will talk about
subharmonic branching.

In 2 we use a geometrical argument to obtain a result due to Devaney [2],
namely, that generically Xo(t) will belong to a one-parameter family {x(t) lc R} of
symmetric and periodic solutions of (1.1); a consequence of this result will motivate
part (ii) of our hypothesis (HI). From 3 on we study our problem in the form of an
abstract equation suitable for a treatment by a Lyapunov-Schmidt method. In 3 we
study the linearization of this equation. In 4 we make a reduction of the abstract
problem; this reduction forms the counterpart (in our abstract setting) of the classical
Poincar6 map in phase space; as a result we find a classical bifurcation problem with
Dq-symmetry. In 5-7 we study this problem for the cases q 1, q 2, and q => 3,
respectively. In the case q 1, we recover the solution branch {x} mentioned before.
For the cases q 2 and q_-> 3, we obtain conditions that ensure the existence near Xo
of further branches of symmetric periodic solutions with period near qTo. For q 2
we find a single branch of symmetric periodic orbits with double period, branching at

Xo from the primary branch {x}; for q => 3, two such branches ofsubharmonics bifurcate
at Xo from the primary branch. Our approach is a combination of a reduction technique
introduced by Vanderbauwhede in some earlier papers [6], [7], with the bifurcation
analysis made in [8] for the problem of subharmonic bifurcation in reversible but
nonautonomous equations. For the case q => 5, results similar to the ones described
here have been obtained by Sevryuk [5], using the Poincar6 map and normal form
theory.

The results proved in this paper show that reversible systems can have a rich
variety of periodic solutions. Generically, the mere existence of a symmetric periodic
solution implies the existence of a whole branch of such solutions, and if along such
branch some of the multipliers get trapped on the unit circle, then branching of
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subharmonic solutions will occur. In our theorems we fix some q to isolate particular
solutions, but of course the complete picture is much more involved. Consider, for
example, the case of period-doubling (Theorem 3): Our transversality condition
(H2)(ii) implies that along the primary branch {x} we will have for one sign of a

simple Floquet multipliers on the unit circle, travelling with nonzero speed. These
multipliers will pass through an infinity of roots of unity (with high values of q), and
at each ofthese give rise to subharmonic branching, according to Theorem 4 or Theorem
5. Probably the neighborhoods in which our local analysis is valid will shrink down
to a point as a 0 and q c. Moreover, the solutions along the double-period branch
will have a pair of multipliers near +l; we have not yet tried to calculate these
multipliers, but it is conceivable that under certain conditions these multipliers will
be on the unit circle, giving rise to further subharmonic branching. A similar complexity
arises in the case q _-> 3. The transversality condition (Hq)(iii) implies that the multipliers
along the primary branch will meet an infinity of roots of unity, at each of them giving
rise to an appropriate subharmonic branching. Moreover, the calculations that we
made for nonautonomous reversible systems (see [8]) suggest that along part of the
subharmonic branch there will be a pair of simple multipliers on the unit circle (near
one), giving rise to further subharmonic branching. If this is indeed the case, then we
can expect whole cascades of subharmonic branchings, with ever increasing periods.
It seems to be an interesting problem to see whether the approach of this paper can
be extended to capture such phenomena in a more global way.

Our results should be compared with what happens in generic nonreversible
systems. In those, periodic solutions are isolated, and we can see period-doubling only
by changing a parameter; for subharmonic bifurcation we even need two parameters.
(Remember that our system (1.1) does not depend on any explicit parameter.) There
is, however, another particular class of systems whose set of periodic solutions seems
to behave in very much the same way as what we find here for reversible systems: the
results obtained by Meyer [4] for generic Hamiltonian systems show a similar structure
of branching families of subharmonic solutions. We should also remark that although
the two classes do not coincide still many Hamiltonian systems are also time reversible.
For a general introduction to reversible systems and their relation to Hamiltonian
systems, refer to the paper of Devaney [2] and to the recent lecture notes of
Sevryuk [5].

2. A continuation result. In this section we use a Poincar6 map to prove the
following continuation result (see Devaney [2]).

THEOREM 1. Generically the orbit Ko of xo(t) belongs to a one-parameterfamily of
periodic orbits of (1.1), all corresponding to symmetric periodic solutions, and with the
minimal period changing smoothly along the family.

Proof. The proof is based on the following simple observation. Suppose that x(t)
is a solution of (1.1) such that

(2.1) Rx(O) =x(0) and Rx()=x()
for some T>0. Then the first condition of (2.1) implies that Rx(-t) x(t) for all R
(i.e., x is a symmetric solution), whereas from the second condition we find

x

We conclude that (2.1) implies that x(t) is symmetric and T-periodic.



SUBHARMONIC BRANCHING IN REVERSIBLE SYSTEMS 957

Now let Xo(t) be the solution given by (H1)(i) and satisfying (1.6). At the point
Xo(0) we construct a transversal section to the orbit Ko, as follows"

(2.2) E:={xo(O)+ylyR2" and (y, o(0) =0}.

In (3.2), (-,.) denotes the scalar product in R2". Now remark that Ro(0)=-o(0),
and therefore we have for each y Fix (R) that

(y, o(0)) (Ry, o(0)) (y, Ro(0))= -(y, o(0))= 0.

Also since Xo(0) Fix (R), we conclude that E contains the n-dimensional subspace
Fix (R). In a similar way we define a transversal section E1 to Ko at the point xo(To/2)
by

(2.3) l:--{Xo(-)-Fy yR2" and (y,:o(--)) =0}.
Using (1.6) and the To-periodicity of Xo(t) we have Xo(To/2) Fix (R) and Ro(To/2)
-o(To/2). This ,again implies that Fix (R)

Now let H-E c E E1 be the (half-period) Poincar6 map between E and E. II is
uniquely defined and smooth in a neighborhood of Xo(0) in E; moreover, II is a
diffeomorphism from E onto II(E). Let

A := Fix (R) Nn(n Fix (R)).

Since dim Fix(R)-n we have that II(nFix(R)) is an n-dimensional manifold;
moreover, both Fix (R) and II(N Fix (R)) are contained in the (2n-1)-dimensional
manifold 1. We conclude that generically A will be a one-dimensional manifold. Then
let x(t) be a solution of (1.1) starting at t=0 from a point :e II-I(A), and let T/2 be
the time interval needed to go from : to II(:); then x(t) satisfies (2.1), and hence x(t)
is symmetric and T-periodic. This proves the theorem.

In the foregoing proof we have been rather vague about the precise condition that
ensures A is a one-dimensional manifold. In 5 we will give a different analytic proof
of Theorem 1, using a precise condition that we now introduce, and that is related to
the algebraic structure of the Floquet multiplier 1 of the periodic solution Xo(t) of
(1.1). The variational equation of Xo as a solution of (1.1) is given by

(2.4) 2=A(t)x,

with

(2.5) A(t):= Df(xo(t)) ltR.

Denote by (t) the fundamental matrix solution of (2.4), satisfying (0)= L Since
(2.4) is To-periodic, we have that

(2.6) YP( + To) (t)C, C := dp( To).

The eigenvalues of the monodromy operator C are the Floquet multipliers of Xo. Since
the solutions of (2.4) have the form x(t)- (t)sc for some : R2" such solution will
be To-periodic if and only if Cs -s, i.e., if and only if s is an eigenvector of C
corresponding to the multiplier 1. Since :o(t) is a To-periodic solution of (2.4) it
follows that :o(t)= (t)o(0) and that o(0) is an eigenvector of C corresponding to
the multiplier 1.
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Let us now denote by x(t) (a R) a one-parameter family of symmetric, T-
periodic solutions of (1.1), as given by Theorem 1, coinciding with Xo(t) for a --0 and
chosen such that Rx(-t)=x,(t) for all and a. Suppose also that x(t) and T
depend smoothly on a. We set

To dto*
(2.7) to*(a):=- and /3 :=-a (0).

We have to*(0)--1, and generically we expect that /3 0. Assuming that this is the
case we also set

( 1 O__Ot ,oX*(t)"(2.8) x*(t):= x and Uo(t):=
Then x*(t) and Uo(t) are To-periodic, and we have

(2.9) to *(a 2*(t) f(x* (t)).

Differentiating this identity in the variable a at a 0, we find

(2.10) fo( t) A( t)Uo( t) 2o( t).

By 2o(t)= (t)o(0) and the variation-of-constants formula it follows that

(2.11) Uo(t)=(t)[uo(O)-t:o(O)] VtR;

setting t- To in (2.11) and using the To-periodicity of Uo(t) we find

(2.12) (C I)uo(O) To 2o(0).

This proves that (under the condition/3 0) the multiplier 1 of Xo(t) is non-semisimple.
In the next section we will obtain some further results from Floquet theory; in

particular we will show that the symmetry (1.6) of Xo(t) implies that the multiplier one
of Xo(t) has an even algebraic multiplicity as an eigenvalue of C. Assuming the simplest
possible situation that combines even multiplicity with the non-semisimplicity suggested
by Theorem 1 and the calculations above we therefore impose the following hypothesis:

(H1) (ii) The Floquet multiplier 1 of Xo(t) is non-semisimple, with geometric multi-
plicity 1 and algebraic multiplicity 2.

In 5 we will show that (H0) and (H1) imply the existence of a family of periodic
solutions {x,(t)} of (1.1) with the properties assumed above.

3. Floluet theory. Let us recall our problem, as stated in 1: under hypotheses
(H0), (H1), and for given q_>-1, we want to find all periodic solutions of (1.1) with
period near qTo and with an orbit near the orbit o of Xo(t). Using a time rescale, with
an undetermined scaling factor to > 0 for the moment, we can reformulate this problem
as follows:

(Pq) Given q-> 1, find, for all to near 1, all qTo-periodic solutions of

(3.1) to f(x)

that have an orbit in the neighborhood of Ko.

In this section we fix some (general) q _-> 1; in later sections we will then specialize to
the cases q 1, q 2, and q->_ 3, respectively.
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To write down (Pq) as an abstract operator equation, we introduce the following
Banach spaces"

(3.2) Zq := (z" R- 11:" z is continuous and qTo-periodic},

(3.3) Xq:={xZqlx is C1};
in Zq we use the C-supremum norm, and in Xo the Cl-supremum norm. We remark
that Xo Xq. Next we define an operator Mq Xq x R Zq by

(3.4) Mq(x, to)(t):=-to:(t)+f(x(t)) VtR.

Our problem then reduces to that of solving

(3.5) M,(x, o) 0.

A fundamental point for our further treatment is the fact that this equation has an
O(2)-equivariance, as we now explain.

We write O(2), the group of orthogonal linear operators on R2, in the following
form:

(3.6) 0(2) {bl S’} U {b. cr b sl},
where we take S := R/qZ; b stands for a rotation over 27rob and tr stands for a
(fixed) reflection. Then we can define representations F" O(2)- (Zq) and ’" O(2)(Zq) of 0(2) over the Banach space Zq by

(3.7) (F6z)(t) := z(t + qbTo), (Fz)(t) := Rz(-t),

(3.8) (rz)(t) := z( + 6ro), (z)(t) := -Rz(-t),

for each z Zq, ck S 1, and R. We verify without difficulty that F6, F62 F,+62,
F] =/, and F,, F6 F_+ F, such that F is indeed a representation of 0(2); the same
holds for F. Note also the different sign in the representations F and F of r. The
important point is now that the representation F leaves the subspace Xq of Zq invariant
and that the operator Mq defined by (3.4) satisfies

(3.9) M.(rx, )= M.(x, ,o) V e O(2),

(3.10)

(3.11)

.(rx, )=.(x, ) v6 S1,

M(rx, ol=rMo(x, a,).

The fact that Mq is equivariant with respect to two different representations of 0(2)
is somewhat unusual in equivariant bifurcation theory, but will play a crucial role in
our further analysis.

Our starting point will be the given solution (x, to)= (Xo, 1) Xq x I! of (3.5). The
symmetry of this solution is described by the isotropy subgroup of Xo, i.e., by

(3.12) o := { o(2) lrxo Xo}.

It is easily seen that Eo is generated by 4 1 and by tr" invariance under F1 corresponds
to the fact that Xo, considered here as a qTo-periodic function, is in fact To-periodic,
whereas the invariance under F is a consequence of (1.6). So Eo is isomorphic to Dq,
the symmetry group of a regular q-gone.

Since for to 1 the solution Xo of (3.5) does not have the full O(2)-symmetry, it
generates a whole group orbit of solutions, given by

(3.13) := {F. Xol y 0(2)} {Fe. xol



960 A. VANDERBAUWHEDE

This group orbit K generated by Xo is the counterpart in the space Xq of the actual
orbit Ko of Xo in the phase space R2". We can now reformulate our problem as follows:

(Pq) Find all solutions (x, to) Xq x R of the equation (3.5) with x near
near 1.

In the next section we will describe an appropriate neighborhood of in Xq; in the
remainder of this section we study the linearization

(3.14) Lq := DxM(xo, 1) (Xq, Zq)

of Mq at the solution (Xo, 1). The explicit form of Lq is given by

(3.15) (Lqx)(t)=-g(t)+A(t)x(t) VxX, VtR,

while the equivariance of Mo implies that

(3.16) LqF ’ILq and LqF ’Lq.
It is a classical result that Lq ’(Xq, Z) is a Fredholm operator with index zero. The
elements in its kernel N(Lq) are the qTo-periodic solutions of the variational equation
(2.4). Using (2.6), it follows immediately that

(3.17) N(Lq)={u(t)=dP(t)IM(Cq-I)}.
To describe the range R(Lq) we introduce in Zq (or, better, in its complexification
Z) an inner product by

1 qT(z(t), w(t)) dt, (a, b):=(3.18) (z, w):= oo i=1

With respect to this inner product Lq has a formal adjoint L*q (Xq, Zo) defined by

(3.19) (L*qx)(t):=:(t)+AT(t)x(t) txXq, VtR.

We have

(3.20) (L*q x, y)= (x, Lqy) Vx, y Xq.
We can also easily verify that

(3.21) (Fz, w) (z, F_w) and (Fz, w) (z, Fw),

with a similar property for ’6 and ’. Combining (3.20) and (3.21) with (3.16), we
find that

(3.22) Lq*’ F1Lq* and Lq*’ FLq*.
Finally, we know from classical Floquet theory that dim N(Lq)=dim N(L*q),
(3.23) N(L*) {u*(t) ((I) r(t))- :* :* e N((C r)o i)}

(3.24) R(Lq) {z Zql(U* z)=0 ’u* e N(Lq*)}.
In what follows we will rewrite N(Lq) and R(Lq) as a direct sum of eigenspaces
corresponding to the Floquet multipliers of Xo(t) that are qth roots of unity, i.e.,
multipliers of the form A qP with 1-< p =< q and

(3.25) Aq := exp (2ri/q).

To each p e N with 1 =< p-< q we associate a subspace Z(p,q) of Zq defined by

(3.26) Z(p,q) := (z
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we set X(p,q):= Z(p,q)O Xq. Each of these subspaces Zp,q) (1 <=p <-q) coincides with
the range of a projection Bp,q) ..(Z) defined by

(3.27) B(,)
q t=l q

These projections satisfy

(3.28)

(3.29)

and

(3.30)

It follows that

n(p,q) B(p,,q) tp,p,n(p,q),
q

p=l

1 _-< p, p’ =< q,

(n(.)z, w> (z, n(,,,o)w>.

q

(3.31) Zq ) Z(,q
p=l

and that the spaces Z(,q) (1 <-_p<-_q) are mutually orthogonal"

(3.32) (z, w) 0 if Z - Z(p,q), w . Z(p,,q), p p’(mod q).

From (3.16) and (3.22) we see that L and (Lq*) map each of the spaces X(p,q)into
the corresponding space Z(p,q); we define L(p,q) (X(p,q), Z(p,q)) and Lp,q)
(X(p,q),Z(p,q)) as the restrictions of L, respectively, (Lq*), to X(p,q). It is then
immediate from the foregoing that

q q

(3.33) N(Lq) N(L(p,q)), N((L*q)) N(L’(p,q)),
p=l p=l

q

(3.34) R(L)= ) R(L(p,q)),
p=l

(3.35) R(L(p,q)) (Z Z(p,q)l(u, z> 0, Vu* N(Lp,q))}.
Using the definitions and (2.6), it is also easy to see that

(3.36) N(Lp,q))= {u(t)=(t)l N(C-APqI)},

(3.37) N(Lp,q)) {u*(t) (T(t))-’:* :* N(CT X qPI)}.

Next we prove a general result on Floquet multipliers of periodic solutions of (1.1).
Let (t) be a periodic solution of (1.1), with period T> 0. Let (t) be the fundamental
matrix solution of the variational equation

(3.38) 2=Df((t))x,

and C := (T) the corresponding monodromy operator. Let to := To/T, and define
0, R-> R2" by (t)=o,(tot); then 0, is To-periodic, and hence 0, Xq for each q>= 1,
and the operator DxMo(, to) (Xq, Z) is well defined. Moreover, this operator
again maps each subspac.e X<p,q) (1-<p _-< q) of X into the corresponding subspace
Z<p,q) of Z. We define L(p,q) (X<p,q), Zp,q)) as the restriction of DxMq(o, to) to
X<p,q). Finally, we denote by J<p,q)’X<p,q)-> Z(p,q) the canonical injection of X<p.q) into
Z(p,q)

LEMMA 1. With the foregoing notation we have for each C and each v >-1 that

(3.39) dim N((fp,q- iJ(p,q)) dim N(( APq e"’I)).
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Proof. Fix some/x C and a pair (p, q) with 1 <= p.<= q; we have that X := h Pq e"T
eT, with/2 pq + g and q := 2i/qTo. Since det C # 0 it follows from a classical
construction (involving the Jordan normal form of) that we can find some E (C2)
such that

(3.40) ezr and N(E gI) N( XI).
Now let u X(p,q) and v Z(p,q) be such that

(3.41) (p,q)U U V.

Define functions x" R C and y" R C2" by

(3.42) u(t)=(t) e--P"’x(t),
(3.43) v(t) (t) e--P"’y( t);

it is then straightforward to check that x(t) and y(t) are T-periodic, and that (3.41)
transforms into

(3.44) -+ (E I)x y.

Conversely, if x(t) and y(t) are T-periodic and satisfy (3.44), then u(t) and v(t)
defined by (3.42) and (3.43) belong to Xp,q, respectively Zp,q, and (3.41) holds. The
left-hand side of (3.44) defines an operator K (Xr, Zr), where Zr is the space of
continuous T-periodic mappings z’R C2, and Xr the subspace of all x Z which
are of class C . We will prove that

(3.45) N(K)={(.)IN((-I))},
for each 1. By the established relation between (3.41) and (3.44) this immediately
implies the result (3.39). We prove (3.45) using induction in v.

For a C-function if"R C2" the condition ff N(K) is equivalent to

(t) e(E-l)t(O) and (T) (0),

i.e., to

(t) e-z’)t(0) and (0) S(-I).
Since N( I) N(E I) this reduces to (t) (0) with (0) N( I); this
proves (3.45) for v 1.

Now suppose that (3.45) holds for a ceain v 1, and let " R- C2" be a C-function. We then have that M(K+) if and only if Xr and K N(K ). By
(3.45), the definition of K, and the variation-of-constants formula this is equivalent to
the existence of some N((-I)) such that

(3.46) if(t) e(E-I)t (0)-- e-(E-I)s ds and (T) if(0).

For a function (t) having the form given by (3.46), the condition (T)= (0) is
equivalent to

(3.47) (d I)(0) d e-(-’’ ds.

Writing (-I)(0) + ’ in (3.47), applying (-I), and working out the integral
gives [I)’ 0, i.e., ’ e N(d [I) N( I); but then (3.47) reduces to CT’=
0, i.e., ’ =0 and = (-I)(0). Bringing this into (3.47) we see that the condition
e N(K+) is equivalent to (t) (0) with ( I)(0) e N((d I)); using (3.40)

this last condition is equivalent to (0) e N((d I)( gI)) N((d I) +). This
proves (3.45) for all 1.
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Taking v 1 in (3.39) we see that A e’r is a Floquet multiplier of (t) if and
only if dim N(L(.q-xJ(.q)> O, i.e., if and only if the equation

(3.48) ,o). u

has a nontrivial solution u X(p,q). Also, taking (t)= Xo(t) and/x =0 it follows that

(3.49) dim N(L(p,q))=dim N((C-APqI) ") Vv >- 1.

Until now we have not yet exploited the fact that x0(t) is symmetric with respect to
time reversion. To see how this can be used we prove the following complement of
Lemma 1.

LEMMA 2. Suppose that the T-periodic solution ;( t) in Lemma 1 is symmetric. Then
we have for each A C, A 0 that

(3.50) dim N((t-AI))=dim N(((-A-I)) Vv_-> 1.

Proof. Since ;(t) is symmetric we will have F6F,o :,o for some 4’ R. Let/z C
be such that A e’ take p q 1, and write and J for L.1) and J.l), respectively.
Now L= DMI(,) (X, Z), and therefore the equivariance of M1, the sym-
metry of , and JFF, =-6J imply that

(3.51) (- o )r,r v, c,
i.e., we have +J 6(.J)F6F. It follows that

N((L+ J)) J))),

dim N((+ J))=dim N((-J)),
and (3.50) follows from (3.39).

We now discuss some consequences of Lemma 2. It follows from (3.50) that if
A C is a multiplier of :(t), then also A -1 is a multiplier (multipliers are always
different from zero), and both have the same algebraic multiplicity. Therefore, we can
divide the multipliers into groups, of the following forms:

(1) Pairs of real multipliers {A, A-l}, with Ixl 1;
(2) Pairs of complex multipliers {A, } on the unit circle (i.e., Ixl 1, but A +1);
(3) Quadruples of complex multipliers {A, A -1, , -} off the unit circle and off

the real axis (i.e., ]AI 1 and Im A 0);
(4) Possibly the multiplier -1;
(5) The multiplier 1, which is always present.

Counting the dimensions of the corresponding generalized eigenspaces of t, and using
the fact that det t > 0 (this is true in general), we conclude that -1 must be a multiplier
with even multiplicity, that det C 1, and that, since we are working in an even-
dimensional phase space, the multiplier 1 must also have even multiplicity. For generic
equations of type (1, 1) and for generic symmetric periodic solutions (t) the multiplier
1 will be non-semisimple with algebraic multiplicity 2 (for Xo we have already
anticipated this in hypothesis (H1)(ii)), -1 will not be a multiplier, all other multipliers
will be simple, and those on the unit circle will not be roots of unity. However, along
one-parameter families of symmetric periodic solutions such as we find in Theorem
1, we may generically find critical parameter values for which we have either (a) a
pair of simple multipliers on the unit circle that are roots of unity; or (b) a multiplier
-1 that is non-semisimple with algebraic multiplicity 2. The roots of unity appear as
simple multipliers move along the unit circle, whereas the multiplier -1 appears at a
transition point where two real simple multipliers {A, A -} meet at -1 and then move
away from each other on the unit circle. Of course, a similar situation may happen at
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1, but here we will not discuss this (more difficult) case. Also, in a quadruple
{A, , A -x, -} we may have that A and - meet on the unit circle and then separate
again, staying now on the unit circle; however, generically the multiplier at the critical
value of the parameter will not be a root of unity, and therefore we will not consider
that case either. The foregoing discussion will motivate our hypotheses (H2) and (Hq),
(q-> 3), which we introduce later.

4. Reduction of the problem. In this ,section we make a first step towards the
solution of (3.5), which we want to solve for (x, o) near r x {1} in Xq x R. We will
reduce this problem to that of solving a new equation (4.12), which is Eo-equivariant
and which we must solve near the origin; in the next sections we will then apply a
standard Lyapunov-Schmidt reduction to this reduced equation.

We start by using the Floquet theory of 3 to obtain some consequences of our
hypothesis (HI). Setting Xo, 0, and p =q 1 in Lemma 1 we see that (HI)(ii)
implies that

(4.1) dim N(L)= 1 and dim N(L’)=2

Since o N(L1), it follows that

(4.2) N(L) span {:o}.

LEMMA 3. Assume (H0)-(H1). Then there exist uniquely determined elements
Uo X1, U*o X1 and *o X1 satisfying the following properties"

(i) L1Uo :o and (Uo, :o) 0;
(ii) N(L*) =span {Uo*} and (a*o, Uo) 1;
(iii) L*I *o U*o and (*o, Uo) O.

Moreover, we then have that

(4.3) R(L1) {z Zl I(Uo*, z) 0},

and the functions Uo, U*o, and *o also satisfy
(iv) (Uo*, o) 0 and (no*, o) 1;
(v) Fuo Uo, [’U*o =-U*o, and [*o *o
Proof By (4.1) there exists some u N(L21)\N(L1). Then LlU N(L1)\{0}, and

hence, by (4.2), Lu =/3o for some/3 0. We can then satisfy (i) by taking

U0-- j--l( u --(0, U)(0, 0)--10)

The uniqueness of Uo X satisfying (i) is easily verified.
Next we observe that Uo R(L); indeed, if Uo Lix for some x

N(LI) N(L2), and LlUo-- L12x- 0, which contradicts (i). It then follows from (3.24)
that there exists some u* N(L*) such that (x*, Uo) 0; moreover, since dim N(L*)
dim N(L1)= 1, we also have N(L*)=span {u*}. We then satisfy (ii) by taking Uo*
(u*, Uo)-u*; uniqueness of Uo* is again trivial.

It follows from (i) that o R(L), and hence (Uo*, o) 0. Reversing the roles of
L and L* (L is the formal adjoint of LI*) we see that this implies that U*o R(L*).
So we can find some g* X such that LI*t* Uo*. Setting to* t*-(t*, Uo)U*o, we
then satisfy (iii); also here uniqueness is easy. Moreover, we have that

(to*, o) (to*, LlUo) * ~*(L1 Uo, Uo)= (Uo*, Uo)= 1.

To prove (v) we use (3.16) and (3.22) to show that properties (i)-(iii) remain satisfied
when we replace Uo by Fuo, Uo* by -[’,Uo*, and to* by [’to*; the uniqueness of the
elements Uo, Uo*, and to* satisfying (i)-(iii) then implies (v).
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Remark. Further on we will consider Uo, Uo*, and ao* as elements of Xq, for some
q-> 1. As such they do not only have the symmetry given by (v), but also

(4.4) Fluo Uo, ’luo Uo ’1/o Uo

Next we consider the problem of describing a neighborhood of K in Xq. As a solution
of a differential equation with smooth right-hand side, Xo(t) is smoother than a general
element of Xq (which is only C1); in particular, the mapping b --Fxo is ditterentiable,
and its derivative determines the tangent space to K at Xo. Since this derivative equals
To’o, we see that this tangent space is generated by o. We now introduce a projection
Po in Zq onto this tangent space, by setting

(4.5) Poz := (ao*, Z)o.
It follows from (4.4) and Lemma 3(v) that

(4.6) PoF1 F1Po Po and PoF, F,Po -Po.
Therefore, if we set

(4.7) Yq := N(Po)= {z Zql(*o z)=O},

then Yq is invariant under the action of Eo D,.
The following lemma now describes a tubular neighborhood of r in Xq; for its

proof we refer to Chapter 8 of [9].
LEMMA 4. There exists a Eo-invariant neighborhood 1 ofthe origin in Xq fq Yq such

that

(xo+ y)lyf, y O(2)}

forms an open neighborhood of in X.
This result allows us to write x Fv. (xo+y) in (3.5); using the equivariance of

Mq and the invertibility of F we then arrive at

(4.8) Mq(xo+y, to) 0.

This means that by solving (4.8) for (y, to) near (0, 1) in (Xq fq Yq) x R and acting with
the symmetry operators on the solution set we obtain all solutions (x, to) of (4.5) in a
neighborhood of r x {1} in Xq x R. We remark that in (4.8) y belongs to a subspace
of codimension 1, namely, Xq N Yq {y Xq (o y) 0}.

For our next step we rewrite (4.8) as two separate equations"

(4.9) PoMq(xo+y, w)=0,

(4.10) (I-Po)Mq(xo+y, to) 0.

Now we observe that the first of these equations can be solved for to. Indeed, (4.9) is
satisfied for (y, to)=(0, 1), and using the definitions (3.4) and (4.5) of Mq and Po,
respectively, we find that

PoD,oMq xo 1) :o # O.

So we can solve (4.9) by the Implicit Function Theorem, to obtain to a3(y), where
tfi :Xq f’l Yq R is defined and smooth in a neighborhood of the origin, with 03(0) 1.
Moreover, the uniqueness part of the Implicit Function Theorem and the equivariance
properties of Mq and Po imply that

(4.11) o3(ry)=o3(y) vyeEo Dq.
Bringing the solution to a3(y) of (4.9) into (4.10) gives us the reduced equation

(4.12) Mq(y) := (I Po)Mq(xo+ y, (y)) O,
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to be solved for y near the origi,n in Xq f’l Yq. The~ mapping Mq" Xq CI Yq Yq is defined
and smooth near the origin, Mq(O)=0, and Mq is Dq-equivariant:

(4.13) hT/q(F, y) Mq(y) V’y Dq.

For later use we also calculate q := D1Qq(O), D21lq(O), and Da3(0). We have from
(4.12) that

f_,qy= (I- Po)Lqy+(I- Po)DoMq(xo, 1). D(O) y
(4.14)

(I- Po)Lqy Vy Xq f-I Yq,

since D,oMq(xo, 1)=-20 and (I-Po)o 0. To find Da3 (0) we differentiate the identity

PoMq(xo+y, o3(y)) 0

at y 0, and find

(4.15) D(O) y (*o Lqy)= *’*Lq Uo, y) (U*o, y).

Finally, differentiating (4.12) twice and setting y =0 gives

D21lq(O) (y, .) (I- Po)DMq(xo, 1)" (y, )

-(Do3(0). f)(I-Po)-(Do3(0)" y)(I- Po) :
(4.16)

(I Po)DMq(xo, 1). (y, fi)

-(Uo*, 17)(1- Po)))-(Uo*, y)(I- Po)y.
Remark. The foregoing reduction of (3.5) to (4.12) is a kind of analogue of the

classical Poincar6 map construction, but here in an infinite-dimensional space of
periodic mappings. As is the case with the Poincar6 map we have reduced the problem
to one on a subspace of codimension 1, and we have gotten rid of to, which is related
to the period. The important point here is that the reduced equation (4.12) reflects the
symmetry of our basic solution Xo, since it is Eo-equivariant.

The next step toward a solution of our problem will be to apply a classical
(equivariant) Lyapunov-Schmidt reduction to (4.30); we will do this in the sections
that follow. Here we conclude this section with a result on the operator /qe
.(Xq ’) Yq, Yq) given by (4.14).

LEMMA 5. Assume (H0)-(H1), and q >- 1. Then Lq (Xq fq Yq, Yo) is a Fredholm
operator with index zero, dim N Lq dim N Lq

(4.17) N(Lq) (N(Lq) f’l Yq)0)span {Uo},

(4.18) R(fq) R(Lq) f-I Yq.

Proof. Let u e N(/q); by (4.14) this means that u Xq f’l Yq and (I- Po)Lqu =0,
i.e., Lqu a2o for some a e R. Let v := u aUo; since Uo Yq it follows that also v Yq,
while Lqv=O, i.e., we have ve N(Lq)f’l Yq and therefore u (N(Lq)f’l Yq)0)span {Uo}.
C,onversely, let u=auo+v, with aeR and vN(Lq)f’l Yq. Then ueXqf’l Yq and
Lqu =0. This proves (,4.17).

Next let z eR(Lq), i.e., there exists some y eXqf’l Yq such that z-Lqy=
(I-Po)Loy; it follows that z Yq and Lqy= z + fl2o for some/3 e R. But then Lq(y-
flUo) z, which proves that z R(Lq) f’) Yq. Conversely, if z R(Lq) Yq, then z Lqx
for some x e Xq. Set y (I- Po)x; then y Xq (q Y.q, Lqy z, and Lqy (I- Po)Lqy
(I-Po)z =z, since z Yq. This shows that z R(Lq) and proves (4.18).
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Now Lq (Xq, Zq) is a Fredholm operator with index zero. Since :o N(Lq)
and Uo: N(Lq), it follows from (4.17) that dim N(Lq)=dim N(Lq). It is obvious
from (4.18) that R(Lq) is closed. To calculate the codimension of R(Lq) in Yq, we
observe that (3.24) and (4.18) imply

R(q) ={y Yql(u*,y)=O, Vu* N(Lq*)}
(4.19)

={yZql(a*o, y)=O=(u*, y), Vu* N(Lq*)}.
Since to* N(L*o), it follows that R(q) has codimension equal to 1 +dim N(L*q) in
Zq, and equal to dim N(L*q)=dim N(Lq)=dim N(q) in Yq. This proves the lemma.

Using the results of 3, and in particular (3.31)-(3.34), we can give some more
detailed expressions for N(L’q) and R([.q). Indeed, it follows from (3.32) and ao*
X1 c Z Z(q.q) that Z(p,q) Yq if 1 -< p <- q 1. It follows then from (3.33), (4.17), and
N(L(q,q)) N(LI)= span {o} that

(4.20) N(Lq) span {Uo}O) Re N(Lp,q))

the second term on the right-hand side of (4.20) is absent if q 1. A similar argument
shows that (for q >- 2)

(4.21) R(/,q) R(/I)0)Re R(Lp.q>)

Setting q 1 in (4.19) and using N(L*)=span {Uo*} finally gives us

(4.22) R(1) {y Yll(U*o, y) 0}.

5. The ease q = 1. In this section we consider (4.12) in the case where q 1. Our
main result is the following theorem, which in fact is a more precise version of our
earlier Theorem 1.

THEOREM 2. Assume (H0) and (HI). Then there exist a neighborhood ll ofK x {1}
in X1 x R, a number ao> O, and smooth mappings x* Oto Co[ - X1 and to* ]-ao ao[ -)

R such that the following hold:
(i) {(x, to) lllMl(X, to)=O}=i(F x*(a), to*(a))iiai<ao, bS’};
(ii) (x*(0), to*(0))=(Xo, 1);
(iii) (U*o X*(a)-Xo)= a and (a*o X*(a)-Xo)=O;
(iv) rx*(a)-- x*(a).
Proof. We solve (4.12) for q 1 and y near the origin. It follows from (4.20) and

(4.22) that

(5.1) N(L)=span{uo}, R(L,)={ye Yl(U*o,y)=O}.

We define a projection P in Y1 by

(5.2) Py := (U*o y)uo.

Then N(1) R(P) and R(1) N(P). We also remark that

(5.3) Pr r P.
We can now apply a standard Lyapunov-Schmidt reduction to (4.12). We write
yXlf’l Y1 as y=auo+v, with yeN(P), and rewrite (4.12) in the following form"

(5.4a) (I- P) lf/ll auo+ v)= O,

(5.4b) PMl(aUo+ v) O.
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Equation (5.4a) can be solved for v v*(a), with v*(0) =0 and Fv*(a) v*(a) (since
F,,uo Uo). Bringing this solution into (5.4b) and using definition (5.2) of P leaves us
with a scalar bifurcation equation:

(5.5) go(a) := (U*o l,(aUo+ v*(a))> O.

But

go(a (Uo*, (aUo+ v*(a (uo*, r  ,(aUo+ v*(a
"-(trg/O ]rl(OU0-’/)g(O)))-" --go(a),

and hence go(a)=O. Putting x*(a):= Xo+aUo+V*(a), to*(a):= (aUo+V*(a)), and
using the results of 4 then proves the theorem.

Differentiating the identity (I-P)lll(aUo+V*(a))=O, we find that Dr*(0) =0,
and hence

(5.6) Dx*(O) Uo.

Using (4.15) we find that

(5.7) Do*(O) (Uo*, Uo) 1.

It follows from Theorem 2 that when we put

(5.8) x,(t) := x*(a)(to*(a)t),
then {x I11< o} forms a solution branch of our original equation, consisting of
symmetric periodic solutions with period

(5.9) T := to*(a)"
It follows from (5.7) that along this solution branch the period changes with nonzero
speed. Using the arguments of 2 we conclude that for I1 sufficiently small the solution
x(t) of (1.1) will have a non-semisimple Floquet multiplier 1, with geometric multi-
plicity 2.

When we move along the one-parameter family of periodic solutions {x} we may
(as we have discussed in 4) encounter in a generic way critical values of the parameter
c for which x,(t) has either (a) a multiplier -1, which is non-semisimple and has
algebraic multiplicity 2; or (b) a pair of simple Floquet multipliers on the unit circle
that are roots of unity. In the sections that follow we will consider separately the cases
(a) and (b), assuming that the critical parameter value is given by t =0.

6. The case q 2. In this section we study (4.12) for the case q 2, and assuming
that next to (H0) and (HI) we also have"

(H2) (i) Xo(t) has -1 as a non-semisimple Floquet multiplier, with geometric multi-
plicity 1 and algebraic multiplicity 2.

We will state part (ii) of (H2) after we have studied what happens to this multiplier
-1 as we move along the branch of periodic solutions {x} given by 5.

We start with some notation. We set Z:=Re(Z(1.2))={zZ2[Fz=-z} and
X := Re (X(1,2)); we denote by L (X, Z) and (L*)- (X, Z) the restric-
tions of L2 and L2*, respectively, to X. It then follows immediately from (4.20), (4.21),
and (3.35) that

(6.1) N(L2) =span {Uo}03 N(L;),

(6.2) R(2) R(1)0) R(L),
(6.3) R(L) {z Z (x*, z)=0, /u* N((L)*)}.
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Moreover, taking ; Xo, p 1, q 2, and/x 0 in Lemma 1 we see that (H2)(i) implies

(6.4) dim N(L) dim N((L)*) 1 and dim N((L;)) 2 /v >= 2.

LEMMA 6. Assume (H0) and (H2)(i). Then there exist elements Vo, o, V*o, and ’2
in X such that

(i) N(L) span {Vo};
(ii) Lo Vo and (o, Vo) 0;
(iii) N((L*)-) =span {Vo*} and (V*o, o) 1;
(iv) *-’*L2 Vo 0 and *o o) O.

These elements are uniquely determined up to a scaling (Vo,o,V*o,)-
(Vo, o, -1V*o -*o with # 0; moreover, they satisfy

(v) (Vo*, Vo) 0 and (tTo*, Vo) 1;
(vi) Fvo eVo, Fto -ergo, [’Vo*= eV*o, and *o -e*o, with either e 1 or

Proof The proof is based on (6.4) and is completely analogous to the proof of
Lemma 3; the only special point is that from N(L)=span {vo} =span {Fvo} and
Fvo Vo we can only conclude that Fvo eVo with either e 1 or e =-1.

Remark. Replacing Xo(t) by Xo(t + To/2) in the whole theory will change the sign
of e, so we can always assume that e 1 if we want to. However, this is not necessary
for our theory, and therefore we will not use it.

We now turn to the problem of finding out how the multiplier -1 of Xo(t) will
change when we move along the family {x} of periodic solutions of (1.1) defined by
(5.8). It follows from Lemma 1 that h -eT (with/x C) will be a Floquet multiplier
of x(t) if and only if

(6.5)

has a nontrivial solution x X(,2); in this equation L(1,2)(a) (X(1,2), Z(,2)) is the
restriction of

(6.6) L2(c) := DxM2(x*(t), to*(a))

to X(,2). To find multipliers of x near -1 we must solve (6.5) for/x near zero. We
define P_ (Z(1,2)) and Q_ (Z(,2)) by

(6.7) P_z := (to*, Z)Vo, Q_z := (Vo*, z)fio;

it follows from Lemma 6 that P_ and Q_ are projections, that R(P_)= N(L(1,2)(0))
and N(Q_)=R(L(I,2)(O)), and hence that L,2)(0)=L,2)is an isomorphism from
N(P_) onto N(Q_). In (6.5) we put x=flVo+W, with weN(P_), and rewrite the
equation as a system of two equations:

(6.8) (I- Q_)(L(I,2)(a)- Iz)(flVo+ w)=0,

(6.9) (V*o, (L(,2)(a)-lx)(flVo+ w)) 0.

For (a,/z) sufficiently small, (6.8) can be solved for w= flw*(a, tx), where w*(a, I)
N(P_) is uniquely determined by

(6.10) (I-Q_)(L(l,2)(a)-tx)(Vo+ w*(a,/x)) 0.

In particular, we have w*(0, 0)=0, while D,w*(O, 0) is determined by

(6.11) L(,2)D,w*(O, O)= Vo and D,w*(O, 0) N(P_).

Moreover, (6.10), L(1,2)(a)F [’L(,2)(a), and FVo eVo imply that

(6.12) Fw*(a,/x) ew*(a,-tx).
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Bringing the solution of (6.8) into (6.9) we see that (6.5) will have nontrivial solutions
if and only if

(6.13) c(,, ,):= (Vo*, (L<,.)(,)- g)(Vo+ w*(,, g )) =o.
We have G(0, 0)=0, while (6.12) implies that

(6.14)

Also, G(cr, Ix) is smooth in a R and analytic in Ix C. An easy calculation shows that

(6.15)
D2 G(0, 0)=-2(Vo*, D,w*(O, 0))=-2(Ll,2)Vo*~* D,w*(O, 0))

-2(*o, L(,.2)D,w*(O, 0))= -2(to*, Vo> -2,

while using (5.6) and (5.7) we find that

(6.16)
D,G(0, 0)= (Vo*, DL(1.2)(0) Vo)

=(Vo*, DM2(Xo, 1). (Uo, Vo))-(Vo*, t)o).

More explicitly, we have

(6.17)
1D.G(O, O) o (V*o(t), D2f(xo(t)) (Uo(t), Vo(t))) dt

1 [2 o (V*o(t), Df(xo(t)) Vo(t)) dt.
2To .,o

Now suppose that D,G(0, 0) rs 0. Since G(a, 0) is real-valued it follows that G(a, O) > 0
if a is sufficiently small and aD,G(a, 0) > 0, whereas G(a, 0) < 0 if aD,G(a, O) < O.
Since G(a, Ix) is analytic and even in Ix, it follows from (6.15) and the Weierstrass
Preparation Theorem that we can write G(a, Ix) in the form

(6.18) G a, Ix X a Ix2)H o, Ix),

with H(a, Ix) smooth in a, analytic and even in Ix, H(0, 0)= 1, and with X(a) smooth
and real-valued, satisfying X(0)=0, X(a)>0 if aDG(O,O)>O and X(a)<0 if
aD,G(O, 0)<0. It follows that (6.13) will have two real solutions +Ix, := +(X(a)) 1/2

if aDG(O, 0) > 0, and two purely imaginary solutions +i/2 := +i(-x(a)) 1/ if we have
aD,G(O, 0) < 0. Via Lemma I this means that for one sign of cr the T-periodic solution
x,(t) of (1.1) will have two real and simple multipliers near -1, while for the other
sign of a we have a pair of simple multipliers on the unit circle near -1. This is the
situation that should occur generically, and therefore we include the condition
DG(O, 0)r 0, which leads to this situation, in our hypotheses:

(H2) (ii) The expression D,G(0, 0), as given by (6.17), is different from zero.

We can summarize our analysis up to this point as follows.
LEMMA 7. Assume (H0), (H1), and (H2). Then the T,-periodic solution x(t) of

(1, 1) given by (5.8) has for sufficiently small t 0 the following multipliers near -1"
(i) A pair of real and simple multipliers if aD,G(O, 0)> 0; these multipliers have

the form -exp (+Ix,T,), with Ix, clal 1/2 as cr -0;
(ii) A pair ofsimple multipliers on the unit circle iftDG(O, 0) < 0; these multipliers

have the form -exp (+il2T,), with 12 cl l 1/=
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Now we return to our main problem, namely, that of solving (4.12) in the case
q=2 and under the additional hypothesis (H2). It follows from (6.1)-(6.3), (4.22),
and Lemma 6 that

(6.19) N(L2) span {Uo, Vo}

while

(6.20) R(2) ={y

We define in Y two projection operators P and Q"

(6.21) Py := (U*o, y)uo+(*o y)vo Vy Y2,

(6.22) Qy:=(U*o, y)uo+(V*o, y)o fy Y2.

The fact that P and Q are indeed projections follows from Lemmas 3 and 6 and the
fact that (u, v) 0 when u Z and v Z. We have

(6.23) N(L2) R(P) and R(L2)= N(Q),

and we verify directly that

(6.24) F1P PF, FP PF,

(6.25) Q=QI, Q=Q.
We use P and Q to apply a straightforward Lyapunov-Schmidt reduction to (4.21),
as follows. We write y6X2f’lY2 as y=auo+pVo+W, with aR, pR and w
X2f’l N(P). We also write (4.12) as a set of two equations:

(6.26) (I- Q)M:(aUo+ pvo+ w)=0,

(6.27) QMz(aUo+ pvo+ w) =0.

In the usual way we can then solve (6.26) for w= w*(a, p), with w*(0,0)=0,
D,w*(O, O)= D,w*(O, 0)= 0, and

(6.28) F w*(a, p)= w*(a,-p), rw*(a, p)= w*(a, ep).

Bringing this solution into (6.27) gives us two scalar bifurcation equations:

(6.29) go(a, p):= U*o ]l(aUo+ pVo+ w*( ot, p )) O,

(6.30) g(a, p):= (Vo*, hT/z(aUo + pvo+ w*(a, p))) 0.

The bifurcation functions go and g have the following symmetry properties"

(6.31) go(a,-p) go(a, p) and g(a,-p) -g(a, p),

from the F-symmetry, and

(6.32) go(a, ep)= -go(a, p), g(a, ep)= eg(a, p),

from the F-symmetry.
In both cases e + 1 and e -1 we see that go(a, p) 0, i.e., (6.29) is automatically

satisfied. The function g(a, p) is odd in the variable p, and hence we can write

(6.33) g(a,p)=ph(a,p)

for some appropriate function h(a, p) satisfying

(6.34) h(a,-p)=h(a,p).



972 A. VANDERBAUWHEDE

It follows from (6.33) that setting t9 =0 gives us a first solution branch of (4.12), of
the form {aUo+ w*(a, 0)lla]<Co}; since Flw*(a, 0)= w*(a, 0) this solution branch
belongs in fact to X1 fl Y, and must therefore coincide with the branch given by
Theorem 2, i.e., we have

(6.35) Xo+ aUo+ w*(a, 0)= x*(a).
To find other solutions we must set p 0, and then (6.30) reduces via (6.33) to

(6.36) h(a, p) =0.

We have (using (6.35))

h(a, O)= D,g(a, O)=(Vo*, Dl12(aUo+ w*(a, 0))" (Vo+ D,w*(a, 0)))
(6.37)

=(Vo*, DxMz(x*(a), w*(a))" (Vo+ Dow*(a, 0)));

it follows that

(6.38)
and

h(O, O) (V*o L=vo) 0

(6.39) D,h(O, O)= (V*o DL2(O)vo).

Comparing with (6.16) we see that Dh(O, 0)# 0 by (H2)(ii). Therefore we can solve
(6.36) for a =a*(p), with a*(0)=0 and a*(-p)=a*(p). This gives us a solution
branch

{f(p) :- a*(p)uo+ pro+ w*(a*(p), P)I Ipl < po}

for (4.12). Since )7(-p) F)7(p) both solutions )7(p) and )7(-p) lead to the same group
orbit of solutions for (3.5). Moreover, we have

(6.40) F37(p) )7(ep),

i.e., F)7(p)=)7(p) if e 1, and FFoT(p)=)7(p) if e -1. It follows that the solutions
)7(p) are symmetric in the sense defined in 1. Putting

(6.41) X*d(p):=Xo+(p) and Wd*( p) := a3()7( p))
we therefore have the following result.

THEOREM 3. Assume (H0)-(H2). Then there exist a neighborhood ql of to x {1} in

X2 R, numbers ao > 0 and po > O, and smooth mappings X’d" ]--Po, Po[ X2 and
to d*" ]--Po, Po[ R, such that the following holds"

(i) {(x, oo) lMz(x, o)=0}={(r. x*(), o*(a))llcl < Co,
o ((r,. o*(p)) 0 < p < po, 4 e

where x*(a and to *(a are as in Theorem 2;
(ii) (xa*(0), wa*(0))= (Xo, 1);
(iii) (*o ,.X*a(p)-xo)= p, (U*o X*a(p)-xo)=O and (*o X*a(p)-xo)=O;
(iv) For p # O, x*a(p) has minimal period 2To;
(v) Either Fx’(p)=x*a(p) for atI p, or FFlX*,(p)=x*(p) for atI p;
(vi) wa*(-p)= oa*(p).
Setting

d(6.42) x(t) :- x*a(p) (W*d(p)t)
dit follows from Theorem 3 that {xo(t)]0 < p < po} forms a branch of symmetric periodic

solutions of (1.1), converging to Xo(t) as p 0, and with minimal period

2To(6.43) T :=
tOd.(p
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converging to 2To as p 0. So we have a period-doubling branching at Xo. When
D2toa*(0) # 0, as will generically be the case, then

(6.44) dTd 0 for p > 0,a,
and, by the arguments of 2, the Td-periodic solution Xd(t) of (1.1) will have 1 as a
non-semisimple Floquet multiplier with algebraic multiplicity 2. It is possible to
calculate D2toa*(0) from our foregoing formalism, but this is a lengthy and tedious
exercise that we do not want to include here.

7. The ease q>-3. In this section we fix some integer q_->3, and together with
(H0) and (HI) we also assume"

(Hq) (i) Xo(t) has a pair of simple characteristic multipliers (A,X), for some
integer p with 0<p<q and greatest common divisor (g.c.d.) (p, q)= 1;

(ii) (nonresonance) Xo(t) has, besides 1, h, and X, no other multipliers
such that h q= 1.

As in 6, we will later complement (Hq) with an appropriate transversality condition
(Hq)(iii). It follows from g.c.d. (p, q)= 1 that there exists some integer r such that

(7.1) rp 1 (mod q).

Using Lemma 1 we see that (Hq)(i) implies that

(7.2) dim N((Lp,q))=dim N((Lp,q)) 1 Vt,>- 1.

LEMMA 8. Assume (H0) and (Hq)(i). Then there exist elements oXp,q and
0 X(p,q) such that

(i) N(Lp,q) span {’o} and N(Lp,q) span {’o*};
(ii) (’o*, sro) 2 and (o*, (o) 0;
(iii) F’o o and *o -*o
Proof. From (7.2) there exist elements sr and ’* of Xp,q) such that N(L(p,q))=

span {’} and N(L’p.q))=span {’*}. But also F belongs to Xp,q), and from LqF,=
FLq and the fact that Lq is a real operator it follows that F" N(L(p,q)). So we have
F =/3r for some/3 C, which then must satisfy I 1-1, i.e., fl exp (2i) for some
b R. Setting ’o " exp (ib) it follows that N(L(p,q)) span {’o} and F’o ’o. It
follows from (7.2) that o:R(L(p,q)), and therefore we have (’*, ’o)#0, by (3.35).
Taking ’o*: 2(’*, ’o)-sr* it follows that N(L3p,q))=span {’o*} and (sro*, ’o)=2. The
same argument as above shows that o* =/3’o* for some/3 C; but then we have

2 (’o*, r #o> o> g>
and hence/3 =-1. Finally, we remark that sroe Z(,a) implies that sro e Z(_,)= Z(_,q),
and hence (sro*,o)=0 by (3.32) and q-prSp(modq) (this follows from g.c.d.
(p, q)= 1).

Next we look for the multipliers of the T-periodic solution x(t) of (1.1) given
by (5.8). By Lemma 1 we see that A := Apq ei7" will be a multiplier of x is and only if

(7.3) Lp,q( Ct )X itxx

has a nontrivial solution x Xp,q; in (7.3) Lp,q(a) (Xp,q, Zp,q) is the restriction
to Xp,q of the operator Lq(a) c, where Lq(a)(Xq, Zq) is defined by

(7.4) Lq(a) := DxMq(x*(a), to*(c)).
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So to find multipliers of x(t) near A we must solve (7.3) for/x near zero. To do so
we define an operator 7r e (ZCp.q)) by

(7.5) z := 1/2<o*, Z>o Vz

It follows from Lemma 8 that 7r is a projection, with

(7.6) R(r) N(L(p,q)(0)) and N(r)= R(L(,q(0)).

We put x =/3’o+ w in (7.3), with/3 e C and we N(.tr)fqX(p,q, and rewrite the equation
as a set of two equations"

(7.7) (I r)(L(p,q)(Ot) itz )(flo+ w) O,

(7.8) (*o, (L<p,q)(a)- itz)(flo+ w)) 0.

For
N(Tr) is uniquely determined by

(7.9) (I-’rr)(L<p,q)(a)- i/x)(’o + w*(a,/z)) 0.

In particular, w*(a, I.) is smooth in a and analytic in tz, with w*(0, 0)=0 and
D,,w*(O, 0) 0. We can also verify from (7.5) that 7r[’= ’(-); then the uniqueness
of the solution of (7.9) implies that

(7.10) rw*(a,/z) w*(a, ).

Bringing the solution of (7.7) into (7.8) we see that (7.3) will have nontrivial solutions
if and only if

(7.11) H(a, It,)i--(o* (L(p,q)(Ot)-i/z)(sro + w*(a,/z))) 0.

Again, H(a,/z) is smooth in a and analytic in/z, with H(0, 0)-0 and D,H(O, 0)-
-i(sro*, ’o)=-2i. Therefore we can solve (7.11) for/x =/z*(a), with/z*(0) 0. Using
(7.10) and (7.11), we also have that

H(a, )=-H(a, lz);

the uniqueness of the solution of (7.11) then implies that

(7.12) /x*(a) =/z*(a),

i.e.,/z*(a) e R. Finally, we have that Dtz*(0) 0 if and only if D,H(O, 0) 0. It follows
from (7.11) that

(7.13) D,H(O, O)= (*o DLp,q)(O) ’o) (sro*, DLq(O) o),

or more explicitly, using the results of 5:

D,H(O, O)=(*o, Dx Mq(xo, 1). (Uo, sro))-(’o*, o)

1 f qT (’o*(t), D2f(xo(t))) (Uo(t), ’o(t)) dt
(7.14) qTo ao

1 qTO
(*o(t), Df(xo(t)) o(t)) dt.

qTo o

LEMMA 9. Assume (H0), (H1), and (Hq)(i). Then the T-periodic solution x(t)
of (1.1) has, for a sufficiently small, a unique pair ofsimple multipliers on the unit circle
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and near (APq,A). These multipliers have the form exp (+iO*(a)), with a--O*(a) a
smooth real-valued mapping, *(0) 27rp/ q, and DO*(0) # 0 ifand only ifDH(O, O) O.

Proof. Take O*(a) 27rp/ q + tz *(a) T,.
So, if DH(O,O)O, then the multipliers exp(+iO*(a)) of x(t) move with

nonzero speed along the unit circle; since this is the situation which should happen
generically we make it an explicit hypothesis:

(Hq) (iii) The expression DH(0, 0), as given by (7.14), is different from zero.

Now we return to our main problem, which is to solve (4.12) for y near zero, under
the hypothesis (Hq). It follows from (4.20)-(4.22), (3.35), and Lemma 8 that

(7.15) N tq span {Uo, Re sro, Im ro},

(7.16) R(fq)={yE Yq[(U*o,y)=O and (’o*, y) 0}.

We define a projection P (Yq) by

(7.17)

Then we have

(7.18)

while also

(7.19)

Py := (U*o, y)uo+ Re ((sro*, y)sro) Vy 6

R(P) N(q) and N(P)= R(/.q),

PF1 F1P and PF, F,P.

We use P to perform a Lyapunov-Sehmidt reduction on (4.12). We write y Yq fq Xq
in the form

y aUo+ Re (Z’o)+ v,

with a R, z C, and v N(P)71Xq. We should remark here that although we use
complex coordinates (z E C), this is only for notational convenience, and we should
consider C as a two-dimensional real vector space; this is particularly true when we
talk about smoothness (see further). We can now rewrite (4.12) as a system of two
equations:

(7.20) (I P)Mq(aUo+ Re (zsro) + v) 0,

(7.21) PMq(aUo+ Re (Zsro) + v) =0.

Equation (7.20) can be solved for v v*(a, z), with v*(0, 0)= 0. The mapping v*:R x
C N(P)f3 Xq is smooth near the origin (in the sense explained above), and we also
have that

(7.22) 17’1t)*(a z)

(7.23) Fv*(a, z)= v*(a, ).

Bringing the solution of (7.20) into (7.21) and using (7.17) gives us two bifurcation
equations"

(7.24) go(a, z):= (U*o l(4q( aUo+ Re (z,.’o)+ v*( a, z))) 0

(7.25) g(a, z) := (*o, lq(aUo+ Re (zsro) + v*(a, z))) 0.

The mappings go: R x C R and g R x C - C are smooth near the origin, with go(0, 0)
0 and g(0, 0)= 0. They also have the following symmetry properties:

(7.26) go(a, APqZ)= go(a, z), g(a, Az)= APqg(a, z),
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from the F1-symmetry, and

(7.27) go(a, )= -go(a, z), g(a, )=-g(a, z),

from the F-symmetry.
LEMMA 10. There exist smooth functions hi R x C- R (i 0, 1, 2) such that
(i) go(a, z) ho(a, z) Im q;
(ii) g(a, z) ihl(a, z)z + ih2(a, z)q-1;
(iii) hi(a, Aqz)=h,(a,)=h,(a,z), (i=0, 1,2).
The proof of this lemma is completely analogous to the proof of the Lemma 6 in

the paper [8], and therefore we do not repeat it here. For a different approach, see
Golubitsky, Stewart, and Schaeffer [3]. The results in [3] and [8] also show that (iii)
implies that the functions hi(a, z) must have the form

q’

(7.28) hi(a,z)= Z, A,,,(o)lzl=’/O(Izl ") as z0,
/=0

where q’:=[(q-1)/2] and the functions A,:RR are smooth (i=0,1,2; l=
0, 1,. , q’).

It follows immediately from Lemma 10 that (7.24), (7.25) are satisfied for z =0.
Since the corresponding solutions of (3.5) belong to X, they must coincide with the
solutions given by Theorem 2, i.e., we have

(7.29) Xo+ aUo+ v*(a, O) x*(a).

Replacing go(a, z) and g(a, z) by their expressions from Lemma 10, we see that we
can also satisfy (7.24) by taking z C such that

(7.30) Im q 0.

More strongly, if ho(0, 0) 0 or h2(0, 0) 0 then all sufficiently small solutions (a, z)
of (7.24), (7.25) must satisfy (7.30): this follows from the form of go(a, z), and from
the fact that if we multiply (7.25) by and take the real part of the resulting equation,
then we find

(7.31) h2(a, z) Im q 0.

In principle it is possible to calculate ho(0, 0) and hE(0 0); the result will involve
higher-order terms (up to order q) off(x) at the basic solution Xo(t). Generically these
expressions will be nonzero, and therefore all sufficiently small solutions of (7.24),
(7.25) will, in a generic situation, satisfy (7.30).

Now (7.30) means that z must have the form

Jq+l(7.32) z=phq or z=ph pR, j=0,1,...,q-1.

Using (7.1) and (7.22) we see that

aUo+ Re (hqZ’o)+ v*(a, XqZ)= F(aUo+ Re (Z’o)+ v*(a, z)),

and therefore different values of j in (7.32) will correspond to solutions of (3.5) on
the same group orbit. It is therefore sufficient to consider the case z p R if q is odd,
and the cases z =p and z P,’2q with p > 0 if q is even. Moreover, we have for p R
that

aUo+ Re (P’o)+ v*(a, p)= F(aUo+ Re (P’o)+ v*(a, p)),

aUo+ Re (ph2q’o) + v*(a, ph2q) FrFo.(aUo+ Re (ph2q’o) + v*(a, ph2q)).
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We conclude that the corresponding solutions of (1.1) will all be symmetric. For
z =p e R, (7.24), (7.25) reduce to just one real and scalar equation, namely,

(7.33) hi(a, p)+ h2(a, p)pq-2 0,

whereas for z P/Eq (/9 e R) we find the equation

(7.34) hi(a, pA2q) h2( a, pAEq)pq-2 O.

To see how we can solve these we must calculate hi(0, 0) and Dhl(0, 0). Combining
Lemma 10 with (7.25) and taking z =p R, we find that

(7.35) ihl(Ot, p)p+ihE(a,p)pq--’(*o,llq(atlo+p Re ’o + v*(a, p))).

Differentiating in p at p- 0 and using (7.29) gives us

ihl(a, 0)= (’o*, Dlq(aUo+ v*(a, 0)). (Re sro + Dpv*(a, 0)))
(7.36)

1/2(’o*, Lq(a). (’o+ 2Dpv*(a, 0))).

Now v*(0, 0)=0, Dv*(O, 0)=0 and Dv*(O, 0)=0. Therefore it follows from (7.36)
that hi(0, 0)=0, while

(7.37) 2iDaho(O, O)- (*o DLq(O) o).

Comparing with (7.13) we see that Dh(0, 0)# 0 by our hypothesis (Hq)(iii). So we
can solve both equations (7.33) and (7.34) for a as a function of p.

Equation (7.33) gives us a solution branch a aq(p), with aq(0) =0 and

(7.38) Ogq(--p)--- Ogq(p)Jf" O(pq-2) as p-0.

This last relation follows from the form (7.28) of the functions hi(a, z). In fact, if q
is even then Lemma 10(iii) implies that hi(a, -p) hi(a, p) for p R, and then we have

(7.39) aq(-p) aq(p).

In the case where q is even we also must solve (7.34), which gives us a solution branch
a Cq(p), with tq(0) =0 and

(7.40) tq(p)=Oq(p)’t-O(pq-E) as p0.

It follows from (7.38) and (7.40) that

(7.41) Daq(O)- Dq(O)=0

if q >-4. In the case q 3 a direct calculation gives

(7.42) Da3(0) -(DH(O, 0))-(ro* Dx Ma(xo, 1). (o, o)).

Setting

x*(p) := Xo+ aq(p)uo+p Re o+ V*(aq(p), p),

*(p) := Xo+ q(p)uo+ p Re (Ao’o) + v*(q(p), pAq),

:=

,;*(p) := Xo),

we can summarize our results in the following theorems.
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THEOREM 4. Assume (H0), (H1), and (Hq) for some odd q >-3. Then there exist
a neighborhood all ofK x { 1} in Xq x R, numbers ao > 0 and po > O, and smooth mappings
Xq* ]-Po, po[ - Xq and to q*" ]-po, po[ - R such that the following holds"

(i) {(x, to)[Mq(x, to)=0}{(F, x*(a), to*(a))][a[ < ao, thS1}

I,ol < po, s’},

where x*(a) and to*(a) are as in Theorem 2, and where generically we can replace the
inclusion by an equality.

(ii) (Xq*(0), too*(0))- (Xo, 1).
(iii) Dxq*(0)-Re ’o and Dto*q(O)=O, except if q-3 in which case we have

Dx*3(O) Re ’o+ CUo and Dto3*(0) c,

with c-- -1/4(DH(O, 0))-(’o* D Ma(xo, 1). (o, o)).
(iv) X*q(p) has minimal period qTo for p O.
(v) Tx*(p) X*q(p).
THEOREM 5. Assume (H0), (H1), and (Hq) for some even q > 3. Then there exist

a neighborhood all of x { 1 } in Xq x R, numbers ao > 0 and po> O, and smooth mappings
Xq* ;]-po, Po[ --> Xq, toq*" ]-po, po[ --> R, ;*" ]-Po, Po[ - Xq and tq*’]-po, po[ -> R such
that the following holds:

(i) {(x, to) lMq(x, o)-0}

u o < p < po, s’},

where x*(a) and to*(a) are as in Theorem 2, and where generically we can replace the
inclusion by an equality.

(ii) (Xq*(0), toq*(0))- (;q*(0), a3(0))- (Xo, 1).
(iii) Dx*q(O)= Re sro, DSq*(0)= Re (AEqsro), Dtoq*(0)- 0, and D*q(O)- O.
(iv) x*(q) and *q(p) have minimal period qTo for p O.
(v) Fxq*(p)= X*q(p) and
We conclude from Theorems 4 and 5 that under (Hq) we have subharmonic

branching at the solution Xo(t) of (1.1). If q is odd, then two branches of symmetric
periodic solutions pass through Xo: a primary branch, along which the minimal period
converges to To as we approach Xo, and a secondary branch along which the minimal
period approaches qTo as we approach Xo. In the case where q is even, next to the
primary branch there are two other branches of symmetric periodic solutions that
terminate at Xo; along each of these secondary branches the period converges to qTo
as we approach Xo.

Acknowledgment. I thank Professor G. Iooss for his hospitality and for a number
of interesting discussions concerning this paper.
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ON THE STURM-PICONE THEOREM FOR nth-ORDER DIFFERENTIAL
EQUATIONS*

MARCELLINO GAUDENZVf

Abstract. The classical Sturm-Picone theorem can be seen as a comparison theorem for the two-point
boundary value problem (BVP) associated with the linear equation (py’)’+ qy O. In this paper the problem
of extending this theorem to two-point BVPs associated with the equation P,,(P,,-I"’" (PI(PoY)’)"’")’+
qy 0 is considered. It is shown that the extension is possible only for particular types ofboundary conditions.
In the case n 3, the BVPs for which the extension is true are characterized. Analogous results are obtained
for the corresponding eigenvalue problems.

Key words, linear differential equations of arbitrary order, boundary value problems, eigenvalue com-
parison

AMS(MOS) subject classification, primary 34C10

Introduction. During a visit at the International School for Advanced Studies
(SISSA) in Trieste, Prof. A. C. Lazer raised the following question: Let us consider
the pair of linear differential equations

(1) (p(x)y(m))(3-m) + q(x)y O,

(2) (/(x)y<))<3-") + q(x)y =0,

with associated boundary conditions

(1.1) y(a)=y’(a)=O, y(b) =0,

(2.1) y(a)=y’(a)=O, y(c) =0,

where m 1 or m 2, p and/ are positive functions of class C3-m on the interval
[a, b], and q is a nonnegative continuous function defined on [a, b]. Is it true that if
p(x) _->/(x) > 0 on [a, b] and p /, then the existence of a nontrivial solution of the
boundary value problem (BVP) (1), (1.1) implies the existence of a nontrivial solution
of the BVP (2), (2.1) for some c < b ?

An affirmative answer to this question would extend the Sturm-Picone comparison
theorem to equations of higher order. Such problems have already been studied in the
case of the comparison with respect to changing the function q (see 1], [2], 11]).

In this paper we prove some general results about the validity or nonvalidity of
the Sturm-Picone comparison theorem for nth-order equations. Analogous results on
the comparison of the first positive eigenvalue are also obtained.

In particular, as consequence of our main theorems, we have:
(1) A negative answer to the problem raised by Lazer in both cases rn 1 and

m=2;
(2) A positive answer to Lazer’s question if we change the boundary conditions

properly (e.g., m= 1 and y(a)=y’(a)=O, y’(b) =0);
(3) A characterization of the third-order BVPs for which the extension of the

Sturm-Picone theorem holds.

* Received by the editors May 1, 1987; accepted for publication (in revised form) August 1, 1989.

" Dipartimento di Matematica ed Informatica, via Zanon 6, 33100 Udine, Italy.
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Moreover, as a byproduct of our negative results we provide counterexamples
showing that Theorem 1.3 of [9] is not correct.

1. Preliminaries. In the sequel we will consider an equation that contains as a
special case (1), (2), and the Sturm-Picone equation. We summarize here the notation
used and well-known facts about this equation that we will use in the next sections.

Let us give the linear nth-order equation

(3) p,(pn-l"" (Pl(poy)’)"’")’+ qy 0,

where q is a continuous function of constant sign on a compact interval [a, b] and
Po, , P, are positive functions such that Pi C"-i[a, b] for 0, , n.

We set Loy-poy, Lhy--’ph(Lh-ly)’ for h 1,. ., n, Ly- L,y. The functions Liy
will also be called the quasi derivatives of y (see [7]).

We will be concerned with the BVP given by (3) and by a system of two-point
boundary conditions of the following type (see also [2], [3], [5]):

(3.1) L,y(a)=O, i{il, ik) Ljy(b)=O, jE{jl,’’" ,in-k),

where 1 <_- k _<- n 1 and il, , ik, jl, jn-k denote fixed integers such that 0_-< i <
ik =< tl 1 and 0 _-<j <. <j,_k ----< n 1. An important special case of system (3.1)

is

(3.2) y’(a)=0, i=0,-..,k-1, yJ(b)=0, j=O,...,n-k-1.

For a solution of BVP (3), (3.1) throughout the paper we always mean a nontrivial
solution.

The following theorem is due to Nehari [10].
THEOREM A. If there exists a solution of BVP (3), (3.1) then we have (--1) n-kq _--< 0.
Nehari assumes q is strictly positive or strictly negative and considers only systems

of type (3.2). But an examination of his proof shows that it is sufficient to assume only
that q does not change sign and that the theorem is true also for system (3.1).

The next definition will play an essential role in the sequel.
DEFINITION. Given an index m, 0-_< m_-< n-1, we will say that the system of

boundary conditions (3.1) is m-admissible if for every integer k-1,..., n at least k
boundary conditions are imposed on a subset of the first k terms of the sequence of
quasi derivatives L,,y, L,,+y,..., L,_y, Loy,’’’, L,n-ly.

The 0-admissibility is equivalent to the admissibility defined in [3] and to property
(A) of [2] (see [5, Cor. 3] and [2, Thm. 1]).

Let us remark that (3.1) is m-admissible for every m, 0_-< m _-< n 1, if and only if
the sets {il,..., ik} and {jl,""" ,j,-k} have empty intersection.

In the sequel we sometimes need one of the following assumptions on the
function q"
(Q1) For every e > 0, q does not vanish identically either in the interval (a, a + e),

or in the interval (b e, b),
(Q2) q does not vanish identically in every subinterval of [a, b].

We will also consider the eigenvalue problem (EP) given by

(3A) Pn(P- (Pl(PoY)’)" )’+ Aqy=0

and the system of boundary conditions (3.1).
Eigenvalue problems of this type have been studied extensively by many authors

(see [2], [3], [5], [10]). We will make use of some known results that we summarize
as Theorem B.
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THEOREM B. Let us suppose that (--1)n-kq_--<0 and (Q2) holds. Then:
(a) EP (3A), (3.1) has an infinite sequence {hm}mr ofreal eigenvalues with nofinite

cluster points; moreover, Am >- 0 for every m.
(b) To every nonzero eigenvalue corresponds an essentially unique eigenfunction.
(c) h--0 is not an eigenvalue if and only if (3.1) is O-admissible. Only a finite

number of independent eigenfunctions correspond to h O. If these eigenfunctions are
arranged in a suitable order and the others are arranged according to the magnitude of
the corresponding eigenvalue, then the ith eigenfunction has exactly i-1 zeros on a, b)
and they are all simple.

(d) If Am>0 then Am is a differentiable function of the boundary points and a
decreasing function of the interval [a, b] (with respect to inclusion), moreover, Am-> +o
as b-> a+.

Parts (a)-(c) follow from the results of Elias [5]. Part (d) follows from Elias [6,
Cor. 4] and Ahmad and Lazer [2, Lemma 3].

We also recall the results of Ahmad and Lazer [2] on the comparison with respect
to changing the function q in Theorem C.

THEOREM C. Suppose that (3.1) is O-admissible and let 1 C[a, b] be such that

(--1)n-k(x)<--(--1)n-kq(x)<:O on [a, b] and 4 q.

Then

(a) Ifthere exists a solution of BVP (3), (3.1), then there exists a solution ofequation
Ly + (x)y 0 that satisfies (3.1) for some c (a, b).

(b) If (Q2) holds and hi,/1 are, respectively, the first eigenvalue of (3A), (3.1) and
of the EP given by equation Ly+ tz(x)y=O and system (3.1), then

2. Positive results. In this section, using a technique inspired by Ahmad and Lazer
[2], we establish comparison theorems of Sturm-Picone type for BVP (3), (3.1) and
for EP (3A), (3.1).

We begin with the case in which only one function Pm is replaced by/m in (3)
and then we provide results for the general case. Hence we first consider the pair of BVPs

(3) Pn(P,-I"" (Pl(PoY)’)"’")’/ qy 0,

(3.1) Liy(a)=O, i{il, ik}, Ljy(b)=O, j{jl,’’’,j_k},

(4) P(P-I (m" (Pl(pOU)’)’’ )’’ )’+qu=O,

(4.1) Miu(a)-O, i{il,’’’,ik}, Mu(c)=O, j{jl, ,j_k},

where /m is a function of class C on [a, b], Mu, i=O,..., n, are the quasi
derivatives of u, and c is a point of (a, b]; and then the pair of BVPs given by (3), (3.1)
and by

( (_... ((oV’’... ’+,v: o,
(5.1) N,v(a) =0, E {il,"" ", ik}, NV(C) =0, j {jl,""" ,j,-k},

where i c"-i[a, hi, t C[a, b] and Nv, i= 0,..., n, are the quasi derivatives of v.
The main result of this section is the following theorem.
THEOREM 1. Suppose that (3.1) is m-admissible, 0 <-_ m <-_ n 1, and that

O<m(X)<--_pm(X), x[a, b].

If there exists a solution of (3), (3.1) then there exists a solution of (4), (4.1) for some
c <= b. Moreover, iffire Pm and (Q1) holds then c can be chosen less than b.
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In 3 we show that the hypothesis of m-admissibility cannot be dropped; we will
also show that if (Q1) does not hold, then (4), (4.1) can have no solution for every
c e (a, b) even if/,, p,.

If {il," ", ik} f-I {jl," ,j,-k} , then the system (3.1) is m-admissible for every
m, hence by Theorems 1 and C we deduce the following theorem.

THEOREM 2. Suppose that

o<E(x)<-p,(x), x[a,b], i=0,...,n,

(--1)"-k(x)<=(--1)"-kq(x)<--_O, xe[a, b],

{il,""", ik}l’q {j,,""" ,j,,-k} ,
q or else i Pi for at least one index and (Q1) holds.

If there exists a solution of (3), (3.1), then there also exists a solution of (5), (5.1) for
some c a, b ).

Corresponding results can be stated also for the eigenvalue problems given,
respectively, by

(3A) Pn(P,-I (Pl(PoY)’)" )’+Aqy =0

and system (3.1); by

(4A) P,,(P,,-I (m" (pl(poU)’)’’ )’’ )’+/xqu 0

and system (4.1); and by

(5X) n(n--l’’" (]l(ffoV)’)’’’’ )"4- O’V 0

and system (5.1).
THEOREM 3. Suppose that (3.1) is m-admissible, 0 <- m <= n 1, and that (--1)n-kq <

0, (Q2) holds, and

O<fim(X)<=p,,,(X), x6[a, b], .,,, p,,,.
If Ao and tXo are, respectively, the first positive eigenvalue of EP (3A), (3.1) and of EP
(4A), (4.1), then/Xo < Ao.

From Theorems 3 and C we have Theorem 4.
THEOREM 4. Suppose that (Q2) holds and that

O<(x)<--pi(x), x[a,b], i=O,...,n,

(--1)"-k(x)<=(--1)"-kq(x)<=O, x[a, b],

{ il ,’" ", ik} f"l {j, ,’’’, j,-k} ,
q or else Pi for at least one index i.

IfAo and fro are, respectively, thefirst positive eigenvalue of (3A), (3.1) and of (5A), (5.1),
then cro < Ao.

The proofs of Theorems 1 and 3 follow the pattern of the proof of Theorem C
(see [2]). At first we prove a lemma (Lemma 3) which, if q(x)SO on [a, hi, is an
extension of Lemma 4 of [2], then Theorem 3 and finally Theorem 1. We also use the
same notation as [2].

Let f be a continuous function defined on [a, b]. A maximal closed subinterval
of [a, hi, which may consist of a single point, on which f is identically zero, will be
called a zero component of f A zero component of f will be called internal if it does
not contain the points a and b. We say that f changes sign h times on a subinterval of
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[a, b] if there exist h + 1 points x <’’" < Xh+ belonging to this interval such that
f(x)f(xi/) < 0 for 1,. , h. We say thatf changes sign on a subinterval iff changes
sign at least once on the subinterval.

LEMMA 1. Let fl, ",fro+l, be continuous functions on [ a, b] and suppose thatfor
1 <-h <-rn the function fh does not vanish identically on a, hi. Suppose also that for all
h, 1 _-< h _-< m, J/l changes sign in the open interval between two zero components offh.
If m + s, s >= O, of the numbers f a ), .,fm a f b ., f,, b are zero, and f has
t, >-O, internal zero components, then f,,+l changes sign at least s + times on [a, b].

(When 0, Lemma 1 is exactly part (I) of Lemma 1 of [2].)
Proof. We prove the lemma by induction on m.
For rn 1 the claim is trivial. Assume that the lemma is true for rn or less functions.

If s 0 and one of the numbers f, (a), f, (b), is nonzero or if s => 1, then by applying
the induction hypothesis to fl,""" ,fm-l,fm we have trivially that f,+ changes sign
at least s + times. Suppose now that s 0 and f, (a) f,, (b) 0. If f(a) # 0 and
fl (b) # 0 then f2 has at least t- 1 internal zero components. By applying the induction
hypothesis to f2,""" ,f,+ we have the claim. Otherwise we denote by k the greatest
index such that exactly k of the numbers f(a),. ., fk (a), fl (b)," ., fk (b) are zero.
By applying the induction hypothesis to fl,""" ,fk/l, we have that fk/l changes sign
at least times, and hence fk+2 changes sign at least t-1 times. By definition of k we
have fk/l(a) # O, fk/l(b) # O. Therefore m- k of the numbers fk+2(a)," ,f,,(a),
fk/2(b),’’" ,f,(b) are equal to zero. By applying the induction to fk+2,’’" ,f,,,+, we
have the claim.

We denote by N(i), 0, , n 1, the number of indexes of the set {il, , ik,
j,’’" ,in-k} that are equal to in system (3.1). Let

Z(m)= , (N(i)- l), m=0,...,n-1,

Z=max{Z(m): m =0,..., n-l}.

We have Z(0)=0; hence Z >=0.
Simple criteria to test the m-admissibility are given in the next lemma.
LEMMA 2. (a) System (3.1) is m-admissible if and only ifZ(m)=Z.
(b) Suppose that q O. If there exists a solution y of (3), (3.1) such that L,y(x)>-0

on a, b then system (3.1) is m-admissible.
(c) If Q2) holds, 1 n-kq X <= 0 on a, b andy is one eigenfunction corresponding

to the first positive eigenvalue of (3X), (3.1), then y has exactly Z zeros on (a, b).
Moreover, L,,y x 0 on a, b) if and only if system (3.1) is m-admissible.

Proof. (a) Suppose that Z(m)<Z and let s be an index such that Z(s)= Z. If
s > m then over the s-m quasi derivatives Ly,..., Ls-y are imposed less than
s-m boundary conditions, hence (3.1) is not m-admissible. If s < rn then over the
m-s quasi derivatives Lsy,..., L,,-ly are imposed more than m-s conditions.
Therefore on the n-m+s quasi derivatives Ly,...,Ln_y, Loy,’’’,L_ly are
imposed less than n-m + s boundary conditions, hence (3.1) is not m-admissible.

In the same way we can prove the converse.
(b) Let us consider the n+ 1 functions fl,... ,f,+ defined by f L,/i_y for

1, , n m, f L_n/,_ly for n rn + 1, , n + 1. If for some index i, f 0,
then Ly =-O, hence qy O. Since y cannot vanish in a subinterval of [a, b] it follows
that q -= 0, contrary to the assumptions. Since q does not change sign, as a consequence
of Rolle’s theorem it follows that for 1, , n, f+ changes sign between two zero
components of f. Hence f,... ,f/l satisfy the hypotheses of Lemma 1. If system
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(3.1) is not m-admissible then there exists an index s such that n-s+2 out of the
numbers f(a),. ., f, (a), fs (b)," ., f, (b) are zero. By Lemma 1 we have that f,+
Lmy changes sign on [a, bl, contrary to the assumptions.

(c) If Z =0 then system (3.1) is 0-admissible, therefore by Theorem B(c), y does
not vanish on (a, b). Suppose that Z >-1 and let s be the lowest index such that
Z(s) Z. Among the numbers Lsy(a), ., L,_ly(a), Ly(b), ., L,_y(b) n s + Z
are equal to zero. By Lemma 1, if Z1 is the number of zeros of y, then Z1 => Z. Let us
suppose that Z1 > Z. By Theorem B(c) there exists one eigenfunction w, corresponding
to A 0, with Z zeros on (a, b). Since L,w 0, a repeated integration shows that there
exists an index t-< n- 1 such that L,w does not vanish on [a, b].

Suppose that t>=s. By definition of s, at least t-s+l of the numbers
Lw(a),. ., L,w(a), Lw(b),. ., L,w(b) are equal to zero. Since L,w does not vanish,
we have that t>s and that t-s+l out of the numbers Lw(a),...,L,_lw(a),
Lsw(b),..’,Lt_l(b) are equal to zero. Applying Lemma 1 to the functions
Lsw,. ., Lt_ w, Ltw, we have that L,w changes sign, in contradiction to the definition
of t.

Suppose that < s. By definition of s, fewer than s- boundary conditions are
imposed on L,y,..., L_ly; therefore more than t-Z boundary conditions are
imposed on Loy," , L,-ly. By Lemma 1 we again have that L,w changes sign. This
contradiction shows that Z Z.

By (b), if L,,y(x) 0 on (a, b), then (3.1) is m-admissible. Conversely, if (3.1) is
m-admissible and L,,y has a zero on (a, b) then by Lemma 1, y changes sign Z+ 1
times, contradicting what we have already proved. [3

Example. Let n 6 and consider the following system of boundary conditions.

Loy(a)= L2y(a)= L3y(a)= Lsy(a)=0,

L3y(b)=Lsy(b)=O.

We have Z(5)= 1, Z(4)=0, Z(3)= 1, Z(2)= 1, Z(1)=0, Z(0) =0; hence Z= 1. By
Lemma 2 this system of boundary conditions is m-admissible for m 2, 3, 5, whereas
for the other m is not m-admissible.

LEMMA 3. Let us suppose that q 0 and that

(6) O<,,,(x)<-p,,(x), xe[a, hi.
Assume that there exists a solution y of (3), (3.1) and a solution u of (4), (4.1) where
c=b. If M,,u(x)>=O on [a, b] then there exists A eR and an interval [Xl,X2]c[a, hi,
Xl < x2 such that M,,u(x) AL,y(x) on [a, b] and p,,(x) ,,(x) on [x, x2]. Moreover,
if (Q) holds, then u =- Ay and, =pm.

Proof. Step 1. For every y e R let us consider the function

W. Mmu q- yL,,,y.

We want to prove the following assertion.
Let {y,} be a sequence of positive real numbers converging to Yo. If wv. changes

sign on [a, b] for every n=>l and Wvo(X)>-O on [a, hi, then Wo=0.
For all integer s>=0 we consider n+l functions f,s(x), x[a, b] defined in the

following way

fi, Mm-l+iU q-ysLm-l+iY for 1," ., n- m,

f. L,.__.+(u + yy) for n m + 1, , n + 1.

Since q does not change sign on [a, b], Rolle’s theorem implies that for all s-> 0 and
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for 1,..., n, f+l,s changes sign between two zero components of f,s. Moreover,
since y and u satisfy, respectively, systems (3.1) and (4.1), for all s_->0, n of the
numbers f,(a),... ,f.,(a), f,s(b),’" ,f..(b) are zero.

Since Mu>-O on [a, b], by Lemma 2 systems (3.1) and (4.1) are m-admissible.
By hypothesis for all s _-> 1, f., changes sign on [a, b]. By the definition of m-admissi-
bility and by Lemma 1, f, changes sign on [a, b] for every i. Therefore for every
and for every s -_> 1, f, does not vanish identically on [a, b].

Again by the m-admissibility and Lemma 1, it follows that for every <- n m, f,o
has a zero on a, b ]. If for an index =< n m, f,o -= 0, then Wo f,o 0. If for an index

_-> n m + 1, f,o -= 0 then fn+l,o -= 0. But by (6) we have

(7) fn+ 1,o -= Lmu + yoL.,y >- M,.u + yoL.,y >- 0,

and therefore wo-- 0.
Hence either Wvo--0 or the functions f,L, i= 1,. ., n + 1 satisfy the hypotheses

of Lemma 1 for all s -> 0. We now show that in the latter case we have a contradiction.
At first we prove that f.,o vanishes at one of the endpoints. Assume the contrary.

It follows that in system (3.1) no boundary conditions are imposed on L,,,-ly (L._ly
if m =0). By Lemma 1, for every s_-> 1, f., has two distinct zero components on [a, b].
Since f., converges to f.,o and since, by (7), f.,o cannot have two distinct zero com-
ponents, there exists a unique maximal closed subinterval [xl, x2]; a < xl <- x2 < b, of
[a, b], on which f.,o is identically zero. Between two zero components of f.,o there
exists a zero component off.+l,o; hence on Ix1, x2] we have also f.+,o(X) =0. By (7),
it follows that f,o(X)=0 on [xl, x2]. If f,o has an internal zero component, then, by
Lemma 1, f.+l,o changes sign in contradiction to (7), and hence f,o vanishes identically
on one of the intervals [a, x] or [x_, b]. Without loss of generality we may assume
that fl,o vanishes identically on [a, xl]. If there exists tl (a, Xl) such that q(q) O,
then there exists an interval [tl, t], tl<t, where U+yoy=-O. Therefore we have
f.,o(q)=0, in contradiction to the definition of xl. Hence q(x)=0 on [a, xl]. If
{m,. , n 1} {i,. , ik}, by Lemma 1 f.+a,o changes sign on [a, hi, hence Miu(a)
0 for i= m,..., n--1. So Mmu(X)=0 on [a, xl] and since /m > 0 we also have that
L.,u(x)=O on [a,x]. Therefore f.+a,o(X) =0 on [a, xl]. Hence f’.,o(X) =0 on [a,x],
in contradiction to the definition of xl. Hence either f.,o(a)= 0 or f.,o(b)= 0.

Suppose that f.,o(a) 0. Let i, 2 <= <= n, be an index such that f.o(a) f+1,o(a)
f.,o(a) =0. If for some index j, 2<-_j<-n, f,o(b)=0, then, by Lemma 1, f.+,o

changes sign, in contradiction to (7). It follows that no boundary conditions are imposed
in system (3.1) on LiT(b),..., L.y(b). If there are no boundary conditions imposed
on Li_y, then, by Lemma 1, f-l,s changes sign twice on [a, b]. If there is only one
boundary condition imposed on L_y, then, by Lemma 1, f-.s changes sign at least
once on [a, b]. Therefore, in any case, f-l,s has two zero components on [a, b]. If
f-l,o has two zero components on [a, b] then, by Lemma 1, f.+l,O changes sign. Since
between two zero components of f-l.o there exists a zero component of f,o, we have
that f-l,O and f,o have a common zero component on [a, b]. Since f.o cannot have two
distinct zero components, it follows thatf_l,o(a) 0. So iff.,o(a) 0, thenf,o(a)
f.,o(a) 0. In the same way if f.,o(b)= 0, then f.o(b) f.,o(b) 0. Since there is
at least one boundary condition imposed on points a and b, in both cases, by Lemma
1, f.+l,o changes sign in contradiction to (7).

Step 2. If M,.u =-O, then qu =-O. Since a solution of (3) cannot vanish identically
in a subinterval of [a, b], we have q 0, contrary to the assumptions. Hence there
exists toe[a, b] such that M.,u(to)>O. By the same argument there exists tl[a, b]
such that L,.y(tl) O. Interchanging possibly y by -y, we may assume that L,.y(tl) < O.
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Let E be the set of all positive numbers y such that wv(x)>-0 on [a, b]. E is not
empty, in fact otherwise, since Mmu(to)> 0, there exists 6 > 0 such that for 0 < y < 6,
wv changes sign; by Step 1 we have Mmu =-O, which is a contradiction. Moreover, E
is bounded above because L,,y(tl)<O. Let h =sup E. Obviously, w(x)>-O on [a, b].
If there exists 6>0 such that for h <y<h+61Wy(X)0 on [a,b], then w---0;
otherwise by applying Step 1 we have again wa -= 0. Hence Mmu =--hLmy and q(u +
hy) -= 0. Since q 0 there exists an interval [Xl, x2] where q(x) O. In this interval we
have u + hy -= 0 and

(8) m(Lm-lu)’ + Apm(Lm-lY)’=- (,m -pm)(Lm-lU)’=-- O.

If (Lm_lu)’ vanishes identically on a subinterval of [x, X2] then on this subinterval
we have u=0 in contradiction to the definition of u. Hence by (8) it follows that
fire(x) pm(X) on [Xl, x2].

Finally, if (Q1) holds, then Liu(a)=-hLiy(a) and Liu(b)=-hLy(b) for i=
0, , rn 1. Hence if u hy then, by Lemma 1, Lm(u + by) changes sign in contradic-
tion to (7). Moreover, since (Q1) holds, Mmu cannot vanish in a neighborhood of a
and of b, and by Lemma 1, Mmu cannot have a zero component that does not contain
the point a or b; hence Mmu(X)> 0 on (a, b) and by (8) we have/m Pro. [3

Proof of Theorem 3. Let y be one eigenfunction corresponding to ho and let u be
one eigenfunction corresponding to/o. By assumption system (3.1) and system (4.1)
are m-admissible, therefore by Lemma 2, possibly interchanging u by -u, we have
that Mmu(x)>O and (a,b). If/Xo=>Ao then O<m(X)/tZo<--pm(x)/Ao on [a,b]. By
Lemma 3 it follows that AO/m--=/Xop,, and then /m >=Pro, contrary to the assump-
tions. [3

Remark. Abroad and Lazer have shown in [2] (see the proof of Theorem 1 and
of Lemma 3), that BVP (3), (3.1) has the following property. Let {era} be a sequence
ofpoints of (a, b converging to c and let {qm} be a sequence ofcontinuous nonvanishing
functions converging uniformly on [a, b] to q. If for every rn the equation Ly + qm(X)y
0 has a solution Ym satisfying (3.1) where b era, then c > a and there also exists a
solution y of equation Ly + q(x)y 0 that satisfies (3.1) with b c. Moreover, multiply-
ing every function Ym by a suitable constant, considering Ym defined on the entire
interval [a, b], and considering a suitable subsequence, we may assume that {Lym}
converges uniformly to Liy on [a, c], for i= 0,..., n- 1.

Proof of Theorem 1. If q-= 0 the theorem is a trivial consequence of Theorem B.
Since q is a continuous function, we can suppose then that there exists an interval
[xl, x2] c [a, b], where q does not vanish. Since BVP (3), (3.1) has a nontrivial solution,
by Theorem A we have that (--1)"-kq(x)<=O on [a, b].

Let us consider the sequence of functions {qs} defined as follows.

qs(x) 1)n-k(x Xl)/ S if a <-- X _--< Xl,

1)"-k(XE--X)/S if xE --< X < b.

Let ,ko, be the first positive eigenvalue of EP given by

Lny+ A (q(x) + q(x))y =0

and system of boundary conditions (3.1) and let y be one eigenfunction corresponding
to ho.s. If ho is the first positive eigenvalue of (3A), (3.1), where a xa and b x2, then
by Theorem B(d) we have ho,--< ho for every s. Hence the sequence {ho.s} is bounded.
By Lemma 2, Lmys(x) does not vanish on (a, b). Considering a suitable subsequence
and by replacing y by -y if necessary, we may assume that ho. h* and Lmy(x) > 0
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on (a, b). By the previous remark we have that there also exists a solution w of BVP
given by

L,y+ A*q(x)y =0

and system (3.1), such that Liys converges uniformly to Liw for every i, 0-< i-< n- 1.
Since L"ys(x)>O on (a, b) we have L,,w(x)>-O on [a, hi.

If A * > 1, then p"/A * < p". Since w is a solution of BVP (4), (4.1) with/,, p"/A *,
satisfying L"w(x)>= 0 on [a, b] we have a contradiction to Lemma 3. Hence A*-< 1.

Let/Xo,s be the first positive eigenvalue of EP given by

(9) M.u + tx(qs(x) + q(x))u =0

and system (4.1) and let us be an eigenfunction corresponding to/Xo,s. By Theorem 3,
/z0,s < Ao.s. Considering a suitable subsequence we may assume that/Zo,s -->/z* -< )t*. If
/z*= 1 then by the previous remark there exists a solution of (4), (4.1) where c b.
Suppose that/x* < 1. Considering a suitable subsequence we may assume/Xo,s < 1 for
all s. By Theorem B(d) there exists cs (a, b) such that the first positive eigenvalue of
(9), (4.1), where c cs, is 1. The sequence {cs} has a subsequence converging to a point
c [a, hi. By the previous remark it follows that c > a and that (4), (4.1) has a solution.

Suppose now that/" p,, and that (Q1) holds.
Let us denote by u the solution of (4), (4.1). By Lemma 2 every function Minus

does not change sign on [a, b]. Again by the previous remark it follows that also Mmu
does not change sign on [a, b]. Interchanging u and -u if necessary, we have that
M"u >= 0 on [a, b]. If c b by Lemma 3 we have/5,. p,., contrary to the assump-
tions, l-1

3. Negative results. The aim of this section is to show that when only one boundary
condition is imposed at one of the endpoints and n-> 3, then the m-admissibility of
system (3.1) is a necessary and sufficient condition for the validity of Theorems 1 and
3. Clearly, when n 3 we are always in such a situation. Hence the extension of the
Sturm-Picone theorem to (1) or (2) is true if and only if the system of boundary
conditions is 1-admissible in the case of (1), or 2-admissible in the case of (2). Since
system (1.1) is neither 1-admissible nor 2-admissible, it follows that Lazer’s question
has a negative answer in both cases.

From Theorems 5 and 6 below, it follows that for third-order equations the
general comparison, as given in Theorems 2 and 4, is true if and only if exactly one
boundary condition is imposed on every quasi derivative of y (i.e., {il,..., ik}
{jl,""" ,j,-,} ).

We will consider the equation y(" + qoY O, where qo is a nonvanishing constant.
In this case problems (3), (3.1) and (4), (4.1) become

(10) y("+qoy=O,

(10.1) y(q(a) y((a) O, y(,(b) y(--(b) O,

(11) (mU(,.)) (n-")’+" qOU O,

(11.1) M,u(a)=O, {i,, it,}, 1Vlu(c)=O, j{j,,...,j,_k},

where Mu= u(i) for i=0,...,m-l; Miu=(mu(m))(i-") for i= m, n.
As in the previous section we will also be concerned with the corresponding

eigenvalue problems given, respectively, by

(10h) y(")+hqoy=O
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and system (10.1) and by

(11A (mU(m)) (n-m) + txqou 0

and system (11.1 ).
The principal negative results are given in Theorems 5 and 6.
THEOREM 5. Assume that n >=3, that k 1 or k n-1 and that there exists a

solution of (10), 10.1 ).
Ifsystem (10.1) is not m-admissible, 0<= m <-_ n 1, then there exist a point b (a, b]

and afunction ,6m c"-m[a, b] such that a solution of (10) exists on [a, b] that satisfies
the boundary conditions (10.1) with b hi; 0</,,(x) < 1 on [a, hi; for every c (a, hi],
BVP (11), (11.1) has no solutions.

THEOREM 6. Assume that n>=3, that k= 1 or k= n-l, and that (--1)"-kqo<0.
If system (10.1) is not m-admissible 0<= m <= n- 1, then there exists a function

/m c"-m[a, b] such that 0 <m(X)<= 1 on a, b] and the first positive eigenvalue of
(11A), (11.1) is greater than the first positive eigenvalue of (10A), (10.1).

Theorem 6 shows that Theorem 1.3 of Gentry and Travis [9, p. 169] is not correct.
In fact it states, in the case of (10), that ifwe consider the system ofboundary conditions
of type (3.2) (which is m-admissible only for m 0) and take m n 1, such a function
/m cannot exist.

To prove Theorems 5 and 6 we need some results established by the author in
[8]. Hence we recall some definitions used there.

We say that a nonnull vector r/ of R", r/= (r/l," ", r/,), has the D-property if
three indices i, j, k do not exist such that 1 <= <j < k -<_ n and r/ir/j < 0, j r/k < 0.

We say that r/ has the strict D-property in the case where r/ir/j > 0 for all i,j >= 2
or r/ir/j > 0 for all i, j =< n- 1 or else there exists an index k, 1 < k < n, such that for all
< k and j > k, r/ir/j < 0.

If r/has the D-property, we indicate with r(r/) the greatest index j such that r/j 0
and r/irj >- 0 for every <=j.

Let us consider the Cauchy problem (CP).

(12) y(")+q(x)y=O,

(12.1) y(i)(:) r/,+,, i=0, , n- 1,

where q(x) > 0. Let el, , e, be the canonical basis of R". If r/= es for a given s, the
solution of (12), (12.1) will be denoted by us and will be called a principal solution
of (12).

By Rolle’s theorem, the derivatives of a nontrivial solution of (12), (12.1) have a
finite number of zeros on an interval (, c], c > s. Let z,..., z,, be the ordered set
(possibly empty) of these zeros. In [8] we proved the following lemma.

LEMMA 4. If r has the D-property and y is the solution of (12), (12.1), then the
vector Y(x) (y(x), y’(x), ., y("-)(x)) has the strict D-property for every x (, c].
Moreover, y(J), O<-j <- n 1, vanish at thepoint zi, i>= 1, ifand only ifj =- (r(q) i) mod n.

The next lemma is derived from the proposition of [8, p. 240] and can be proved
using the same argument.

LEMMA 5. Suppose that u(j), 1 =<s <= n, O<-j =<n- 1, has m zeros wl, ..., w,, on
(s, c]. If l has the D-property, r(l) s, and there exists an index s such that li # 0,
then the j-derivative of the solution of (12), (12.1) has exactly m zeros Zl,"’, z,, on
(s, Win] and we have zi < wi for every i.

Let m, 1 <-_ m <-n- 1, be a given index, let k R+, and let tl, t2 be two points of
(a, +o). We consider the functions zs, 1 _-< s _-< n, defined as follows.
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If x [a, tl] then zs is the solution of CP,

(10) y(")+qoy=O,
(10.2) y()(a)=O, i=0,1,...,s-2, s,...,n-1,

If x (q, t) then zs is the solution of CP,

qo
(13) y(") +--- y 0,

(13.1) y(’)(tl)=Z’)(t), i=0,...,m-1, y(’)(t)-

If x_--> 2 then zs is the solution of CP,

(10) y(n)+qoy=O,
y(i)(t2) lim zi)(x), 0,. ., rn 1,

(10.3)

zi)(tl)

y(S-1)(a) 1.

LEMMA 6. Let 0 < k <- 1, 1 <= s <- n, and a < < t2 < b. For every e > 0 there exists
re C[a, b] suchthatk<= r(x) <- 1 on [tl, t2], r(x)= 1 on [a, tl] [t2, b] andtheprincipal
solution us of (ry(m)("-")+ qoy=O is such that

lu)(x)-z(x)[-<_e forx[a,b] and i=O,...,rn-1,

[u])(x)-z]i(x)l<-_e forx[a, tl]iA[t2, b] and i=m,...,n-1,

[(r(x)u(m)(x))(i-")-kzi>(x)[<-e forx(tl, t2) and i=m,...,n-1.

Proof Let us consider for every 6, 0 < 6 < 1, the function

{1 ( )
if x <- q or x >- t2,

r(x)=
1-(1-k) exp

(t-tl)21g(1-6)
4(x- tl)(t2-x)

if t < x < t2.

We remark that the CP

(rY(’)) (-") + qoY O, y(i)(tl zi)(tl), 0,. ", n 1

is equivalent to the CP given by the system

Y’h Yh/l h 1, , rn 1, rn + l, , n- 1,

y, Ym+
r

Y’ -qoY

and initial conditions yi(tl)=Zi-)(t), i= 1,..., n, whereas the CP (13), (13.1) is
equivalent to the CP given by the system

w.= w.+, h 1, , m-l, m+l,. , n-l,

Wm+l

k

Wn --qoWl

and initial conditions w(q) z]i-1)(tl), 1,. ., n.
Hence, since k <= r(x) -< 1 on tl, t] and as 6 --> 0+, r --> k uniformly on the compact

ubinterval of (tl, t.), the lemma follows by the classical Kamke theorem for ordinary
differential equations.

i=m,. .,n-1.

y(i)(t2) k lim zi)(x),
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Let us denote by zs(x, tl, t2, m, k) the function zs defined previously depending
on the parameters tl, t2, m, k. By Theorem B we have that the principal solutions of
(10) are oscillatory. By Lemma 5 it follows that if r/ has the D-property, then the
solution of CP (12), (12.1) is oscillatory. Hence, by Lemma 4, the solution of (13),
(13.1) is oscillatory for every k > 0. Therefore we can consider the function h R+ - R+,
where h(k) is defined to be the first positive number such that the mth derivative of
the solution of (13), (13.1) vanishes at the point tl + h(k).

LEMMA 7. For k - 0+, k-1In h(k) a > O. Moreover, for every i, 0 <- <- n 1,
m-l,

Ox(, (t, + h(k) +0, t,, t, + h(k), m, k)

o(m--1)Zs
Ox(,,_l) (tl + h(k)+O, tl, tl + h(k), m, k)

Proof. Without loss of generality we may suppose that --0. Let v k-/ and
let us(x, v), 1 <= <- n, be the principal solutions of y(")+ v"qoy=O with initial point
zero. Morever, let r/i+l=Z)(0), i=0," ..,n-1. For Xo(O,t(k)) and for j=
0,...,n-1 we have

19 (j) g 19 (j) l,l

Ox(J (Xo, O, h(k), m, k)= _, q ox(J (Xo, v)+
i=1 i=m+l

o (J)
ui

n,vx (Xo, v)

o (J)
uiE Tlivl-i+j OxO) (XoV, 1)

i=1

i=m+l

ivn+l--i+j
o(J)ui
ox(J (XoV, 1).

Therefore for j _-< m 1 we have

o(J)Zs
OxO) (t(k)+O, O, h(k), m, k)= E v

i=1

o(J)
--i+j Ui

Ox(J (vh(k), 1)

i=m+l

o (J)
liivn+l--i+J Ox(J (vh(k), 1),

while for j _-> m we have

o (J
Zs o (J

-OUi (t(k)+O, O, h(k), m, k)= E ’livl-i+j-n
Ui

i=1 Ox’(j (vh(k), 1)

i=m+l

1--i+j 0
(j)

l,l

OxO (vh(k), 1).

By definition of h(k), vh(k) is the first positive zero of (0(’)z/Ox(’))(x/v, O, h(k), m, k).
Since for Xoe (0, vh(k)) we have

o(m)zs
Ox(,, (Xo/v, O, h(k), m, k)= Y T]ivl-i+m

o(m)ui
i=l ox(m (Xo, 1)

+ E iv
i-m+l

n+l-i+m o(m)ui
Ox() (Xo, 1)
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it follows that vh(k) converges to the first positive zero of (tg(m)ut/Ox(m))(X, 1), where
if r/,, # 0 then m + 1, while if r/,, 0 then m + 2 (1 when m n 1). The lemma
now follows trivially by (.), (**).

Proof of Theorem 5. Suppose that k n- 1, so that qo> 0.
Let s be the unique index such that 1-<s=<n and s-1 does not belong to

{il,’", i,_1}. Every solution of (10), (10.1) is a multiplication by a nonvanishing
constant of the principal solutions us of (10) and initial point a. Let bl be the first
zero of u(j) in the interval (a, b].

We first consider the case m 0. By Theorem 2 of [8] we have that there exists a
function q such that q(x)>= qo on [a, b] and such that the BVP

(14) y(")+q(x)y=O,

(14.1) y(q(a) y(’.-(a)=O, yJ(c) 0,

has no solution for every c (a, b]. Moreover, an examination of the proof of the
theorem shows that q can be chosen such that q(x)= qo in a neighborhood of the
point a and of the point b. Let ,6o=qo/q. The BVP (14), (14.1) is equivalent to
(11), (11.1), where rn 0; hence the function/o satisfies the theorem.

Suppose now that rn >= 1. Since system (10.1) is not m-admissible, by Lemma 2,
Um) vanishes on (a, bl). Moreover, on this interval u") has only one zero x, otherwise
by Lemma 4, u,) vanishes on (a, b) in contradiction to the definition of bl. We denote
with ve the solution of CP (12), (12.1), where q qo and r/= era. By Lemma 4 the
vector rt (us(x)," ’’, u"-l)(x)) has the strict D-property and r(r/)= m. By Lemma
5 the first zero of" > on (x +) is greater than b Hence there exists a point x2 < xl{’/X

and a number 0 such that for every Ix:, x] the first zero of ) is greater than
bl /& Let us now consider the function zs(x, x:,x:/ h(k), m, k) defined previously.
By Lemma 7 for k-0/ we have h(k)-0 and moreover,

Ox (h(k)+O, x2, x2+ h(k), m, k)

o(m-)Zs
O--x(----g--/3 (h(k)+0, X2, X2-[- h(k), m, k)

for every # rn 1.

By the theorem on the continuous dependence on initial conditions and by definition
of x2, we have that there exists ko<l such that x2+h(ko)<Xl and such that the first
zero of O()zs/Ox,)(x, X2, x2+ h(ko), m, ko) is greater than b + 6/2. Let eo be a positive
number such that for every x Ix2, b], eo < kolz()(x, X2, X2 -1" h(ko), m, ko)[. In corre-
spondence to eo and z(x, x2, x2/ h(ko), m, ko) there exists a function r satisfying
Lemma 6. We put/5,, r. By the definition of the function zs and by Lemma 6, we
have that the jlth derivative of the principal solution ws of (11) does not vanish on
(a, b], and hence the point b and the function/m satisfy the theorem.

Suppose now that k 1.
As remarked in [8] this case can be trivially reduced to the previous one considering

the equivalence of BVP (11), (11.1) to the BVP

(fim(a -b C X)Z(m))(n-m)+ (-1)"qoz O,

Mz(a)=0, jG{jl,’’" ,jn-k}, Mz(c)=O, iG{il,’’’, ik}. l’]

Proof of Theorem 6. Let ho and/Xo be, respectively, the first positive eigenvalue
of EP (10h), (10.1) and of EP (llh), (11.1). Moreover, let b and/,, be the point and
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the function arising from the application of Theorem 5 to the BVP given by

(15) yn)+Aoqoy=O
and boundary conditions (10.1).

By Theorem B(d), Ao is a decreasing function of the boundary points. Therefore
bl cannot belong to (a, b), so we have bl b. Hence the BVP given by

ffmu(m)) (n-m) + AoqoU O

and system (11.1) has no solution for every c(a, b]. Again by Theorem B(d), we
have that the first positive eigenvalue of EP given by

(16) (ff,,.,u(m))n-m+/-*XOqoU 0

and system (11.1) is greater than 1. Since the first positive eigenvalue of (16), (11.1)
is/Xo/ho, we have/o> ho. 71

Finally, we consider an example showing that if we drop hypothesis (Q1) in
Theorem 1, then BVP (4), (4.1) can have no solution for every cs (a, b), even if/p.

Let ho be the first eigenvalue of:

y’"+Xlxly=O, y(a)=0, y"(a)=0, y’(b)=0,

where a < 0 and b > 0, and let q be the function defined in the following way:

IxlXo if x-< 0,
q(x)=

0 if x> 0.

If Yo is an eigenfunction corresponding to Ao then, by Lemma 4, we have
y(0)y(0) < 0.

Let us consider the BVP

(17) (p(x)u’)"+ q(x)u =0,

(17.1) u(a)=0, (pu’)’(a)=O, pu’(c)=O,

where c > 0 and p is a function of class C such that p(x)= 1 for x-< 0 and p(x)> 0
for x>0.

If Uo is a solution of (17), (17.1) then there exists k#0 such that Uo(X)= kyo(x)
for a _<- x <_- 0. Therefore we have

[, ky(x) for x =< 0,
p(x)u’(x)

k(y(O)x + y(O)) for x > 0.

By definition of Yo we have that y does not vanish on a, 0]. Therefore, for every
function p, pu’ vanishes only at the point bo -y’o(O)/y’(O) > 0. Hence, if we consider
two such functions p, P2 such that 0 < pz(x) < p(x) for x > 0, then setting p p, BYP
(17), (17.1) has a solution for c= bo, whereas setting p=p BVP (17), (17.1) has no
solution for every c < bo.
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Abstract. Bessel functions of purely imaginary order are examined. Solutions of both the modified and
unmodified Bessel equations are defined which, when their order is purely imaginary and their argument
is real and positive, are pairs of real numerically satisfactory functions. Recurrence relations, analytic
continuation formulas, power Series representations, Wronskian relations, integral representations, behavior
at singularities, and asymptotic forms of the zeros are derived for these numerically satisfactory functions.
Also, asymptotic expansions in terms of elementary and Airy functions are derived for the Bessel functions
when their order is purely imaginary and of large absolute value.

Second-order linear ordinary differential equations having a large parameter and a simple pole are then
examined, for the case where the exponent of the pole is complex. Asymptotic expansions are derived for
the solutions in terms of the numerically satisfactory Bessel functions of purely imaginary order.

Key words, asymptotic analysis, Bessel functions, ordinary differential equations, zeros
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1. Introduction and summary. The purpose of this paper is to investigate solutions
of both the unmodified and the modified Bessel equations (see (2.1) and (3.1)). We
consider the case where the parameter/x in the equations is purely imaginary, so that
the solutions are of purely imaginary order.

Consider first the asymptotic behavior of Bessel functions. This is an area that
has been extensively studied, reflecting the importance of Bessel functions in many
areas of mathematics and physics. Uniform asymptotic expansions of modified and
unmodified Bessel functions of complex argument and large positive order are available
in terms of both elementary and Airy functions, see 7 of Chap. 10 and 10 of Chap.
11 in Olver (1974). (We will refer to Olver’s book frequently, and therefore here and
throughout we use the abbreviation "Chap." to refer to a chapter of that text.)
Expansions for complex orders with positive (nonzero) real part are also available:
see 8 of Chap. 10.

When the parameter /x iu is purely imaginary, however, the picture is less
complete; only the modified Bessel function of the third kind Kiv(z) seems to have
been extensively studied. Uniform asymptotic expansions in terms of Airy functions
have been derived for Kiv(uz), u real and large, by Balogh (1967). The positive zeros
of Kiv(z) have also been investigated by a number of authors (see, e.g., Ferreira and
Sesma (1970), Laforgia (1986)). For other asymptotic results concerning Bessel func-
tions of purely imaginary order, see Jettreys (1962, pp. 90-91) and Falco (1973).

Regarded as a Bessel function of purely imaginary order, the function Kiv(x) is
unique in two respects. First, it alone of the standard Bessel functions is real when
the argument x is positive: the Bessel functions Jiv(x), Yiv(x) H(1)(x) (2)

iv Hiv (X), and
the modified Bessel function//v(x) are all complex when u and x are real and nonzero.

Second, Kiv(x) is recessive as x- +, a property that makes the function useful
in certain physical problems, such as hydrodynamical, quantum mechanical, and
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This research was partly supported by the University of British Columbia, Vancouver, British Columbia,
Canada.

? Department of Mathematical Sciences, San Diego State University, San Diego, California 92182.

995



996 T.M. DUNSTER

diffraction theories. Also, this property allows us to readily identify the function with
asymptotic solutions of (2.1) that it satisfies.

An example in which Bessel functions of purely imaginary order play an important
role in quantum mechanics is the problem of s-wave scattering by a reduced exponential
potential; see Kogan and Galitsky (1963, pp. 334-341) and Joachain (1975, p. 317).
For other applications see Hemker (1974).

On account of the two above-mentioned properties, Ki,,(x) remains one of a pair
of solutions of (3.1) on the x interval (0, ) that are numerically satisfactory; see
Miller (1950). K,,(x) is oscillatory in a neighborhood of the x 0, and is exponential
in a neighborhood of x c. An appropriate numerically satisfactory companion would
be a real solution which is of equal amplitude and 7r/2 out of phase in the oscilla-
tory region. We introduce a function, denoted by L,(x), which fulfills these criteria
(see (2.2)).

Solutions of the unmodified Bessel equation (3.1) that are real when/x is purely
imaginary, and z x is positive, are oscillatory throughout 0 < x <. We introduce
two real solutions, denoted by F(x) and Gi,(x), that are r/2 out ofphase on 0 < x < o,
have equal amplitudes of oscillation at x for all v > 0, and have asymptotically
equal amplitudes of oscillation throughout 0<x< as v-oo (see (3.2) and (3.3)).

The plan of this paper is as follows. In 2 and 3 we derive a number of results
concerning K(z), L,(z), F(z), and G(z), most of which pertain to/x being purely
imaginary. We record recurrence relations, analytic continuation formulas, power series
representations, Wronskian relations, connection formulas, integral representations,
and asymptotic behavior at z 0 and . These results follow from standard results
concerning Bessel functions, the latter being found, for example, by perusing Olver
(1974), and in most instances details of their derivations have been omitted.

In 2 and 3 the zeros of the four functions are also examined; asymptotic
formulas are derived for the zeros including those of Ki,(x), which are of importance
in certain physical problems, such as in quantum mechanics (see Gray, Mathews, and
MacRobert (1952)).

In 4 and 5 we examine the asymptotic behavior of the four functions as v - oo.
As has already been noted, the modified Bessel function K(vz) has been studied by
Balogh (1967). The corresponding asymptotic expansion for L,,(vz) (as well as that
for I,,(vz)) is derived, using the theory of Chap. 11. The theory of Chap. 10 is applied
to deriving asymptotic expansions, involving elementary functions, for F,,(vz) and

(1)(VZ) and H(vz))G,(vz) (as well as for the Hankel functions H,,
One example of a useful application for these asymptotic results is to problems

of high-frequency wave propagation in inhomogeneous media with linear velocity
profiles (see, for example, Gupta (1965)). For detailed discussions of this class of
problem see Brekhovskikh (1960). In his paper Gupta uses expansions (29) for arg v

r/2, and although this is not justified, we shall see that the first of these represents
the (dominant) real part when y -ir, 1 < r <.

In 7 asymptotic solutions are constructed for equations of the form

(1.1)
d2w
dx2 {uf(x) + g(x)} w,

in which u is a large parameter, the independent variable x lies in an open (finite or
infinite) interval, and at some point x Xo, f(x) has a simple pole and (X-Xo)2g(x)
is analytic. It is supposed that there are no other transition points (zeros of f(x) or
singularities) in the x interval under consideration.
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We consider the case where

,2+ 1 1
(1.2) lim (x Xo)2g(x) < u > 0),

,-,o 4 4

which corresponds to the exponents of the pole x x0 being complex (see, e.g., 4 of
Chap. 5).

The complementary problem, where the exponents are real, has been tackled by
Olver (see 1-4 of Chap. 12). We proceed in a manner similar to Olver’s. By means
of the Liouville transformation, formulas (2.02) and (2.03) of Chap. 12, our equation
(1.1) is transformed to the form (7.1), where v is positive (compare (2.05) of Chap.
12). Equation (7.1) is the focus of our attention; asymptotic solutions are constructed
in terms of the Bessel functions of purely imaginary order Ki(x), Li(x), F(x), and
G(x). Using auxiliary functions for these four functions (given in 6), we derive
error bounds for the asymptotic expansions.

It will be assumed that the reader is familiar with the results in Chaps. 10 and 11
and 1-5 of Chap. 12.

2. Modified Bessel functions of purely imaginary order. The modified Bessel func-
tions I,(z) and K,(z) compose a numerically satisfactory pair of solutions of the
modified Bessel equation

d2w ldw( /x2)(2.1)
dz---T+-z ---dz 1 +-- w=0

in the half-plane larg z[ -< r/2, for all complex values of/x such that Re/x >=0. By
"numerically satisfactory" we mean a pair of linearly independent solutions that satisfy
the criteria of Miller (1950). When/x is purely imaginary, however, the function I,(z)
has the undesirable property of being complex on the positive real z axis. Therefore
we now introduce the following function:

(2.2) L,(z)
2 sin (Tr) {I,(z)+I_,(z)} (tz#O),

which will be seen to be an appropriate numerically satisfactory companion to K(x),
where u is real and nonzero, and x is real and positive. Note that L, (z) is not defined
when/z 0. It is not possible to define a numerically satisfactory companion to K,,(x)
which remains finite as , 0.

The definition of L,(z) should be compared with the definition of K,(z):

(2.3) K(z) =2 sin (/xTr)
{I_,(z)- I,(z)}.

The purpose of this section is to record some relevant properties of L,(z) and
K, (z), with emphasis on the case where/x is purely imaginary. Throughout,/x denotes
a complex parameter, and u denotes a positive (nonzero) parameter. When the indepen-
dent variable z is real and positive we denote it by x.

Recurrence relations. The functions e’=iK,(z) and e’=L,(z) satisfy the same
recurrence relations as I, (z), viz.

(2.4)
I,_,(z) I,+,(z) (2tz/ z)I, (z),

I,+(z) -(la,/z)I,(z)+ I’(z),

//z_I(Z) -t- +I(Z)= 2I,(Z),
I._,(z) (./z)t.(z)+ ’.(z).
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Analytic continuation. For any integer m

(2.5a)

(2.5b)

K, (z e"’’) cos mtzTr)K, (z) -sin mtxTr)L, (z),

L,(z e"") cos (mtxr)L,(z) +sin (mtzr)K,(z).
Power series representation. A power series expansion for L,(z) in ascending

powers of z is readily derived from (2.2) together with the well-known power series
for I+/-,(z) (see formula (10.01) of Chap. 2). When/x iu and z x this power series
can be expressed as

(2.6)

where

(2.7)

)1/ (x2/4) cos (u In (x/2) b,)
Li(x)= sinl,Tr) s=OS![(V2)(12+ /,2)... ($2...

b.s arg {F 1 + s + iu)}.

(For each s we define the branch of (2.7) so that b.s is continuous for 0 < , < c, with
lim,_,o b. 0.)

From the definition (2.3) of K,(z) we derive in a similar manner

( ur ) 1/2

sinl ,r)
sin In

(2.8) K(x)
s=os![(u2)(12+/ ,2)... (s2+/2)]1/2"

Connection formulas.
(2.9) t_(z)--L(z), K_(z)- K(z).

Wronskian.

(2.10) W{K"(z)’ L’(z)}
sin (/zTr)z"

Integral representations. To derive an integral representation for Li(z) we first
express the function as a linear combination of Hankel functions. From the definition
of Li,(z) and 8.1 of Chap. 7 we obtain

r
{e-(/2) cosh (uTr)/-/i, + H tz e -)}.--(1)(Z eir/2) e(Ur/2) (2),, i.tr/(2.11) L,(z)

2 sinh (uTr)

Next, the Hankel functions in (2.11) are expressed by their Sommerfeld integral
representations (equation (4.19) of Chap. 7, with a 7r/2). The resulting integral
representation for L(z) can be re-expressed, via a splitting into three integrals followed
by appropriate changes of integration variables, in the following form"

L() sinh (,r)]- e o cosh uO dO

(2.12) r

Jo e-Zsh sin (m) dr, larg zl < 7r/2.

It is immediately seen from (2.12) that L(x) is real for 0 < x < c. The modified Bessel
function K(z) has the known integral representation

(2.13) K,(z) e-zcsht cos (vt) dt, [arg zl < 7r/2,

and from this it is seen that K(x), too, is real for 0 < x < c.
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Behavior at the singularities z 0, . If v( > 0) is fixed and x 0+, then

(2.14) K,,(x) ( )1/2U sinh (vTr) {sin(vln(x/E)-rk’)/O(x2)}’

(2.15) L,(x) ( 7r )1/2v sinh (vr) {cs(vln(x/2)-b’)+O(x2)}"

(Note that the amplitudes of oscillation of Lib(x) and Kid(x) in a neighborhood of
the origin become unbounded as v 0.) As z

(2.16, K,(z, (z) ’/2

e 1+O larg

e 1+O larg zl < r/2- ,(2.17) L,(z)
sinh (vr)

where t is an arbitrary smallpositive constant (a convention used throughout). It should
be emphasized that in (2.17) we have neglected exponentially small contributions (in
Poincar6’s sense), and as such the error term in this asymptotic formula can be large
near the boundary of the region of validity. Inclusion of the exponentially small terms
will result both in an extension of the region of validity, and increased accuracy (cf.
Exercise 13.2 of Chap. 7).

Zeros. When v > 0 it is known that K(x) has an infinite number of simple positive
zeros in 0 < x < v, and no zeros in v <= x < oo. We denote the zeros by {k,}=1, such that

(2.18) v> k,l> kv,2> kv,3 >’" ">0,

(2.19) lira k., 0.

LEMMA 1. When v > 0, L(x) has an infinite number ofsimplepositive zeros, denoted
by {/,t=1, say, such that

(2.20) 1,1 > k,l >/,2 > k,,,2 > I,3 >"" > 0,

(2.21) lim Iv,, 0.

Proof. The asymptotic behavior of L(x) near x=0 (see (2.15)) shows that the
function has an infinite number of positive zeros. Using the Wronskian relation (2.10)
and arguing along the lines of the proof of Theorem 7.1 of Chap. 7 we see that the
zeros k,,, l, (s 0, 1, 2,... are interlaced. It remains then to show that l, > k,.
Suppose that k,l > 1o,1( > k,2). From (2.16) it is seen that K(x) is positive for x > k,,
and therefore negative in (k,2, k,l); in particular K(/,I) <0. From (2.17) it is seen
that L(x) is positive in (/,1, oo), and therefore LI(/,)>0. Thus the assumption
k,l > 1,1 implies

K,(l,l)L(/,,) < 0,

which contradicts the fact that the Wronskian (2.10) is positive for 0<x <. Thus
l, > kv,1 as asserted.

kAsymptotic approximations for the zeros { .},= of K(x) can be derived from
(2.14), and also from the asymptotic expansions given in 4 (see (4.7) and (4.8)). We
now record asymptotic approximations for the zeros which can be derived from these
results. First, consider the asymptotic behavior of the zeros as v --> oo. from (4.3), (4.7),
and (4.8), together with the theory of 6 of Chap. 11, we can show that

(2.22) kv,s= vX(-v-2/3as)+ S--1/30(l--2/3)’q-O(11--l),
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as voo, uniformly for all positive integers s. Here X(’) is defined implicitly by the
equation

(2.23) 2,3/2=ln {l +(l-X2)l/2}x -(1-x)’/’

and {a}7__ denote the (negative) zeros of the Airy function Ai (x), with the usual
convention

(2.24) 0 a a2. .
For fixed s the sth zero of K(x) takes the simplified form

(2.25) k, v/ a(e/2)/ 4-aa(u/2)32 -/3 4-0( v-/3),
as

Next, we consider the form of the zeros for fixed v, as s --> oo. We know that k,s - 0
in this case; from the first two terms in the power series (2.8) we find that as s - oo (x --> 0)

e-(2/v)(szr-4,o)
(2.26) k,s 2 e-/s-*,o 1 +

(1 + v2)
t- O(e-4s/)

for fixed v. We remark that it is not obvious that the right-hand side (RHS) of (2.26)
is the sth zero of K(x), as opposed to, say, the (s+ 1)th zero. We now show that the
RHS of (2.26) indeed represents k,s. To do so consider (2.22): this is uniformly valid
for all integers s, and therefore we can consider the limiting form of this expression
as s-> oo, with v large but now assumed fixed. On employing the approximation

(2.27) as -(3 7r(4s 1 )/8)2/3 + O(S-4/3)
(see (5.05) of Chap. 11) together with (2.23) we find that

(2.28) vX(--v-2/3as)--’2 e-(1/v)(sz’-vlnv+v-’n’/4) as

From the definition (2.7) of b,s, and the asymptotic form (see Abramowitz and Stegun
(1965, p. 257))

arg {F(iy)}--.y in (y)-y-- (y--> +oo)

we find that for large v

(2.29) ck,o v ln v v +-Thus on comparing (2.22), (2.28), and (2.29) with the RHS of (2.26) we deduce that
the latter represents k,s for large fixed v and s--> oo. By a continuity argument this is
true for nonlarge values of v as well.

Finally, we record corresponding asymptotic forms for {/,s}sl. As v--> oo

(2.30) l,s vX(-v-2/3bs)+ s-1/30(v-2/3)+ O(v-1),
uniformly for all positive integers s. Here X(sr) is again given by (2.23), and
denote the (negative) zeros of the Airy function Bi (x), in ascending order of absolute
magnitude.

For fixed s and v --> oo

(2.31) l,s v+ bs(v/2)/3 2 + O( ).+bs(v/2)-/3 v-El
For fixed v and s -> oo

{ e-(2/v)((s-1/2)w-4’) v)(s-1/2))}.(2.32) l,,,s 2 e-l/")s-/2)=-’t’’,o) 1 +
(1 + v2) + O(e-4"/
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3. Unmodified Bessel functions of purely imaginary order. Standard solutions of
the unmodified Bessel equation

d2w
(3.1)

dz2

are the Bessel functions of the first and second kinds J. (z), Y. (z), and the Bessel
functions of the third kind (Hankel functions) H)(z), Hf)(z). The characterizing
properties of these functions are the following:

(i) J.(z) is recessive at the regular singularity z =0 when Re/x >0 or/z =0, and
moreover is real on the positive real z axis when/x is real.

(ii) Y.(z) is real for positive z and real/z, and for large positive z has the same
amplitude of oscillation as J.(z) and is out of phase by 7r/2.

M()(z(iii) For all/x, ._ is recessive at infinity in the sector t < arg z < r-t, and
(z) is recessive in the conjugate sector.

Thus, when/x is real and nonnegative, J.(z) and Y.(z) are a numerically satisfactory
pair on 0<x<o, and when Re/x>0 or/x =0, J.(z) and t4l)(z) are a numerically
satisfactory pair throughout the sector 0=< arg z<= 7r, J.(z), H)(z) being the numeri-
cally satisfactory pair in the conjugate sector.

When arg/z +r/2 no solution is recessive at the origin, and the Hankel functions
H)(z) and H)(z) compose a numerically satisfactory pair throughout ]arg z[=< r.

However, these functions, as well as J.(z) and Y.(z), are not real on the real z axis
when their orders are purely imaginary. We therefore now introduce two new Bessel
functions that are real when z x is positive and arg/x +7r/2, and moreover are
numerically satisfactory when x and are not both small. We define

F.(z) =1/2{e"’/2H)(z)+ e-’’/2H)(z)},

(3.3)

From the relations H)(z)= H((5), H(z)= e-’’H)(z), where bars denote com-
plex conjugates, it is readily verified that Fi(x) and Gi(x) are real for x > 0. (Note
that Fo(Z)= Jo(z) and Go(z)= Yo(Z).) Also, from the following alternative representa-
tions, which can be derived from standard results (see, e.g., (4.12), of Chap. 7)

(3.4a) F(z) 1/2 sec (/2){J(z) + J_,, (z)},

(3.4b) a, (z)=1/2 cosec (/2){&(z)-_,(z)},

it is seen that cos(/z-/2)F.(z) and sin (/xTr/2)G.(z) satisfy the same recurrence
relations as J.(z), namely (2.3) with I,+(z), I._(z), I.(z), I’(z) replaced by-J.+(z),
J.-l(Z), J.(z), J’(z), respectively.

We now record other properties of F.(z) and G.(z).
Analytic continuation. For any integer m

(3.5) Ftz z emri) --COS m/xTr)F. z) + sin (m/zTr) tan (/xTr/2 G. z),

(3.6) G,(z em=i) sin (mbeTr) cot (/xTr/2)F.(z)+cos (m/zr)G,(z).

Connection formulas.

(3.7) F_.(z) F.(z), G_.(z) G.(z).
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Power series representations For purely imaginary order and positive argument
we have

F"(x) (2v tanh

r(V’t/’/2))
1/2

(3.8)
y (-1)S(x2/4) cos (v In (x/2)- b,s)
s=0 $![(/2)( 1 _].. /2)... (S2_.. /,2)]1/2

G’(/) (2v cthTr(vTr/2))
(3.9)

E (-1) (x2/4) sin (v In (x/2)-b,)
=o s![(v2)(l+v2) (s2+v)-)] ’/2

where b., is defined by (2.7).
Wronskian.

(3.10) 7g’{F,, (z), G,(z)} 2/(rz).

Integral representations. The Schlifli-type representations are readily shown to be

1 i" o+i
ezsinht cosh (gt) dt, [arg z < /2,(3.11) F(z)

2i cos (/2) -i

1 +i

ezinh sinh (t) dr, larg zl < /2,(3.1) (z)
2i sin (/) _,

where the path of integration is indicated in Fig. 1.
For purely imaginary order these integrals can be re-expressed as

F() sech /2) cos sin 0 cosh 0 dO

(3.
2
sinh (/2) e-ih’ sin (t) dr, larg < /2,

(rri)

(0)

FIG. 1. plane.
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(3.14)

then

Gi(z) =1__ cosech (vzr/2) sin (z sin O) sinh (vO) dO

2
cosh (vr/2) e-*i"h’ cos (vt) dt, larg zl < rr/2.

Behavior at the singularities z 0, o. If v (greater than zero) is fixed and x 0+,

(3.15) Fi(x) (2 tanh (vTr/2)) 1/2

{cos (v In (x/2) 4),o) + O(x2)},

(3.16) Giv(x) (2 cth (vqr/2)) 1/2

{sin (v In (x/2)- 4.o) + O(x2)}.
vr

Note that in a neighborhood of x 0 the amplitude of oscillation of (x) and G(x)
tends to 1 and m, respectively, as v- 0.

As z

Fi(z)
s=O

(3.17)

az,+,(v)}-sin(z-/4) (-1) z2,+s=0

sin (z-/4) 2 (-1)A2(iv)
Z
2s

=0

(3.18)
+cos(-/4 2 (-" z,.

where the A are given by (4.02) of Chap. 7.
Zeros. From the foregoing results it is evident that F(x) and G(x) have an

infinite number of zeros in both the x inteals (0, ) and [, m)( > 0). A convenient
notation for the zeros of N(x) is {f,}L and {f,}L, where

(3.19) w>Jr,1 >fv,2 >fv,3 >’’’>0,

(3.20) u f,])<f,)<f,)<... <
with r being the positive constant defined by (5.6) below. Using the same convention

(<)a (>)we can denote the zeros of G(x) by g,= and g, =. The zeros of F.(x) and
G(x) are simple and interlaced (cf. Lemma 1).

Asymptotic approximations for the zeros can be established in a similar manner
to those derived in 2 for the zeros of K.(x) and L(x). For large v the theory of
8 of Chap. 6 (in paicular 8.5) can be applied to the uniform asymptotic expansions

(5.15) and (5.16) (with n =0) which are given in 5 below. We obtain the following
asymptotic forms:

(3.21) f,) Z{(4s-1)}+O()Z’{(4s-l+o()}4 4

(3.22) g, z j+ o

as m, uniformly for all s. Here it is assumed that is suciently large to ensure that

(3.23) e,(
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This ensures that none of the zeros can take the value yr. In the Appendix we give a
sufficient condition for (3.23) to hold, and it is seen that v does not have to be very
large for the inequality to hold (see (A6)). The function Z() is defined implicitly by
the equation

(3.24) { z1/2+1n
I+(I+Z2)’/2

The corresponding approximations for f,<) and g, are given by (3.21) and (3.22),
respectively, with s replaced by -s + 1.

For fixed s, (3.21) and (3.22) can be simplified by Taylor’s theorem to give

(3.25) f(>)= vr+ + 0,,s 4( 1 + 7"2) 1/2

(3.26) gv, V7.+4(1 + 7.2)1/2+ 0
as v oo. Again, on replacing s by -s + 1 in (3.25) and (3.26) we obtain the correspond-
ing formulas for f(<) and "(<)

When is fixed, but still satisfying (3.23), and x0+ we employ the first two
terms of (3.8) and (3.9) to obtain the approximations

e_(2 )((s-/2)-6,o)
(3.27) f(>) 2 e-(1/v)((s-1/2)-,) 1 + O(e-(4/v)(s-1/2))’ (1 + v:)

(3.28) (> e-(/(-" 1-
(1+ )g,s =2 +O(e-(4s/)

as s- o. Justification that these approximations represent the sth zero to the left of
the point x uT. follows in a similar manner to that of (2.26) and (2.32).

Finally, for fixed v (satisfying (3.23)) and s oo we find from (3.17) that

( ) 4v2+ 1 (4v2+ 1)(28v2+ 31)
(3.29) f.>) s- r+2(4s- 1)Tr- 6(4s- 1)3"r/"3 + O(s-5);

compare (6.03) of Chap. 7. Likewise, from (3.18) we find that

>) ( ) 4v2+1 (4vZ+l)(28u2+31)
(3.30) g, s- 7r+2(4s_3)7r- 6(4s_3)3. + O(s-5).

4. Asymptotic expansions for modified Bessel functions of purely imaginary
order. The modified Bessel functions zl/2Ki,.,(vz), z1/2Liv(l,’z), as well as the analytic
continuations zl/:Ki,( vz e =i), zl/2Ki,,( vz e-=), satisfy

z2 1 1 }d2w 2 w,(4.1)
dz2 1 Z2 4Z2

which is characterized by having a regular singularity at z 0, an irregular singularity
at z oo, and turning points at z + 1. We apply the theory of a turning point in the
complex plane (Theorem 9.1 of Chap. 11) to obtain asymptotic approximations, for
large v, in terms of Airy functions.

The first step is to transform (4.1) to the form

(4.2) d WldC= {-,"+ 4, (’)} W,
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which is achieved by the following Liouville transformation:

2 ,3/2(z)=ln {l +(1--z2) ’/2} 1 z2) 1/2,(4.3)
3 z

(4.4) w(sr) z2 ] w(z).

This is precisely the Liouville transformation of 10 of Chap. 11 and the reader
is referred to this section for full details. It is seen from (10.04) in Chap. 11 that

5 ’z2(z2 + 4)
(4.5) 6(sr) (-sr)

16.2 4(z2 1)

In the notation of 10 of Chap. 11 solutions of (4.2) are W2.+l,o(V, -), WE.+l,l(v, -’),
and WE.+l,l( V, -st); see (9.02), (10.06), (10.07), (10.14), and (10.23) of Chap. 11. It
can be shown by induction from (10.06) and (10.07) that

(4.6) As(-’) (-1)SA(r), B(-’) (-1)B(r),

and therefore for j=0, +/-1, n =0, 1,2,..., and v>0

W2.+1 s(v, -r)= Ai (- vE/asr e-2/3) (-1)
As(’)

/22ss=0

(4.7)
Ai’ (--l2/3e-2Zrij/3) )B()+ v4/3 (-1 + e2,+l.j(v, -).

s=0

Bounds on the error terms e2.+l,s are furnished by (9.03) of Chap. 11. The solutions
above are to be identified with solutions of (4.1). First, since zl/UKi.(vz) and
zl/E(/(1-zE))l/4WE.+l,O(V,-) are solutions of (4.1) that share the same recessive
property at z +oo (" =-), it follows that they are proportional to one another.
The constant of proportionality can be determined by comparing the behavior of both
functions at z=, sr =-; from (2.16), and from Chap. 11, (1.07), (10.08), (10.14),
(10.23), we find

(4.8) K.,(vz)="tre-"/:z( 4 ) TMv1/3 1 -z2 W2,+l.o(V, -st),

a result first given by Balogh (1967). (See also Exercise 10.6 of Chap. 11.)
The identification of W2,+.(v,-’) is similar. Both this function, regarded as a

function of z, and the modified Bessel function K,(vz e-) are recessive at z =o
when r/2 <arg z < r. (We are restricting our attention to larg zl< r; K,(vz e-’) is
of course also recessive at z =o in or-<_arg z <3r/2.) It follows that there exists a
constant c such that

(4.9) K,,( vz e-’) c
1 z

W2n+1’l(/}’ -’)"

By comparing both sides as ’-> e-’/ we find that

e ’n’i/3 eV/2
(4.10) c 1/3

Likewise, it can be shown that

(4.11) K.,(vze=i)=’n’e-/3e"/z( 4 ) 1/4

i L Z
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This completes the identification of the asymptotic solutions (4.7). It remains to
derive an asymptotic expansion for Li(/)z), and to do so we employ the analytic
continuation formula (2.5a). On setting m + 1 in this equation, and then eliminating
K(z) from the resulting two equations, we derive the relation

(4.12)
1

L(z) =2 sin (/.tr) {K(z
e-"i)- K(z

We now replace z by /)z in (4.12), set/z iv, and employ (4.9)-(4.11) to obtain the
following identification:

7feVer ( 4 ) 1/4

(4.13)
Li(/)z) 2i/)1; sinh (/)r) 1 -z2

{e"i/3w2,,+l,,(/),-)-e-’/3W2,,+,,_,(/),-)}.
On employing (4.7), together with (8.04) of Chap. 11, we can re-express this as

( 4 ) 1/4r e vr/2

’Z2Li(/)z) =2/)1/3 sinh (/)’rr) 1

As(’) Bi’(-/)2/3) n )s
B(r)

(4.14) Bi(-/)2/3) (--1) /)2s
"]"

/)4/3 (--1
=0 =0 /)

+ {e -’r’i/6
e2

_’rri/6 I.+,.,(v, -’) + e.+,._,(v, -’)}
d

an expansion that is uniformly valid for v > 0 and larg z[ _-< r- & We emphasize that
both the expansions (4.8) and (4.14) are uniformly valid in a neighborhood of the
singularity z =0, provided [arg z[ =< 7r-6. Use of (4.8) and (4.14) can be restricted to
the half-plane larg z[ <- 7r/2, extensions to other ranges of arg z being achieved via the
analytic continuation formulas (2.5a, b).

An asymptotic expansion for I,.(/)z) is also readily derived from the foregoing
results; from the identity

I,.(z)
sech (vr)

2ri

and (4.9)-(4.11) we obtain

Ii’(vz)=2vl/3 l_z2

1/4

(4.15)

where

{ e"’Ki,,( vz e -’rri) e-’Ki,( vz eri)},

(_/)2/3) (_l)As(")
2s

s=O

Bi’ (__/)2/3) nl B(’)
/)4/3 (--1) /)2ss=O

+sech /)’t’t’){er(v-i/6) g2n+l,l( /)

..1_ e-’rr(v-iE2n+l,-1 (/),

(4.16) Bi (z) Bi (z)- tanh (/)Tr) Ai (z).

Again, this expansion is uniformly valid for /)> 0, larg zl =< 7r- &
Finally, in this section we derive Debye-type expansions for L,,(/)x), i.e.,

asymptotic expansions involving elementary functions that are uniformly valid for
positive x. The corresponding Debye-type expansions for Ki,,(/)x) are well known (see,
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e.g., Magnus, Oberhettinger, and Soni (1966, p. 141)). The following expansions are
not valid near the turning point x 1, and therefore we must consider the x intervals
(0, 1-6], [1 +6, oo) separately.

First, consider the case 1 + 6 <- x < oo. On applying the Liouville transformation
to (4.1) (with z replaced by x), we obtain the transformed equation

dO/an { + x( n )}O,(4.17)
where

(4.18)

(4.19)

n(x)=I(tz-1)’/= dt (x2-1)/2- sec-l(x),

O(rl) (dTq/dx)l/2w(x) x-1/2(x2 1)l/4w(x),
xZ(4 + x2)

(4.20) X(r/) 4(x2 _1)
see 2.1 of Chap. 10. On applying Theorem 3.1 of Chap. 10 we obtain the following
solution of (4.17)"

n--1

(4.21) (R),(v, r/)= e-u" E (-1) + e,(v, q),
s=0

where

(4.22)

(4.23)

q=(x2--1) -1/,
Vo(q) 1,

;o(4.24) Vs+,(q)=1/2q2(q2+ l) V’(q)+ V(t)(5t2+ l) dt (s->_ 1).

A bound for e,(u, r/) is furnished by (3.04) of Chap. 10; for our purposes it suffices
to observe that

e,,(v, rt)= e-"O(v-’)

as v oo, uniformly for 1 + 6 -< x < oo. It is possible to carry error bounds throughout
the following analysis, but we will not pursue this.

Since both K,,(vx) and (R),(v, r/) are recessive as x+oo it follows that they are
multiples of one another. By comparing both functions as x + oo we find that

(4.25) K,,(ux) (Tr/(2v)) 1/2 e-VZr/2(X2- 1)-l/4l}n(l,’, ).

Next, on identifying the left-hand side (LHS) of (4.25) with (4.8), employing
asymptotic expansions for Ai (x), Ai’ (x) of large positive argument (see Chap. 11,
(1.07)), and equating coefficients of v-*, we arrive at the following relations for each
s_>_0.

(4.26)

(4.27)
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where Uo Vo 1 and

(2s+l)(2s+3)(2s+5)... (6s- 1) (6s+ 1)
us (216)Sst vs (6s- 1) us (s->_ 1).

We now are in a position to derive a Debye-type asymptotic expansion for Li(vx)
for x> 1. From (4.14), (4.26), and (4.27), together with (1.07) and (1.16) of Chap. 11,
we have for 1 + 6 =< x < oo and v

)[-- 1/2 e,,/2
(4.28) L,(vx)--

,w
(x2_ 1)_1/4 Vs(q)

sinh(mr)
e s=oY vs

where B(x), q, and Vs(q) are given by (4.18) and (4.22)-(4.24). In a similar manner
we can show that for 0 < x -<_ 1 6, v --> +oo,

Liv(vx),..,,()
1/2 e ’/2

sinh (vTr)
(1 x2) -1/4

(4.29) /2s=0

where

(4.30)

+cos (v-Tr/4) iV2+,(i(1)
/2s+l0

(x) (1 x2) -’/2,

fxt (1- t2) 1/2 {l+(1-x2) ’/2}dt In 1 x2) 1/2(4.31) (x)
x

5. Asymptotic expansions for unmodified Bessel functions of purely imaginary
1/2r(1)(/Z), andorder. The unmodified Bessel functions zl/2F(vz), z/EG(vz), z ..,

zl/Eu2vz) satisfy the equation

d2w {_ v21+ z2 1}(5.1)
dz2 z--- 42 w,

which is characterized by having a regular singularity at z 0, an irregular singularity
at z c, and turning points at z +i (where the results of 4 are applicable).

We restrict our attention to the half-plane ]arg zl < r/2, with v > 0, and apply the
Liouville transformation of 7 in Chap. 10. The effect of this transformation is to
throw (5.1) into the form

d2W/d2= {-v2+ if(e)} W,(5.2)

where

(5.3)

(5.4)

(5.5)

{ z }(z)=(l+z2)/2+ln 1+(1+z2)1/2

( 1 + z2 1/4

W() Z ] w(z),

z-(4- z2

0()
4(1 + z)3"

Before proceeding further let us introduce a constant r, defined by

(5.6) =(o-)/,



BESSEL FUNCTIONS OF PURELY IMAGINARY ORDER 1009

where ro is the positive root of the equation coth to- 7.0; from Exercise 8.1 of Chap.
10 and (5.3) it is seen that z r is the point that is mapped to : 0, i.e.,

(5.7) (7.) 0 7" 0.6627... ).

On applying Theorem 3.1 of Chap. 10 to the transformed equation (5.2) we obtain
the following solutions:

(5.8) Wn,l(l,’,)=e
s:o i,)"

+ "’’ " :)’

" (-)
(5.9) W,,,z( , ) e-i’

Us(p)
s=o (iv)

+ e,,,:z( u, ),

where

(5.10) p (1 + z) -/,

and the coefficients Us(p) are given by (7.10) of Chap. 10, and are related to the Vs
of the previous section by

(5.11) Us(p)=(-i)sVs(ip) (s=O, 1,2,... ).

Our choice of reference points for the solutions is a +ic, a2 -ic; with these
choices the error term en, is bounded by (3.04) of Chap. 10 for all points in larg z _<- 7r/2
except those on the finite interval z itr, 0 tr _-< 1, and at z i, with the corresponding
bound for en,2 being valid in the conjugate region.

We now identify the solutions (5.8) and (5.9) with Bessel functions. First, we see
that for some constant Cl

(5.12) H(1)(uz) c(1 + z2)-l/4Wn,l(1,, )
since both functions are solutions of Bessel’s equation and share the same recessive
property as z +iv. By comparing both sides as z- +iv (see (4.03) of Chap. 7) we
find that

(5.13) c=(2/(Tru))/z e"=/2 e-i.,-

Likewise we find that

(5.14) t4(2)
"-i, (lZ)--(2/(Trl")) 1/2 e-’/ ei’rr/4( 1 "-’Z2)-l/4Wn,2(l, )"

Asymptotic expansions for Fi(uz) and Gi,,(uz) are now obtainable from the above
expansions and the relations (3.2) and (3.3)" for u > 0, larg zl < 7r/2 we have

(1 + z2) -1/4

[cos-/4
(-1)v:(p)

25
s=0 P

(5.15)

’ (-1)’U+I(p)
+sin (v- /4) 2+

s=0 P

+-2 {e-i/4ezn+’"(P’ )nt- ei/4e2n+l,2( b’, 7)}
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(5.16)

(1 + Z2) -1/4

[sin (u:- 7r/4)
s=l

(--1)sU2s(P)v2s
n-l (-1)SU2s+l(p

cos v: 7r/4) /2s+ls=0

1 e-iTr/4 eiTr/4 ]"-- { e2n+l,l(/), ) E2n+l,2(/Y, )}J2i

Asymptotic expansions for J,(vz) and Y(vz) can also be obtained in a similar
manner. Note that the above expansions are uniformly valid in a neighborhood of
z =0, provided -7r/2<- arg z-< zr/2- 6 for (5.12), -7r/2+ 6 -<arg z_< 7r/2 for (5.14),
and ]arg z]-<_ 7r/2-6 for both (5.15) and (5.16).

6. Auxiliary functions. For differential equations of the type (1.1), with (1.2)
applying, asymptotic solutions will be obtained involving Bessel functions and modified
Bessel functions of purely imaginary order. In order to construct error bounds it is
necessary to define auxiliary weight, modulus, and phase functions for these functions,
as Olver did for the corresponding problem of Chap. 12 (see 1.3).

First we define auxiliary functions for Ki(x) and Li(x). Let x X be the largest
positive root of

(6.1) K,(x)-L,(x)=O.

Since the LHS of (6.1) is negative as x, and positive at x=l.l (see (2.16),
(2.17), and (2.20)), it follows that

(6.2)

We now define a weight function E(,)(x) by

(6.3a) E(1)(x) 1 (0 <= x<= X),

(6.3b) E(J)(x) K,(x)J (g, -<- x < ).

From the definition above it is seen that E>(x) is a positive continuous function of
x, and moreover is nondecreasing, as can be seen from the equation

(6.4)
d{E(2)(x)}:

dx sinh ()xK(x) (g < x < ),

which can be derived by differentiating (6.3b) and employing (2.10).
Having defined a weight function we now introduce modulus and phase functions;

we define them by the relations

(6.5a) K,,(x)---(E(1)(X))-IMI(1)(X), sin vo(1)(x),
(6.5b) Liv(x ET)(x)M?)(x) cos 07)(x),
or explicitly

(6.6a)
M)(x) {K2"(x) + Li2v(x)} 1/2,
07)(x) -tan-1 {K,.(x)/Liv(x)} (O<x-<x),
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M)(x) {2K,(x)t,,(x)}/
(6.6b)

o)(x) - (x <- x <
4

the branch of the inverse tangent being chosen so that O,,(x) is continuous for 0
On differentiating and using (2.10) we find that

dO)(x)
(6.7) (0<xx)

dx sinh (v)x(M)(x))20

and therefore as x decreases from X to zero, O)(x) decreases monotonically from
-/4 to -. This fat, together with (2.20), (6.2), and (6.5a, b), shows that

6.s) ok.) -, o1,) --).
For fixed v > 0, the following asymptotic behavior of the auxiliary functions can

readily be derived from the definitions above and the results of 2.
As x0+

(6.9) M(’(x) ol(x) In
sinh (e)

as x-oo

(6.10) El)(x)
(sinh (uw))l/2 M x)"

x sinh (vcr)
Next, we must introduce auxiliary functions for the derivatives of the modified

Bessel functions. We define

(6.11)
(6.12)

K,,(x) (E)(x))-1N)(x) sin co()(x),
L,,(x) E)(x)N)(x) cos to)(x),

giving

(6.13a)

(6.13b)

(6.14a)

(6.14b)

N)(x) {K
, ,/22..(x) + Li,.(x)}

to)(x) tan-1 {K,.(x)/L,.(x)}

( 2(x)L2.,(x)+ ,2 )1/2N)(x) K L..(x)K2.,(x)
K,(x)L,(x)

(0<x-<x),

(X,, <- x < oo).

The branches of the inverse tangents are chosen so that co)(x) is continuous for
0<x<oo with tol)(x)-r/4 as xoo. From the following equation (which can be
deduced from (2.1), (2.10), and (6.11)-(6.13))"

a,o(x) (x- ,,)
dx -sinh (uzr)xa(Nl)(x))2 (0< x <-X)’

it is seen that to1 (x) is monotonically decreasing for 0 < x < ,f, where ,f min u, X).
The asymptotic behavior of N)(x) is as follows. As x-0+

...-2( z,w ),/2.(6.15) N)(x)
x sing

71" ) 1/2

(6.16) N)(x) X sinhiucr)
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Auxiliary functions for the unmodified Bessel functions Fi,.(x) and G,,(x) are
defined in a similar manner. These functions are oscillatory, of bounded amplitude,
throughout the x interval (0, oo), and as such a weight function does not strictly need
to be introduced. However, although the amplitudes of both functions are equal for
large v, this is not the case when v is small; near the origin the amplitudes of the two
functions are quite disparate as u->0 (see (3.15) and (3.16)). Thus, to sharpen sub-

(2) xsequent error bounds, we introduce a weight function E for G(x) that is
continuous in x and decreases monotonically from the value coth (vr/2) at x- 0 to
unity at x oo. Our choice, one of the simplest, is

(6.17) E?)(x)

(6.18)

(6.19)
so that

l+x

tanh v,r/ 2) + x"
We now introduce modulus and phase functions in the usual manner. We define

F,(x) MT)(x) cos O?(x),
G,(x) E)(x)M)(x) sin O?)(x),

{ { Giv(x) 2} 1/2

(6.20) M(x) F(x) + \E?(x)]

(6.21)
Gi,,(x) }O(x) tan- E(x)F(x)"

On differentiating (6.21) and employing (3.10) we arrive at the equation

dO(x------)=2+ F,,(x)G,,,(x)
1-tanh (v,r/2)E)(x)(M?(x))2

dx "a’x (tanh (vr/2)+x)(1 +x)"
From (3.15)-(3.18), therefore, it is seen that dO)(x)/dx is positive for both sufficiently
small and sufficiently large x, for each fixed positive value of v. O?)(x) is thus
monotonically increasing for large x, and with this fact in mind we define the branch
of the inverse tangent in (6.21) so that O)(x) is continuous for 0<x < oo, and also

7r+ o(1) as x oo.(6.22) O)(x) x--
The asymptotic behavior of M)(x) is as follows. As x 0+

(2 tanh (vr/2)) 1/2

(6.23) M(x)

2) 1/2

(6.24) M"(2)(X)

Finally, we define modulus and phase functions for the derivatives of F,,(x) and
G(x) by

(6.25)

(6.26)

or explicitly

(6.27)

F(x) N)(x) cos o)(x),
G(x) E)(x)N)(x) sin o)(x),
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o.(x)
(6.28) to)(x)=tan-’

E)(x)F,,(x
The derivative of (6.28) can be shown to be

x2E(2)(x)(N)(x))2 dt)(x)
dx

(6.29)
2(x2+ v2 x F,,,(x)G,,(x)(1-tanh+

rx (tanh (vrr/2)+x)(1 +x)
and since the product F,,(x)G,,(x) is O(1/x) as x-+oo it follows that &o{,,2}(x)/dx is
positive for sufficiently large x. The function to}(x) is thus monotonically increasing
as x +0% and therefore we can define the branch of the inverse tangent of (6.28) so
that to}(x) is continuous for 0<x <oo, with the stipulation that

(6.30) to)(x)=x++o(1) as x--> oo.
4

The asymptotic forms of N(f)(x) are

2 (2v tanh (v/2)) 1/2

O+as x->(6.31) N)(x)
x r

(6.32) N’(x) (x) as x -> oo.

7. Asymptotic expansions for solutions of a differential equation with a large para-
meter and a simple pole. We now turn our attention to differential equations of the form

d2W {u2 v2+l b...$.(’) W,(7.1) /5- 4.2 . j

where u and v are positive parameters, and g,(r) is analytic in some interval [0,/3),
where/3 is positive (and possibly infinite). Our task is to construct asymptotic solutions
for (7.1) for large u, analogous to those of Olver, who in Chap. 12 considered the
complementary problem where the coefficient of .-2 is greater than or equal to -1/4.

We start by considering the comparison equation to (7.1)"

(7.2)
d2W { 182 v2+l}d.2- { 4sr2 W,

which has exact solutions l/2(iv(gll/2), where denotes K or L, or any linear
combination of the two. These solutions are in fact the first terms in asymptotic
expansions of solutions of (7.1); we seek formal series solutions of the form

Ds(’)
(7.3) W= 1/2i(u1/2 X Cs() -’" o-v(u1/2) X u2s (> 0).

=0 l,/2s 1 =0

On substituting the series above into (7.1) and comparing like powers of u we
find that the series formally satisfies the equation if both

(7.4) ’C(’)/ C’s(sr) q,(’)C(’)+ D’(sr) 2v D,_,(’) + -D, (’) O,

(7.5) C’,+,(’) + ’O’/(’) + O’(’) g,(’)Os(’) 0.

These two equations can be integrated to give the following two recursion relations
for the coefficients"

(7.6) D,()=-C’,()+-/ t-/{q(t)C(t)-C’(t)/2+ vD’_(t)} dr,
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(7.7) Cs+,(’) -’D’s(’) + J q(’)D(’) dsr.

Without loss of generality we set Co(’)= 1. Since, by hypotheses, q(’) is analytic, so
too are the coefficients C, D in the ff interval [0,/3) (see Chap. 11, Lemma 7.1).

Before we state our theorem on error bounds, let us define certain constants that
appear:

(7.8)

(7.9)

(7.10)

where

1)(/) sup {o-(v)x(M)(x))2},
(21)(/.)) =sup {o-(v)xlK,(x)lEL)(x)M)(x)},
A 31)(v)-sup {o-()xlL(x)l(E)(x))-lM)(x)},

o’(v) 2 sinh (vTr)/

each supremum being taken over the finite x interval (0, c). It is readily shown that
each supremum exists and is finite for every positive value of v.

THEOREM 1. With the conditions stated at the beginning of this section, (7.1) has,
for each positive value of u and v and each integer n, the following two solutions, which
are repeatedly differentiable in the interval (0, fl):

W2n+l,l(U, )= 1/2Ki(u,/2) C()u2 +- K(u’/2)
s=0

(7.11)

---..1 D(’) + e2n+l,l(U,
=0 /,/2s

W2n+l,2(U, )__ l/2Liv(ul/2 Cs() 1/2
u_ +-t,.(uC

o U
(7.12)

nl Ds(
=o u2

+ e+,(u, ),

where

le2n+,,l( u, )1 Ioez.+x,,(u, )/offl
l/2M(vl)(ul/2) {-l/2M(vl)(ul/2 -I- uN(1)(U1/2)}/2

(7.13) <--l(21)(l)(E(vl)(ul/2)) -1 exp {/,l)(/,)u
Vc,3 ’/2Dn )

/,/2n+l

(7.14)

le2n+1,2( u, )1 Ie.+,,(u, )/offl
’/2M(,1)(u1/2 {-’/2M(v1)(u1/2 + uN(vl)(ul/2)}/2

(31)(l)E(vl)(u1/2) exp {/1)(/) }U
//’0’r "1/2D(st)

Vo,(’/2D,,())
2n+l

U

The derivation of these error bounds is similar to that of Theorem 4.1 of Chap. 12,
and details will not be included here.
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It remains to construct asymptotic solutions for (7.1) in the interval (a, 0), where
a is negative (possibly infinite) constant. On replacing " by I’le’ in (7.3) it is readily
verified that formal series solutions of (7.1) are given by

(7.15)
0 /,/2s

+ l’__u rc$(ulffll/2)o= D(’)u2 (<o),

where rCi denotes Fi or G, or any linear combination of the two. The coefficients
Cs(r) and Ds(’) here are understood to be the analytic continuations across " =0 of
those satisfying (7.4) and (7.5); thus (7.7) still holds, and (7.6) is replaced by

2(7.16) Itl 1/2{d/(t)C(t)-C(t)/2+ ’ D_l(t)} dt.

As before, we introduce three constants that appear in subsequent error bounds.
We define

(7.17)

(7.18)

(7.19)

h)(u) =sup {TrxE)(x)(M)(x))2},

h -)(u) sup { xlF, (x)lE (x)M(:)(x)},

h (3:)(,) sup { rxlG,(x)lMT)(x)},
each supremum being taken over the x interval (0, o); again, it is readily verified that
each supremum exists and is finite for every positive value of u.

We may now state the following theorem concerning error bounds.
THEOREM 2. With the conditions stated at the beginning of this section, (7.1) has,

for each positive value of u and , and each integer n, the following two solutions, which
are repeatedly differentiable in the interval (a, 0):

(7.20)
w,.+,,,(u,

0 l’12s

+ I{._J F;(ul{ll/e)1 D()
U s=O’ U

2s
-]" E2n+I’3(U’ ’)’

(7.21)
=0 /,/2s

U s=O U
2s "JI- E2n+l,4(U ),

where

(7.22)
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Final remarks. (i) We have assumed that 6(’) is infinitely differentiable in (a, fl).
If we do not require asymptotic expansions for solutions of (7.1), but just a finite
number of terms in the approximations, the requirement of analyticity of ,(sr) can be
relaxed to that of finite differentiability.

(ii) Since we have derived explicit error bounds on the approximations, it has
not been necessary to impose any restrictions on the dependence of 6(sr) on u, other
than that it be a continuous function of u; if the dependence of on u adversely
affects the asymptotic validity of an approximation it will be reflected in the error bound.

(iii) To facilitate identification of solutions it is desirable that the asymptotic
solutions be uniformly valid on the semi-infinite " intervals (-v, 0) and (0, v). For
this it is necessary that the variations of 1ll/2Os() (s-O, 1,2," .., n) converge at

" +v. Sufficient conditions for this to be true are given in Exercise 4.2 of Chap. 12.
(iv) The error bounds can be used to deduce the asymptotic behavior of the four

solutions, both respect to the independent variable " and the asymptotic variable u.
For instance the solution W.,+,(u, ’) is seen to be recessive as " /3, a property that
uniquely characterizes the solution if/3 v. Likewise, the solutions W,/,E(U, ) and
W,+,3(u, ’) can be identified by their behavior as ’0 (with the aid of (2.15) and
(3.15)), and Wa,+,4(u, ’) can be identified by its behavior as " a.

Finally, consider the asymptotic behavior of the four solutions as u v. If the
variations in the error bounds are bounded functions of u then, in the manner of 5.2
of Chap. 12, it can be shown that the RHS of (7.3) provides a uniform compound
expansion of W2,+,(u, ’) and W:,+,2(u, ), for K and L, respectively, to 2n + 1
terms. A similar argument holds for (7.15). The existence of solutions that are indepen-
dent of n and have the infinite series (7.3) or (7.15) as compound asymptotic expansions
may be established by the method of 6 of Chap. 10.

Appendix. We investigate how large v should be to ensure that (3.23) holds. First,
we observe that el,l(V, 0) is bounded by

(A.1)

where

(A.2)

le’"(v’ 0)--< 2 exp {2WA(U’)}v(U,)u

Ul(p)=(3p-5p3)/24,

and p is given by (5.10). The bound (A.1) corresponds to (7.14) of Chap. 10, the only
difference being that the reference point for el.l(U, :) is :-iv, and that the path of
integration A must be an (iv:)-progressive path linking : iv to : 0, or correspond-
ingly p =0 to p- (1+ ,/.2)--1/2. (For a definition of a progressive path, see p. 222 of
Chap. 6.)

Our choice of A is as follows. For large positive R let FR be the path linking- iR to : 0, consisting of the union of a circular arc from : iR to :- R with a
real segment from :-R to sc -0. It is seen that FR is an (hg:)-progressive path. The
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(iR)

(0) (R

FIG. 2a. Path FR in plane.

-1/2
(1+

FIG. 2b. Path / in p plane.

corresponding path in the p plane, 7R, links p -PR to p=(1 +,/.2)--1/2, where PR
-i/R + O(iR-2) see Fig. 2a, b. We take our variation path A to be the limit of rR as
R 00. In the p plane the C-path A corresponds to the real segment 0-<_ p _-< (1 + ,/.2)--1/2;
note that we can neglect the contribution to the variation from the vanishingly small
arc near p 0.

Thus with our choice of A
+1"2)-1/2

(A.3) A(U,)
[1-5p21 1 2-3z

---T- dp=-+24(1 + 7"2)3/2--0"0091"’’"

NOW, since the RHS of (A.1) is a monotonically decreasing function of v, it follows
that it is bounded above by 1/x/ if

(A.4) 2 //A( U1)/ ’ < ’o,

where Vo is the root of the equation

(A.5) Vo e= 1// (,o 0.4506 ).

By symmetry lel.2(v, 0) is also bounded above by 1/x/ if (A.4) holds, and so, in
conclusion, we have shown that a sufficient condition for (3.23) to hold is for

(A.6) v > 2A(U)/V0 0.4039"’’.
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GENERAL ANALYTIC SOLUTION OF CERTAIN FUNCTIONAL
EQUATIONS OF ADDITION TYPE*

M. BRUSCHIt AND F. CALOGEROt

Abstract. The general analytic solutions of the following functional equations are exhibited:

a(x + y)/[a(x)a(y)] + p(x)tp(y)O(x + y),

fl(x + y)/[fl(x)fl(y)] y(x) + y(y) + x(x + y).

These solutions are expressed in terms of Weierstrass elliptic functions; the special cases in which these
reduce to elementary functions are also exhibited. Moreover, several remarkable formulae satisfied by
Weierstrass elliptic functions are reported.

Key words, functional equations, special functions

AMS(MOS) subject classifications. 39B40, 33A25

1. Introduction. The main purpose of this paper is to report the general analytic
solution of the following two functional equations:

(1.1) a(x + y)/[a(x)a(y)] 1 + q(x)q(y)O(x + y),

(1.2) fl(x + y)/[(x)fl(y)] y(x) + y(y) + X(X + y).

Actually the second of these equations is a limiting case of the first, as we will show
in 4; we prefer nevertheless to treat them separately.

Clearly these functional equations are susceptible to many reformulations, which
we obtain by redefining the a priori unknown functions, namely ct(z), q(z), and X(Z)
in (1.1), and fl(z), y(z), and X(Z) in (1.2). For instance, other avatars of (1.1) read as
follows:

(1.1a) a(x + y)/[a(x)a(y)] 1 + O(x + y)/[to(x)to(y)],

(1.1b) a(x)a(y)/a(x + y) 1 +(x)(y)(x+ y),

(1.1c) a(x)a(y)/a(x +y)= 1 -ap(x)aP(y)/fl(x + y),

(1.1 d) a(x + y)fl(x + y) O(x)ap(y)a(x + y) + a(x)a(y)l’l(x + y),

(1.1e) a(x + y) a(x)a(y) aP(x)O(y)O(x + y),

(1.1f) a(x + y)to(x)to(y)- tp(x + y)a(x)a(y) a(x)a(y)to(x)to(y),

(1.1g) In [a(x + y) a(x)a(y)] =f(x) +f(y) + g(x + y),

(1.1h) In [1 a(x)a(y)/ a(x + y)] =f(x) +f(y) + h(x + y),

and other avatars of (1.2) read as follows:

(1.2a)

(1.2b)

(1.2c)

(1.2d)

O(x)O(y)/ O(x + y) y(x) + y(y) + X(x + y),

b(x + y) b(x) b(y) In y(x) + y(y) + X(X + y)],

exp {fl(x + y)/[fl(x)fl(y)]} G(x)G(y)H(x + y),

exp O(x)O(y)/ O(x + y)] G(x)G(y)H(x + y).

* Received by the editors March 10, 1989; accepted for publication (in revised form) August 24, 1989.
This research was partly supported by the Italian Ministry of Education.

Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy, and Dipartimento di Fisica,
Universit degli Studi di Roma "La Sapienza," Rome, Italy.

1019



1020 M. BRUSCHI AND F. CALOGERO

The key to these transformations reads as follows: to 1/q, = aq, =-O/a, 1
a/O, f=ln(aq), g=ln(O), h=ln(d//a), O=l/fl, b=ln(fl), G=exp(y), H=
exp (X). In the following we refer for definiteness to the canonical forms (1.1) and (1.2).

In 2 we report the general analytic solutions of the functional equations (1.1)
and (1.2). In 3 we motivate our interest in these functional equations. In 4 we prove
our results. In 5 we display several remarkable relations ("addition formulae" of
various kinds) satisfied by the Weierstrass elliptic functions (whose definitions are
collected in the Appendix, mainly to stake out our notation). Section 6 contains some
concluding remarks.

2. Solutions. Before giving the solutions of the functional equations (1.1) and
(1.2), let us mention some invariance properties of these equations.

It is plain that, if a(z), q(z), and q(z) satisfy (1.1), so do

cT(z) =exp (bz)a(az),

(2.1) q(z) A exp (cz)q(az),

q(z) A-2 exp (-cz)q(az),

with a, b, c, A arbitrary constants (A # 0), as well as

(z)=l/a(z),

(2.2) (z) q(z)a(z),

q,(z) -q,(z)/(z).

Similarly, if fl(z), y(z), and X(z) satisfy (1.2), so do

fl(z) C exp (bz)fl(az),

(2.3) "(z) c-l[ y(az) + Az + B],

(z) C-[x(az)-Az-2B],

with a, b, A, B, and C arbitrary constants (C 0).
The general analytic solution of the functional equation (1.1) reads as follows"

(2.4a) a (z) exp (bz)cr(tx)cr(az + v)/[ tr( v)tr(az + tx)],

(2.4b) q:,(z) A exp (cz)tr(az)/tr(az +

(2.4c) q(z) A-2 exp (-cz)tr( u tz )tr( az + tx + v)/[ cr(Iz )tr( az +/x)].

Here tr(z)-- o’(zl to, to’) is the Weierstrass tr-function (see the Appendix), and A, a, b,
c,/z, v, to, and to’ are eight constants (arbitrary, except for the trivial restrictions needed
to make good sense of the right-hand side (r.h.s.) of (2.4a-c)).

In 4 we prove that functions (2.4) satisfy (1.1), and we show moreover that any
analytic function a(z) satisfying (1.1) may depend on at most six free parameters. The
fact that the expression (2.4a) of a(z) indeed contains six arbitrary parameters, namely
a, b,/z, u, to, and to’, justifies our claim that formulae (2.4) provide the general analytic
solution of the functional equation (1.1).

It may be easily verified that the solutions (2.4) are consistent with the transforma-
tions (2.1), (2.2), whose only effect is to cause a redefinition of some parameters.
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For special choices of the parameters, (2.4) may be cast in simpler form. For
instance the following expressions of a(z) in terms of Jacobi elliptic functions (see
the Appendix) are all special cases of (2.4a):

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

(2.50

a(z) sn (ix)/sn (z+ Ix),

a(z) =sn (Ix) cn (z + Ix)/[cn (Ix) sn (z + Ix)I,

a(z) sn (Ix) dn (z+ Ix)/[dn (Ix)sn (z+ Ix)I,

a(z) cn (z + Ix to3)/cn (Ix to3),

a(z) dn (z + Ix to3)/dn (Ix to3),

a(z) dn (Ix to2) cn (z + Ix + to2)/[cn (Ix to) dn (z + Ix + to)].

In these formulae Ix is an arbitrary constant, and we use the standard notation for the
Jacobi functions and their "periods" (see the Appendix).

More special (and perhaps more interesting) cases obtain when one or both periods
of the elliptic functions diverge and they reduce to elementary functions (see the
Appendix). The corresponding formulae for a(z), p(z), and p(z) read as follows:

(2.6a) a(z)=exp{[b+(Ix- ,)a/3]z} sinh (Ix) sinh (az+ ,)/[sinh (,) sinh (az+ix)],

(2.6b) p(z)=A exp [,2/6+(c+ ,a/3)z]sinh (az)/sinh (az+ ,),

(2.6c) O(z) A-2 exp [-,2/3-(c+ ,a/3)z]
sinh (v-Ix) sinh (az+ Ix + v),

sinh (Ix) sinh (az + Ix

(2.7a) a(z) exp (bz)(Ix / ,)( az + ,)/ az + Ix),

(2.7b) p(z) A exp (cz)az/(az + ,),

(2.7c) (z) A- exp (-cz)(,-Ix)(az + Ix + ,)/[Ix(az + Ix)].

Note that the trivial solution a(z) 1/C, q(z) A, g/(z) (C 1)/A2 with C and A
arbitrary constants, obtains if, in (2.7), we set b--c =0, Ix 8, , C8, 8 0.

The general analytic solution of the functional equation (1.2) reads as follows:

(2.8a) fl(z) C exp (bz)tr(Ix)tr(az)/tr(az+ Ix),

(2.8b) y(z) C-I[Az + B + ’(az)],

(2.8C) X(z) C-I[-Az-2B + (Ix)- (az + Ix)].
Here r(z)=-r(zlto, to’) is the Weierstrass r-function and ’(z)=’(z[to, to’)=
tr’(z)/o’(z) is the Weierstrass st-function (see the Appendix); a, b, A, B, C, Ix, to, and
to’ are eight arbitrary constants (C # 0).

As mentioned in 1 and shown in 4, the functional equation (1.2) may be
obtained by an appropriate limiting procedure from the functional equation (1.1);
likewise, (2.8a-c) may be derived, by an appropriate limiting procedure, from (2.4a-c).
But since the limiting procedure is not trivial, we have considered it worthwhile to
exhibit separately the two functional equations (1.1) and (1.2), as well as their general
solutions (2.4) and (2.8). We also report here the special cases of (2.8) analogous to
the special cases of (2.4) displayed above (see (2.5)-(2.7)). These formulae read as
follows:

(2.9a) /3(z) sn (z),

(2.9b) (z)=sn(z)/cn(z),

(2.9c) /3(z) =sn (z)/dn (z),
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(2.10a)

(2.10b)

(2.10c)

(2.11a)

(2.11b)

(2.11c)

/3(z) C exp [(b+ txa/3)z] sinh (/x)sinh (az)/sinh (az+lz),
y(z) C-I[(A a/3)z + B +coth (az)],

X(z) C-I[-(A a/3)z-2B +coth (/x)-coth (az +/x)],

/3(z) C exp (bz)laz/(az+l),

y(z) c-l[az + B + 1/(az)],

X(z) C-I[-Az- 2B + 1/l 1/(az +/z)].
Note that the trivial solution fl(z) C, with C an arbitrary constant, obtains if we set
b 0 in (2.11) and take the limit a -.3. Motivation. Some years ago the (differential) functional equation

(3.1) O(x)O’(y)- O’(x)O(y) O(x + y)[e(x)- e(y)]

was obtained and solved in the context of the study of a certain class of integrable
dynamical systems [1]. Recently, in an analogous context, an analogous (differential)
functional equation was obtained and solved [2]:

(3.2) a(x)a’(y)-a’(x)a(y)=[a(x+ y)-a(x)a(y)][q(x)-(y)].

Clearly these two functional equations may be unified by considering the following
functional equation:

(3.3) (x)’(y)-’(x)(y)=[(x+y)-c(x)dt(y)][(x)-(y)].

Indeed (up to notational changes) this equation yields (3.1) for c =0 and (3.2) for
c= 1. Moreover, provided c 0, (3.3) coincides with (3.2) after the trivial rescalings

(3.4) a(z) c(z), rt(z) c(z).
We now show, following [2], that the functional equation (3.3) may be integrated

to yield (1.1) and (1.2). Let

(3.5) F(x,y)=c-1 ln[1-c(x)(y)/(x+y)].

It is then easily seen that (3.3) implies the first-order PDE

(3.6) Fx(x, y) Fy(x, y) (l(x) (I(Y),
whose general solution reads

F(x, y)= H(x +y)+ E(x)+ E(y),(3.7)

with H(z) arbitrary and

(3.8) E(z)= dz’ (z’).

Now note that (3.5) and (3.7) imply the relation

(3.9) 1 c(x)(y)/cT(x + y) exp {c[n(x +y)+ E(x)+ E (y)]}.

For c 0 this equation coincides with (1.1) via the positions

(3.10) a(z) ck(z), 0(z) =exp [cE(z)]/a(z), d/(z) a(z) exp [cn(z)].
And the treatment remains valid also in the limit c 0, in which case (3.9) yields (1.2)
(up to notational changes; see 4 for details).

4. Proofs. The validity of the "invariance properties" (2.1)-(2.3) is verified
trivially.
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Our first task is to prove that (2.4) satisfies (1.1). But (2.1) implies that, to prove
this, it is sufficient to verify that (1.1) is satisfied by the following functions:

(4.1a) a(z) 0-(tz)0-(z + v)/[0-(v)0-(z+tz)],

(4.1b) o(z) 0-(z)/0-(z + u),

(4.1c) q(z)=0-(u-tz)0-(z+ + u)/[0-(tz)0-(z+tz)]

(corresponding to (2.4) with b c 0 and a A 1).
This has already been proved in [2], but in a somewhat cumbersome manner. A

more straightforward proof may be based on the general "addition formula" (see 5)

(u + v,)(u v,)(v2 + v)(v v)

(4.2) + 0-(u + v2) 0-(u v2) 0-(v3 + v)0-(v3 v)

%" O’( lg "- /.)3)0"( lg /)3)0-(/)1 + )2) O’( D1 V2) 0,

Indeed it is easily seen that the insertion of (4.1) into (1.1) yields precisely (4.2), with

(4.3) u=(x+ y)/2, v,=(x+y)/2+ u, v2=(x-y)/2, v3=-(x+ y)/2-tx.

We now prove that any analytic solution a(z) of the functional equation (1.1)
may contain at most six free parameters. It is actually expedient to base this proof on
the differential functional equation (3.2), which is implied by (1.1), as shown in 3.
We set y 6 in (3.2), expand around 6 0, and equate to zero the coefficients of
using the ansatzen

(4.4a) a(6)-- a0- O16 "q" 1/20.262 -]" a363 -(4,4b) 7(6) ’0-16-1 - no + ’016 -whose justification is implied a posteriori by the consistency of the following results.
We thus get (for n =-1, 0, 1, 2)

(4.5a) ao 1,

(4.5b) r/_l 1,

(4.5c) r/(z) rlo+1/2[a"(z)-2ala’(z)+aa(z)]/[a’(z)-ala(z)],

2[a’(z) ala(z)]a"(z) 3[ a"(z) 2eel a’(z)] ce"(z
(4.5d)

+ a,[a’(z)]2 + a2a’(z)a(z) + a3a2(z) O,

with

(4.6) al=6(2r/1-a2), a2=4(a3-6alrla), a3=3a-4ala3+12a2’ql.

Of course at each step we have used the findings from previous steps; note, incidentally,
that (4.5c) provides an explicit definition of 7(z) in terms of a(z) (up to the parameter
r/o, which remains completely arbitrary since it plays no role whatsoever; see (4.4b)
and (3.2)).

This derivation implies that any analytic solution a(z) of the functional equation
(1.1) must satisfy the constraint (4.5a) and the third-order (nonlinear) ODE (4.5d),
which contains the four a priori undetermined parameters al, al, a2, and a3. Hence
a(z) may depend at most on 6=4+3-1 free parameters (the number 3 corresponds,
of course, to the order of the ODE (4.5d), and -1 accounts for constraint (4.5a)).
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Analogously it can be shown that

(4.7a) fl z) tr(lz )tr(z)/ tr(z + tz ),

(4.7b) 7(z) ’(z)-- tr’(z)/tr(z),

(4.7c) X(z) (1 (z+I =- tr’(/)/tr(g)-tr’(z + I )/ tr(z +
satisfy (1.2) (note that, via (2.3), this implies that (2.8) satisfies (1.2) as well). Indeed
the insertion of these formulae in (1.2) yields the formula

tr(x +/z)tr(y +/z)tr(x + y) tr(/z)tr(x + y +/x)[tr(x) tr’(y) + tr’(x) tr(y)]

(4.8) + tr(x)tr(y)[tr(x + y + tz )tr’(l

tr’(x + y +/x)tr(/x)],

whose validity is easily proved by setting in (4.2)

(4.9) u (x + y)/2+ tx, Vl (x

and then letting -> 0.
But it is more interesting to prove that (1.2) is a limiting ease of (1.1), and

accordingly that the expressions (4.7) are a limiting ease of (4.1). Indeed, setting

(4.10) a(z) 6--1fl(Z), ((Z) 1 6y(z), (z) -1 + 6X(z)

in the following equation:

(4.11) ln{1-a(x+y)/[a(x)a(y)]}=ln[o(x)]+ln[o(y)]+ln[-q,(x+y)]

(which is clearly equivalent to (1.1)), and taking the 6-->0 limit under the assumption
that in this limit the functions/3(z), y(z), and X(z) remain finite, we find that (1.2)
evidently obtains. On the other hand, the assumption about the finiteness of fl(z),
y(z), and X(z) is verified using the explicit expression (4.1) of ct(z), 0(z), and q(z)
with the position

(4.12)

indeed, using (A.3)-(A.6) below, it is easily seen that (4.1) and (4.10) with (4.12) yield,
in the 6--> 0 limit, precisely (4.7).

5. Addition formulae for Weierstrass elliptic functions. In this section we report
some addition formulae for Weierstrass elliptic functions that, in spite of their remark-
able neatness and generality, cannot be found in the standard compilations [3]-[5].

Foremost among these relations is the beautiful addition formula (4.2), which for
completeness we report here in two equivalent forms:

(u + v,)(u v,)(v+ v)(v v)

(5.1a) +o’(u+v2)o’(u-v2)o’(v3+v,)o’(v3-v)

+ (u + v)(u v)(v + v)(v v) o,
o’(x + y)tr(y + z)o’(z + x)tr(2w)

(5.1b) o’(x + w)tr(y + w)o’(z + w)tr(x + y + z- w)

tr(x w)tr(y w)o’(z w)tr(x + y + z + w),

related by the change of variables

(5.2) u+vl=x+y+z-w, u-v=z+w,
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Let us emphasize that this "addition formula" features four free parameters (in
addition, of course, to the two "’periods" of the Weierstrass 0--functions; see the
Appendix). Formula (5.1a) is not new, (see, for instance, p. 389 of[6]); a straightforward
way to prove it is by equating to zero the sum of the residues of the elliptic function

(5.3) (z)= l-I [,(z-z,)/,(z-t,)],
k=l

with the zeros zk and poles pk restricted by the condition

(5.4) (z -p) 0,
k=l

which is instrumental to guaranteeing that F(z), as defined by (5.3), is indeed an
elliptic function (hence that its residues within a fundamental parallelogram add up
to zero). It is then easy to obtain (5.1a) with

(5.5) tt + tl Z2-- Z3, tt tl Zl --pl V2+ t3 zl--p2, V2-- t3 Z --p3.

Since the addition formula (5.1) features four free parameters, it is easy to obtain
from it, merely by reduction, myriad addition formulae with three or two arguments,
including all the "classical" formulae that can be found in the standard compilations,
and many others that are less advertised. For instance, setting u =0 in (5.1a) we get

,(v,),(v+ v3),(v v) + ,-(v)o-(v3 + v,),(v Vl)
(5.6)

+ o-(v)o,(v, + v)o-(v, v) o,
and setting l) "--1)2"1" 0 in this formula yields (using (A.12))

(5.7) 0-(2v,-v=)0-3(v)-0-(2v-v,)0-3(v,)=0-(Vl-V_)0-3(v,-v).
More generally, setting u in (5.1a), expanding in 8, and equating the coefficients
of 8" obtains, in addition to (5.6) (which corresponds, of course, to n 0), the formula

(v,)r(Vl)r(v+ v)o-(v v)

(5.8) + (v)o-(v)r(v+ v,)r(v v,)

+ (v)r(v)r(v, + v)r(v, v) O,

which corresponds to n 2 (n 1 yields merely a trivial identity). To obtain this
formula we have, of course, used the definition (A.4) of the Weierstrass -function.
Note that, for v3 0, (5.8) yields, using (A.6), (A.7), and (A.12), the standard addition
formula (see (A.13))

(5.9) 0-(v, + v_) 0-(v, v:) 0-:(v,) 0-2(v:)[(v:) (v,)].

On the other hand, taking the logarithmic derivative of (5.6) with respect to v
and using (A.3) obtains the formula

0"(/’)1 " 02)0"(/)1 /)2)0"2(/)3)[2’(/)1) ’(/’)1 " /)2) ’(/’)1 --/)2)]
(5.0)

,r(v, + v)(v, v),(v)[2(v,) (v, + v) (Vl v)],

which, setting v3 v, yields (using (A.6) and (A.7)),

(5.11) (v,+v=)+(v,-v:)-2(v,)=0-(2v,)0-:(v=)/[0-2(v,)0-(v+v=)0-(v-v=)].
This formula yields, via the duplication formula (see (A.17)),

(5.12) 0-(2z) --O’4(Z) /t(Z),
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the well-known relation (A.15),

(5.13) ’(v, + v2) + ’(Vl v2) 2’(v,) ’(v,)/[((v,) (v2)].

Note, incidentally, that the duplication formula (5.12) may itself be derived, since
(5.13) may be obtained directly from (5.9) (taking the logarithmic derivative with
respect to vl), and clearly (5.13) with (5.11) yields (5.12).

On the other hand, differentiating (5.6) with respect to vl, we obtain the relation

(5.14)

(5.14)

2tr(v,) tr’(v,)tr(v2 + vs) tr(v2 v3)

Z(vz)[(v, + vs)’(v, vs) + (v, vs)’(v, + vs)] ,’-(vs)
[(v, + v)’(v, v) + (v, v),’(v, + v)],

and this, via (5.9), yields the formula

(5.15)
2’(v,)[9(v2) 9(vs)] [’(v, + v2) + ’(v, v2)][(v2) (v,)]

[:(Vl + v) + :(v, v)][(v) (v,)].

Let us also report some neat relations that are more conveniently obtained from
(5.1b). In the limit wO this yields (via (A.3) and (A.6))

’(x) + ’(y) + ’(z) sr(x + y + z)
(5.16)

tr(x + y)tr(y + z)tr(z + x)/[tr(x)tr(y)tr(z)tr(x + y + z)],

which is essentially a more elegant version of (4.8); and in the limit z--> 0 this yields
the standard formula (see (A.14))

(5.17) ’(x +y)- ’(x)- ’(y) [’(x) ’(y)]/[(x)- (y)]

(which may also be easily derived from (5.13)).
On the other hand by setting z 0 in (5.1b) we obtain the relation

tr(x)tr(y)tr(x + y)tr(Ew)/ or(w) tr(x / w)tr(y / w)tr(x /y- w)
(5.18)

/ tr(x w)tr(y w)tr(x / y / w),

while differentiating (5.16) with respect to z yields (via (A.3)-(A.4), and again (5.16),
and with the change of variables x+y+z=ul, z=u2, y/Z=--U3) the remarkably
neat formula

(5.19)
(u,) (u_) [’(u,) + ’(u:) + ’(u) (u, + u: + u)]

[(u,)-(u, +u)-(u)+ ’(u_+ u)].
Note that the variable us appears only on the right-hand side. Setting us 8 and
expanding (5.19) around =0, the coefficient of yields (5.9) while the coefficient of
82 yields (5.13).

6. Conclusion. It is in our opinion remarkable that the general analytic solutions
of the functional equations (1.1) and (1.2), each featuring three a priori unknown
functions, may be explicitly obtained.

These findings imply the possibility of obtaining solutions to more general func-
tional equations. It is, for instance, clear from the results reported in 2 (see, in
particular, (2.4)) that the functional equation

N

(6.1) a(x +y)/[o(x)o(y)] I-I [l + o,,(x)tp,,(y),,,(x + y)],
n-’l
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which features 2N+ 1 a priori unknown functions and reduces to (1.1) for N 1,
admits the solution

N

(6.2a) a(z)=exp(bz) I-I {tr,(ix,)o’,(a,z+u,)/[o’,(v,)O’n(a,z+ix,)]},
n=l

(6.2b) q,(z) A, exp (c,z)tr,(a,z)/o-,(a,z + ,,,),

(6.2c) (p,(z)=A-2 exp (-c,,z)o’,(v,-ix,)o’,(anZ+ix,+ v,,)/[o’,(ixn)o’,(a,z+ix,)].

Here (and below) we use for the Weierstrass or-functions the abbreviated notation
tr,(z) tr(zl to., to’.). Note that the solution (6.2a-c) contains 7N+ 1 free parameters
(namely A., a,, b, c,, Ix,, u,, to., and to,, with An # 0), 5N+ 1 of which enter into
the expression (6.2a) of a(z).

It is likewise plain (see (2.8)) that the functional equation

N

(6.3) fl(x+ y)/[fl(x)fl(y)]= I-I [y,(x)+ y,(y)+x,(x+ y)],
n=l

which features 2N+ 1 a priori unknown functions and reduces to (1.2) for N 1,
admits the solution

N

(6.4a) /3(z)=exp (bz) I-[ [C,r,(ix,)r,(a,z)/o’,(a,z + ix,)],

(6.4b) y,(z) C-[A,z + B, + ’, (a,z)],

(6.4e) X.(z) C-’[-A,z 2B, + ,(ix,) ,(a,z + Ix,)].

Here, of course, ,(z)--’(z] to,, to’,). Note also that this solution contains 7N+ 1 free
parameters (namely a,, b, A,, B,, C,, Ix,, to,, and to’,), 5N + 1 of which enter in the
definition (6.4a) of/3(z).

A question that remains open for the moment is whether (6.2a-c), respectively,
(6.4a-e), are the general analytic solutions of (6.1), respectively, (6.3).

Of course, many other functional equations, whose solutions can be easily found
from the solutions of (1.1) and (1.2), may be manufactured combining (1.1) and (1.2)
and/or their avatars (see, for instance, (1.1a-h) and (1.2a-d)).

These functional equations, together with their solutions, provide moreover a
convenient tool for uncovering additional relations, satisfied by Weierstrass elliptic
functions, that are generally all consequences of (5.1) but might be quite difficult to
discover by direct computation. It is, for instance, plain (from the relation 0= 1//3
and from (4.7) with Ix replaced by 9) that the functional equation (1.2a) admits the
solution

(6.5a) O(z) o,(z + u)/[o’(u)cr(z)],

(6.5b) Z/(z) ’(z),

(6.5c) ,(z) ’(u) ’(z + u).

On the other hand, it is evident that the relation

(6.6) a(z)=(z)O(z)

holds, with ct(z) defined by (4.1a), /3 (z) defined by (4.7a), and if(z) defined by (6.5a).
Hence (1.1), (1.2), and (1.2a) imply the relation

(6.7) [ r(x) + r(Y) + X(x + y)]/[(x) + (y) +)(x + y)] 1 + o(x)q(y)O(x + y),
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with o, q, y, X, , respectively, , defined by (4.1b, c), (4.7b, c), and (6.5b), respectively,
(6.5c), namely the neat formula

’(x) / ’(y) + ’(/x) ’(x + y +/x)]/[sr(x) + ’(y) + ’(v) ’(x / y / v)]
(6.8)

1 + tr(x)tr(y)cr(x + y+/.)tr(v )/[(x + v)tr(y+ v)tr(x +y+

This formula, which contains four free parameters (in addition to to and to’), may also
be obtained using (5.1a) and (5.16).

Let us finally mention that a natural question suggested by the main findings of
this paper concerns the solvability ofthe simplest functional equation that encompasses
(1.1) and (1.2) and involves four a priori unknown functions, namely

(6.9) a(x + y)/[a(x)a(y)] y(x) + y(y) + q(x)q(y)(x + y).

Allendix. For the sake of completeness and to standardize the notation, we report
in this Appendix the relevant formulae for the Weierstrass functions tr(z), ’(z), (z).

Definitions.

(A.1) w =- w,.,. =- 2mto + 2nto’,

(A.2) tr(Z)=tr(zlto, to’)=zI-I’{(1-z/w)exp[z/w+1/2(z/w)2]},

(A.3)  (zlo ,

(A.4) (z)-= I,o,

Here and below, a prime appended to a function denotes differentiation, while 1-I’ (’)
denotes the product (the sum) taken over all (positive and negative) integers m, n with
the exception of rn n 0.

Laurent series.

(A.5) g2 60 ’ w-4, g3 140 ’ W-6,

(A.6) tr(z)

where

a.,,.(g2/2)"(2g3)"z4"+6"+l)/(4m +6n + 1)!,

(A.6a)

(A.6b)

(A.7)

ao,o=l, a.,..=0 if m<0 or n<0,

a,.,. (3m + 1)a.,+,,._, +(n + 1)a,._2,.+,
-1/2(3m + 3n 1)(4m +6n 1) a,._..,

(g) Z-1- E CkZ2k-1/(2k- 1),
k=2

where

(A.7a)

(A.7b)

C2 g2/20, c3 g3/28,

k-2

Ck=3/[(2k+l)(k-3)] E C,,Ck_,,, k>--4,
m=2

(A.8) ’(z) z-+ E c,z(’-.
k=2
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(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20a)

(A.20b)

(A.20c)

(A.20d)

(A.21)

(A.22a)

(A.22b)

(A.22c)

Period relations.

tr(z + 2mto + 2nto’) (-1)(,+,+,n)tr(z)
x exp [(z + mto + nto’)(2m(to)+ 2n(to’))],

(z + 2mto / 2too’) (z)/ 2m(to)/ 2n(to’),

(z+ 2mto + 2nto’) (z).

Functional relations and properties.

o-(z) =-o-(-z), (z) =-(-z), ’(z) ’(-z),

,(z, + z),(z, z) ,(z.,),(z)[ O’(z9 (z,)],

(Z / Z2) / (Z Z2) 2(Z,) /t(Zl)/[ j(Z,) (Z2)],

(z, + z)- (z,)- (z) 1/2[’(z,)- o"(z)]l[(z,)- (z)],

(z, + z) + (z,) + (z) -[’(z,) ’(z)]/[(z,) (z)],
o’(2z)

sr(2z) 2’(z) +r tz)/(z),

P(2z) -2(z)+["(z)/P’(z)]2.

Connection with the Jacobian elliptic functions.

01 0 tO2---- ((.0 / tO t), (.03 (.0

*/k (t0k), k 1, 2, 3,

ek (tO,), k 1, 2, 3,

trk(z)=exp(--rlkZ)tr(z+tok)/tr(to), k= 1,2,3,

Degenerate cases.

(A.23a)

(A.23b)

(A.23c)

(A.23d)

(A.24a)

(A.E4b)

(A.24c)

(A.E4d)

u=(e,-e3)’/2z, m2=(e2-e3)/(e,-e3),

sn (ulm)= (e,-e3)’/2tr(z)/cr3(z),

cn (ulm) oh(z)/o3(z),

dn (ulm) o’(z)/o’s(z).

e, e. a, e3 -2a, to oo, to’ (12a)-’/:z.a’i,

or(z) (3a) -1/2 sinh [(3a)’/2z] exp [-az2/2],

’(z) -az +(3a) ’/2 coth [(3a)1/2z],

(z) a + 3a{sinh [(3a)/2z]}-2,

e e2 e O, to --ito’ 03,

o-(z)=z,

(z)=l/z,

(z)=l/z2.
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Abstract. It is shown that a positive polynomial of degree 2n has a unique representation as the sum
of squares of polynomials of degrees 0 through n if the polynomials are real-valued and orthonormal with
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problem.
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1. Introduction. Consider a set (Pk} of polynomials of degree k, k 0, 1,..., n,
having leading coefficients 1 and orthogonal with respect to a positive measure da on
the real line of total mass

(1.1) ?pj(X)pk(X) da(x) 6jkhk (ho =/Xo).

The subspace of L2(da) spanned by polynomials of degree n has the reproducing kernel

(1.2) K,(x, t)=
pk(x)pk(t)

k=0

The problem considered here is that of recovering the orthogonal polynomials {Pk})
from their "trace" (of order n), which is the name we give to the function

(1.3) K,(x,x)=
{pk(X)}2

(--oO<X<),

where n is considered fixed in the problem. No matter how the polynomials are
normalized, the reproducing kernel is unique. It does depend in a simple way on
scaling of the measure da(x). Thus by leaving the total mass/Zo unspecified we have
the desirable result that AK,(x, x), A > 0, is a trace of {Pk}g whenever K,(x, x) is. In
other words, if the trace determines the polynomials (leading coefficients 1), it also
determines/Zo. Recall that the trace has an important meaning which derives from the
extremal property of the reproducing kernel.

Let r,(t) be a polynomial of degree n having norm 1 in L2(da(t)). Then how
large can Icr,(t)l be at any given real point, say x? We have

r,(x) j-_o K,(x, t)rr,( t) da( t).

Then by Schwarz’s inequality,

(1.4) [r,(x)l: <_- f_ K,(x, t) da(t)= K,(x, x),

with equality possible if and only if

"a’n(t)= c.(x)K.(x, t),

* Received by the editors May 22, 1989; accepted for publication August 28, 1989.
"1" AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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where

Ic.(x)I-={K.(x,x)}-1.

Now there are various discrete measures da.(t) consisting of point masses at certain
real points {tk} and having the same moments through order 2n as da(t) so that the
quadrature formula,

rEn(t) da(t)=E mn(tk)Tr2n(tk),
k

is valid for any polynomial ’7/’2n of degree 2n. The question here is, how large can we
make the mass m,(tk) at a given real point, say k

Again suppose that r (t) is a polynomial of degree n having norm 1 in LE(da (t)).
Then, since ]r.(t)] 2 is a polynomial of degree 2n in t,

1=f Ir.(t)l: d..(t)=, rn.(tk)lr.(tk)l
d-o k

Here we take the largest possible value for Icrn(x)l: as given by (1.4) to obtain

(1.5) m,,(x)<-p,,(x)={K,(x,x)}-1.

Equality can hold here if, and only if, the tk are the zeros of (t-x)K,(x, t). Thus the
reciprocal of the trace represents the most mass that any positive measure da, (t) may
have at the point =x, where the moments through order 2n are required to agree
with those of da(t). With this characterization of the trace, we would suspect that it
determines the moments through order 2n and hence the polynomials {Pk}, as well
as the norm of p,. The polynomials, of course, are determined by the moments through
order 2n- 1, leaving the norm of p, undetermined. We certainly can read off the norm
of Pn from the leading coefficient of the trace,

X
2n

(1.6) K,(x, x) =--h-, +"

It should be noted that the analytic continuation K,(z, z) is not the usual quantity of
interest, K,(z, ), which appears in the extension of (1.4) to complex variables.

The orthogonal polynomials, having leading coefficient 1, satisfy a recurrence
relation of the form

(1.7)

where

Pk+l(X) (X- bk)Pk(X)- akPk-(X),

--cx3 < bk < cx3, ak > O.

We may suppose that this relation is satisfied for all positive k. In particular, it is
convenient to introduce p,+(x) by letting b, be a free parameter not determined by
K,(x, x). Note that if the trace does in fact determine the moments through order 2n,
then it determines a,, for if both sides of (1.7) are multiplied by xk- and then integrated
with respect to da(x) there results the relation

and hence

0 hk akhk-1,

k

(1.8) hk=/-o 1-I at.
j=l
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If we were given p, and P,-1, then the recursion relation (1.7) could be worked
backwards to determine the lower-order polynomials as well as the recurrence
coefficients. So we may ask simply whether or not the trace determines p, (x) and P,-1 (x).

In the problem here, where moments only through order 2n enter, the introduction
of the undetermined orthogonal polynomial p,+l may be regarded merely as a device
for representing the reproducing kernel,

1 p.+(x)p.(t) -p.+(t)p.(x)
(1.9) K,(x, t)= h- x-t

for no matter what b, is, substitution of

(1.10) p,+l(X) (x b,)p,(x) a,p,_l(X)

in (1.9) gives, in view of (1.7) and (1.8),

p,(x)p,(t)
(1.11) K,(x, t)-K_l(X, t)+

hn
and shows, by reduction to *.he case n 0, that (1.9) is valid. Thus we may as well ask
whether or not the trace K,(x, x), aside from obviously determining h,, determines
p,,(x) and hence Kn-l(X, x).

From (1.9) we have

(1.12) K,(x,x)-

where

(1.13)

W.(x)

W,(x) p’,+,(x)p.(x) -p,+,(x)p’(x),

is the Wronskian of P,+I and p, being a positive polynomial of degree 2n with leading
coefficient 1. Now the only condition that two polynomials p,+(x) and p(x) need
satisfy in order to be consecutive orthogonal polynomials is that their zeros be real
and interlaced [1], for two such polynomials, with leading coefficients 1, determine
the recursion coefficients bk, 0<= k <-n, and ak, 1 <--k <-_ n, in (1.7), the interlacing of the
zeros implying the positivity of the ak. Hence the Wronskian of two such polynomials
is positive, since it may be identified as the trace (with h, 1) of some system {Pk}g
of orthogonal polynomials, all of which may be found by working the recurrence
relation backwards, determining the recurrence coefficients in the process. So we may
equivalently ask whether or not the Wronskian of two polynomials, p,+(x) of degree
n / 1 and p, of degree n, determines the zeros of p (x) whenever the zeros of the two
polynomials are real and interlaced. Clearly, even given the leading coefficients to be
1, the Wronskian does not determine p,+l(X), for the Wronskian is invariant on replacing
pn+l(X) by

(1.14) p.+,(x; s) p.+(x)- sp.(x),

which is equivalent to replacing b, in (1.10) by b, + s.
There are countless ways in which a positive polynomial may be represented as

a sum of squares of polynomials. We might ask what side conditions make the
representation unique. The simplest result of this kind is Theorem 1 [1].

THEOREM 1. A positive polynomial Q2,(x) of exact degree 2n has a unique rep-
resentation

(1.15) Q2. (x) {Tr. (x)}2 + {r._(x)}2,
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where 7r. (x) and 7r._ (x) are real-valued polynomials ofdegree n and n 1, respectively,
having (simple) interlaced real zeros.

We only need give the signs of the leading coefficients to make 7r,(x) and r,_l(X)
unique. (To accommodate the trivial case, n 1, the zeros of rl(x) and 7to(X) are said
to interlace.) If we suppose the leading coefficients of Q2, and r, to be 1, and the
leading coefficient of 7r,_ to be positive, then r,(x) and r,_(x) are given simply by

(1.16) 7r.(x) + izr._,(x) fi (x Zk),
k=l

where Zk are the zeros of Q2n(z) lying in the lower half-plane. We will prove a similar
but more complicated result,

THEOREM 2. A positive polynomial Q2,(x) of exact degree 2n has a unique rep-
resentation,

(1.17) Q2.(x) {Pk(X)}2 (-- < X < ),
k=0

where the Pk are polynomials ofexact degree k, real-valued, and orthonormal with respect
to a positive measure da (x) for which Qzn determines the moments through order 2n.

COROLLARY. A positive polynomial Q2.(x) ofdegree 2n >- 2, with leading coefficient
1, has the representation

(1.18) Q2. (x) p’.+l(x)p.(x) -pn+l(x)pn(x),

where p.+(x) andp.(x) are polynomials ofdegrees n and n + 1, respectively, with leading
coefficients 1, and p. x) is uniquely determined by the additional condition that the zeros

ofp.(x) and p.+(x) interlace.
It turns out (Theorem 4) that the additional condition in the corollary can be

replaced by the condition that the zeros of either p.+ or p. be real.
The interpretation of Theorem 2 in terms of the extremal mass function p.(x) is

that there is a unique set of n points,

--3< A < A2< < An <or3,

determined by an (arbitrary) positive polynomial Q2n(x) of (exact) degree 2n, so that
it is possible to find a set of n / 1 points,

--00 < ’Y1 < ’Y2 <" < /n+l < 00,

such that the two Dirac measures,

n+l

p.(X)(x-,), E p.()(x-),
k=l k=l

where

p.(x)-={Q2.(x)}-’,

have the same moments through order 2n- 1. (See Fig. 1.) There is a one-parameter
family of the latter (" y") measures, these having the same moments through order 2n.
We would like to see how these point sets may be found, given p,(x) for all real x.
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p6(X)

X

FIG. 1. Extremal measures determined by a positive polynomial.

2. The Wronskian of two polynomials. Given W(x), there are countless solutions,
f and g, to the equation

W(x) f’(x)g(x)- g’(x)f(x).

We can choose, say, g(x), in a quite arbitrary way and then find anf from the first-order
differential equation. However, if W is a polynomial and f and g are required to be
polynomials, then there are certain constraints on f and g.

We suppose now (only) that W,(x) is a polynomial of degree 2n with leading
coefficient 1, and

(2.1) W,,(x) p’,,+l(x)p,,(x) -p’,,(x)p.+,(x),

where P,+I and p, are polynomials of degree n + 1 and n, respectively, with leading
coefficients 1. The relation (2.1) may be written

(2.2)

as well as

d p.+,(x)
W.(x) =p.(x) x p.(x)

W.(x)
d p.(x)

-p,,+,(x) -x p,,+l(x)"

Let us suppose further that p. and p.+ have simple zeros,

n+l

(2.4) p,,(x) (x- ak), P,,+I 1-I (x- Yk).
k=l k=l

Then, remembering that W.(x) and p2,(x) have the same leading coefficient, we see that

(2.5)
W,(x) ak Ak
pE,(x) 1 +1 (X Ak)h’l (X Ak)"
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Since

(2.6) Pn+l(X)_ I Wn(x) ak

pn(x) p2 (x)
dx c + x

1X--Ak
we must have

(2.7) Ak 0, k 1, 2,’", n.

Therefore,

(2.8)

where

Similarly,

p(x)W"(x)=PZ"(x)+l ak (X_ ak)2,

+ Ak log (X Ak),

n+l 2p,+l(X)
(2.9) W,(x) Z1 k (X ’)/k)2’

where

w.(,)
{p’,+(yk)}2’

and the Yk are the zeros of P,+l. Since the leading coefficient of W,(x) is 1, we have
.+1 .1 w.(,)

(2.10) E flk 1
(Pn+l(k)}2

Also, from (2.6)-(2.8), we have

(2.11) p,,+l(x) (x + c)p,,(x)- r,_l(X),

where c is an arbitrary constant and

(2.12) 7’._l(X
w.() p,(x)

{p’,(Ak)}2 x- Ak"
We have seen that the representation (2.1) of W,,(x) as the Wronskian of two

polynomials having leading coefficients 1 and simple zeros implies the representations
(2.8) and (2.9) of W,,(x). Now let us see that any one of the representations implies
the other two, which will be the case if (2.8) and (2.9) separately imply (2.1).

Suppose first that (2.8) holds. Then

W,(x)_ 1 +. ak

p(x) (x-,,,)"
Then integrating with respect to x and multiplying by p,,(x) we get

p,,(x) p----7 ax x+p.x- Pn+l(X).
X--Ak

Then

d p,+l(X)
W,(x) =p](x) xx p,,(x)

which is (2.1). Similarly, we get (2.1) from (2.9). Thus we have the following result.
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THEOREM 3. Let Pn+l(x) and pn(x) be polynomials of degree n + 1 and n, having
leading coefficients 1, and simple zeros { Yk} and {Ak}, respectively. Then any one of the
representations (2.1), (2.8), and (2.9) implies the other two, and hence we have (2.11).

This is an interesting addition to Theorems 1 and 2. Now let us make use of
additional facts relevant to the original problem.

First we observe that W, must vanish at common zeros of p,+l and p,, and as
well at multiple zeros of either p,+ or pn. (Compare (3.5) and (3.6) below.) Now
suppose that W(x) is positive for all real x, and that the zeros {Ak} of Pn are all real.
Then the zeros of p are real and simple. It follows that the zeros of p, and the zeros
of the polynomial r,-1 of degree n-1, defined in (2.12), are interlaced, since the
sequence

w.()
(2.13) 7r,_(,) k=l,2,...,n,

p’,(Ak)
alternates in sign, on taking ’k+ > ’k. Furthermore, the leading coefficient of r,_ is
positive. Now we have the following lemma 1 ].

LEMMA. For k O, 1, 2,.." let pk(X) denote a polynomial of degree k in x with
leading coefficient 1. Now suppose for some integer n >- 1 that

p.+(x) (x- b,)p,(x)- a,p,_l(X),
where a, and b. are real numbers. Then the zeros of p,+l and pn are real, simple, and
interlaced if, and only if, the zeros ofp, and P.-1 are real, simple, and interlaced, AND
a>0.

We have seen that P,/I in (2.1) must be related to p, and 7r,_1 as in (2.11),
p,+l(X) (x + c)p,,(x)-

where c is an arbitrary constant of integration. Thus, if in addition to the previous
assumptions, P,+I is real-valued on the real axis, then c must be a real number, and
therefore, according to the lemma, the zeros of P,+I and p. are real and interlaced.
We arrive at the same conclusion by assuming that the zeros of Pn+l, rather than those
of p, are real.

Assume now in (2.1) that W,(x) is positive for all real x and that the zeros {Yk}
of P,/I are all real and therefore simple. Then in (2.9) the k are positive, and we have
from (2.3)

n+l k(2.14) p(x_____) c’ +
p/l(x) x- Yk’

where the constant of integration c’ must vanish in order for p to be a polynomial of
degree n. (Otherwise, this is equivalent to replacing p. in (2.1) by pn + c’p/l, which
leaves W, invariant.) Therefore,

,+lx W( yk)
(2.15) p(x) {p’+()}- x- v
It follows from (2.14) tht the zeros ofp and P+I are interlaced. In summary, we have
the following theorem.

T.EOREM 4. Suppose Wn is a given polynomial ofdegree 2n with leading coefficient
1 and

W(x)=p’+l(x)p,,(x)-p’(x)p,,+l(x)>O (-oo < x < oo),
where the polynomials

n+l

fip.+l(x) 1-I (x- Yk), p.(X) (X-- Ak),
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are real-valued on the real axis. Then either of the statements,
(i) All the zeros ofp, are real.
(ii) All the zeros ofp,+l are real.

implies
(iii) The zeros ofp, and P,+I are real, simple, and interlaced.
Our goal is to show that the hypotheses of Theorem 4 and the first statement

imply that p, is unique.

3. Osculatory interpolation and the differential equation. The representations (2.8)
and (2.9) are special cases of simple osculatory interpolation, sometimes called simple
Hermite or second-order Lagrange interpolation, where one of the sums drops out. In
general, simple osculatory interpolation to a polynomial of degree 2n + 1 at the n + 1
distinct points Yk takes the form

n+l n+l

(3.1) "n’E,,+,(x) Z

where

Pn+l(X)
q,(x)

L(yk) 7r,+,(yk)
Pn+l(Tk) "r’2n + k)"

Applying this formula to W,,(x) and comparing it with (2.9) we see that the second
sum drops out, giving

p’.’+,(,)
(3.2) W’,(yk) W,,(yk)=O, k= 1,2,""", n+ 1.

P,+I(Tk)

The analogous formula for the n distinct points Ak, applied to W,(x)-p2,,(x) and
compared to (2.8), shows that

p’.’()
(3.3) W’,(Ak)-- W,(Ak) 0, k= 1,2,..., n.

p’().

Indeed, differentiating (2.1) we get

(3.4) w’.(x) p".+l(x)p.(x) -p".(x)p.+,(x).

Directly from (2.1) we have

(3.5) w.(,)=p’.+,(,)p.(,), k= 1, 2,..., n+ 1,

(3.6) W,(Ak) =--p’,,(Ak)p,,+,(Ak), k= 1, 2,..., n.

Then (3.2) and (3.3) are obtained easily from (3.4)-(3.6). Also, (3.2) and (3.3) follow
directly from (2.9) and (2.8), simply by evaluating W’, at the interpolation points. Thus
we may view the recovery problem as one of finding interpolation points so that either
(2.8) or (2.9) holds. If the points are not properly chosen then the derivatives will not
match at the points. In the case of (2.9) we know that the Yk are not unique. However,
one of the points may be chosen arbitrarily, except that if it happens to coincide with
one of the ;tk then one of the points must recede to infinity, the remaining n points,
as we must show, being unique. The difficulty is that the uniqueness depends on the



RECOVERY OF ORTHOGONAL POLYNOMIALS 1039

’k being real. Otherwise, there are, in general, many such sets, corresponding to the
number of possible differential equations satisfied by p,. However, it is worth recording
the fact that the satisfaction of the interpolation conditions, (3.2) or (3.3), is necessary
and sufficient to obtain a solution to (2.1), subject only to the zeros being simple.

THEOREM 5. Under the hypotheses of Theorem 3, the equivalent representations in
the conclusion are valid if and only if (3.2) or (3.3) holds.

According to (3.3), the function (another Wronskian)

(3.7) W’,(x)p’,(x)-p",(x) W,(x)

vanishes at the zeros of p, (x). This function is seen to be a polynomial of degree 3 n -2
with leading coefficient n(n + 1). Therefore

(3.8) W’,(x)p’,(x)-p(x) W,(x) n(n + 1)QE_2(x)pn(x),

where QEn-2(x) is a polynomial of degree 2n-2 with leading coefficient 1. So given
W,, a polynomial of degree 2n, how many polynomials Q2,-2 are there such that (3.8)
has a polynomial solution of degree n ? Szeg6 [2, p. 150] points out (see also Forsyth
[3, Vol. 4, pp. 165-169]) that Heine [4, vol. 1, pp. 472-479] studied the following more
general problem concerning polynomial solutions of second-order differential
equations having polynomial coefficients.

PROBLEM. Let A(x) and B(x) be given polynomials of degrees m+ 1 and m,
respectively. To determine a polynomial C(x) of degree m- 1 such that the differential
equation

dEy
/ 2B(x)

dy
(3.9) A(x) dx-- --x + C(x)y 0

has a solution which is a polynomial ofpreassigned degree n.
In Szeg6’s words, "Heine asserts that, in general, there are exactly

u(m, n)=(n+m-1)n
determinations of C(x) of this kind" [2]. It is not clear what the precise conditions
are for the conclusion to hold. Without further qualification, v(m, n) must be regarded
as an (achievable) upper bound for the number in question. For example, if n 1, then

(x)
C(x) -2

x-b’

where b is the zero of y(x), requiring B(b)=0. Thus if B(x) has repeated zeros there
will be fewer than m determinations of C(x). So we take the difference,

u(m, n)-,(m, n-1)=(n+m-2)’n
to be an upper bound for the number of determinations of C(x) for which the equation
has a solution of exact degree n.

Szeg/5 proves Stieltjes’ theorem, which applies to the special case in which A(x)
and B(x) are of exact degree m + 1 and m, respectively, and have real interlacing zeros
and leading coefficients of the same sign. In this case there are precisely ,(m, n)
determinations of C(x), each determination and the corresponding y (of degree =<n)
having real zeros. This case was considered of primary importance, as it applied to
Lam6’s generalized equation (cf. [3, Vol. 4, p. 160]). No connection is made with the
problem considered here.
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Let us note that if f and g are two solutions of (3.8), then

(3.10) (f"g g"f) W, (f’g g’f) W’,,,

and hence, as we would expect,

(3.11) f’(x)g(x) g’(x)f(x) cW,(x).

So iff and g are both polynomials of degree n, then the left-hand side is a polynomial
of degree 2n- 1, and hence we must have c 0, since W, is a polynomial of degree
2n with leading coefficient 1. So for each determination of Q2,-2 there is only one
polynomial solution of degree n with leading coefficient 1, say g(x)= p,(x). But then,
according to Theorem 5, (3.11) holds for f(x)=p,+l(X) and c 1. Therefore p,+l(x)
also satisfies (3.8), which then has the general solution

clp,+l(X)+CEp,(x).

From Heine’s result we may have as many as (ann-E) different determinations of Q2,-2
and hence as many determinations of p, (without stipulating the zeros to be real).
Lacking any simple criteria for the solution to have all real zeros, the differential
equation appears to have little utility in the general problem. However, repeated
(complex) zeros in W, simplify the problem, as in the following important example.

Example. A simple case in which p, having real zeros and leading coefficient 1
is uniquely determined is

(3.12) Wn(x) l + xE)" p+l(x)p,(x) -p(x)p,+l(x).

The differential equation for f= clp,,+l + czp, is then

(3.13) 2nx(1 + xZ) "-1 df d2f
xx-(1 + x2)"- n(n + 1)Q2,,_2(x)f

dx2-

Since we require p, (and, say, P,+I) to have only real zeros, we must have

Q2,_(x) (1 + x2) ,-1.

d2f(3 14) (l+x2) 2nx--+n(n+l)f=O.dx---5 ax

It is readily verified that

(3.15) f=(x+i)"+1

satisfies (3.14). The real and imaginary parts off are then linearly independent solutions
of (3.13) for the above determination of Q2,-2. Therefore, if in (3.12) p, is a polynomial
of degree n having only real zeros and leading coefficient 1, then

1
Im (x+ i)"+1-

1 (_l)k( n+l )xn_2k(3.16) p,(x) "n + 1 n + 1 k>=O \2k + 1

and we may take as a particular realization of

(3.17) p,+l(x)=Re(x+i)"+1= , (--1)k(n+l]x"+1-2kk>=O 2k ]

The Ak are determined by

(3.18) sin {(n/ 1)th(Ak)} 0,

Then
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where

(3.19) b(x) -arctan x

decreases from zr to zero as x increases from -o to +oo. The Yk are determined by

(3.20) cos {0+(n+ )(v)} 0, --< 0<-.
2 2

The polynomials in this example represent the simplest case of orthogonal poly-
nomials found explicitly for a special family of reciprocal-polynomial weight functions
[5], the weight function in this case being

(3.21) w.(x)
(1 + x2) n+l’

where the polynomials pk(X) are proportional to the Jacobi polynomials P-"’-")(ix).
The imaginary part of

gives’

(l+x2)n+l n+l

Thus in this case we have a simple relation between the maximal mass function and
the weight function,

(3.23) p,,(x)-
h,, .rr

(l+x2)w,,(x).
W,,(x) n + 1

In the general case, it is not clear how Q2-2 may be chosen so that p, will have
only real zeros. We note that

(3.24) n(n + 1) Q2._2(x) =p".,+,(x)p’,,(x)-p".(x)p’,,+l(x),

which follows from substituting (2.1) in (3.8). The Wronskian in (3.24) will be positive
if the zeros of p’, and p’,+l interlace, which will be the case if the zeros of p and Pn/l
interlace 1]; i.e., if the zeros of Pn are real and Pn/l is real. Hence

(3.25) Qzn_(x) > 0, -oo < x < oo,
is a necessary condition for p, to have only real zeros. However, the condition is not
sufficient, as shown by the example

p4(x) (X2 --1/2)(X2 + 1),

ps(x) (x 3x)(x2 + 1),

W4(x) =p’5(x)p4(x)-p’4(x)ps(x)= (x2+ 1)4,
20Q6(x) p(x)p’(x)-p’(x)p’5(x) (x2 + 1)2(20x2 + 4).

Although it is not clear from the differential equation, we are able to see from
physical considerations that there is at least one polynomial p, of degree n having
only real zeros, and leading coefficient 1, such that (2.1) holds for an arbitrary positive
polynomial W, of degree 2n with leading coefficient 1. The uniqueness of p is then
established by an induction argument applied to a pair of minimization problems.
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4. The electrostatic equilibrium problems. The interpolation conditions (3.2) and
(3.3) which lead to the differential equation define two related electrostatic equilibrium
problems, which we designate by Wn; n] and Wn; n + 1].

Given a positive polynomial Wn(x) of degree 2n with leading coefficient 1, solve
the following problems:

PROBLEM Wn’, n]. Find a set {hk},

such that

(4.1) W’n(hk)_p(hk) k= 1, 2,’’’, n,
Wn (hk) p’,,(Ak)

where

pn(x) H (x- hk).
k=l

PROBLEM Wn n + 1]. Find a set {Tk},
--(X) < ’)/1 < ’)/2 <" < ’)/n+l < 00,

such that

(4.2)

where

P’+,(Yk)’
k= 1,2,. ., n+l,

n+l

Pn+l(X) rI (X-- Tk).
k=l

Now write

pn(x) fi (x- Ak) (X A,,,)cr._l(X; m),
k=l

p’,,(x) (x ,m) 7/’n_l(X) "4- 7’/’n_l(X),

p",(x) (x ,m) 7/’tnt_l(X) + 2"n"._l (x).

Then

(4.3)
p’.’(A,,,) 2

"rr’n-,(Am)
2

1

p’n(A) 7’/’n--l(m) k Am ’k
Thus (4.1) may be written

1 W’.(A,.__) 1
(4.4)

2 Wn(A.) Zk Am Ak’
m= 1,2,. , n (-o </.1 <X2<" <’.n <00).

This says that the repelling force on a unit negative charge at the point h, due to n- 1
unit negative charges at the other hk should be balanced by the attracting force due
to 2n positive charges of {1/2} unit each held at the 2n zeros of Wn, Xk +/- iyk, k 1, 2, , n,
when the negative charges are free to move on the real axis. There will be at least one
such equilibrium point, since the repelling force assures the separation of the negative
charges and the excess of one unit positive charge assures that the extreme right and
left negative charges will not recede to infinity. So one equilibrium point could be
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found by positioning the negative charges at n distinct points on the real axis and
then letting them move with a velocity proportional to the force at their respective
positions. Since the zeros of Wn occur in conjugate pairs, this force will always be
directed along the real axis.

The problem Wn; n + 1] has a similar interpretation, except that now there are
n + 1 negative charges free to move on the real axis, and we know in this case that
there is not a unique equilibrium point. However, we now know from the interpretation
of the problem Wn n ], and the previous results, that the problem Wn n + 1 has at
least a one-parameter family of solutions.

THEOREM 6. To each positive polynomial Wn (x) ofdegree 2n with leading coefficient
1 there corresponds at least one polynomial pn(x) of degree n with leading coefficient 1,
having only real simple zeros {hk}, such that

Wn(x pn+l(X)pn(X) --pn(X)pn+l(X),

where Pn+l is a polynomial ofdegree n + 1 with leading coefficient 1, partially determined
by Pn according to

pn+l(X) (x + c)pn(x)- a,p,_l(X),

where c is an arbitrary constant, and Pn-1 is a polynomial of degree n- 1 with leading
coefficient 1 determined by Pn according to

anPn_l(X)=
Wn(Ak) pn(x)

k=l {ptn(/k)}2 X-/k’
thereby determining real numbers bk, positive numbers ak (except ao which is arbitrary),
and polynomials pk(X) of degree k with leading coefficients 1 such that

Xpk(X)--Pk+l(X)- bkPk(X) akPk-l(X), k=0, 1, , n- 1,

and hence each such polynomial Pn (x) completely determines the representation

W,,(x) p2n(X) + a,,W,,_l(x),

where

Wk(X) p,(X) + akWk-l(X), k= 1,2,. , n.

Next we show that there is only one such polynomial pn(x).

5. The paired extremal problems. To prove that the equilibrium (interpolation)
problem [ Wn n has a unique solution it seems necessary to consider a pair of extremal
problems, [ Wn n ]o and Wn n + 1 ]o.

Given Wn(x), a positive polynomial of degree 2n with leading coefficient 1, solve
the following problems:

PROBLEM [ Wn’, n]o..Find a set {Ak},

that gives

(5.1)

where

(5.2)

--t:X3 < A1 <A2<" <An <cx3,

Eo( Wn n) -= min E( W,, Pn),
Pn

E(Wn;Pn)=- k=, p’,,(A,)
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and

p,,(x) (I (x- ,,).
k=l

PROBLEM Wn n + 1 ]o. Find a set { 7k},

that gives

(5.3) Eo( W,, n + 1)-= min E( Wn Pn+l),
Pn+l

where

(5.4)

and

log

n+l

p,,+l(x) I-I (x 7k).
k=l

Remark. It is simply a matter of convenience to take the leading coefficient of
W, to be 1. We have for a positive number A,

E(AW pn) n log A+ E( Wn p,),

E(AW pn+)=(n+ 1) log A+ E(Wn P,+I).

Now suppose we vary Am in (5.2). From (4.3) we find

(5.5)

o 1
O--P(A)=-P(A)
0 p(Ak)

p’,,(Ak)
Oh ik-- i

k#m.

Then setting

O=
O

E( W," p,,)=
W(X) __1 p(hm)_b

OA W.(Am) 2 p’,,(h.,) k hk tm
for m- 1, 2,..., n, we get, using (4.3), problem [Wn n]. Similarly, setting

E(Wn’,pn+l)=O, m =0, 1,2,..., n/l,

we get problem W, n + 1]. So solutions of the minimization problems are by necessity
solutions of the corresponding electrostatic equilibrium problems.

Now suppose that p, is some solution of the equilibrium problem W,; n]. Then
(cf. Theorem 6) paired with pn is the corresponding one-parameter family of solutions
of the problem [ W,;n + 1],

(5.6) p,+(x; b)=(x-b)p,(x)-a,,p,,_l(X), -oo< b <.

Since b is real, the zeros Yk yk(b) of Pn+l are real and simple Let us see that
E(W p,+l) is independent of the parameter b for the equilibrium solutions (5.6).
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We have from the Wronskian representation (2.1)

(5.7) p;+l(y(b); b)=
W.(Tk(b))
p,,(yk(b))

Then

and

1" log{p2,(yk(b))}.( W., p.+,) - =,(5.9)

Writing

(5.10)

we have

db
E( W,, P,+I) y,(b)

p,(yk(b))
k=l p,,(yk(b))"

p.+l(X; b) --Pn+l(X; 0)-- bpn(x),

d
d-- {p,,+l(yk(b); b)}= {P’,,+l(Yk(b); O)-bp’,,(yk(b))}y’k(b)-p,(yk(b))=O

or

(5.11) y(b)

Thus we find

p,,(yk(b))
p’,+l(yk(b); b)"

d ’ p’,,(yk(b))
-0,(5.12)

db
E( Wn, Pn+I)

(b), b)k=l Pn+l( /k

since

0--lim J rr,_,(z_______) nl ,ffn_l(/k

1 p,,+l(z)
dz 2rri

,,=, p’.+,(,,.)

for any polynomial r,-1 of degree n- 1. Therefore we may evaluate the constant
E(W,,;p,,+I) by letting b-+oo:

n+l

(5.13) E(W,,;p,,+,)=lim loglp,(yk(b))l.
boo k---=

We have

O=p.+,(yk(b); b)=(yk(b)-b)p,,(yk(b))-a,,p,,_l(Yk(b))

or

p,,(’yk( b))
a,,p,,_,( yk( b))
yk(b)-b

Now as b -+ oo the first n zeros of P,+I will tend to the zeros {Ak} of p,, while the largest
zero will differ slightly from b. We have

p,,(yk(b))
--a,p,,-,(Ak) + O(b_2) k 1, 2,"" n,

b

p,( y,,+l(b)) b" + O(b"-l).
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The last term in (5.13) then cancels the log Ibl appearing in the first n terms. Thus

(5.14) E( Wn; Pn+l)= log lanP/1-1(Ak)l.
k=l

But we have from (5.6)

and from (2.1)

or (cf. (2.13))

anPn-l(Ak) --Pn+l(Ak)

--p/1+l(Ak)Pn(Ak) Wn(Ak)

anp/1-1(Ak)
p’,(Ak)

Thus for a pair of equilibrium solutions, p/1 and P/1+I, we have

(5.15) E(W/1 P/1+1) log
k=l

=E(W/1;p/1).

Uniqueness. If p/1 is a solution of the problem W/1 n], then

(5.16)

where

(5.17)
and

W/1(x) p(x) + a/1W,_l(X),

Wn-I(X p’,,(x)p/1-1(x) -p’,,-l(x)p/1(x)

(5.18)
w.(x) p,(x)

anPn--l(X) E
=1 {P’,,(Ak)}2 x- Akk

We wish to show that p/1 is the unique solution of the problem W/1 n]o by virtue of
being a solution of the problems W,; n] and Wn-1; n].

Consider a competitor 7r/1 in the problem W/l; n]o,

Since

(5.19)
we have

7r,(x) I-I (x- tk),
k=l

--00 ( ( 2 (" < tn < 00.

W, tk) p2( tk) + an W,-l( tk) >- a, W/1_( tk),

1 log(W/1(tk)2E(Wn’ qrn)--
k=l q/’tn(tk) J

(5.0)
_-> n log a,, + log

k: "n’ tk

and hence

(5.21) E( W/1", ,rrn) >= n log an + E( W/1_I" 7r/1).

Thus r/1 is confronted with the problem W_I; n]o, where W/1_I is determined by its
competitor p/l, a particular solution of the problem W n].

Now suppose the following.
Induction Hypothesis (I.H.). The problem [W,; m] has a unique solution for

m=O, 1,. .,n-1.
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The problem Wo; 0] trivially has a unique solution. Also the problem W1; 1]
described by

Wl(X) x2 +Ax/ A2 pl(X) / al > O,

where

pl(X)=X--A1,

clearly has a unique solution, A -A/2, which is, in fact, the simplest case ofTheorem
1 stated in the Introduction. So I.H. is true for n 2.

Now since p,_ defined in (5.18) is, according to (5.17), a solution of the problem
[ W,,_;n- 1], it is, as hypothesized, the unique solution of that problem and hence
the unique solution of the problem W,_I n 1 ]o. It follows from Theorem 6 that the
problem W_;n] has the "semi-unique" solution

(5.22) p,(x) (x- b,,-1)p,,-l(X)- a,,-lp,-2(x),

Therefore the problem W,_l; n]o also has the semi-unique solution (5.22). Hence,

(5.23) Eo(W,_,; n)=E(W,_;p,)=E(W,_I;p,_)=Eo(W,_,; n-l).

Therefore in (5.21) we have

(5.24) E( Wn_I r,,) >- E( W._I p,,) Eo( W,,_ n-l),

and hence

(5.25) E( W. r.) _-> n log a. + E( W.-1 p.).

Now in order for equality to hold in (5.25) we must first have equality in (5.24), which
requires r. to be a semi-unique solution of the problem W._; n]; i.e.,

r,(x)=p,(x)-cp,_(x).

Next, equality must hold in (5.21), requiring in (5.19)

p,( tk) O, k 1, 2,’" ", n, r.(x) =- p,(x).

Note that b,_ in the semi-unique solution (5.22) ofthe problem [ W,_; n] is determined
by p, being a solution of the problem [ W.; n] so as to give the required coefficient
of x2"-1 in

W,(x) xZ" + Aix2"-l + pZ,(x) + a,(x2"-2 + ).

Hence the problem W, n] has a unique solution provided the problem W,_ n 1
has a unique solution. Therefore the induction hypothesis is true for all n => 1, and we
have proved Theorem 2 as stated in the Introduction, where the squares of the
orthonormal polynomials

are unique.
Also we have

(5.26)

and therefore

(5.27)

p2k(X) pzk(x)
hk

Eo(W,; n+ 1)= Eo(W,; n)= n log a,+Eo(W,_; n-l),

Eo(W,; n+l)=Eo(W,; n)= klogak,
k=l
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where the ak (the recursion coefficients in (1.7)) are uniquely determined by a (semi-
unique) solution of the problem W. n + 1 or by the unique solution of the problem
[ Wn; hi. Thus Eo(W,,; n) is the logarithm of the product of the coefficients of p in
the sum

(5.28) W,,(x) =p2(x) + a.p2.,_(x) + a,,a,,_p2._2(x) + .+ a,,a,,_l al

6. Bounds for Eo(W,,;n). Bounds for the minimum defined in (5.1) may be
obtained from the minimum for the special case

(6.1) W,,(x)=(x2+l)".

In general, if p. is the solution of the problem W.; n] then

(6.2) Eo( W. n) log
k=l

and

W,,(x) p’.+l(x)p.(x) -p’,,(x)p.+,(x).

Thus (6.2) may be written

(6.3) Eo(W.; n)= log IP.+(X)I.
k=l

From the example in 4 we have for the special case (6.1)

1
(6.4) P"(X)=2i(n+ 1)

{(x+i)"--(x-i)"+’}

and

(6.5) p.+(x) + i(n + 1)p.(x)= (x + i)"+.
Then

(6.6) p,,+(Ak)=(Ak+i) "+1.

From (6.4) we have

(Ak+i)n+’=(Ak--i)n+l

or (ignoring the ordering requirement)

Ak--i
i2"n’k/ n+

which gives

(6.7) Ak tan kTr/(n+ 1)’

(6.8) Ak+i--

(6.9) P.+l(Ak)

k= 1,2,. ., n

ik’n’/ n+e

sin kTr/(n + 1)

(-1)k

{sin kTr/(n+ l)} "+1"
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Defining

(6.10)
we have from (6.3) and (6.9)

(6.11) or, =-(n+ 1)
k=l

log {sin
From the factorization

we have

or, Eo((X2+ 1)"; n)

n+l

sin(n+l)t=2" sint 1-[ sin(t+kr/(n+l))
k=l

(6.12) fi sin
kr n+l

k=l n+l 2"

Hence

(6.13) or, =(n+ 1) log
n+l

In connection with the general expression (5.27) for Eo(W,; n), the recursion
coefficients for the special case (6.1) are found to be [5]

k(2n/2-k)
(6.14) ak ak(n) k 1, 2,. ., n.

(2n + 1 2k)(2n + 3 2k)’
Thus we have the rather interesting sum

(6.15) k log
k(2n+2-k)

=(n+ 1) log
2n

k=l (2n + 1 --2k)(2n + 3 -2k) n + 1"
By appropriate scaling of the solution of the special problem we find that

(6.16) Eo((X2+a2)"; n)=n(n+l)logaE+tr,, (a2> 0).
2

In the general case we have

(6.17) W,(x) 1-[ {(x-xj)2+Y}}.
j=l

Then writing

log W.(Ak)_I log

we see from (6.16) that

n+l
(6.18) Eo(W.; n)>= E logy+tr..

2 ;=

In the other direction, we have, since the average of the logarithms cannot exceed the
logarithm of the average,

and hence

(6.19)

1
-log W.(x) =< log {(x-)2+ c2},
n

n(n+l) c2Eo(W.; n)=<log
2



1050 B.F. LOGAN

where

n j=l j=l
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STABLE POSITIVITY OF POLYNOMIALS OBTAINED
FROM THREE-TERM DIFFERENCE EQUATIONS*

D. E. HANDELMAN

Abstract. Let {uo 1, Ul x, u2,u3,... } be a sequence of polynomials in one variable x
defined recursively via

n+l (Ul --an)un --bnun-1 for n > 1,

where {al,a2,... } and {bl,b2,... } are sequences of real numbers and suppose that any product
uk’un is expressible as a positive (tea]) combination of the ui’s. Let f be a real polynomial in x,
and let u be a positive combination of the ui’s. consider the problem of deciding whether there exists
an integer n such that the product of polynomials, un f, is a positive combination of the ui’s. If the
sequences of a’s and b’s are not too degenerate, the solution depends only on f being positive as a
function on a real interval of the form [M, o) for some real M determined by the sequences.

Key words, orthogonal polynomials, three-term recurrence relation, dimension group, pure
state, Dedekind domain
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0. Introduction. Let {uo 1, Ul x, u2, u3,... } be a sequence of polynomials
in one variable x defined recursively via

Un+l (Ul an)un bnun-1 for n > 1,

where {al, a2,... } and {bl,b2,... } are sequences of real numbers; a normalization
has been imposed, wherein a0 1 and b0 0. Assume that any product ukun is
expressible as a positive (real) combination of the ui’s. A sufficient condition for this
to occur is given in [AI, 2.9]; it is simply that

0_<al<_a2_<... and 0_<bl_<b2_<....

Let f be a real polynomial in x, and let u be a positive combination of the ui’s. We
consider the following problem:
(*) Decide if there exists an integer n such that the product of polynomials, un f, is

a positive combination of the ui’s.
Let M be the real number or cxz defined by means of

M sup ai + 2V/sup bi.

The positivity condition on the products UkUn forces all of the a’s and b’s to be
nonnegative, so that M is well-defined as an element of R LJ {cx}. Suppose that the
sequences {a}, {b} are monotone nondecreasing and for all n >_ 1, all of the bn are
nonzero, and either of the following hold:
(A) al 0 or

k(B) u i=0 aiui where the real numbers i are strictly positive real numbers.
Then such an integer n exists if and only if
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of Canada.

Mathematics Department, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5,
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(i) The leading coefficient of f is positive when M .
(ii) Viewed as a function, f is strictly positive on the interval [M, c) when M < .

This is the content of Theorems 4.1 and 4.5. Even allowing some b’s to be zero
(but assuming monotonicity of the sequences {hi}, {bi}), necessary and sufficient
conditions on J’ are determined in Theorem 5.1; however, these are considerably more
complicated. In fact, if condition (B) above holds, the monotonicity hypothesis on the
sequences can be weakened to some of its consequences.

There are a few special cases of this type of result in the literature. For example, if
a bj 0 for all and j greater than zero, then u x, and results in this direction
were obtained as early as 1883 by Poincar [Po]. This situation is not covered by
either conditions (A) or (B), but a complete solution is given in [H2]. The case in
which a bj 1 for all and j arose in connection with the classification of actions
of a special type of the group SO(3) on a class of C*-algebras, and is equivalent to a
random walk problem on Z [H1; I and II]. If ai 0 and bj 1, the same connections
occur, this time with SU(2) instead of SO(3), and it is possible to reduce to SO(3).
The techniques employed here evolved from those developed to deal with the questions
considered in [H1]. My original approach, using estimates of the asymptotic behaviour
of coefficients in products of large numbers of polynomials, never seemed to yield very
good results, hence the somewhat algebraic and functional analytic flavour of the
techniques used here.

1. Preliminaries. Fix the sequences of nonnegative real numbers, {a} and
and define the corresponding sequence of polynomials, u}; these are orthogonal with
respect to a suitable measure on l:t (if no b is zero). This set of polynomials is a basis
for the polynomial algebra, R[x], in the variable x. If we assume that for all k and n,
the products uku, are nonnegative linear combinations of the ui’s, then R[x] becomes
a partially ordered ring, with positive cone,

{u I--0 a.e., and ER[x]+

Let u be an element of R[x]+. We wish to describe the set

{ f e R[x] there exists m such that umf belongs to R[x]+}
or at least decide whether a specific polynomial belongs to it. We follow the construc-
tion in [H1, I], to set up the framework for this to be solved. Define the partially
ordered ring Su R[x, u-1] consisting of rational functions whose denominators are
powers of u, with positive cone,

Su+ { fu-klf e R[x]; k e N, and there exists m such that umf e R[x]+}
Next, we define the order ideal of Su generated by 1; this is not an ideal in the
ring sense, but in the sense of partially ordered abelian groups (the smallest convex
subgroup of Su containing 1, and generated by the positive elements that it contains).
Set

Ru ( s S there exists an integer N such that -N <_ s <_ N holds in S}
Equipped with the ordering it inherits from Su (the "relative ordering"), it is

routine to verify that Ru is a partially ordered subring of Su, and that 1 is an order
unit of Ru, namely that for all r in Ru, there exists an integer N with r

If G is a partially ordered abelian group (for example, the additive group under-
lying Ru), then we say that G is unperforated if whenever rn is a positive integer and g
is an element of G such that mg >_ O, then g >_ 0. This clearly holds for each of R[x],
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R,, and S,. Let (G, h) be a partially ordered abelian group with order unit h; a state
is an order-preserving group homomorphism a:(G, h) (It, 1). If no order unit exists,
or if one exists but is not referred to, we will also call any nonzero order-preserving
group homomorphism from G to R a state as well, possibly prefixed unnormalized.
A state is pure (or extremal) if it cannot be expressed as a nontrivial convex linear
combination of other states. Our main tool in proving the advertised results is the
following, a combination of results in [H1].

THEOREM 1.1. [H1; 1.1 & 1.2] Let G be a partially ordered ring admitting an
order unit.
(a) Suppose G is unper.forated, and let g be an element o G. Suppose that .for all

multiplicative states c, c(g) > 0 (strictly). Then g is an order unit, and thus is
positive in G.

(b) If G is a partially ordered ring with 1 as an order unit, then every pure state of
(G, 1) is a multiplicative homomorphism from G to R.
Theorem 1.1 applies to Ru, and our first step will be to determine the pure states

on Ru. It turns out that they are either evaluations at certain points of R (regarding
Ru as a set of rational functions of x), or their limit at infinity. After the pure states
are determined, some crucial algebraic properties of Ru are established. For example,
if condition (B) of the Introduction holds, then Ru is a Dedekind domain. The unique
factorization of ideals that thereby results is used to find all of the order ideals that
are ideals. Then Theorem 1.1 can be applied to these order ideals. The determination
of the positive cone of Ru then follows by applying Theorem 1.1(a) to the smallest
order ideal containing the element. When (A) holds, the problem can be reduced to
the situation in which (B) holds.

2. States of R,,. In this section, we determine the pure states of Ru; under
appropriate hypotheses on u, the pure states consist of point evaluations r r(t)
for any real number t > M (M as defined in the Introduction), together with an
additional discrete set of positive values of tmno such.need exist--and the state r
limt-oo r(t) which always exists, by l’HSpital’s rule. Equipped with the point-open
topology (as a set of functions on R), the pure state space is thus the union of a
possibly empty discrete set with either the one-point compactification of a half-line,
or just the singleton (oc}. We require a number of straightforward lemmas about sign
changes among the u. Our basic reference is the first fifteen pages of JAIl.

LEMMA 2.1. Suppose there exists j such that for all k > j, ak K > 0 and
bk L > O. If is a real number strictly less than K -1- 2vf-, then either there exists
n such that u,() < O, or else uk() is zero for all k > j.

Proof. We may assume that both uj() and uj-l(f) are nonnegative. For any
positive integer N,

)_ ( )1 0 uj_ UNWj-1

Diagonalizing the matrix evaluated at/, we find that the first row is

1
sin

LN sin(N + 1) LN sin NO ),

where 1/2(/- K) L cos6, and A Le is the eigenvalue with 0 < < r. Hence
ug+() (Lg/sin)(u()sin(N + 1)6 + u_(/) sinN6). Since sin > 0, and we
may choose N so that both sin NO and sin(N + 1)6 are strictly negative, we see that
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either both uj-1 (/) and uj(f) are zero (which entails that uk(/) 0 as desired), or
some u,(/) < 0. El

LEMMA 2.2. Let {cn} and {dn} be sequences of real numbers and let

{v0 1, vl x, vi+ (x ci)vi divi-1, }
be the sequence of polynomials obtained therefrom. Suppose that ai >_ cn and bi >_ dn
for all i,j <_ n. If is a real number such that vn() < O, there exists m g n with

< o.
Proof. By [AI, (2.10)], we may write vt }-k= f(k, t)uk with f(k, t) nonnegative

and real. Evaluating at t n and x =/ yields the result. El
LEMMA 2.3. Let K and L be elements of R U {oe} defined as K supa and

L sup b, let e be a positive real number. Suppose that is a real number less than
K- e + 2(L- e)/2. Assume there exists j such that for all k >_ j, ak >_ K- e and
b >_ L-e (if K or L is oc, then the corresponding condition is vacuous). Then either
there exists n such that un() < O, or else Um() 0 .for all n > j.

Proof. Applying Lemmas 2.1 and 2.2 with K and L replaced by K-e, L-e, respec-
tively, the first j values of c, and dn are {0, 0, 0,..., 0, g e}, {0, 0, 0,..., 0, L
respectively. El

LEMMA 2.4. Suppose that is a real number exceeding K + 2L/2 and a K,
b L for all i and j. Then u() > 0 .for all i.

Proof. Using the matrix formulation as in Lemma 2.1, we have that

UN() ((fl- K)2 4L)-/2" ((- A-)(A+)g+ (/- A+)(A-)N+)

where A+/- 1/2 ( K 4- (( K)2 4L)/2).
Note that - A- > - A+ and A+ > A- > 0, so that ug() > 0. (In fact, it is

easy to verify that UN() > Ug-().) El
LEMMA 2.5. Suppose ai < cn and b < dn .for all i, j g n and the polynomials

{vi} are obtained recursively from the three-term difference equation corresponding to
{ci} and {di} in place of {hi} and {bi}. Let be a real number. If vi() > 0 for all
i, then ui() > 0 for all i.

Proof. This follows exactly as in Lemma 2.2. El
So if M K + 2LI/2 is finite and exceeds M, then for all n, un() > 0. Thus

un(M) >_ 0 (when M is finite). Regardless of whether M is finite, less than M
entails either Um() < 0 for some m, or u,() _> 0 for all n, and if the latter holds,
equality occurs for at least one value of n. This latter possibility can occur, and results
in complications (viz. 5).

Let be a nonnegative real number such that u() >_ 0 for all i, and Um() 0
for some m. Call a zero of positivity of {ui}.

THEOREM 2.6. Let be a zero of positivity of {ui}, and let m be the smallest
integer such that Um() -O. Then
(i) <_ M;
(ii) For all n >_ m, u,() O;
(iii) b b2 bm- 0 and am- (no O) if the sequence {bi} is monotone;
(iv) If both sequences {hi} and {bi} are monotone, then al,... ,am- are all zeros of

positivity and am-1 > am-2.

Proof. From Lemmas 2.2-2.5, part (i) follows. If m 1, then 0, and
as u2 (x- a)x- b is nonnegative at f, we must have that b is zero, so that
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Ul() -’-U2() --0, which yields (ii) in this case. If m > 1, write

0 um() (- am-1)Um-l() bm-lum-2(),
Um+l() ( am)Um() bmum-().

The latter equation, in combination with Um-l() 0 and Um+l() 0, yields
bm- (}. As um() um+l() 0, (ii) follows from the recurrence relation,

We have just seen that bm 0, so bl b2 -bm 0 if monotonicity holds.
Thus um() (- am-1)Um-l(), from which/ am-l, verifying (iii).

Finally,

for _< m, so that each of al,...,am-2 is a zero of consecutive ui, and positivity
then follows from monotonicity of (hi}. To conclude, um-(am-1) is not zero, so
am-1 am-2.

Monotonicity is not necessary for the positivity condition on {us} to hold (i.e.,
that uju is always a nonnegative combination of the u’s). For example, if al
a5 = 1, and a2 a4 = a6 = 2, and bi 0 for all i, then uju is always
a nonnegative combination of the u’s--this follows from a brief calculation. On the
other hand, when b 0 for all i, and the positivity condition on the u’s holds, then
ai < hi-1 entails that hi-1 belong to (al,... ,hi-2}; hence if the a’s are distinct, the
sequence they form must be monotonic! The remarks in this paragraph are results of
work obtained jointly with my former colleague Angelo Mingarelli.

PROPOSITION 2.7. If bl b2 =bin =0 and O <_ al <_ a2 <_... <_ am-1
and the positivity condition holds on the u’s (e.g., if the sequences (hi} and (b,} are
monotone), and (hi} is monotone, then each oral,a2,... ,am- is a zero of positivity

Proof. An easy verification of the definitions.
So Proposition 2.7 gives a prescription for zeros of positivity to exist, and Theorem

2.6 gives necessary conditions for their existence. The theorems we prove in 4 will
hypothesize no such zeros. The general case is discussed in 5.

Let u be an arbitrary element of It[x]+. We say u is gapless if on writing
u in__0 Au with )n > 0, all of the real numbers Ai are strictly positive. We say
an element u of It[x]+ is solid if some power of u is gapless.

LEMMA 2.8. Under the assumption that (ui} satisfies the positivity condition
on products, a product of gapless elements is gapless, and a product of solid elements
is solid.

n mProof. Write u i=0 Aui and v j=0 #juj, with all of the coefficients
strictly positive. Given k with0 <_ k <_ m/n, writei+j k for somei andj.
Then the element c- )ijuu appears in uv in the sense that uv >_ c, and uui is a
positive element of degree + j k. Thus uk must appear in it, and so uk appears
(i.e., with nonzero coefficient) in uv. The second part is an obvious consequence of
the definitions.

If R is a partially ordered ring and c:R R is a state, we say that c is faithful
if R+ N ker c (0).

PROPOSITION 2.9. If the element u of R[x]+ is solid and is not constant, then
(a) u- belongs to R+u;
(b) Ru[u] Su; this means that the ring obtained by adjoining the inverse of u-(namely u) to Ru is
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(c) A pure state of (Ru, 1) extends to a (multiplicative) state on Su if and only if its
value at u-1 is not zero;

(d) The pure states of (Ru, 1) are of the following kinds:
(i) Point evaluation at a zero of positivity of the
(ii) Point evaluation at a point in the interval (M,
(iii) f limt--. f(t) (for f in R,);
(iv) Point evaluation at M if M < .

States of type (i) or (iii) are not faithful, those of type (ii) are faithful, and
the state of type (iv) is faithful if and only if M is not a .zero of positivity of

Proof. (a) By solidity, there exists an integer k so that uk is gapless. Hence
there exists an integer N with uk-1 < Nuk in R[x]. Hence u-1 < N in
obviously belongs to Su+, so u- lies in R+.

(b) By definition, S R[x,u-]; now R[u] R,[(u-)-]. As R C S,,
it follows that R,[u] S,. It suffices to show that x belongs to R,[u], for which
xu-k (the same k as in the proof of (a)) belonging in Ru is sufficient. However,
x ul < Kuk for some integer K, the inequality occurring in R[x]. Thus xu-k

belongs to
(c) Let be a faithful pure state of R. Then (u-) 0, so extends to a real-

valued map on R,[u] S, via (rum) (r)/(u-m). As in [H1, p. 7], it is easily
verified that this is a multiplicative state of Su, and moreover, the full assumption of
faithfulness can be replaced by (u-1) 0. Conversely, if is a multiplicative state
of S,, then its restriction to Ru is a multiplicative (hence pure) state of Ru; moreover,
the extension (from Ru to S,) described above will restrict to the original state.

(d) Certainly, each of the four types of function R, R is a multiplicative,
hence pure, state of Ru. Let :Ru R be a pure state; it is multiplicative (Theorem
1.1). Suppose to begin with that (u-1) 0. Then extends to a multiplicative
state on S, R[x, u-], so is given as a point evaluation of x at some point b in It+.
By Lemmas 2.2-2.5, either b < M and b is a zero of positivity (i), or b > M (and
M < ) and the state is faithful (ii), or b M. The final statement, concerning the
case b M, is straightforward.

This leaves the possibility that (u-) 0. Suppose n degu. For < n,
observe that uiuk < Kuk+l (as uk+l is gapless) for some integer K, so ui/u belongs
to Ru. If > n, we similarly have u’/un- in Ru. Thus when < n,

(,) u u -.R.
U Un-1 U

Evaluate (,) at the state ; as is multiplicative and (u-1) 0, we deduce that
(ui/u) 0 for < n. Set 0(f) limt--, f(t) (for f in R). Now the quotient
of Ru by the principal ideal generated by u-, Ru/(u-), is spanned by the images
of {ui/u-li 1,2,... ,n}, so that the kernel of equals that of 0. As (1)
0(1) 1, we have that

3. Algebraic properties of Ru. Having described the pure states of R, we
now work out some algebraic properties necessary to prove the main results. We
continue the notation from 2.

LEMMA 3.1. If u is solid, then Ru is integrally closed in its field of fractions.
Proof. Select au-m in the integral closure of Ru in Su; the latter is Ruin]

R[x, u-], so is integrally closed. Since au-m satisfies a monic polynomial with coef-
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ficients from Ru, it therefore is bounded at oc. Hence deg a _< deg um m deg u. As
uk is gapless for all sufficiently large k, we have that -Ku <_ auk-m

_
Kuk for some

positive integer K. Thus au- belongs to
LEMMA 3.2. If u is solid, then Ru is a finitely generated R-algebra, hence is

noetherian.

Proof. Let n denote the degree of u. We will show that Ru R[xJ/u;j <_ n].
Obviously xJ/u belongs to Ru if j _< n (the argument in Lemma 3.1 works, for
example). Now Ru is spanned as a real vector space by

and thus is spanned by (xiu-m <_ ran}. For each pair i, m with <_ mn, write
i cn / j, where c and j are nonnegative integers and 0

_
j < n; then

Thus xu-m belongs to R[u/u;j
Even without solidity, the conclusion of Lemma 3.2 is true (although that of

Lemma 3.1 is not); the proof is more complicated. Lemmas 3.1 and 3.2 yield that
is a Dedekind domain whenever u is solid. Indeed, Ru is an order in R[x, u-], so
it has Krull dimension one and is also an integrally closed noetherian ring. We now
analyze the order ideals of

In a partially ordered abelian group G, an order ideal is a subgroup H such that
H H f3 G+- H f3 G+, and for g G, 0 <_ g <_ h H implies that g belongs to
H. By [H1, If, order ideals in a partially ordered ring having 1 as an order unit are
ideals. We first determine which order ideals are prime (as ideals).

LEMMA 3.3. If u is solid, then the order ideals o.f Ru which are prime as ideals
o. Ru are of the form:
(i) The kernel of the state f - f() where is a zero of positivity of (ui} (however,

such an ideal need not be an order ideal.O; or

(iii) The kernel of the state 0:f limt-oo f(t); this is, (au-m dega < mdegu}.
The kernel of 0 is a prime order ideal.

Proof. Let I be a nonzero prime ideal of Ru that is also an order ideal. As the
Krull dimension of Ru is 1, Ru/I is a field. As Ru is a finitely generated real algebra,
Ru/I is algebra isomorphic to one of R or C. However, Ru/I inherits the quotient
ordering; it is thus partially ordered (and directed), so in fact Ru/I R. As the
quotient map Ru Ru/I is positive, I is the kernel of a pure state, and of course I is
generated (additively) by I f3 Ru+. As states of type (ii) (Proposition 2.9) are faithful,
this type is excluded. This leaves types (i) and (iii).

In the type (iii) situation, (au-m deg a <_ m deg u) is spanned by (uu-m J <-
m deg u}, so the former is an order ideal. El

Suppose that a < a2 and b b2 0 (so that ao and a are zeros of positivity
of (u}). We may define pure states of Ru, co and c, via c(f) f(a). If u is solid,
these two states are pure, but

(0) ker c0 f3 P C ker c [3 Ru+.
This implies that the kernel of a is not an order ideal. Moreover, ker a0 is an order
ideal, but its square is not.
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PROPOSITION 3.4. I.fu is solid and (ui} admits no zeros ofpositivity, then every
order ideal of Ru is of the form I (k 1, 2,... ), where Io ker 0. Conversely,
I is always an order ideal.

Proof. Let I be an order ideal of Ru. Then Ru/I is a partially ordered ring with
order unit, so admits a state ; hence there exists a pure state of Ru such that
(I) 0. As I+ C ker and states of type (i) are excluded, we are left with 0,
and so I C_ Ion. Suppose that I is contained in some other maximal ideal AzI (that is
not necessarily an order ideal).

As I is generated by its positive cone, I+ is generated as an R+-semigroup by
certain elements of the form r uiu-m with < deg um mn. Then rn ui /u
(1/uS)(u’/u) where s mn- i. As degu degui, u’/u belongs to Ru and
thus to Ru+. Now if V is any pure state of Ru, V(u’/u) > 0 by the hypotheses
and Proposition 2.9(d), so that u’/u is an order unit of Ru (Theorem 1.1). Hence
there exists a positive integer N such that 1 < Nu’/u in Ru. As I is convex and
0 < 1/u < Nrm, we have that u-s belongs to I. As 24 is maximal, 1/u belongs to
it.

Now suppose that j < mn and consider (uj/um)n (1/u)l(u/u) for mn-j.
As above, we deduce that uj/um belongs to A/I, so that I C_ Azt; thus equality holds.
Hence Io is the only maximal ideal in Ru containing I. As Ru is a Dedekind domain,
I I for some integer k.

Now we show that Ik is always an order ideal (it is not generally true that powers
of an order ideal are order ideals). Clearly

I C_ ( au-m dega<_mn-k}.

First we show that xn-/u E I for j < n. We note that u-1 is a polynomial
of degree (j- 1)n. Every monomial in xn-JuJ- is of degree at most (n- 1)j.
Let xd be a monomial appearing therein. Then d g (n- 1)j, so we may write
d--- ’= d(i) for positive integers d(i) < n- 1. Then xd/uj H xd(i)/u e IJoo. So
xn-J/u xn-JuJ-/uJ is a sum of elements of I. It similarly follows (on replacing
u by um) that xmn-k/um I. The inclusion reverse to the displayed one readily
follows.

Since (u n}i=0 is a basis for the set of polynomial of degree n or less, we obtain that
I is spanned by ( uiu-m g mn k}. Thus the ideal is directed. Finally if s is an
element ofI and 0 g r al/um’ < s a/um, it is immediate that deg a’ < mn- k,
so r I. Thus I is convex and directed, so is an order ideal.

(Part of the reason for the length of this argument is that Ru is not necessarily a
principal ideal domain--at worst its class group is of order 2, generated by the class
of Ion.)

An ideal J of a (commutative) ring is called primary if, for s and t in the ring,
whenever the product st belongs to J and neither s nor t lies in J, then there exists
an integer m so that sm and tm both belong to J. In Dedekind domains, powers of
prime ideals are primary. The outcome of the preceding is that if u is solid and {ui}
admits no zeros of positivity, then every order ideal of Ru is primary. This can fail if
{u} admits zeros of positivity.

4. Positivity results (without zeros of positivity).
THEOREM 4.1. Let uo 1, u x,... un+ (un an)un bun-,

be a sequence of polynomials such that
(a) {ui} satisfies the positivity condition.
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(b) On defining M supa + 2supv in RU {oc}, ifM < cx, then M= lima/+
2 lim V.

(c) {ui} has no zeros of positivity.

(For example, if {ai} and {hi} are monotone nondecreasing, then conditions (a)
and (b) hold.) Let f and u be elements of R[z], with u positive and solid with respect
to {ui}. There exists N so that uNf is positive if and only if

When M < cx, f is strictly positive on the interval [M, cx)
When M = c, the leading coefficient of f (in terms of x) is positive.

Proof. We may assume (replacing u by a suitable power of itself) that u is
already gapless, and so are all of its powers. Form Ru. We have previously determined
(Proposition 2.9) that its states are given by [M, cx)], where the state at cxz is 0. Select
k so that m deg f _< k deg u. As uk is gapless, we have that r fu-k belongs to
Ru.

Set v u0 + ul 1 + x and form Rv; obviously s flym lies in Ru. We shall
show that s belongs to Rv+ and then use this to prove that r belongs to Ru+, which
is what we want. As deg f deg vm, lim_. s(t) O, so by hypothesis (either case)
0(s) exceeds zero. If M < cxz, then s(t) > 0 for all t >_ M by hypothesis. Thus s is
strictly positive at all pure states of Rv, so in particular by Theorem 1.1, s belongs
to Rv+. Hence there exists an integer e so that (1 + x)ef is positive with respect to
(ui}. If degu n, then z defined as (1 +x)n/u is an order unit of Ru and rze belongs
to Ru+. If r does not belong to I, then its value at oc is positive. The hypotheses
guarantee that r is strictly positive at all pure states; by Theorem 1.1, r is already in
Ru+. So we need only consider the case that r belongs to I.

Since rze is positive in Ru, we may consider the order ideal J that it generates
(as an order ideal). By Proposition 3.4, J Ik for some integer k. Set I (r),
the principal ideal generated by r. As Ik C_ I C_ I and Ru is a Dedekind domain,
we have that I I for some j <_ k, and this implies that I is also an order ideal.
As I is finitely generated (as an ideal), I admits an order unit (considering I itself
as a partially ordered group), y. We may write y ra for some a in Ru. Let "),
be a pure state of (I, y). By [H1, 1.3], there exists a pure state L on Ru such that
1 "7(Y) /(r)L(a).

If M < c, then any point in [M, ) yields a state such that c(y) > 0, so that
c/a(y) is a pure state of (I, y); thus a(a) > 0 for all points in [M, ). If a vanishes
at infinity, then y belongs to i+1, which is itself an order ideal, so that y could not
be an order unit for I. Thus a is strictly positive at all the pure states of Ru, so
L(a) > 0 for all such L. Hence f(r) > 0, so r is positive as an element of (I, y). Thus
it lies in Ru+.

If M cxz, the same argument yields that L(a) 0 if L 0; as this is the
only state of Ru, we have that -),(a) is constant (independent of f) and equals 1/L(a).
However, rz > 0 entails -),(r) > 0 (as ze is an order unit of Ru). Hence r belongs to
I+, and so to Ru+. The converse is completely straightforward. [3

Even if we allow zeros of positivity, these conditions on f are sufficient for eventual
positivity, but not necessary. The same proof works; however, we will obtain complete
results in this case in the next section.

Now we consider the condition alb > 0, equivalent to condition (A) of the In-
troduction. We show that in the presence of monotonicity, every nonconstant positive
element of It[x] (with respect to (u}) is solid when this condition applies.



1060 D. E. HANDELMAN

If u is an element of R[x], we say u contains uj if the coefficient of uj in the
expansion of u with respect to {u} is positive. If u is positive, then u contains u if
and only if there exists a positive integer N such that Nu >_ u (with respect to {u }).
If u and v are both positive elements in R[x], we say u contains v if there exists a
positive integer N with Nu <_ v.

PROPOSITION 4.2. /f {a} and {b} are monotone nondecreasing sequences of
nonnegative numbers, then .for 1 <_ j <_ k, uuk- u-lUk+l >_ O; if additionally
albl > O, then each of uk-j, uk_j+ is contained in uu- u_uk+.

Proof. These are proved via induction on j. If j 1, we obtain

UlUk Uk+l akUk -b bkUk+j-2

_
UOUk+l Uk+l.

In this case, both parts are proved.
For j > 1, we have

uj+lUm+ ((u aj)u bjuj-)Um+
uj(ul am+)um+ + (am+ aj)ujum+ bjuj-Um+

Uj(Um+2 bm+u,n) + (am+ a)uum+ bu-Um+
ujum+2 + (am+l a)uu,n+ + bm+l(uu,n U-lUm+l)
+ (bm+ bj)u-Um+.

As the a’s and b’s are increasing, we obtain uj+lum+t -UjUm+2 >_ 0 by induction. If
a and b are not zero, by induction, we deduce that um- and um-j+t are contained
in UUm- uj-lUm+t; and since all the coefficients are positive, Um- and u,_j+ are
contained in uj+tum+ ujum+2; but m j m + 1 (j + 1), and we are done.

In at least one sense, the preceding is best possible; if ai K and bi L for all
> 0, then ujuk uj_tuk+t L(Kuk_j+ + Luk_j) when 1 _< j _< k.

LEMMA 4.3. I] (ai} and (bi} are monotone nondecreasing nonnegative se-
quences with atb > O, then for 1 <_ <_ k, ujuk contains u,n .for all m satisfying
k j <_ m <_ k + j. In particular, u contains every Um .for 0 <_ m <_ 2k.

Proof. By the first part of Proposition 4.2, we have that

By the second part, we obtain that uj-iuk+i contains Uk-j+2i and uk-j+2i+ for
0 _< _< j 1; that is, uk-j, uk-+, uk+- appear in uuk. Finally,

uluk+j-1 Uk+i -}- ak+j-Uk+j- + bk+j-Uk+j-2,

SO that uk+ appears in UjUk (which is obvious anyway).
LEMMA 4.4. Under the preceding hypotheses, if u in R[x]+ is nonconstant, then

u2 is gapless.
Proof. Writing u akuk +<au, with ak > 0 and a _> 0, we see that u2

contains u, and the result follows from Proposition 4.2.
THEOREM 4.5. /f (ai} and {bi} are monotone sequences with ab > O, then

all nonconstant u in R[x]+ are solid, and the conclusion o] Theorem 4.1 applies.

5. Positivity results (allowing zeros of positivity). This section is consid-
erably more technical than its predecessors and can safely be omitted on a first reading
of the article. Throughout, we assume that the sequences {a } and {b } are monotone
(nondecreasing). We allow (u) to have zeros of positivity. This means that if b, 0
for some n, then 0 (- a0), al, an, are all zeros of positivity by Theorem 2.6 and
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Proposition 2.7. If is a zero of positivity of {ui}, we say it has multiplicity k (with
k in S U {oc}) if k # { a 3 and b+l 0}. Note that if the multiplicity of
is infinite, then all of the b’s are zero, and for all sufficiently large i, ai -/3 (so that
M would equal/ as well).

Fix an element u which is positive, solid, and of degree n. Let I be an order ideal
of R*‘ that is not contained in Ion. We describe all possibilities for such I, showing
that they form a chain of ideals, each of codimension 1 in the next.

The first step is to show that the principal ideal of Ru, (l/u), is an order ideal
thereof. If 0 <_ r < 1/u in R*‘, upon writing r fu-k, with f in It[x]+, there exists
n that 0 _< fun-k <_ un- in R[x]. Thus t fu-(k-) belongs to Ru, and r (1/u)t
belongs to (l/u). Thus (l/u) is convex. As 1/u is clearly an order unit for (l/u) (as
a partially ordered subgroup of R*‘) the latter is directed, and so is an order ideal.

Next, we show that the only maximal ideal containing 1/u is Ion. Let 3/I be
another maximal ideal containing 1/u. Then the third paragraph of the proof of
Proposition 3.4 is valid (since it follows from the solidity of u that u/td belongs to
R*‘), so Io C_ 2M, a contradiction. As I / Io R*‘, it follows that I

Let J IS,,; it is easily checked that this is an order ideal of S*‘ (in addition to
being an ideal). Let be the smallest integer such that ui belongs to J; note that
J J+ J+ so such an exists. Of course, > 0, as u0 is the constant function 1.
From a simple degree argument, it follows that uiuj > Kui+j in R[x]+. We deduce
that u+ belongs to J for all j >_ 0.

Next, uu Ui+l / biui-1 / aui, so if bi were not zero, we would obtain u_ <
(1/b)u, and thus u-x would belong to J, a contradiction. Hence b 0, so that
bm= 0 for m < i.

Let c be a positive element of J; there exists k so that a defined as ukc is in tt[x]+
(with respect to {u}). Write a Ajuj with nonnegative real numbers Aj. If
exceeds zero, we obtain that the corresponding uj belongs to J. Hence Aj > 0 only
for j > i.

For each j >_ i, define

if n divides j
e(j)=

In1+1 else.

We also define ej uj/ud(J). Now we show that I > ej R*‘; that is, I is
generated as an R*‘-ideal by an appropriate set of ei’s. Set I to be the latter; this
is an ideal, and clearly I is not contained in Io and P. S*‘ J. Given j > i, there
exists k so that uj/u belongs to I; we must have that j g kn (as uj/uk belongs to
R*‘), so k > d(j). Hence ej(1/u)-d() belongs to I. As I + (1/u)R*‘ R*‘, it follows
that ej belongs to I. Thus I C_ I.

To show I C_ It, it suffices to show that I+ C It. To this end, pick c in I+; we may
write c Y ,juj/ua, where the ,’s are nonnegative real numbers, and 0 < j < na.
Hence for each such j, a > d(j). Thus c belongs to ej R*‘, as desired.

Define the ideal Ii j>i ej Ru for each such that bi O. We have just seen
that every order ideal not contained in Io is of the form Ii for some such i. Now we
show that this Ii is always an order ideal.

Clearly IiS*‘ > eSu, and this is an order ideal of Su (as b0 bl
bi 0), so Ii IS*‘ N R*‘ is an order ideal of R*‘. (Recall that R*‘ is an order ideal
of S*‘, although not an ideal thereof; as S*‘ admits the Riesz interpolation property,
finite intersections of order ideals are order ideals.) Obviously Ii C IiS*‘ f3 Ru, but
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essentially the same arguments as those given just above will show that equality holds.
So Ii is an order ideal.

We have Ru I0 11 ... (strict inclusion, continuing until the corresponding
bn is not zero, or forever if all of the b’s are zero). Since (l/u) + Ii Ru, we have that
if < j, then Ii/Ij (IiSu)/(IjSu), and the latter is of course a vector space with
basis (u + Ij Su, u_ + IjSu}, hence has dimension j i.

Since Ru is a noetherian ring, every ideal is finitely generated. It follows that
every order ideal contains a relative order unit (that is, it admits an order unit on
being viewed as a partially ordered group). We determine the pure states of Ii.

By [H1, 1.1], all pure states, -y, on Ii are either (renormalized) restrictions of pure
states of Ru, or have the following special form: There exists a pure state of Ru, L,
such that L(I) 0 and /(ar) /(a)L(r) for a in I and r in

Let " be a pure state of Ii. If /is a renormalized restriction of a state of
then it cannot be evaluation at any aj with j < (as these kill Ii). Provided that
ai > ai-1, evaluation at ai is a nonzero state. All other pure states of Ru restrict to
(nonzero) states of/.

If /is of the second kind, satisfying L(r)/(a) /(ar) and L(/) 0, then the
only candidates for L are evaluations at aj with j < (and bi 0), since these are the
only pure states that annihilate Ii. We show in fact that the only one that can arise
is evaluation at the specific ai, and not evaluation at any aj strictly less than ai, and
in this case ai ai-1 (of course, some of the a’s may equal ai and so yield the same
L).

If Ii+l does not exist (that is, bi+l 0), then the smallest order ideal containing

I is Ii itself, and so Ii admits no such states at all. If Ii+l exists, then there exists
j _> such that the order ideal generated by I2 is I. All such states (with their
corresponding L’s) induce states on Ii/Ij; this ordered vector space is order isomorphic
to ISu/IjSu. An easy computation yields that ui/IiSu, is an order unit for the latter.
Now - extends to a state on/Su (via /(cuk) /(c)L(u-1)k ); we normalize so that
"/(ui) 1.

From uiul ui+l /aiui (recalling that bi 0), we deduce that L(ul) /(uiul)
(u+) / ai. Since ul x and L is evaluation at some positive zero (which is less
than or equal to a), we deduce (ui+l) /ai. This yields ai and /(ui+l) 0.
It similarly follows that (u+) 0 for all k > 0. Hence there is at most one such
"extra" state on /. Moreover, if ai ai+l, then I is not contained in Ii+l (as
I+lSu I(x- ai)Su, and x- ai is relatively prime to IiSu, hence to its square). So
again there are actually no other choices for /except restrictions of states of

To summarize, we have deduced the following: The pure states of I are all given
by:
(a) Restrictions of pure states of Ru, except for evaIuations at zeros of positivity

<_ ai-1;

(b) (After extension to IiSu) u+k 0 for k > 0; this yields a state only if ai ai-1
and bi+l 0.

It follows that I/I is totally ordered for j > i.
Now we can state and prove the main theorem of this section.
THEOREM 5.1. Let {ai} and {bi} be monotone nondecreasing sequences of non-

negative real numbers, and let u be solid with respect to {ui}. Let f be an element
of Rix]. There exists an integer N such that uVf It[x]+ if and only i.f each of the
following conditions hold:
(1) When M is finite, then fl(M, oc) is strictly positive; when M oc, the leading

coe]ficient of f is positive.
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(2) When M is finite and not a zero of positivity of the sequence {u}, f(M) > O.
(3) For all zeros of positivity of {ui}, f(/) > 0.
(4) If < ’ and both are zeros of positivity with f(’) O, then f() 0 and the

order of as a zero of f must be at least as large as the multiplicity of with
respect to {ui }.

(5) If f pu + >op+u+j, where the p’s are real numbers and p is not zero,
and if bi+l 0 and a ai-1, then pi > O.
Proof. Necessity of (1) through (4) is easy to verify since u is strictly positive

at all pure states of Su; (5) follows from the observation that under the conditions
imposed, the sign of the coefficient of ui in unf will always be that of pi.

The proof of sufficiency will parallel that in Theorem 4.1. Let k deg f, and set
v 1 + x 1 + u; then s flyk belongs to Rv, but not to Io (as computed with
respect to Rv). If s does not belong to I (or I does not exist), then s is strictly
positive at all pure states of Rv by (1), (2), (3). So s belongs to P.

Otherwise, there exists j such that s belongs to I and either I+ does not exist,
or s does not belong to I+. The pure states of I have been computed above, and
we evaluate s at them. Clearly (1) and (2) imply that s is strictly positive at points
other than zeros of positivity, and s not in Io yields that 0(s) 0. Hence (1) implies
0(s) > 0. If s(ak) 0 for some positive zero (which must necessarily be of the form
ak, and at the same time, bk+ 0) with ak > aj, hypothesis (4) would yield that s
belongs to I+. Hence s is strictly positive at all of the nonzero restrictions of the
pure states of Rv to Ij.

There remains the case that a aj_ and bj+x 0, and the state that induces
the map lSv R be given by (after a suitable renormalization) uj+k 0 for k > 0.
The corresponding map applied to f (as an element of ISv!) sends it to p. It must
be shown that j equals the appearing in (5).

Write f ptut in R[x]. Clearly pt 0 for t < j. If Pt 0, then following from
aj aj-x, we would deduce that s belongs to lj+, and by hypothesis (5), pj > 0.
Thus s is strictly positive at all of the pure states of Ij, and so s belongs to I.

So in all cases, there exists an integer m such that (1 + x)mf belongs to R[x]+
(computed with respect to the basis {ui}).

Recalling k deg f and n deg u, select an integer p so that k < pn, and set
r f/u; this is an element of Ru. Setting z (1 + x)mn/um, we see that z is an
order unit of P, and moreover rz R. Let J be the order ideal generated by the
positive element rz, i.e.,

J { s E Ru there exists a positive integer N with Nrz < s <_ Nrz}
This is also an ideal of Ru, and we will show that it contains r. First note that rz
belongs to I if and only if r belongs to I, since 0(z) > 0. Next, if rz belongs to I
for some i, we have that (1 + x)mnf belongs to j>i ujS,,, and as 1 + x is relatively
prime to each of the u’s (within the ring Su), we deduce that f belongs to >i ujSu
as well. Thus r belongs to j>i u:iSu N Ru IiSu f’l R,,, and this is nothing but Ii.

Since Ru is Dedekind, every order ideal of Ru is of the form Ii fq Ik or I for
suitable and k, and it follows that r belongs to J. Let 7 be a pure state of J. Then
there exists a pure state L of Ru such that L(rz) "7(r)L(z) (either - is the restriction
after renormalization of L, or else L(J) 0 [H1, 1.3]). As z is an order unit of Ru,
L(z) > 0; as rz is an order unit of J, v(rz) > 0. We thereby deduce that 7(r) > 0.
Hence r belongs to J+, and hence to Ru+, as desired. [:l
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Abstract. Let W(x):=e-Q(x), xR, where Q(x) is even and continuous in R, Q(0)=0, and Q" is
continuous in (0, o) with Q’(x)> 0 in (0, oo), and for some C, C2 > 0,

C <- (xQ’(x))’/Q’(x) <- c2, x (0, c).

For example, Q(x):= Ixl, a > 0, satisfies these hypotheses. This paper proves the Markov-type inequality

lIP’ wIIL(,--< ds/Qt-ll(s) IIPWIIL(,,

degree (P)<-n. Here C3 is some constant and Q- is the inverse function of Q. Fuher, we prove the
Bernstein-type inequality

I(PW)’(x)I c4IIPWII(n
gQ(max{.lxl})

ds/ Q[-](s)

and

I(pw)’(x)l -< c, IIpwll(n>(n/a,) max n-2/3, 1- Ixl_-
anJ

Here degree (P)<=n, rl is any number in (0, 1), a, is the Mhaskar-Rahmanov-Satt number for W, and if
Q’(0) does not exist, x must be excluded near zero.

Key words. Freud weights, exponential weights, Markov-Bernstein inequalities
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1. Statement of results. Throughout , denotes the class of real polynomials of
degree at most n, and I1" IIs denotes the L norm over any measurable S . Further,
C, C1, C2,’"’, denote positive constants independent of n, P ,, and x , which
are not necessarily the same from line to line. We use the usual o, O notation, and

din the following sense: If {c,},__ and { ,}.= are real sequences then we write c, d,
if there exist C and C2 such that C <= c,/d <= C2, for n large enough. Similar notation
is used for functions and sequences of functions.

The classical inequalities of Markov and Bernstein are respectively

(1.1)

and

(1.2) IP’(x)I<-n(1-x)-’/llPIIt_,.ll, P,, Ixl < 1.

The interest in these inequalities (as in their weighted analogues below) lies in
their a.pplication to rates of approximation by polynomials or weighted polynomials
1 ]. The latter in turn have wide ranging applications to establishing rates of convergence

for procedures such as quadrature, interpolation, and collocation in many contexts.
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Recently there has been much activity concerning weighted Markov-Bernstein
inequalities for weights on R [3]-[8], 13 ]. For example, if

(1.3) W(x):=exp(-lxl), xR, a>0,

then for P

(1.4)
F/1--1/t

]IP’WIIa<=C[IPWI]a log (n + 1),
1,

a>l,

0<a<l.

If a > 1, we may replace P’W by (PW)’ in (1.4), and if a _<- 1, a similar replacement
is possible if we modify W to be differentiable at 0.

Note that (1.4) is an analogue of Markov’s (1.1). In this paper, we will prove the
following Markov-type generalisation of (1.4). Throughout Q-ll(x) denotes the inverse
function of Q(x) satisfying Q-11(Q(x)) x, x (0, o).

THEOREM 1.1. Let W(x) := e-Q(x, where Q(x) is even, continuous in , Q(O)- O,
Q"(x) is continuous in (0, o), Q’(x) is positive in (0, c) and for some A, B > O,

(1.5) A <- (xQ’(x))’/Q’(x) <- B, x (0, o).
Then there exists C > 0 such that for n 1, 2, 3, , and P

(1.6) IlP’Wlln_-< ds/Q[-1](s) [[PW[I R.

When Q(x) satisfies a condition such as (1.5) and another condition that implies
that it grows at least as fast as Cx2, Freud [4] proved an equivalent form of (1.6). For
Q(x) satisfying various conditions and growing like ]x], 1 < a < 2, Levin and Lubinsky
[5], [6] proved (1.6). Finally, for Q(x):= Ix] or Q(x) concave and satisfying a mild
integral condition, Nevai and Totik [13] proved (1.6). However, the methods of all
these authors were different, and restricted the growth scale of Q(x) to lie in a fixed
range of [xl .

The above result simultaneously treats all possible polynomial rates of growth of
Q(x), and the method of proof is the same for all scales. The restriction Q(O)= 0 is
imposed simply for convenience and can be achieved in general by replacing W(x)
by W(x)/W(O). As examples of Q(x) satisfying the above hypotheses, we mention

(1.7) Q(x) :-Ixl (log {A + x2}),
a > 0, fl , A large enough, and

(1.8) Q(x) :-" [XI a{2+sin(elglg(4+x2))},
a > 0, e small enough. Note that this last Q(x) varies between ]xl and [x[ 3, and so
if a , for example, none of the results of [4]-[6], [13] apply to it. Similarly, for
a 1 and/3->_-1, the results of [4]-[6], [13] cannot treat Q of (1.7). In summary, all
the L Markov-Bernstein inequalities of [4]-[6] are contained in Theorem 1.1, as are
the most important ones from [13]. If, however, Q is concave and grows more slowly
than any polynomial, for example, Q(x) := (log (1 + x2)) 1/, some e > 0, then the above
results do not apply, but those in [13] do. For Q of essentially faster than polynomial
growth, see [7]. In the latter case, (1.6) is no longer valid.

From a historical perspective, it is interesting to note that if we replace [[P’W[[a
by []P’WI]a.b, where [a, b] is any fixed finite interval, then we obtain an inequality
proved by M. Dzrbasjan back in the 1950s [2, p. 398], even in greater generality.
However, the constants there depend on a, b, and the methods evidently cannot be
extended to all of .
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Of course, for fixed x (- 1, 1), Bernstein’s (1.2) is a better estimate than Markov’s
(1.1) as n increases. Further, this improved estimate is an essential ingredient of the
converse theorems of polynomial approximation [1]. So we might ask whether there
is an analogue for weights on of Bernstein’s inequality. The answer is yes, but the
effect is opposite in the sense that the estimate improves with increasing Ixl. The reason
for the contrary nature is the different behaviour of functions that majorize weighted
polynomials for weights on [-1, 1] and on . To state the result, we need the following
definition.

DEFINITION 1.2. Let W(x):= e-x), where Q(x) is even and continuous in ,
Q’(x) exists in (0, oo), and xQ’(x) is increasing in (0, oo) with limits zero and oo at zero
and oo, respectively. For n 1, 2, 3, , we define the Mhaskar-Rahmanov-Saffnum-
bet a, a,(W) to be the positive root of the equation

2/o’(1.9) n a,,tQ’(at)(1 t’) -/ dt.

The number a, was introduced by Mhaskar and Saff in 10], 11 and also appears
in a dissertation of Rahmanov. It plays an important role in describing asymptotics
associated with the orthogonal polynomials for the weight W2 [9]. In particular, for
P,,

(1.10) IIPWII
and if P is not identically zero,

(1.11) IPWI(x)<IIPWII., Ixl> a.
In certain senses [9], [10], the interval [-a,, a,] is asymptotically as n -+ oo, the smallest
interval on which (1.10)-(1.11) are true. In the special case W= W (see [10, (1.3)])

(1.12) a, a(W,) (n/A,) ’/, n 1, 2, 3,...,

where

(1.13) a := r()2-+/r(/2).
Below is our Bernstein inequality.
THEOREM 1.3. Let W(x) be as in Theorem 1.1, and let a,=a(W) for n=

1, 2, 3,’.’. Let O < < l and let b > O. Then for n >= Ca, P , and Ix >- rla"

(1.14) I(PW)’(x)I < C411PWIIu
n -2/3max n ,1-

an )
and for b <= Ix[ <- rla,

Csn
(1.5) I(PW)’(x)l <- C411PWll ds/Qt-(s).

dQ(max 1,1xl})

If Q’ is continuous at zero, this last inequality also holds for Ixl <-_ b.
Thus the estimate improves with increasing Ixl, and in particular for x near the

end points of the critical interval [-a, a],

[( pw)’(x)[ <= cs}i PWll=ne/3/ a., Pc ,,.
It is essential here that we consider (PW)’ rather than P’W. In fact by choosing P e ,
to be a certain Loo extremal polynomial for W, we can show that at the largest extremum,, of PW,

IP’ Wl(:.) C6(n/a.)llPW[[=,
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where

n an(1 + 0(log n/n)2/3).

So IP’WI may be substantially larger than I(PW)’I near +an.
If Ixl [a,, (1- r/)an] for some fixed 0< r/< 1/2, then both (1.14) and (1.15) yield

I(PW)’(x)l <-_ C(n/a)llPWll,

so they agree in this overlap region. For Ixl > a., (1.14) may be substantially improved,
but we omit this, as that region is not so important in applications. We believe that
for Ixl-_< a., the estimates (1.14) and (1.15) are the "best possible" with respect to the
rate of growth or decrease in n.

Let us illustrate Theorem 1.3 for W(x)=exp(-lx[) Let 0<r/<l and b>0.
Taking account of (1.12) and (1.13), we have for n ->_ C3, Pc n, and Ixl>_- ,(n/;)/,

I(PW)’(x)l <-- CllPwlln-/ max {/1-2/3, 1 -Ixl(nlX)-/t/
and for b<-Ixl<-n(n/A)/,

/11--1/a, O > 1,
I(PW)’(x)l<-_ cllPWlln log (Cn/(l /lxl)), -1,

(1 + Ixl) -1, a < 1.

If a > 1, this last inequality holds also for Ixl-<_ b.
The proof of Theorems 1.1 and 1.3 involves Cauchy’s integral formula for deriva-

tives, and majorization of weighted polynomials, as well as replacement of the weight
by a local approximation that is an entire function. We wish to thank E. B. Satt for
pointing out that, at least in spirit, the first two ideas go back to Sewell [14]. While
the methods of [5], [6], [13] worked in the Lp spaces for all p >0, the approach of
this paper is confined to Loo, although ideas from [8] can possibly allow passage to
Lp (and even Orlicz space) inequalities.

This paper is organized as follows: In 2, we present the main ideas in a simple
case, and then present the two basic ingredients of the proof. Section 3 contains two
technical lemmas, and in 4, we apply the latter to estimate certain measures and
majorisation functions. Finally, in 5, we prove Theorems 1.1 and 1.3.

2. The two basic ingredients. The two basic ingredients of the proofs are Cauchy’s
integralformula for derivatives, and majorisation inequalities that bound a polynomial
in the plane in terms of its norm on . Let us illustrate these to prove something similar
to Bernstein’s (1.2) for x 0. Let P n and e > 0. Then

1 j P(t)
P’(0) 27r-- ,1=

2 dt,

which yields

(2,.1) IP’(O)I--< e-’ max IP(t)l.

Next, a classical majorisation inequality of Bernstein 15] asserts that

(2.2) IP(z)l<-lz+(z-l)’/l"llPIIt_,, z c\[-, 1].

Here the branch of the square root is the principal one. Choosing e :-n -1 in (2.1),
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so

Here,

Then

J)(x) WJ)(x), j O, 1,

1 I (PlC’)(t)I(PW)’(x)I=I(P(V)’(x)I=
,-xl= (t-x)2 at

It-xl--emax IP(t)W(Itl) it_mx__Xe II’(t)/W(Itl) I.

(t)/w(Itl)l exp (Q(Itl)-Q(x)-Q’(x)[Re t-x]).

If x <2e, then Itl-<3e, and we can use the fact that Q is strictly increasing in (0, )
to obtain

I(t)/w(Itl)l<= exp (2Q(3e)+Q’(x)e).

For this case, substituting into (2.5) yields (2.4). If x_-> 2e, then Re >-_ x-e >-e, and
for some : between Re and tl, and r/between Re and x, we can write

I(t)/w(Itl)l exp (Q(Itl) Q(Re t)/ Q(Re t) Q(x) Q’(x)(Re t- x))

exp Q’(:)(I tl- Re t) + 1/2Q"( r/)(Re x)2)

(2.6) _-< exp (Q’(:)(Im t)2/Re + 1/2l Q"( r/)le E)

(by the inequality (a2 + bE) 1/2_ a <- b2/a, a > 0, b -> 0)
_-< exp Q’()(e/ (x e )) - + rl:lQ"( n )l( e/ (x e ))),

MARKOV AND BERNSTEIN INEQUALITIES

and applying (2.2) yields

IP’(0)l -< n max It/(t2-1)’/=lllPllt_,a
Itl=l/n

n(n -1 +(1 + n-)’/)"llPIIt_,,,
<-ne=llellt_,].

In the presence of a weight W’R R that is not necessarily analytic, the replace-
ment for (2.1) is provided by Lemma 2.1 below, and the relevant majorisation inequality
is Lemma 2.2 below. The choice of e becomes much harder, as we shall see in 5.

LEMMA 2.1. Let Wsatisfy the hypotheses of Theorem 1.1. Let x (0, oo), e > O, and
P ,, some n >- 1. Then

(2.3) I(PW)’(x)l<-_e -’ e max IP(t) w(ltl)l,

where for some C (independent of n, x, P, and e),

[C(2x)Q’(2x)(e/(x-e))2, x>-2e,
(2.4) r:=

[2Q(3e) + eQ’(x), x <2e.

If Q’ is continuous at zero, then (2.3) is also true for x O.
Proof Note that x remains fixed throughout the proof. Define an entire function

}/(t) := e-o’), C, where

((t) := Q(x) + Q’(x)( x), c.
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(2.7)

(2.8)

The first yields

since Re t, s, rt => x e, while Jim t[-< e. Next, we will need two immediate consequences
of (1.5):

sQ’(s) is positive and strictly increasing in (0, );

(a-1)Q’(s)/s<--O"(s)<=(B-1)Q’(s)/s, s (0, ).

Q’() <- (x + e)Q’(x + e) <-_2xQ’(2x),

and the first and second yield for some C3,

wza"(w)l _-< C3(x + e)a’(x + e) <- C32xa’(2x).

Substituting into the right-hand side of (2.6) and then into (2.5) yields (2.3). [3

To bound maxl,_xl= IP(t) W(Itl)l, we will use a majorisation inequality of the form

(2.9) IP(t) W(Itl)l --< IIPWII exp (nU,,(t/a,)).

The precise technical details are contained in the following lemma.
LEMMA 2.2. Let W := e- satisfy the hypotheses of Theorem 1.1. For n >-1, let

a, a, (W) be defined by (1.9), and for almost every x (-1, 1), let

Io (1-xl 1/2 a"sQ’(a"s)-a"xQ’(a"x)
ds.(2.10) /z,(x):= 27r-2

(1-s 1/2 n(s2_x2)
Further, let

(2.11)

and for z C, let

X, := 2r_ Q(a,t)
(1 2) 1/2 dt + n log 2,

(2.12) U, (z) := loglz-tllz,(t) dt-Q(a, lzl)/n+x,/n.
-1

Then

(a) For almost every x (- 1, 1),

0 < z,(x) <,(2.13)

and

(2.14)

(b) Forn>-l,

(2.15)

and

(2.16)

U,(x) 0, x[-1, 1],

U,(x) < o; u’,(x) < o, x(, ).

Furthermore, for some C3, C4, Co,

(2.17) -C3e3/2<= U,(l + e) <-_-C4e3/2, e6[0, Co],

and given 6 > O, there exists C4 C4(6) such that

(2.18) U,(x) -C4 log x, x [1 + 6, ).

(c) Forn>-l, PnandzC,
(2.19) IP(z) W(lzl)l <- llPWllt_.o,.. exp (nU(z/a)).
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(a)

(3.1)

and

(3.2)

(b)

(3.3)

and

(3.4)

C3, C40,

(3.5) n c3 <_- a, -_< n c4, n large enough.

Finally, if 0 < a < b <, then uniformly for x [ a, b ] and n large enough,

(3.6) a,xQ’(a,x) Q(a,x)-- n.

Proof. (a) Let r > s > 0. Then

rQ’(r) (fs(UQ’(u))’du)sQ’(s)-exp uQ’(u)

and so (1.5) shows that

that is

(3.7)

(f"?) rQ’(r) ( f)exp a <-sQ’(si <-exp B

(r/s)A<rQ’(r)
Choosing s := I and r := x > I yields (3.2). Choosing s :- x (0, 1] and r :- I yields (3.1).

Q’(1)xs-1 --< Q’(x) <- Q’(1 )XA-l, x (0, 1],

Q’(1 )XA-1 <- Q’(x) <- Q’(1)xB-’, xe[1,).

A <= tQ’(tx)/Q’(x) <- , x (0, ), (1, o),

AQ(x) <- xQ’(x) <- BQ(x), x (0, ).

(c) For n 1, 2, 3,..., there is a unique positive root a, of (1.9), and for some

MARKOV AND BERNSTEIN INEQUALITIES

Furthermore

(2.20) IIPWII-IIPWllt-.,a.,
and if P is not identically zero,

(2.21) i(PW)(x)l<llPWllR, Ixl> a,.

Proof (a) These follow from (5.40) and (5.41) in [9, pp. 37-38] with R =a,,
/, ,,a, in the notation of [9].

(b) First, (2.15) is a restatement of (5.45) in [9, p. 38] and (2.16) is a restatement
of (5.56) in [9, p. 39]. Next, (2.17) is the special case R a, of (6.29) in [9, p. 45].
Finally for (2.18), we refer the reader to [9, p. 55, line 11] where it is shown that

Un(x)<-_-[Cs+C61og(x/(l+t))], x>_--l+6,

--<-- -C7 log x, x _-> 1 + 6.

(c) This is Theorem 7.1(i), (ii) in [9, pp. 49-50] with R a,.

3. Two technical lemmas. Below are some technical estimates involving Q.
LEPTA 3.1. Let W := e- satisfy the hypotheses of Theorem 1.1. Then
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(b) Choosing r:=tx and s:=x with t(1, oo) in (3.7) yields (3.3). Integrating
(1.5) from zero to x yields (3.4), since Q(0)=0 and (3.1) ensures that

(3.8) lim xQ’(x) 0.
x0+

and

(c) The monotonicity of tQ’(t) (see (2.7)) yields

io ,/1 2 a,,O’(a,)= anQ’(a,),

(I dt )an () a_ ()n>=
1/2 /1- 2 -- Q Q

It then follows from (3.3) that

(3.9) a,Q’(a,)-n, n>=l.

In view of (3.2), we obtain (3.5). Finally, from (3.3), (3.4), and (3.9), we deduce
(3.6).

In estimating ,, we will also need the following lemma.
LEMMA 3.2. Let W := e- satisfy the hypotheses ofeorem 1.1. Let 0 < r < 2. Define

aQ’(at)
(3.10) ft,(x) := dt, x (0, 2), n 1.

nt

(a) en (x) is a positive decreasing function in (0, 2), satisfying

(3.11) lim x,(x) O.
xO+

(b) ere exists C such that

(3.12) ,(x)C[l+a,Q’(ax)/n], x (0, r],

and

(3.13) ,(x)C[l+Q(a,x)/(nx)], x (0, r].

(c) Furthermore, uniformly for x (0, r/2] and n 1,

(3.14) ft,(x) ,(2x).

(d) Given > O, there exists C such that

x,(x) C/n, x[/a,, r].(3.15)

For n >- 1 and x (0, r],
Q(2a,,) dv

(3.16) Sn(x) a_.,
|

n dQ(a.lxl) Qt-(v)"

e Let 8n (0, 1 ] be the smallest number such that

(3.17) tbn(t)>--l/n, t[n, 1].

Then n exists for n large enough,

(3.18) n,,, (t%,) 1/n,
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and for some C2,

(3.19) 6, <- C2/a,.

If in addition,

(3.20) Io Q’(s)/s ds < c,

then given fl > O, we have for n large enough,

(3.21) ,(x) ,(1/a,)--- ,(6,), uniformly for x (0, fl/an].

Proof. (a) Given 0< r/<2, we have for x

I atO’(at) f aQ’(at)
d/n(x) <- dt + dtnt2 n nt

anQ’(ant)<- anriQ’( a,rl )( nx)-l + dt,
nt

by the monotonicity of uQ’(u). We deduce that

0 -< lim sup xd/n(x) <-_ a,r/Q’(anr/)/n.
x0+

Letting r/ 0+ and using (3.8) yields (3.11).
(b) Let 0<r<s<2. Now for x(0, r],

fx dt f2anQ’(ant)-+ dtOn(x) >= anxQ (anx)
nt2 nt

--> C3[ a,Q’(a,x)/ n + 1 ], x (0, r],

by (3.6). This yields (3.12) and then (3.13) follows from (3.4).
(c) To prove (3.14), we note that

!’ a,Q’(ant)
n(Ex) -<_ ,(x) n(2x) + dt

nt

dt
-< qn (2x) + 2anxQ’(2a.x)

nt2

n(2x) / anQ’(Ea,x)/n

-< n(2x)(1 + 1/C),

by (3.12).
(d) From (3.12) and the monotonicity of uQ’(u), we can easily deduce (3.15) for

x[6/an, r]. Next, the substitution v=Q(a,t) in (3.10)yields (3.16).
(e) First, the existence of 6, for n large enough follows from the continuity and

positivity of n in (0, 1], and from (3.11) and (3.12). Next, (3.18) is immediate, while
(3.13) ensures that

1In 6.q.(6.) -> CQ(a.6.)/n,

which in turn implies (3.19) as lim,_. Q(x)= c.
Finally, to prove (3.21) assuming (3.20), we note that for x (0, /a.],

3la" anQ’(a.t)
dt+.(fl/a.)q"(/an) <- d/"(x)

nt
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_an f Q’(s____) ds +(/a)
g .ax S

<-- C7 Q a. n. + (by (3.20) and (3.14))

by (3.13). Applying (3.14) again yields the first in (3.21). The second follows from
(3.19).

4. Estimates for , U. To estimate U, we first need two simple estimates
for , as follows.

LMMa 4.1. Let W := e- satisfy the hypotheses of eorem 1.1, and let be
defined by (3.10) for n 1. Let 0 < < 1. en there exists C such thatfor n large enough,

.(x)C(-x)1/(4.1)

and

(4.2)

(4.3)

g(x) <_- c(x), x e (o, n].

Proof. Recall from (2.10) that
1/2

/Zn(X) 27r_2 (1--X2) A an ds,(l--s2) S+X rt

where

ansQ’ ans anxQ’ anxA:=a(n,s,x):=
arts anX

(4.4)
=(uO’(u))’,

for some u between ans and anx. Then by (1.5),

(4.5) A <_ BQ’(u) <= BanrQ’(anr)/(ant),
where r:= max {s, x}; := min {s,x}, and we have used the monotonicity of uQ’(u).

Suppose first for some 0 < r/< 1, x 7, 1 ]. Then (4.5) and (3.6) show that uniformly
for such x, and for s r//2, 1 ], and for n large enough

A <= Cn/ an.
Furthermore, for s [0, 7/2], the positivity and monotonicity of uQ’(u) yield

A <- a,xQ’(a,x)/(a,x a,,1/2) <= Cn/a,,
by (3.6) again. These estimates and (4.3) and the fact that s+x>= yield (4.1) for
x [7, 1].

Next, suppose x (0, 1/4]. Then for s [0, x/2],

A <= anxO’(anx)/(anx anx/2) 20’(anx),

and for s Ix 2x], by (4.5),
A <_ Ban2xQ’(anZx)/(a,x/2)=4BQ’(2anx).

Finally, for s [2x, 1 ], as s x ->_ s/2,
A <_ ansQ’(ans)/ (a,s/2) 2Q’(ans).
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Hence
1/2

tx,(x)<__4r_2Q,(a,x) (1-x2) 1 a,

ao (1-s)i7 x n
ds

22) 1/2

+ 8,n._2BQ,(2a,,x (1
2i?-7

1 a,

/_ (1 x n

X
2 1/2

ds+4.n._2 (1- Q’(a.s) a___, ds
(1 s2) s n

j" /2 Q,(a.s)
<--__ C Q’(2a.x)a./ n +

2x FIS

1 n ds]a, ds +
1/: (1 S2) 1/2

S
2n

Here we have used the monotonicity of uQ’(u), as well as the fact that (1-- $2)1/2 C,
s [0, 1/2], and we have also used (3.6). Thus

/z. (x) =< C2[ Q’(2a.x)a./n + q. (2x) + 1] -< C3q. (2x),

by (3.12). Then (3.14) yields (4.2) for xe (0,]. If=<r/<l, then (4.1) yields (4.2) in
the range r/’, r/] for any 0 <

We can now estimate U,(x + iy) for x in a neighbourhood of zero, as follows.
LEMMA 4.2. Let W satisfy the hypotheses of Theorem 1.1, and let d/, be defined by

(3.10) for n >-1. Let 0< r/< 1. Then there exists Ca such that for n large enough,
x [-7, q] andy [-1, 1],

(4.6) U,(x + iy) CaO,(x)ly].

Furthermore, if Q satisfies (3.20), and {6,}c (0, 1) satisfies (3.17) and (3.18), then
given K > O, we have

(4.7) U,(x + iy) <- C4n -1,

for Ixl, lyl K. and n large enough.
Proof. Since U,(x) is even, we may assume x e [0, r/]. We may also assume x 0,

in view of the continuity of U, and monotonicity of q.. Then by (2.12) and (2.15),

g.(x + iy)= U.(x + iy)- U.(x)

(_) I ( ()2)Xy { Q(a"[xl)-Q(a"(x2+y2)l/) }(4.8) log 1+ "t .(t)dt+
-1 n

=</]log(1 (xY,))+ tz.(t) dt,

by monotonicity of Q, evenness of/x., and the fact that

(x-t)2<=(x+t):, te[0,1].

Now choose r/’ e (r/, 1). By the estimates of Lemma 4.1,

(fX/2 fX’ I)((y)2)U.(x + iy) <- + + log 1+ X tx.( t) dt
dO /2

N C log 1 + qt,, (t) dt
d0

+ C3,,(x/2) log (1 +(y/(x- t))) dt
/2

+ C3 log 1 + Y (1- ) /9- dr,
"r] n’
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where we have also used the monotonicity of ,,. Making the substitution x-t-uy
in the second integral on the last right-hand side, and using the inequality

(4.9) log (1 + u) <-- u, u (0, ),

in the third term on the last right-hand side, we obtain for x (0, r/], y R, and n large
enough,

(4.10)
x/2

U,,(x+iy)<-Calog(l+(2y/x)2) 4,,(t) dt+Cs{,,(x/2)lyl+y2}.
dO

Here, by the definition (3.10) of ,,(t), and then by interchanging integrals,

x/2 I]ln(t) dt ff/2IZa"Q’(a"s)
0 ns

ds dt

o S
ds + dt

/2 d 0

ds

Q(a.x/2)/n+(x/2)d/.(x/2)

<= C6(x/2)d/.(x/2),

by (3.13). Note too that u log (1 + u-) is bounded in (0, c), and hence

log (1 + (2y/x)2)<= C71yl/x.

Substituting into (4.10), and then using (3.13) and (3.14), we obtain (4.6) for x
and lYl <= 1. Since U, is even, (4.6) follows for x e [-,/, r/] and lyl--< 1.

Next, if Q satisfies (3.20), then for Ixl, lyl--< , which implies Ixl, lyl--< C/a. (by
(3.19)), then by (4.6),

U(x / iy) <= C81ylq,.(x)

<= C96,4,,(1/a,) (by (3.14) and (3.21))

Clonlfn n Clo/

as ,, is decreasing, and by (3.14) and (3.19).
Next, we consider the range Ix[ e [r/, 1], as follows.
LEMMA 4.3. Let W := e-Q satisfy the hypotheses of Theorem 1.1. Let 0< r/< 1.

Then there exists C4 such that for Ix] [r/, 1 ], lyl--< 1, and n large enough,

(4.11) Un(X 3I- iy) <- C4 max {lyl 3/2, lYI(1- Ix[)1/2}.

Proof First, from (4.1),

Ix.( t) <= Cs(1- t) ’/2 It//2, 1],

and so for x [r/, 1], (4.8) yields,

Un(x-Jc iy)(fo0/2

+ log 1 + Y Ix, (t) dt
n/2 -t

_--<log 1+ Ix.( t) dt
dO
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+C5 log(l+(y/(x-t))E)(1-t) 1/2 dt
/2

(by (4.1))

f(x-nl2)llyl -2) 112+ CIYl
vx-/lrl

log (1 + u (1 -(x- ulYl) du,

by (2.14), (4.9), and the substitution x-t uly I. Here
(1 -(x ulyl))1/2 __< 1 X)1/2 _. (I uyl)/,

SO

U,(x+ iy)<=(2y/q)+ Cslyl(1-x) 1/2 f_ log (1 +u-2) du

+ Clyl/ f_ log (1 + u-)lul /’- du.

Then (4.11) follows.
Finally, we turn to the range Ixl 1, oo), as follows.
LEMMA 4.4. Let W satisfy the hypotheses of Theorem 1.1. Then for Ixl [1, 2],

lyl -< 1, and n large enough,

(4.12) Un(x + iy) <-_ c,{lyl 3/2- Cs(x- 1)3/2},

while for Ixl [2, o), lyl <- 1, and n large enough,

(4.13) Un(x + iy) <- C{lYl/- C log Ixl}.

Proof. We may assume x 1, ). Then

U,(x + iy) U,(x + iy) U,(x) + U,(x)

=() fl log {1 +(xY ,)2}/x,(t)dt
(4.14)

+{Q(a,,Ixl)-Q(a,,(x:+ y:)/2)}/n+ U,(x)

<_-- log 1+ /-n(t) dr+ U,(x).

A glance at the proof of Lemma 4.3 shows that our estimate for Un(1 + iy) (that is,
x 1 there) is an estimate for the integral in this last right-hand side. Thus the proof
of Lemma 4.3 yields an upper bound of Cslyl 3/2 for the integral. Next, (2.16), (2.17),
and the monotonicity of U, in (1, oo) show that

Un(X --C6(x- 1) 3/2, X [1, 2],

and by (2.18),

Then (4.12) and (4.13) follow.

Un(x)<--C61ogx, x [2, o).

5. Proof of the results of 1. We first show that for most purposes we can replace
our weight W by a very similar weight W* that is twice continuously differentiable at
zero.
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LEMMA 5.1. Let W := e- satisfy the hypotheses of Theorem 1.1. Let p > O. Then
Q*there exists a weight W* := e- with the following properties"

(a) Q* is even and twice continuously differentiable in R.
(b) Q*’ is positive in (0, 0o), and for some A*, B*> 0,

(5.1) A*<-(xQ*’(x))’/Q*’(x)<-B*, x(O, 0o).

(c)

(5.2) Q*(x) Q(x), Ix[-> p,

(5.3) Q.t-,l(y) Qt-,(y), y >_ Q(p),

and

(5.4) W*(x) W(x), x e a.
Furthermore, (3.20) holds for Q*.

Proof. Define

Q*(x) := Q(x), Ixl >= p.

In [-p, p], we will define Q* so that Q* is twice continuously differentiable there and
satisfies (5.1) in (0, 0o). Let e be a small positive number, let

L(x) := {xz + e(x2- p2)4} 1/2, X [--tO, tO],

and let

Q*(x) := Q(L(x)), x (-p, p).

Then Q*(x) is even and twice continuously diiterentiable in (-p, p) since L(x) is
bounded below there by a positive number. As

L(p) p, L’(p) 1, L"(p) O,

we see that Q*"(x) is continuous at p and so continuous in . The properties (a) and
(c) above now follow. It remains to show that for small enough e, Q* satisfies (5.1). First,

x x
L’(x)

L(x)
{1 +4e(xZ-pZ)3}

L(x)
{1 + O(e)},

uniformly for x e [-p, p], as e 0+. Furthermore, we see that

L,(x--- 1
L(x

+ O(e),

uniformly for x e I-p, p], as e-->0. Then provided e is small enough, we see that
L’(x) > 0, so Q*’(x)>0, x (0, p). Furthermore, a straightforward calculation shows
that

xL’(x) (uQ’(u))’ xL"(x) xL’(x)(xQ*’(x))’/ Q*’(x) 1 + L(x---’-- Q’(u) i,=L(x)+ L’(x L(x)
(5.5)

+
/.(x

uniformly for x (0, p] as e --> 0+. Since

xL(x) <- 1, x [0, p],
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(1.5) shows that the extreme right-hand side of (5.5) is bounded above by 2 / B + 1,
for x [0, p], and e small enough. Furthermore, if

x/L(x)<-,
we see from (1.5) that the extreme right-hand side of (5.5) is bounded below by
1 + O(e), while if

x/L(x)>-1/2,
it is bounded below by A/4+ O(e). Thus (5.1) is fulfilled for x (0, p] and so in (0, o).
Finally as Q*’(x)/x is bounded near zero, (3.20) follows.

Because of problems caused by Q not being sufficiently smooth at zero, we have
to break the proof of Theorems 1.1 and 1.3 into several stages.

LEMMA 5.2. Let Wsatisfy the hypotheses of Theorem 1.1, let 0 < q < 1, and q,, and
{8,}’ be as in (3.10) and (3.17), respectively. Then there exist C and C8 such that

(5.6) I(PW)’(x)l -< c7 PwIIq, (Ixl/a, )n/

for P , n >= C8, and Ixl E  ao, Ta,].
Proof. Lets:= x/a, e[8,, B] and e := a/(2nO,(s)). We will estimate the quantities

" and maxlt_,l__ IP(t) w(Itl)l in (2.3) of Lemma 2.1. First, by (3.17), e x/(2nsq(s))
x/2. Then by (2.4),

’= C2xQ’(2x)(e/(x- e))

(5.7) <= C2a.sQ’(2a,s)(2e/x)2

<-- Cnsq,(s)(2/[Znq,(s)s])2<= C2,

by (3.12), (3.14), the choice of e, and (3.17). Next, by (2.19),

max ]P(t) W(Itl) < IIPW[I_...!(5,8)
It-xl=

max exp (nU,(t/a,)).

Now for]t-xl e, we have

Re t/a,>=(x-e)/a,>-x/(2a,)=s/2, IIm t]/a,<=e/a,<-x/(2a,)=s/2.
Then (4.6) shows that

U,( t/ a,) <- C3,(Re t/ a,)e/ a, <= C4,(s/2)( nd/,(s))- <-_ Csn -1,
by monotonicity of q,, (3.14), and choice of e. Thus

max exp (nU,(t/a,))<= C6,(5.9)

and substituting the estimates (5.7) to (5.9) in (2.3) yields (5.6) for x [a,6,, a,rt]. As
W is even, (5.6) also follows for [x[ [a,8,, a,rl].

LEMMA 5.3. Let W satisfy the hypotheses of Theorem 1.1, with the additional
restriction that (3.20) holds. Let 0< r/< 1, and let p, and {8,} be as in (3.10) and
(3.17), respectively. There exist C5 and C6 such that

(5.10) I(PW)’(x)l <-- cllPWll.(Ixl/a.)n/a.,
for P ,, n >= C6, and Ixl--<

Proof Let s:= x/a, [0, 6,] and e.:= a,/(nq,(6,))=a,6,, n large enough. Again
we will estimate r and maxl,_l= exp (nU,(t/a,)). It is an easy consequence of (3.20)
and (3.3) that

(5.11) lim Q’(s) 0.
s0+
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Next

by (3.19), so from (2.4),

e, x <= a,,6,, <= C1,

"r= 2Q(3e) + eQ’(x) <= C.
Furthermore, if It-xl--e, then Itl =<2.a., so by (4.7) in Lemma 4.2,

max (nU,(t/a,)) <- C3.
It-xl--e

Then (2.3) and (5.8) yield (5.10) but with 0,(6,) replacing O.(Ixl/a.) in the right-hand
side of (5.10). However, (3.19) and (3.21) yield

(5.12) q,.(Ixl/a,,) ,, (6,,) ,,(1/a,,), Ixl -< max {6,,a,,, 1}.

So (5.10) holds as stated.
We can now proceed to the proof of (1.15) of Theorem 1.3.
Proof of (1.15) of Theorem 1.3. Let 0< r/<l. In the case where (3.20) holds,

Lemmas 5.2 and 5.3 yield

(5.13) I(PW)’(x)[ <- cvl[PW[lnq.(Ixl/ a.)n/ a.,

for P ,, Ixl--< fla,, and n => C8. By (3.16) and (5.12),

q,,(lxl/a,)n/a, ,,(max {1, Ixl}/a,)n/a,
(514) j- oz,,.) dv/Ot-,(v) dv/Ot-,(v),

Q(max 1,1xl }) Q(max (1,txl})

by (3.6), provided only C is large enough. (Recall that Ixl<_-ha. < a..) Then (5.13)
yields (1.15) for Ix[ -< rlan, provided (3.20) holds.

--Q*Next, we turn to the case where (3.20) does not hold. Let p > 0 and let W* e
be the weight in Lemma 5.1, which does satisfy (3.20). By what we have shown above,

Csn
(5.15) I(PW*)’(x)l <- C61IPW*II ds/ Q*t-ll(s),

dQ*(max 1.1xl

PC ,, n_--> C7, and Ix[_-< ha.. In view of (5.2)-(5.4), we obtain (1.15) for W for
o--< Ixl-<-ha,, any fixed p > 0. If in addition Q’ is continuous at zero, then it follows
from the continuity of Q and Q’ that

I(PW)’(x)l Co{l(PW*)’(x)[ + [(PW)(x)l},

Ixl p, P e ,, n _-> 1. Applying (5.15) and (5.2) to (5.4) yields (1.15) for Ixl p.
We proceed to the following proof.
Proofof (1.14) ofTheorem 1.3 for Ixl [na., 2a,]. Let 0< r/< 1 and x e [fla,, 2a,,].

Furthermore, let s := x/a, e r/, 2] and

.min{n
-2/3 n-(1-s) -/2} ifs<l,

(5.16) e:= n_2/3a,. if s > 1.

As usual, we estimate z and maxl,_xl= exp (nU,(t/a,)) in (2.3) and (5.8). Since for n
large enough, e <- a,n-2/3 <- a,rt/2 <- x/2, (2.4) shows that

’= C2xQ’(2x){e/(x- e)}:

<= C3nn-4/3/(’q n-2/3)2 C4n-l
by (3.6). Suppose now It-x[



MARKOV AND BERNSTEIN INEQUALITIES 1081

First, if Re <= a,, (4.11) in Lemma 4.3 yields

U,( t/ a,) <-- C4 max {llm t/ a.[ 3/, [Im t/ a,[(1- Re t/ an) i/2}
--< Ca max {(e/ a,) 3/2, (e/ an)(1- Re t/ an) l/2}.

Here, if s <= 1,

SO

(1-Re t/an)l/2<=(1-s)l/2+ls-Re t/a.I /

<=(1-s)l/2+(e/an) 1/2,

nU,(t/a,)<=2C4max {n(e/a,) 3/2, n(e/an)(1-s)I/2}<-2C4,
by the choice (5.16) of e. If s >-1,

1 Re t an 1/2 <_ (s Re t a, 1/2 <_ e/

SO

nUn(t/a,) <- Can( e/ a,) 3/- <- Ca.
Next, if Re > an, (4.12) and (4.13) in Lemma 4.4 yield

nUn(t/a,)<= C4nllm t/a,I 3/2<- C4n(e/an)3/2<- Ca.
Thus

max exp (nU,(t/an))<-_ C5.
It-xl=e

Substituting this last estimate in (5.8), and then that for - in (2.3), easily yields (1.14)
for x[rla,,2an]. Since W is even, the estimate (1.14) follows also for x
[-2a,, r/a,].

Before proving (1.14) for the remaining range Ixl->2a., we need the following
proof.

Proof of Theorem 1.1. Suppose first Q’ is continuous at 0. Then

I(P’W)(x)l <-_ I(PW)’(x)l / Q’(x)l I(PW)(x)l

--< cllPWIl max n/an, ds/t-l(s), I(’(xl
dQ(1)

for n-> C4, P ,, and Ixl<-2a,, by (1.15) and (1.14) for the restricted range
[r/an, 2a,]. We will see that the second term in { } is the largest, except possibly for
multiplication by a constant. First, IQ’(x)l is bounded above by a positive constant in
any finite interval.

Next, suppose 1 _-< Ix[ -< a,. If C5 is large enough, (3.6) and the substitution s Q(t)
yield

ds/ Q-(s) >- + Q’(u)u-’ du
Q(1) an

>-_ xQ’(x) u-2 du + Cn/a u-1 du

=lQ’(x)l/2+CTn/a,
where we have used the evenness and monotonicity of uQ’(u) and (3.6). Thus

Csn
[(P’W)(x)[ <- C3[[PWll ds/ Qt-ll(s),

OQ(1)
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Ix[ _-< 2an, P n, n -> C6. It is easily seen that we may replace Q(1) by 1 as the lower
limit in this integral, so (2.20) yields (1.6) in this case.

When Q’(x) is not continuous at 0, we replace W by W* of Lemma 5.1, exactly
as in the proof of (1.15) of Theorem 1.3, and use (5.3) and (5.4). I-!

It remains to complete the following proof.
Proof of (1.14) of Theorem 1.3 for [xl[2a.,). Now if P, and

then (2.19) yields

I(PW)’(x)[ < I(P’W)(x)l + Q’(x)[ [(PW)(x)l
<-exp (nU.(x/a.)){llP’Wll+lQ’(x)l

<= C311PWII exp ng.(x/ a.)){n + lxl-},
by (1.6) and the fact that

Qt-l(s)>=Qt-l(1), s (1, c),

as well as by (3.2). Next,

exp (nU,,(x/a,,)){n +lxl
--<exp (-nC log (Ixl/a,,)+log n+(B- 1) log Ixl) (by (2.18))

=exp({log(lxl/an)}{-nC+B-1I+log n +(B-1)log

--< exp (-nC3 + C4 log n),

by (3.5). This last right-hand side is certainly bounded above by n -2/3 for n large
enough.
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Abstract. The ambiguity function, occurring in radar problems, is the total Fourier transform of the
Wigner function, the latter being linked with Weyl quantization of pseudodifferential operators. This remark
leads to a microlocal approach for tomographic problems. First, an exact inversion formula for a distribution
of objects is proved, using the symplectic invariance of the Weyl quantization. Second, asymptotic methods
of microlocal analysis give an approximate inversion formula, involving fewer oscillatory integrals than in
the first case.

Key words, tomography, radar function, pseudodifferential operators
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Introduction. Tomographic reconstruction problems are a topic of growing interest
on a theoretical point of view as well as a numerical one [4]-[7]. The main goal of
the present paper is to show that a large array of methods coming from partial
differential equations can be applied to these problems.

First, we remark that the ambiguity function is the Fourier transform of the Wigner
function (see, e.g., [9]), the latter being linked with Weyl quantization. The main
consequence of this fact is the symplectic invariance of the ambiguity function, which
appears as a consequence of the Segal formula.

Second, we remark that there is a natural way to associate a pseudodifferential
operator to a distribution of objects. Let us say here briefly that a distribution of objects
will have a Fourier transform in L, and that Fourier transform will be the symbol of
the considered pseudodifferential operator. Moreover, the tomographic problem is
thus reduced to a "generic" one, namely recovering a symbol by using Wigner’s
functions with knowledge of his dot products.

As a consequence of these two opening remarks it is not surprising to find on our
way the uncertainty principle" the phase space is symplectically incompressible, e.g.,
it is hopeless to localize a particle in a box of respective sides Ap, Aq unless the product
ApAq is bounded from below by a fixed constant. For instance, if we assume the
distribution h-fuzzy, i.e., nonclearly resolved but supported in boxes of symplectic
volume n, then its Fourier transform will be in a very simple asymptotic class of
pseudodifferential operators; it is then possible to apply classical methods to handle
the tomographic problem. In particular, the wave packets introduced by Cordoba and
Fefferman [3] (see also Unterberger [11]) will be helpful.

On the other hand, we also provide one exact inversion formula linked to the
structure of the symplectic group: the integration of the ambiguity function of the
distribution through the orbit of the Gaussian pulse by a subgroup of the symplectic
group gives exactly the initial distribution. Here we have used phase translations.

1. Definitions.

1.1. Basic notation and properties. We will consider the configuration space E R
and its dual space E* R,
(1.1) F=E@E*

* Received by the editors November 9, 1987’ accepted for publication (in revised form) September 24,
1989. This work was supported in part by National Science Foundation grant DMS-8601755.

t Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
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the phase space. The running point of F will be denoted generally by a capital letter
(X (x, so), Y= (y, rt) ). The symplectic form on F is given by

(1.2) [(x, ); (y, r/)] (, y)-(q,x),

where (,) are the brackets of duality E, E*. The (affine) symplectic group is the subgroup
of the affine group of F preserving the symplectic form (1.2). Note also that if

id(Eer (-idO( o *)) we have

(1.3) IX, Y] (erX,

and the equation of the (linear) symplectic group is thus

(1.4) A*erA er.

We recall here (without proof) Lemma 18.5.8 in [8] describing the symplectic
group.

LEMMA 1.1.1. The affine symplectic group is spanned by

(1) (x, )- (X + Xo,

(2) (x, ) --> (Ax, A-),

where A is an invertible n n matrix.

(3) (x, (, -xj

and other coordinates are fixed.
(4) (x,

where S is a symmetric matrix.

1.2. Wigner’s function and ambiguity function. Let u, v be in the Schwartz space
6e(") and set

(1.5, H(u,v)(x,)= I u(x+)O(x-) e-Z’dz.

Let us consider for (x, :)= X fixed the following operator (phase symmetry
operator)"

u) (y) u (2x y) e-2(x-y’#)(1.6) (:(,.e)
with the notation

(1.7)

We will use the following definition for the Fourier transform Fu()- e-Xu(x) dx,
so that F2= C, Cu(x)- u(-x).

LEMMA 1.2.1. (1) The sesquilinear mapping (u, v)- H(u, v) is continuous from
(") x (") in (2x",).

(2) For each X 2, erx is a unitary and self-adjoint operator on L2(").
(3) For u, v in L2(")H(u, v)(X)= 2"(erxU,
(4) The sesquilinear Hermitian mapping

H" L2(

defined by (1.5) is such that

L2( ).
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Proof. The first three points are obvious. Let us prove (4). Let w(x, z) be an
L2(dx dz) function and let us consider its partial Fourier transform with respect to the
second variable (x, :)= F2(w)(x, ). We have I1 11  = IIo, lle, which gives (4) with
w(x, z)= u(x + (z/2))(x- (z/2)).

We will say that H(u, v) is "the Wigner function of u and v." Note that

(1.8) H(u)=H(u,u)

the "Wigner function of u." As is shown in the next section, the definition of Wigner’s
function is not arbitrary but linked to the Weyl quantization.

We define, for u, v in Lz(Rn), the ambiguity function A(u, v) as

(1.9) A(u, v)= F(H(u, v)),

that is, the (total) Fourier transform of the Wigner function. We get easily the following
classical integral formula for A(u, v)

(1.10) A(u,v,(,,x, I u(z-)(z+) e-t dz.

(It seems natural to reverse the order of the variables: (x, :) on the phase space
(, x) on its dual). Note that

(1.11) A(u) A(u, u)= FH(u),

the "ambiguity function" of u.

1.3. Quamization. Let a be a tempered distribution of 5e’(2,"). Then we define
the operator a as a continuous operator from 5e(R") in 5e’(") by

(1.12) (aWu, v)e.n,),e,,)= (a, H(u, v))e,-),en-.
Note that this formula makes sense because of Lemma 1.2.1 (1). The operator a is
the operator with symbol a by the Weyl quantization rule. We get (when it makes
sense) the usual formula

(1.13) (aWu)(x) I I a(x +y2 ) e<X-Y’>u(y) dy d.

LEMMA 1.3.1. Let a be a tempered distribution of b’(x,).2" We. have

(1) a I2, a(X)2"rx dX,

where rx is defined in (1.6). Moreover,

(2) aw= f F(a)(..) e=-4 d..,
2n

where ...M is the self-adjoint operator

.x +.D xx + D,
j=l

where x stands for the multiplication by x and (, )= ... Explicitly we get

(aWu)(y) f F(a)(x", )[(exp i( x+Dx))u] (y)
an j=l

(3)
x a;,.., a;.
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where

exp jxj+Dxj u (y)= ey-z’’ exp E j’Y+ZJ+*b u(z)dzdrl.
j=l j=l

oo Point (1) is classical and is easily deduced from (1.12) and Lemma 1.2.1(3).
Point (2) (the original formulation of the Weyl quantization) is a consequence of (1)
by application of the Plancherel formula.

LEMMA 1.3.2. (1) Let , be in L("). en M(, )(x, ) is the Weyl symbol
of the operator (on L2(a")):

u(u, )-(i.e., M(, )Wu =(u, )z.).

(2) We have the identity (u, v, , Lz("))

(u, )cza")(, v)czca")= (H(u, v), H(, ))L2(2n).
We have
(3)

(5) IlaWllllall., I1= standing for the bounded opeato om
Z=() and I1 for the Hilbert-Schmidt norm.

Proo This lemma is classical. Point (3) (respectively, (4)) comes at once from
Lemma 1.3.1(1) (respectively, (2)) and the unitary character ofx (respectively, e).
To get (5), let us first remark that the kernel of a is given by

(1.14) k(x, y)= F2(a) (X; y, y-x)
-ld/2and a FE(k A), where A ( /2 , that is, the integral formula

(1.15) a(x, ) etk x-, x+ dt.

Then (5) follows directly from (1.14). Note that, as a consequence of (1.12) and
the Hermitian character of H, (1) and (2) are equivalent. Moreover, the kernel of the
operator in (1) is k(x, y)= (x)(y), so (1.15) gives (2).

Let us now recall the link between the "classical" quantization (coecients of the
differential operators on the left of differentiations) and the Weyl quantization. We
first define a group {Jt}ta by the formula

(1.16) Jt=exp tDxDe,
so that

F(Jta) exp t.xF(a)(, x).

This group acts unitarily in L2(R2"x,) and isomorphically in S’R2"
x,eJ. The classical

quantization of the symbol a is

(1.17) Op (a)u(x)= I a(x, ) e"ea() d.

The J’ group occurs when we take adjoints by the formula

(1.18) Op(a)*=Op(Jt) where J=J.
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The "adjoint" quantization (the differentiations follow the multiplication) is given
by

(1.19) Op(Ja)u(x)= a(y,,)e<X-Y">u(y)dyd.
The Weyl quantization ((1.2), (1.13), Lemma 1.3.1) is

(1.20) aW=Op(j1/2a)

which yields in particular

(1.21) (a)* (ti)*

one of the nice features of the Weyl quantization rule.
Note also that we have (t )

(1.22) Op (Jta)u(x)= f I a((1- t)x + ty, ) e’<X-Y’e>u(y) dy d.

1.4. Segal formula. We recall briefly here the symplectic invariance of the Weyl
calculus. There exists a group Mp (n)mthe metaplectic group-subgroup of the unitary
operators on L2(R")--that is a twofold covering of the symplectic group Sp (n). (Note
that the rl group of both Mp (n) and Sp (n) is ’) such that

Mp(n)

sp(n,

where - is a homomorphism twofold covering.
If X r(M), then we have

(1.23) H(Mu, My)= H(u, v) X-1,

where u, v are in L2(R") and H is their Wigner function.
As an immediate consequence of (1.23) we get

(1.24) A(Mu, My)= A(u, v) o’ X,

where A is the ambiguity function given by (1.9), (1.10).
In other words, if X is an (affine) symplectic map there exists a unitary transforma-

tion M of L2("), uniquely determined apart from a constant factor of modulus 1
such that (1.23) is true. M is an ordinary unitary representation of Mp (n) [12].
According to Lemma 1.1.1 we need only give the expression of M for the generators
of the symplectic group.

LEMMA 1.4.1. Formula (1.23) is true for a symplectic mapping X and a unitary
operator on L2(I")M as follows.

(1) Ifx(x, :)= (X+Xo, :+ sCo), M 7"o,o with (o,oU)(X)=U(X-Xo) ex-(x/2)’>.
Setting Xo=(Xo, :o), Yo=(Yo, r/o) we have ZxoZgo=e/2tXo,go]-xo+go, -*Xo

-1 where is the symplectic form in (1.2).,I._X 7Xo
(2) Ifx(x, ) (Ax, A-), A GL(n, ), (Mu)(x) Idet Al-I/2u(A-x). In par-

ticular, if u is even or odd then H(u) is even.
(3) Ifx maps (x, on (, -x and leaves the other coordinates fixed, M will be

the partial Fourier transform with respect to x.
(4) Ifx(x, ) (x, + Sx), S an n x n symmetric matrix, M is defined by Mu (x)

eVSx,>u(x).
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This lemma is classical and a proof can be found in [8, Thm. 18.5.9]. Note that
the unitary operators involved are also isomorphisms of Ae(R").

Using (1.23), (1.12), we obtain the following lemma.
LEMMA 1.4.2. Let a be a tempered distribution of ,(R2n), X a symplectic affine

mapping, M in the fiber ofx. Then

(aox)W=M*aWM.
1.5. Wick’s function. It is a well-known fact that Wigner’s function H(u)(x, ) is

not always nonnegative (in spite of the equality H(u, u)(x, ) dx d= Ilull L2(Rn) a
consequence of (1.12)). Nevertheless it has been pointed out by de Bruijn 1 ], Cordoba
and Fefferman [3], and Unterberger 11 that a Gaussian regularization of the Wigner
function is nonnegative.

LEMMA 1.5.1. Let u, q Lu(n) with q even or odd, II ll,  - 1. Let a Ll(2"). We
have

(1) (H(u)* H())(Y)-l(u,.))l, YII2n(H(u) defined in (1.8), 7y in
Lemma 1.4.1 (1)) and

(2) ((a H(,))Wu, u)-.[ a(Y)l(u, ’-)lz dY.
Moreover,
(3) If o(X) 2"/4 e -rlxl2, (j (X) 2n/42"rr1/2xj e -rlxl2, 1 <--j <-- n, we get

H(qo)(X, :) 2" e-:’(Ix12+le12),

H(qj)(x, ) 4r2"e-Elx12+l12)(2+:]-1)Xj

Proof We have

(H(u) H(q))(Y)=(H(u),H()(Y-.)),

and by (2) and (1) of Lemma 1.4.1 we get

H(cp)( Y-X)= H()(X- Y)= H(’ryCp)(X).

We obtain part (1) by applying Lemma 1.3.2 (1), which gives (H(u),H(’yq))=
I(u, gq)l2. Part (2) is a consequence of (1) through the definition of a in (1.12). The
elementary computations in (3) are left to the reader.

Remark 1.5.2. When 1, then from (1.12) we get J H(p)(x, ) dx d= 1.
If, moreover, p is even or odd, H(p) is even (Lemma 1.4.1 (2)) and the difference
a-a. H(q) involves only the second derivative of a. This remark leads to a proof
of Grding’s inequality with one derivative (see, e.g., Theorem 18.1.14 in [8]): Let us
note that the quantization

(1.25) a ---> (a H(cp))

is nonnegative (i.e., gives a nonnegative operator for a nonnegative symbol). Note that
the constant function 1 is actually quantified by the identity" from (1.12), we have

dX

and in particular,

We will define as the Wick function (see, e.g., [10]) of u (with respect to q)

(1.26) W,(u)= H(u) * H(cp).
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When Oo we will use only the Wick function of u,

(1.27) W(u) H(u) H(oo)

(cf. Lemma 1.5.1 (3)).

2. Related tomographie problems.
2.1. Preliminary remarks. Let us consider a function D(yl, Y:z), Yl, Y2 R" (e.g., a

distribution of objects, Y2 being the position and Yl the velocity). If we choose as new
variables x (2y2/C), (2,,oy,/C), where Vo is a fixed frequency and c a parameter
(speed of the electromagnetic wave) we obtain that x is running in (Rtime) and : in
its dual space (frequency)"" This describes how it is possible to associate a new function
d(:, x) to a distribution of objects D(yl, y2); d is defined on a phase space (symplectic
space) while D is not. Let u L2(") (a "pulse"). We consider

(2.1) M(u)(, x)= f f d(rl, y)a(u)(q , y-x) e/2(-n)(y+x) dy d,

where A(u) is the ambiguity function of u (1.10). The problem at hand is recovering
d from M(u) (or its absolute value) for some choices of the pulse u. We can note in
particular that if d corresponds to a distribution of objects clearly resolved into N
point clusters with reflecting intensities m we obtain, at least formally,

(2.2) M(u)(se, x)= E msA(u)(s-, xs-x) e/:-s)+).
I<--jN

In particular, if u(x)= 2-"/4 e-lx12, we have (Lemma 1.5.1) H(u)(x, )= e-2lxl+lel,
and thus

(2.3) A(u)(, x)= e-/zlxl+lel:)2-".

For this pulse, from (2.2) we get

N

(2.4) M(u)(s
j=l

In particular, if N= 1 the unique maximum for (u) is at (Xl, 1). Let us note that
the function given by (2.3) is as close as possible of a Dirac function on the phase
space. The uncertainty principle will allow also

(2.5) A(u;,)(, x)=

that is (for large ;t) a very broad Gaussian in : multiplied by a very narrow Gaussian
in x both of L’-norm 1, namely

A(u,x)(, x)=

From (1.24) and Lemma 1.4.1 we can choose ux (x)= 2-n/4An/:Z e-x21x12.
Moreover, if we assume (as is done in some radar problems) that we measure

N

(2.6) E m.[A(u)(- , x x)l
j=l

we get

N
2-z, {Ix-xlZ+l-,[z}(2.7) E ms e-

j=l
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In particular, if we assume that the reflection intensities mj are of the same order
of magnitude and

inf [X Xk[2 inf [xj Xk[2 + [ kl > 1
jk jk

we get that the function (2.7) takes N absolute maxima located near X. (x, ).
So, with the two additional assumptions that the reflecting intensities are equal

and that the objects are "far" from each other or if they are close this relative velocity
is "large," we obtain an analogous statement than for one object: it is enough to
display the "brightness pattern" and to check how many absolute maxima we have
and where.

From (2.1) we have, setting .. (:, x), N (, y)

(2.8) exp- (BE, E)M(u)(E) d(N)A(u)(N-) e-$/2([’N]+I/2(BN’N)) dN,

where [E, N)=-y+x the dual form of (1.3), and B the mapping from EEx
E Eft given by (id d *), (.,.) standing for the bracket of duality E* E, E E*.

Note that (2.8) could be written also as

(2.8’) (u)(E) j d(N+E)A(u)(N) -U4(BN,N) e--UE(AN,E)dN,

where A"EE EE is given by

We have that (cf. (1.9)) for 0

(u)(0) j g(u)(X) (g) ex e-/4(N’N dNdX, (g) d(-N)

and thus from (1.16), (1.17), (1.20), and (1.12)
M(U)(0) (J-’/2(F(d))Wey’u, u),

(2.9)
M(u)(O) ((F(d))US’u, u),

that is, M(u)(O) is (Op(a)u, u), where a is the (total) Fourier transform of d.
A reasonable assumption of regularity for F(d) would be F(d) in L(’) as

well as his derivatives so that (2.9) would make sense for u L() (see Calderon
and Vaillancou [2]).

2.2. Uncertainty principle. Let us assume that the distribution d is not clearly
resolved but "fuzzy" with an h-unceainty, e.g.,

(2.10) d(, x)= 2 m exp- (a)-
=1 I

( e N, , positive numbers) with

(.0’
a positive small" parameter.

Then we get
N

a(x, )= F(d)(x, )= m e-(e+e exp-(xl+
j=l

and in paicular we get

(2.11) I(a)(x, )1N C. max m,
j=I,’",N
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where the C, depend only on Il, Il, Ixl, and Il. So aS(m, dx/ d) (f,
Definition 18.4.2 in [8]).

THEOREM 2.2.1. Assuming that d is given by (2.10), a d,

(2.1.2) M(’xMoqo)(O) a(X)+ O(h),

where M(u) is given in (2.1), qo is as in Lemma 1.5.1, Zx, is as in Lemma 1.4.1 (1),
and (Mou)(x) O-n/2u(O-lx), 0 =/x-1/2A 1/2.

Proof. We have from (2.9)

M ’xMoPo) O) a x, D ’xMoPo ’xMoPo),

where a(x, D)=Op (a) given by (1.17). Because of the symbolic calculus given by
(2.11) we can replace, modulo O(h), a(x, D) by a in the previous formula. Thus we
get from (1.12)

M(zxMoqo)(O) IR2. a( Y)H(’xMoqo)( Y) dY+ O(h).

Now from (1.23) comes

(rxMoo)(O) I. a( r)H(Moo)( Y-X) dY+ O(h),

that is, from (1.23) and Lemma 1.5.1(3),

M(zxMoqo)(O) I a( Y)2 e-2"r(x-g) dY+ O(h)

with F(tz)= 0--Itl2+021’12 and 0 A1/2/x -1/2. By a Taylor expansion, we get

M(’xMooo)(O)=a(X)+O(h)+ (1-t)a"(X+t(Y-X))

(Y-X)2" e-2"r(x-) dYdt.

But from (2.11) and (2.10) we have

la"(X) T21 <- Chr( T),

which yields the result.
Remark 2.2.2(a). If A =/x h 1/2 that is, if we assume that the uncertainty on

range and velocity are of the same order of magnitude then Mo Id and a(X)=
s(Zxo).

(b) The same proof could be used for
N

d(, x)= E m exp- ’y(..-.-7)ly[1/2
j=l

where y is a quadratic (positive definite) form on the (dual) phase space such that
y= h2y, y standing for the dual metric of y with respect to the symplectic form
((1.2)).

2.3. A new inverse formula. From (2.8), (1.23), and (1.9) we get (q

M(zvp)(E) I I d(N)H(q)(X-Y)e-x(--)

e-/2([’’rv]+/2(u’u) eU4(B-’=-) dX dN.
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In particular, if qo in Lemma 1.5.1 (3), we obtain

(,/-y(0)(..)---I f d(N)2"e-2lx-YI2e-X(N-=-’

e-U2([E’N]+I/2(BN’N)) eU4(B-’-) dX dN,

and thus

M(-yqo)(..) J d(N) e-Y(N---) e-r/21N-=_12

e-U2([=-’N]+I/2(BN’N)) eU4(BE’--’) dN.

Thus we get the following exact inverse formula, integrating the ambiguity function
along the orbit of the Gaussian pulse through a subgroup of the metaplectic group
(here the phase translations).

THEOREM 2.3.1. With qo given in Lemma 1.5.1 (3), Ty in Lemma 1.4.1 (1), and M
by (2.1), we have

(2.13) .Rf2n "(’l’Y(P)() dY= d(E).
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NONHOMOGENEOUS VISCOUS INCOMPRESSIBLE FLUIDS:
EXISTENCE OF VELOCITY, DENSITY, AND PRESSURE*

JACQUES SIMON"

Abstract. The flow of a nonhomogeneous viscous incompressible fluid that is known at an initial time
0 is considered. Such a flow is described by partial differential equations for the velocity u, the density

p, and the pressure p, with boundary and initial conditions.
The existence of a global (in time) solution u, p, p for which pu satisfies a weak initial condition is

proved. For this solution u and pu are not necessarily t-continuous, and u(0) and (pu)(O) are not defined.
The initial density Po is not required to have a positive lower bound.

When Uo, f, and f are regular, the solution is regular up to some time T,. For this solution, pu is
t-continuous up to T, and satisfies an initial condition that is intermediate between the weak and the strong
ones.

If in addition Po is not too small, but possibly zero at some points, then u is t-continuous at 0 and
Satisfies the strong initial conditions (pu)(O)= poUo, u(O)= Uo, and u, p, p is a global strong solution. In
space dimension 2 the solution is regular for all if Po is bounded from below.

Key words. Navier-Stokes, existence, strong solutions

AMS(MOS) subject classification. 35Q10

Introduction.
Model. We consider the flow of a fluid that is viscous, incompressible, and

nonhomogeneous, that is, with a variable density. It is considered in a domain 12 c 3
with boundary F, during a time interval [0, T]. The velocity u, the pressure p, and the
density p satisfy the following equations in 12 ]0, T[:

Opu
+V (upu)-txAu pf-Vp,
Ot

Op--+ v (pu) o,
Ot

V’u=O

coupled with the boundary and the initial conditions

u=O onF]O,T[

p],:o= po, pu[,=o= poUo in f.

Solution of a reduced model. A reduced model is obtain by eliminating the pressure.
More precisely, the first equation and the last initial condition are replaced by the
following variational equation"

-pu. V + Vu. Vq-pf. q dxdt= (O) dx
]0,T[ -- txPU P tX poUo

Vq C1([0, r]; (H(f))3) such that V. q 0 and (T)-0.
A solution p, u of this model has been obtained by Antonzev and Kajikov [2]

and by Kajikov [5]. They consider Uo H, p0 L(12) and they suppose that Po has a
lower bound >0. For a detailed exposition we refer the reader to Lions [9], [10]; the
definition of the space H will be recalled in 2.
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This result was extended without restriction on po by Simon [13]. The local
existence, that is, for T- T., where T. > 0 depends on the data, of a more regular
solution of this reduced model has been obtained by Kim [7], for more regular Uo, f,
and . In all these works the t-continuity of u, or of pu, was not proved; therefore
the initial condition on pu included in the variational equation was satisfied in a very
weak sense.

Solution of a weak model. In the present work we obtain (Theorem 9) a solution
u, p, p of the exact model including the pressure, with the exception of the initial
condition on pu that is replaced by the following weak initial condition"

t=0 In poUo" v dx

for a certain class of test functions v.
The other equations and conditions are satisfied in distribution and in trace sense.

In addition the above integral is t-continuous for each v, although pu is not necessarily
t-continuous. Moreover, the pair u, p satisfies the variational equation of the reduced
model.

We do not require po to have a positive lower bound, and we only assume f to
be in L(0, T; (L2(-))3) instead of L2(0, T; H) as is done in the above-quoted works
(we do not require f to be divergence free). Our solution is global, that is, it exists for
any given T.

Solution of the exact model. The local existence of a solution u, p, p of all the
exact equations has been proved by Ladyzenskaya and Solonnikov [18]: with regular
data and po bounded from below they obtain for T T., where T. depends on the
data, a regular solution. In addition they prove the global existence for small enough
data and in the two-dimensional case (for all data), and the uniqueness, in their class,
of regular solutions. Similar results have been obtained by Okamoto [20] with different
assumptions on the regularity of the data.

Here we prove (Theorem 14(ii)) the global existence of a solution u, p, p for all
data. Our data are less regular than in [18], and are not assumed to be small; in
addition po may have some zeros. The solution exists up to T, and pu is t-continuous
up to some T. > 0 (this is enough to satisfy the initial condition on pu).

More precisely we require Uo V, poL(l-I) with 1/poL6/5(), and f
L2(0, T; (L2(D))3) (the space V will be precisely defined in 2).

Solution of an intermediate model. Without the assumption on 1/po, that is, for
all poe L(l), we obtain (Theorem 14(i)) the same result with the exception of the
initial condition on pu that is replaced by

pult_-o pouo+VA where A is an unknown function.

This condition is intermediate between the weak and the strong one.

1. Mathematical model. Let fI be an open bounded subset of R with boundary
F, and let T> 0. The motion of the fluid is described by its velocity u (ul, u2, u3),
by its density p, and by its pressure p, which are functions of the point x 12 and of
the time [0, T].
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(1)

The equations are, in the cylinder Q ft x ]0, T[,

(2) ’)+ v. (pu) o,

(3) V.u=O

where f is the given external force, and/x > O.
These equations are coupled with the boundary condition

u=0 on Fx]0, T[

and with the initial conditions, for 0,

p(o) po, (pu)(O) poUo.

Here po and Uo are given functions in f, and u(t) is the function x- u(x, t).
Moreover, the density must satisfy

p >- 0, po => 0.

Here V=(1,2,3), where O=/cgx is the gradient operator, and is
the scalar product in 3. Thus V. U=OlU1+O2u2+03u3 and V. (upu)=
l(UlpU)+O2(u2pu)+O3(u3pu). Also, A =V. V is the Laplace operator.

Remark. Nonconservative equations. Equations (1) and (2) may be replaced by
the following:

(1’) p +(u. V)u -ixAu=pf-Vp,

(2’) 0p+ u. vp =0.
t

Indeed (1’) and (1) differ from u times (2), and (2’) and (2) differ from p times
(3). We will use (1) and (2) since they require less smoothness on p and u to be defined.

Remark. Nonhomogeneousfluids. Such a fluid is obtained by mixing two miscible
fluids that are incompressible and that have different densities. It may also be a fluid
containing a melted substance.

2. Function spaces and preliminaries. The set f is assumed to be open and bounded
in 3 and to have a Lipschitz boundary F.

Let @(f) be the space of C functions with compact support in f, and let ’(f)
be the space of distribution on .

For 1-<_ r-<_ the Sobolev spaces are defined by

wl’r(") {V Lr(-):Vl) (Lr(").))3},

Wo’(f) closure of (f) in W’(),

w-l’r(’) V V0-3
I- L 0iVi Vi e (’), 0,. 3
i=1

HI(I’I)-- W"2(l’l), H(fl)= W’2(fl), H-’(fl)= w-l’2("),

all these spaces being equipped with their usual norms.
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Denote

r={vz ((n)):v v=0},

V= closure of V in (HI())3, equipped with the (HI()) norm,

H =closure of V in (L2())3, equipped with the (L2(1))) norm.

Remark. Since the boundary F of 1 is Lipschitz we have

V={v:v(H’())3, V v=0,

H={v:v(L2())3, V v=O, v]v" n=0}

where v[v is the trace of v on F and n is a normal vector field on F.
See Propositions 1 and 2 of [17, pp. 25, 26], or Corollary 2.5 and Theorem 2.8 of

[4].
We denote by (,)n the duality product in all the function spaces on fl. In particular,

(, )n In (x)w(x) dx if L(II) /_,’(ll) 1

r ;
((x)(x) bein replaced by (x). w(x) if and w are vector valued) and

(, w)n =() if @(fl), we

Let us recall a result of Tartar [17, Lemma 9, p. 30] (see also [4, Thm. 2.3, p. 2.5]).
LEMMA 1. Let wG (H-I([)) satisfy (v, w)a=0, for all v V. Then there exists

q L2() such that w Vq.
Moreover q may be chosen such that the map L w-> q is linear and continuousfrom

(H-’(tl)) into L(II).
Let us extend this result to time-dependent distributions.
LEMMA 2. Let h ’(]0, T[; (H-I("))3) satisfy (h, v)n:0, for all v V. Then

there exists g ’(]0, T[; L2([I)) such that h Vg.
Moreover, g may be chosen such that the map h--> g is linear and continuous from

ws’r(o, T; (H-l(fl))3) into ws’r(o, T; L(l-l)),for alls and l<-r<-c.
Let us recall that, E being a Banach space, ’(]0, T[; E) is the set of continuous

linear maps from (]0, T[) into E.
Proof of Lemma 2. The space

E={w6(H-I(I))3: (w, v)n=0, Vv V}

equipped with the (H-()) norm is a Banach space.
The distribution (h, v)n 9’(]0, T[) is defined by

((h, v)a, p)lo, rt ((h, P)lo, rt, v)a,

and thus the assumption on h implies that h e 9’(]0, T[; E).
The map L defined in Lemma 1 is linear continuous from E into L(f); thus

Lh ’(]0, T[; L2(f)), and g Lh has the required properties.
Since f is a bounded subset of 3 with Lipschitz boundary, H(f) L6(-), and

more generally the following properties hold.
LEMMA 3. (i) For 1 <= r<=c, wl’(f)c L*(f) with continuous imbedding, where

1 1 1
if r<3, r, is any finite real if r=3, r,=o if r>3.r, r 3

The imbedding W’(f) L (f) is compact if s < r,.
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(ii) For 1 <= s <- r <= the product is continuous, if >= 1, in

1 1 1w"r(a) x w"(a)- w’"(a),
r. s

(iii) For 1 <-- r <- , 1 <-_ s <- o, the product is continuous, if 1 / r + 1 / s <- 1, in

1 1 1Wl’r(’) X w-l’s(-)---> w-l’t(), -F--.
r. s

Proof. (i) For Sobolev’s theorem see, for example, [1, p. 97].
(ii) Let ve wl"r(12), We WI"(fl). There holds vweL"(12), 1/a=l/r,+l/s.,

Vvw=vVw+wVveLb([2)+LC(f), 1/b=l/r.+l/s, 1/c=l/s.+l/r. Thus vwe
Lt(12), inf (a, b, c). For s _-< r this gives b.

(iii) Let ve Wl’r(12), we W-l’s(fl), that is, w= Wo+,iOiwi, wieLS(12), and
VW0 iWiOiv "4g" iOi

There holds v e Lr,(fl), wi e L(fl); thus vwi e Lt(fl), 1/t 1/r, + l/s, and Oi(vw)
w-l,t(a).

On the other hand, wiOive La(12), 1/a I/r+ I/s, and VWoe La(fl). By Sobolev’s
theorem La(fl)c W-"(fl), since t<=a.. Finally, qe W-"(f). Moreover, taking all
the possible w, we obtain

I1-..,<. <

If we wl’(fl) there holds q vw. Moreover, W’(fl) is dense into W-’(fl).
Therefore the product has a unique continuous expansion for we W’S(fl), which is
defined by vw .

Remark. A proof by duality gives weaker results than those of Lemma 3(ii).
Particularly for r= s 2 here we obtain HI(fl)x H-(fl)c w-l’3/2(fl). The duality
only gives Hl(12) x H-(12) c W-’3/2-(12), for all e > 0.

Let us give some compactness properties for time-dependent functions. Denote
by ’hf the translated function of f, that is (-hf)(t)=f(t+h). Nikolskii spaces are
defined for 1 =< q <- , 0 < s < 1, by

Ns’q(o, T; E)= {fe Lq(O, T; E): sup h-Sllrhf --fl[L,<o,r_h;) < o}.
h>0

LEMMA 4. Let X E Y be Banach spaces, the imbedding X --> E being compact.
Then the following imbeddings are compact:

{ Oqe L’(O, T; Y)}--> L’(O, T; E) if 1 < q<c,(i) zq(0, T; X) f-) " Ot

{ cgqe Lr(O, T; Y)}--> C([0, T]; E) if l< r<-_o,(ii) L(O, T; X)f-) " Ot

(iii) For any given function k e L1 (0, T), k >= 0 and 1 < r <-_ ,
L(O, T; X) n

(iv) Lq(O, T; X) fq N’q(o, T; Y) --> Lq(O, T; E) if s > O, 1 <= q <- .
Proof. Parts (i) and (ii) are stated in Corollary 4 of [14, p. 85], and (iv) follows

from Theorem 5 of [14, p. 84].
Proof of (iii). Let a family of functions q satisfy

0-. -<k+, where
Y
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Let h > 0. By integration on [0, + h] it follows that

Iq(t+h)-q(t)lg<= k(s) ds+h-l/r Ig/(s)lrds
,It

Taking the supremum for in [0, T-h], we obtain

I’hO--q[LO.r_h; r <---- sup k(s) ds +ch 1-1/r.
OtT-h

The right-hand side goes to zero as h 0. Moreover, if the functions are bounded
in L(0, T; X) it follows, by Theorem 5 of [14, p. 84], that the set of functions is
relatively compact in C([0, T]; E). fi

Let us give some estimates for ordinary differential equations.
LEMMA 5. Let g W1’1 (0, T), g 0 and k L1 (0, T), k O, satisfy

Then

d
g2 <_ gk, g(O) <- go.

dt

g(t)<-go+- k(s) ds t T.

Proof. Since g e WI’I(0, T), g is continuous, g(0) is defined, and go>-0. Since 2g
dg/dt <-gk, there holds 2dg/dt <- k on the set {s:g(s)> 0}.

Given t, let n be the larger time less than such that g(n)- go. Then on ]n, t[
there holds 2 dg/dt <- k; thus by integration on In, t] the announced inequality holds.
If there is no such n, then 2 dg/dt <-k on all of [0, t] and the announced inequality
follows by integration on [0, t].

LEMMA 6. Let g e WI’I(0, T) and k LI(0, T) satisfy

dg<- F(g) + k in [0, T], g(O) <-_ go
dt-

where F is bounded on bounded sets from into , that is,

Va>0 ::lA>0 such that Ixl<-_alF(x)l<=A.
Then for every e > O, there exists T > 0 independent of g such that

g(t)<=go+e It <- T.
Proof of Lemma 6. Since g W’(0, T), g is continuous. Let m be the smallest

real value such that g(m)= go+ e and let n be the largest real value less than m such
that g(n) go.

On In, m] there holds F(g)<-_A where A=sup{F(x): go<=x<= go+ e}; then, by
integrating the equation,

Ie=g(m)-g(n) <- A+k() dr<-_ A+k+(t)

This proves that m->_ T, where T is the smallest real value such that

I A + k+( t) e.dr=

If this equation has no solution T it proves that m does not exist, that is, g _-< go + e

on (0, T), and thus the lemma is satisfied with T T.
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3. Weak t-smoothness of any solution. Equations (1)-(3) may be defined in the
distribution sense once pu and puu are defined, in particular, if p L(Q), u L2(Q).
In fact, we will obtain solutions that have the additional properties stated in (4).

Let us first prove that these properties (4) imply that p and a pu. v have integrable
t-derivatives, and therefore are t-continuous. This continuity will be used for weak
initial conditions to have a meaning.

PROPOSITION 7. Assume

f is bounded and its boundary is Lipschitz,

(4) uL2(0, T; V), pL(Q), p’(Q), fL’(O, T; (L2(12))3),
p O, pl/2u LCX(0, T; (t2(f))3),

and let (1) and (2) be satisfied.
(i) Then

Op-- L2(0, T; w-l’6(")) (’ L(0, T; H-I(’)),
ot

Oc)t f ptt t) dx LI(o, T)

More precisely, let g Ipfl =+lupu then g LI(0, T) and

Therefore
p C([0, T]; w-l’()),

v C([0, T]) V.dx

(ii) In addition,

pu L(O, T; (L6(-))3) L(0, T; (L-(I))3),
pUU e L4/3(0, T; (L2([’))9),
Opu

Ot
+V. (upu)-tzAu-pfe W-"(0, T; (H-’(12))3).

Proof of part (ii). By Sobolev’s theorem u L2(0, T; (L6([))3). Moreover, p
L(Q) L(O, T; L([I)); thus pu e L2(0, T; (L6([-))3).

There holds p/2eL(Q). Since p/2ueL(O, T; (L2(fI))3), thus pue
L(0, T; (L2(f))3).

By Riesz’s theorem, for every 0<_-s<-_l, p/ZueL’(O, T; (L())3) with l/a=
s/2+(1-s)/o, 1/b= s/6+(1-s)/2. Choosing s= we obtain pl/21g
L8/3(0, T; (L4(I))3). Therefore puu L4/3(0, T; (LZ(fl))9).

Now Opu/Ot W-I"(O, T; (L-(II))3). Moreover, V (upu), txAu, and pf belong to
LI(0, T; (H-I(f))3), which is included in W-I’(0, T; (H-I(fI))3) by Sobolev’s
theorem. This proves the last property of (ii). [3

Proof ofpart (i) of Proposition 7. (a) By (ii) of Proposition 7 there holds

-V. (pu) L2(0, T, w-l’6()) ["] L(0, T; H-’(f)).
By (2) this is Op/Ot, which therefore belongs to these spaces.
(b) Then p is continuous on [0, T] into W-I’6(Y/). Since p is bounded into L(12),

it is continuous into L(12) weak star, thus into W-’(12).
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(c) For every v (@(f))3 equation (1) gives, in @’(]0, T[),

---, v (pf- Vp V" upu + IzAu,

=(pf, v).+(p,v, v)a+(upu-Vu, Vv).

and the left-hand term equals (O/Ot)(pu, v)a.
For v V it yields, since V. v 0,

pu" vdx= pf" v+upu. Tv-txVu. Vvdx.
Ot

By continuity this equation holds for v V. Moreover, the right-hand side is
bounded by girl v, with

(6) g IPfI(L2(n)) +lupu tzV ul L2([-))9.

By (ii), g LI(0, T). This proves (5).

4. Fractional t-smoothness of any solution. In the preceding section we proved
that pu. v has an integrable t-derivative for every v V. This does not imply that
pu is t-smooth (for example, if pu Vq, q @’(Q)).

In this section we show that pu has fractional t-smoothness, and more precisely
that it lies in a Nikolskii space defined in 1. This will be used later to obtain
compactness in the existence proof.

PROPOSITION 8. (i) Let the assumptions of_Proposition 7 be satisfied. Then

pu N’/4’2(0, T; (W-1’3/2(-))3).

(ii) If in addition p has a lower bound a > 0 in Q, then

U N1/4’2(0, T; (L2(-))3).

Remark. In [13, p. 1012], Simon has obtained a similar result with w-l’3/e-(),
for all e > 0. Now we have e 0 since the properties of the product are improved by
Lemma 3 (iii).

Remark. By Proposition 8, pu lies in a fractional Sobolev space:

pu W’/4-’(0, T; (W-"3/())3) Ve > 0.

Indeed for 0 < s < 1 and 1 _-< r_-< denote

ws’r(o, T; E): f Lr(O, T; E) ly---i dx dy < o

Then, by Corollary 25 of [15], for all e > 0,

N’"(O, T; E) WS-e’r(o, T; E).

Remark. The continuity of pu does not follow from Proposition 8. Indeed by the
fractional Sobolev theorem for Nikolskii spaces (see, for example, [15, Cor. 28])

Ns’r(o, T; E)c C([0, T]; E) iff s> 1/r.

Then the continuity would require h 1+2/ instead of h /4 in Proposition 8.
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Proof of Proposition 8. In this proof c denotes various real numbers independent
of h.

First step. For h > 0, v V, and almost ]0, T-hi there holds

pu. vdx (t+h)- pu. vdx (t)= pu. vdx (s) ds.

By (5) in Proposition 7, the right-hand side is bounded by

g(s) ds Iris.

Choosing v u(t + h)- u(t) and integrating in t, we find

dt Ia (p(t+h)u(t+h)-p(t)u(t)) (u(t+h)-u(t)) dx

T-h I t+h

<= dtlu(t+h)-u(t)lv dsg(s).

which yields

pw dx pu. Vw dx.
Ot

Integrating we find for h > 0 and for almost all in ]0, T[,

(8) (p(t+h)-o(t))wdx= (pu)(s)" Vwdx as.
.__1The right-hand side is bounded (using H61der’s inequality with 1 g+-+) by

lall/6h ’/2 (IP(s)IL()Iu(s)IL>>3 ds

By Fubini’s theorem the right-hand term is equal to

Io Idsg(s) dtlu(t+h)-u(t)lv
--h

whereg=0fors<_-0, g=sfor0<_-s<_-T-h,g=T-hfors>=T-h. In this term let us
bound

]u(t+h)-u(t)lvdt < 12 ds lu(t+h)-u(t)lvdt
-h s-h ---h

<= 2h /2lulL2o,r v)

Carrying back this estimate, we obtain

(7) dt (p(t+h)u(t+h)-p(t)u(t)) (u(t+h)-u(t)) dx<=ch /2.

Second step. For every w @(a), (2) gives

w =-(v. (ou), w)= (ou, w),
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By continuity this inequality is satisfied for w W1’3/2(), By Lemma 3(ii) we can
choose w---u(t) (u(t+h)-u(t)). Then

Carrying back these calculi into (8), and integrating in t, we find

(9) dt -(o(t+h)-p(t))u(t) (u(t+h)-u(t)) dt<-ch 1/.

Third step. Adding (7) and (9) we obtain

dt p(t+h)(u(t+h)-u(t)) (u(t+h)-u(t)) dx<-_ch 1/.

Since p is bounded in L(Q), it follows that

dt [p(t+h)(u(t+h)-u(t))l2 dx<=clplLOO(o)h/2.

Therefore

(10) II(P)(u u)II <o,-;.)) ch 1/4.

If p,_>- a, then rhp a and this gives

hU U L2(O,T-h;( L2(O))3) () h 1/4,

which proves (ii) of Proposition 8.
Fourth step. Equation (2) implies

t+h

p(t+h)-p(t)=- (V. (pu))(s) ds;

thus

IIp(t+h)-p(t)lls-lm)h sup IIv’()()ll.-<.)
O<=s<_T

and

L(O,T-h’H-l([)) <-- ch Ilpu o,;<=<.)).

The product is continuous from Hi(l)) x H-1(12) into w-l’3/2(f) by Lemma 3(iii).
Therefore

Adding this inequality to (10), we finally obtain

IIpu pu =<O,T-;< v-"’=<.)>>----< ch 1/4,
which proves (i) of Proposition 8.

Remark. The first three steps are improvements by Simon [13] of estimates due
to Antonzev and Kajikov [2]. The fourth step is an improvement of [13].

5. Existence of a solution satisfying the weak ,initial condition. In this section we
give an existence result for a solution of the model stated in 1, except that the exact
initial condition (pu)(0)= poUo is replaced by a weaker one. Sufficient conditions that
guarantee the exact initial condition is satisfied will be given in 6-8.
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THEOREM 9. Let the following hold:

is bounded and its boundary F is Lipschitz,

f LI(0, T; (L2(f))3), Uo H, poe L(f/), po->0.

There exist

u L(0, T; V), p L(Q), p W-I’(0, T; L2(f))
such that

inf po-<- P --< sup Po,

pu L(O, T; (L(f))3) fq N1/4’2(0, T; (W-1’3/2())3)

p C([0, T]; W-"(f)), pu v dx C([0, T]) Vve V,

which satisfy (1)-(3) and the initial conditions

(11)

p(O) po,

Moreover, u, p, p satisfy all the properties stated in Propositions 7 and 8.
(ii) If in addition

then

u e L(0, T; (L2(f))3) fq N1/4’2(0, T; (L2(f))3).
Remark. The boundary condition u 0 on F x )0, T( in the trace sense is implied

by u L2(0, T; V).
Remark. Variational equation. Antonzev and Kajikov [2], Lions [10], or Simon

13] solve, instead of (1) and ofthe weak initial condition (11), the following variational
equation:

(12) -Ou---uou" Vo+xVu. Vo-pf. o dxdt= pouo" q(O) dx

Vq e C([O, r]; V) such that o(r) =0.

By integration by parts, we can prove that the solution of Theorem 9 satisfies (12).
Conversely, from (12), we can obtain the pressure and therefore (1) by using Lemma
2, and we can obtain (11) by integration by parts.

Therefore this variational equation is, in fact, equivalent to (1) and to the initial
condition (11).

Remark. Antonzev and Kajikov [2], Lions [10], and Simon [13] suppose that
f6 L2(0, T; H). In fact their proofs hold forf6 L2(0, T; (L2())3); they do not require
f to be divergence free. Here we conclude with onlyf LI(0, T; (L2(’))3).

Indeed to estimate the approached solutions u’, p" from (18) (which is given in
the following proof) they use Gronwall’s lemma. Here we improve the estimates by
using Lemma 5.

Remark. The sketch of the following proof is mainly due to Antonzev and Kajikov
[2]. The obtainment of the pressure and of the weak initial condition on pu are new,
and several estimates are improved.
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Remark. An uniqueness result of a solution u, p of the exact model in a class of
more regular functions is given by Ladyzhenskaya and Solonnikov [ 18]. An existence
result in an unbounded domain f is given by Padula [19].

ProofofTheorem 9. Definition ofapproached solutions u", p Let w W

be a basis of the Hilbert space V such that

(13) w (c(fi))

Such a basis exists since (C1())3 f’l V is dense in V. Let

Vm=subspace of V generated by (w w")

We are looking for u ", p" such that, for some T, > 0,

u" m C’([O, T,.], V"), p" e C’([O, T,.], C’(fi)),

(14) L ((apmum+v (umpmum)--Pmf) o+tZVUm" V)) dx=O V1) E

(15) at

u(o) Uo, p (o) po

where u’ and p are any functions satisfying

Uo V Uo -> Uo in (L2())3,

p C(D,), p’-" po in L(I) weak star as m --, oo,
16)

1 1
--+ inf po <= pg* <=--+ sup po.
m n m n

Equations (14), (15) may be replaced by the nonconservative ones"

f(14’)
J, \P"\ at

+(um" V)u--f V+"VU" dx:O Vv V

(5’) "----+ .. Vp =o.
at

Indeed (15’) and (15) differ from p" times V. u ", which is zero, and (14’) and
(14) differ from the integral over l of. v times (15).

Local existence of u ’, pm. Assuming that u exists, the trajectory y" =yx,(s) of
a particle located in x at time is defined by

(s)=u"(y"(s),s) Vs=>0, y"(t)=x.
ds

By (13) there holds u E CI([0, T]; (C1(fi))3) thusy lies in thesame space, and
the map A" u y" is continuous.

For a fixed u m, (15’) has a unique solution p" such that pm(0)= pn, which is

pro(x,, t)= p(y,.,(t)).

This yields

p =po (Au).
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In (14’) let us use this and decompose

U (O?W -F" "-F t)rnW Dj E C ([0, Tm]).

Then choosing successively v w1, wE, W" we obtain the following system
of m nonlinear ordinary differential equations on o,j 1,..., m"

?(7’,..’, ,7) a___2 + G?(?,..., ) o.
ot

The functions Fj" and Gj" are continuous, and

F?(qg?,..., q0mm)(t) f p’((Aum)(x, t)) dx
meas. 1
m

since p’ --> 1/m.
Therefore this system is equivalent to

F,](?, ,,,), j 1,. rn
Ot \

where G’/F is continuous from (C([O, Tm])) into CI([o, Tm]).
Such a system has a local solution ’, , , that is, a solution for some T, > O,

such that

o’(0)=oj" where Uo =qoW +’’’+q,,oW

The corresponding u ’, p" satisfy (14’), (15’) and therefore (14), (15), and the
initial conditions.

Global existence and estimates on u ", p’. The above expression of p" and the
choice of p yield, on [0, T.],

1 1
(17) --+ inf Po --< P" -< --+ sup po.

m f/ m f/

At any time multiply (15) by -lu’(t)l z and integrate over 11. And add to (14)
with v= 2u’(t). This gives

f (--t (pmluml2)+V (p"umlu"12)-2pmf. urn-t"2lVuml2) dx--O.

The integral of the second term equals zero since u" =0 on the boundary F.
Bounding the third term by H61der’s inequality and by pm =< b 1 + sup po, we find

(18) - plul dx+2, IVul dx<=2b’/ p"luml dx Ifl dx

By the choice of p’ and u’ there exists d independent of rn such that

(Ia p"lu’12 dx)(O) faplu’,2 dx<- d.

It follows by Lemma 5 that, for all <= Tin,

pmlrlml2 dx (t)= d + b 1/2 If(x, s)l = dx as.
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It follows that T,, T and that

(pm)l/2U" is bounded in L(0, T; (LZ(f))3).
By integrating (18) on [0, T], and by (17),

u" is bounded in L2(0, T; g),

pm is bounded in L(0, T; L(f)),
and thus

pmu" is bounded in L(0, T; (L2())3).
In addition all the properties proved in 3 and 4 for the exact solutions u, p are

satisfied by the approached solutions u ", pm with norms independent of m. This is
obtained by replacing u, p by u", p’ in the proofs of Propositions 7 and 8. In particular,

u’p"u is bounded in L4/3(0, T; (L2())9),
opm

is bounded in L2(0, T; W-"6()),
Ot

0 fo p "" vdx ---<([pmf[(L2(f))3"+-[blmpmtlm--vtlmJ(L2(K))9)[t)[V

p’u" is bounded in N1/4’2(0, T; (W-l’3/z(f))3).
Convergence properties. Using Lemma 4(ii) with X L(fl), E W-1’(12), Y

W-’6(12), and r 2, the estimates on p" imply that

{p’}, is relatively compact in C([0, T]; W-l’(f)).
Using Lemma 4 (iv) with X= (LZ(fl))3, E (H-l(f))3, Y= (W-’3/z(fl))3, s =,

and q 2, the estimates on p"u" imply that

{p"u’},, is relatively compact in L2(0, T; (H-(fl))3).
Therefore there exists a subsequence of {u’, p"},,, and u, p, g, k such that

u’ u in L2(0, T; V) weak,

p"- p in L(Q) weak star and in C([0, T]; W-’(f)) strong,

p’u" - g in L(0, T; (L2(f))3) weak star and in L2(0, T; (H-(f))3) strong,

p’umu’- k in L4/3(0, T; (LZ(fl))9) weak.

By Lemma 3 (iii) the product is continuous from H x W-’ into W-’6. Therefore
these first two properties imply that

pmum’-’ pU in L2(0, T; (w-l’6(’))3) weak,

and thus g pu in the third property.
From the first and the third properties it follows, again using Lemma 3(iii), that

p"uum- gu in LI(0, T; (W-1’3/2(-))9) weak,

and thus k puu in the fourth property.
Limit equations and initial conditions.
(i) There holds pro_. P in @’(Q) and pmu- pu in (@,(Q))3. Then passing to

the limit in @’(Q) in (15), we find

--Co+ v pu) o.
ot
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(ii) There holds pm (0)"-) p(0) in w-l’(). Then passing to the limit in the initial
condition p’(0) po we obtain

p(0) po.

(iii) Since u L2(O, T; V), the following equation holds:

V-u=0.

(iv) Equation (14) may be written, for all w V,
Ot P w dx + (--tlmpmtl + txVu Vw p w dx O.

Let v V and choose w v" where v" - v in V. Thus we can pass to the limit in
each term in 9’(]0, T[). It gives

pu. vdx+ (-upu+lVu) W-of. vdx=O.
Ot

This yields

Opu )-+ (upu)-Au-pf, --0 v .
Moreover by Proposition 7(ii) Opu/Ot+V (upu)-iAu-pf W-’(0, T;

(H-1())3). Then by Lemma 2 there exists pc W-’(0, T; L2()) such that

Opu
-t-V (upu) tzAu pf
Ot

(v) Let v V and vm V" satisfy vm V in V. By the above estimates

0 In vm- p"u" dx

k: b sup ]v"lv, " lU’pmum- I.l, Vuml(L2(f))9lDm[v

There holds k L(0, T) and q" is bounded in L4/3(0, T). Therefore Lemma 4(iii)
with X E Y R and r 4/3 gives

p"u", v’dx is relatively compact in C([0, T]).

On the other hand, this sequence converges to n pu.v dx in L2(0, T) weak, by
the convergence properties. Thus the convergence holds in C([0, T]) and

The left-hand term is

Thus

po Uo v dxo poUo" v dx.

(Iapu. vdx)(O)= InpoUo. vdx lv V.
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(vi) Passing to the limit in (17), we obtain

inf po <-- p -< sup po.

(vii) Proposition 8(i) gives

pU E N1/4’2(0, T; (W-1’3/2(-))3),
which ends the proof of (i) of Theorem 9.

(viii) If infa po> 0, since by (vi) of this proof p >-infn po, then lip L(Q). By
(i) of Theorem 9, pu L(O, T; (L2())3). Therefore u pu x lip satisfies

u L(0, T; (L2(f))).

Moreover, by Proposition 8(ii)

U N1/4’2(0, T; (La(f))3),
which ends the proof of part (ii) of Theorem 9. [3

6. Navier-Stokes equations. The Navier-Stokes equations are obtained by setting
p-- 1. In this case we will prove that the strong initial condition u(0)= Uo is satisfied.
Indeed the t-continuity of u in a certain space V. will result from the estimate on
(O/Ot) n pu" v dx proved in 3.

For every v (LZ(f)) let

(19) Ivl, sup
1 fan v.dxV,#O

LEMMA 10. I, is a norm on V, and is only a seminorm on (HI(’))3.
Proof. If v E V and vl, =0, then choosing v we obtain v =0. Thus I, is a

norm on V.
Let v Vw, where w ((’))3, W 0. Then

fn v" q dx= In wV cp dx=O

and Ivl, =0. Thus I, is not a norm on (Hl(f))3.

VeV,

By definition V, is the completion of V for the norm I,.
PROPOSITION 11. Let

f LI(0, T; (L2(-))3), Uo H.

There exists u, p such that

U L2(0, T; V) ffl L(0, T; H) f’l C([0, T]; (H-1(’)))3),

Ou La--e (0, T; V,),
Ot

p w-l’(0, T; L2(’)),

which satisfy the Navier-Stokes equations, that is, (1) with p 1 and (2), and the initial
condition

u(0) Uo.

This result is given to point out the difference between the homogeneous and
nonhomogeneous cases. For only the homogeneous case the assumption of f may be
replaced by f6 L2(0, T; (H-l(f))3) (see, for example, [16]).
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Remark. The space V, may be replaced by the dual space V’ of V. Indeed when
H is identified to its dual space H’, then V, is identified to V’.

But when these identifications are done, it is not possible to identify at the same
time H to a subspace of (L2(1)) and of (H-1(12))3.

Remark. The space V, contains some v that are not in (9’(f))3. For a sequence
v, of V the convergence in (H-I(I))) implies the convergence for[I,, but the
convergence for I, does not imply the convergence in (9’(12))3. These properties are
proved in Simon [16].

Proof of Proposition 11. (i) Choosing p0-= 1 the proof of Theorem 9 is satisfied
with p"-= 1. Therefore Theorem 9 is satisfied with p---1. Then the property (5) in
Proposition 7 yields

(20) - u v dx <- girly with g e LI(0, T).

Since uL2(O, T; V) we have Ou/Ot 9’(0, T; V) and this inequality yields
IOu/Otlv

*
<- g. Thus

Ou L-- (0, T, V,).
Ot

(ii) Then u is continuous on [0, T] into V,. Since u is bounded into H, it is
continuous into (L2(O)) equipped with the weak topology and therefore into (H-(12))
strong.

(iii) It follows that u(0) H, and that

(f u v dx)(O) f u(O) v dx.

Then the weak initial condition (11) yields

(I(u(0)-u)’vdx)=0 ’vV.

By continuity it is satisfied for all v H, thus for v u(0)- Uo, which gives

u(0)-u0=0. Cl

7. Sufficient conditions for the strong initial condition. Using the seminorm I,
defined in {} 6, the estimate (5) proved in Proposition 7 yields

(21)
Opu

L--I, --< g wherege (0, T).

If pu 9’(0, T; V,) this gives the t-continuity of pu into V*, l, being a norm
on V,. For the Navier-Stokes equations, this is satisfied since pu u.

Unfortunately in the nonhomogeneous case the following holds.
LEMMA 12. If p depends on t, then pu : @’(0, T; V,) and (21) is not enough to

define (pu)(O).
Proof of Lemma 12. By continuity every v e V, satisfies V. v=0. If pue

9’(0, T; V,), then V. (pu)=0 and (2) gives Op/Ot =0, so that p is independent of t.
Since pu is only known to be in L(0, T; (L2(fl))3), and I, is not a norm on

(L2(,))3, (21) does not allow us to define (pu)(O). Remark that, if a seminorm were
enough, then q(0) would be defined for every function by using the null
seminorm!
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Now we are looking for the strong initial conditions that are satisfied when pu or
u are continuous.

PROPOSITION 13. Let u, p, p be a solution given by Theorem 9(i).
(i) Ifpu C([0, T]; X), whereX is any Banach space, then (OH)(0) (L2(])) and

((pu)(O) poUo) v Vv H.dx

Therefore
(pu)(O) pouo+ VA where A HI().

(ii) If u C([0, T]; H), then

(pu)(O) p(0)u(0)= poUo.

(iii) If u C([0, T]; H) and po> 0 almost everywhere in , then

u(0)-- Uo.

Proof. (i) If pu is continuous on [0, T] into X, it is continuous into (L()) weak
since it is bounded into (L(Y)) by Theorem 9(i). Then (pu)(O) (L())3,

(f pu v dx)(O) f (pu)(O) v dx

and the weak initial condition (11) yields

poUo) v 0 Vv V.dx

By continuity this is satisfied by all v H.
By Lemma 1 there exists ;t L(g) such that (pu)(O) poUo+ V;t. Then Z HI().
(ii) Let u be continuous on [0, T] into H. By Theorem 9(i), p is continuous into

w-l’(f) and is bounded into L(g), thus it is continuous into L(f) weak star.
Thus pu is continuous into (L(g)) weak, and (pu)(O)= p(0)u(0). Then, by (i) of this
proposition,

a
(p(0)u(0) poUo) v dx 0 Vv H.

Choosing v u(0)- Uo and using p(0)= po it gives

(22) po(X)iu(O)- Uol2(x) 0 for almost all x ft.

Multiplying by po we obtain Ipo(u(O)- Uo)l2= 0, and thus

p(O)u(O)-pouo=O.

(iii) If moreover po(X) > 0 for almost all x , then (22) gives

u(0)- Uo-0 almost everywhere in 1). [3

8. Existence of a solution satisfying the strong initial condition. In this section we
will prove that, when Uo, f, and 1 are regular enough, there exists a global solution
that is regular up to some time T,. Then pu satisfies an initial condition that is
intermediate between the strong and the weak ones. When in addition po is not too
small, the strong initial condition is satisfied.

THEOREM 14. Assume

1) is bounded and its boundary is W2’ (or C2),
f(LE(Q))3, Hoe V, poeL(l)), po-->0.
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(i) There exist u, p, p that satisfy all the properties stated in Theorem 9 and, for
some T, > O,

u L2(0, T,; (H2(-))3) L(0, T,; V), p L(0, T,; L6()),

pu C([0, r,]; (w-l’cx())3), OPU L(O r,; (W-’
0t

Op-- LCX3(0, T#; w-l’6(’)) (’ L4-e(0, T#; w-l’c’(-))
ot

and the initial condition

then

then

Ve>O,

(pu)(O) poUo+VA where 1 wl’6().
The time T, depends only on the data f, f, Uo, po.
(ii) If in addition

1 L6/5-- (),
Po

(iii) If in addition

u(t) is continuous at 0 into H,
u(O) Uo, (pu)(O) poUo.

inf po > 0,

u e C([O, r,] V),
Ou

L-- (0, T,; H).

Remark. The assumption 1/po e L6/5(12) allows Po to have some zeros, but the set
of all zeros must have a null measure. This assumption is particularly satisfied if

infa Po > 0.
Let P denote the projection in (L:(I2)) on H. We remark that

(pAy, w)a -(Vv,
Since the boundary F is W’, the following estimates hold.

LEMMA 15. ere exist e > 0 and c > 0 such that, for all v (H2()) V,
(i) IAVILn?

Proof (i) There holds (v-Pv, w)a 0, for all w H. Thus by Lemma 1 there
exists q L(O) such that v= Pv+Tq. Inequality (i) is then given by a theorem of
Cattabriga [3] (see equally [8, Thm. 2, p. 65]).

(ii) By Riesz’s theorem with = s/6+(1-s)/2, then s=, there holds

Ivl,,<))3
By Sobolev’s theorem W’4()= L(O) and H2()= W1’6(). Inequality (ii)

follows, since

Proof ofpart (i) of eorem 14.
Special basis. We use a basis of eigenfunctions still used for Navier-Stokes

equations by Lions [11, p. 74] and by Ladyzhenskaya [8, pp. 43-45]. The operator P
is a bijection of (H2())3 V on H that is self-adjoint and whose inverse is compact
[8, Thms. 6 and 2, pp. 44, 65]. Thus there exists an increasing sequence of positive
eigenvalues A and a sequence of corresponding eigenfunctions w defined by

w (H(O))3 V, Paw+Zw=O.
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The set {w.}.n is an orthogonal basis in H and a basis in V [8, p. 45]. By
Sobolev’s theorem there holds PAw,,, h,.w,. (C())3. Therefore [8, Thm. 2, p. 74]
w. (w2’q())3, for all q <, which implies

w (c’(fi))
This is assumption (13), and thus we can use this basis in the proof of Theorem

9. Then the approached solutions u, p satisfy all the estimates obtained in the proof
of Theorem 9.

Supplementary estimate. In (14’) for any it is possible to choose v 2(um/t)(t).
Indeed it belongs to V. Then (14’) yields

2 p dx+ IVu =2 p(-( "V)um+f)"
Ot

On the other hand, for any it is possible to choose v Pu(t) in (14’). Indeed
it belongs to V since P maps V into V by Pwm =-hw. Then (14’) yields

I IpAul=

1 Ia2[pm’2(+2 /l(u. V)u-fl) dx.

Let us multiply this inequality by d and add it to the preceding inequality. Then
observe that, by definition of P, the integral on f of Au m. PAu equals the integral
of IPAuI=, and that, by (17), p’=< b= 1 +supa po. Thus we obtain

1- p --f- dx + tx -d7 ]Vu dx + nAu dx
2

(b+db2] fa ’(u" V)um--f’2 dx.

Choosing d /2b and using Lemma 150) it follows that

P 7 dx+, IVu dx+2e lau dx

(23)

By Lemma 15(ii) and by N aft4/3+C4, there holds

(24)

-- I1 dx+ I1 dx
-3b
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Carrying back this estimate in (23), we obtain

(25)

-3ba I"1 dx +3b Ifl dx.

Estimates on u" and u. Let Uo, be the coordinates of Uo in the basis (wi), that is,
Uo EUo,W. Choose

U-" E UO,iWi"

Since this basis is orthogonal in H, u’ Uo in H, and then hypothesis (16) is
satisfied. Moreover, since (V w, V wj). 0 if # j, there holds

fc, ]Vun’2dx-l<=i<=m ]u’i]2f]Vwi]2dx<=falVu12dx"
Then (25) implies, by Lemma 6, that there exists T. > 0 independent of m such

that, for all <= T.,

(flVuml2 dx)(t)<= f[VUo[2 dx+ l.

Thus u is bounded in L(0, T,; V). Moreover, by integrating (25) on [0, T,],
Aum is bounded in L2(0, T,; (L2(f))3). Thus

u" is bounded in t2(0, T,; (H2())3) fq L(0, T,; V)

and its limit satisfies

u 6 L(0, T,; V) f"l L2(0, T,; (H2(f))3).

Supplementary properties on u and p. (a) By Sobolev’s and Riesz’s theorems u is
bounded in L(0, T,; (L6(f))3)VI L4-(0, T,; (L(f))3) for all e >0. Thus Op"/Ot
-V. (p mu m) satisfies

Ot
is bounded in L(0, T,; w-l’6())(t4-e(O, Tg; W-"())

and p, which is the limit of pro, satisfies

Op-- LCX)(0, T@; w-l’6(-)) (- L4-e(0, T,; W-"(-)).
ot

(b) By Lemma 3(iii) the product is continuous from wl’6x W-1’6 into W-1’6.
Thus, since u is bounded in L(0, T.; (W1’6())3),

Op
Um- is bounded in L2(0, T; (W-1’6(’))3).

ot

(26)

On the other hand, the integration of (25) on [0, T,] gives

2(pro)l oum is bounded in L2(0, T,; (L (1))).
Ot
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Thus pmoum/ot is bounded in the same space, which is included in
L2(0, T:g; (W-1’6())3). By addition Opmum/ot is bounded in this space, thus

Opu

Ot
L2(0, T,; (W-1’6("))3).

(c) It follows that pu is continuous on [0, T,] into (w-l’6(-))3. Since pu is
bounded on [0, T,] into (L6(-))3, it is continuous into (L6(-)) weak and therefore
into (W-I’(f))3.

(d) The distributions V. (puu), Au, f, and Opu/Ot lie in L2(0, T; (W-1’6("))3).
Then by (1), Vp lies in the same space, and this implies that pc L2(0, T,; L6(-)).

(e) By Proposition 13(i) the intermediate initial condition is satisfied. This ends
the proof of part (i) of Theorem 14.

Proof ofpart (ii) of Theorem 14. (a) By (i), Op/Ot L(O, T,; w-l’6()), and by
Theorem 9, p(0) Po. Then, for 0_-< t-< T,,

]po-- p( t)[ w-1,6(sa) < ct.

Since u(t) is bounded in (nl()) for 0<= t=< T, it follows, by Lemma 3(iii), that

I(po- p( t))u( t)lw-,,,)? <= ct.

Thus t (poU(t)-p(t)u(t)) is continuous at zero into (W-I’3(Y))3. Moreover, pu
is continuous into this space by (i) of Theorem 14. Therefore poU(t) is continuous
at zero into W-,3(f))3.

Moreover, pou(t) is bounded on [0, T,] into (L6(f))3. Thus tpou(t) is con-
tinuous at zero into (L6(’))3 weak. By assumption 1/po is in L6/5(’), thus u(t) is
continuous at zero into (L(12)) weak.

Moreover, u(t) is bounded on [0, T,] into V. Thus u(t) is continuous at zero
into (H(O)) weak and into (L2(-)) strong. Thus - u(t) is continuous at zero into
H.

(b) In (ii) of Proposition 13 we have proved that

(pu)(O) p(0)u(0)= poUo

when t- u(t) is continuous on [0, T] into H. But the proof used solely the continuity
at -0. Thus this property is still satisfied here. Multiplying by 1/po, it gives u(0)-- Uo.

Proof ofpart (iii) of Theorem 14. (a) By (26)

(pm)l/20blm is bounded in L2(0, T,; (L2(-))3).
ot

Moreover, u’, p" satisfy all the estimates obtained in the proof of Theorem 9.
In particular, (17) is satisfied, and thus prn inf Po. Therefore, when inf po> 0,

OU

ot
is bounded in L2(0, T,; (L2())3).

Moreover, oum/ot C([0, T]; V). Thus it is bounded in L2(0, T,; H) and its limit
satisfies

OU-- L2(0, T,; H).
Ot



NONHOMOGENEOUS VISCOUS INCOMPRESSIBLE FLUIDS 1115

that
(b) This property and u L2(0, T,; (H2(12))3) imply, by Theorem 3.1 of[12, p. 68],

U C([0, T,]; (H1(12))3).
Since u L(0, T,; V) there holds u C([0, T.], V). I-]

Remark. The estimate (25) is due to Kim [7]. His solution is only local since he
does not have the estimates of Theorem 9. He obtains neither the pressure nor the
initial condition on pu.

He supposes that f6 L(0, T; (L2([’))3) to conclude, from (25), that a 17u"l 2 dx
is locally bounded. We obtain the same result for f L2(0, T; (L2(12))3) by using
Lemma 6.

Remark. The local existence of a more regular solution is proved by Ladyzhen-
skaya and Solonnikov [18]. Assuming

Uo(W2-2/q’q(-))3( V, po e cl(fi), infpo>0, f(Lq(Q))

with q > 3, they proved the existence of T.> 0 such that for T= T, there exists a
solution u, p, p of the exact equations such that

Ou
umL(O, T; (W2"q’(12))3CI V), -m(Lq(Q))3, pc W"(12), pC’(O).

In addition they prove the uniqueness in this class and the global existence, that
is, the existence for any given T, for small enough data.

9. Space dimension 2. Now let 12 be a subset of 2 instead of 3; we still suppose
12 open, bounded with a Lipschitz boundary. All the previous results remain true, and
some may be improved.

At first for the solution with a weak initial condition given in 5, some of the
estimates are satisfied with better coefficients.

PROPOSITION 16. For 12 c 2 the solution given in Theorem 9 satisfies, for all q <
and for all e > O,

pu L(O, T; (Lq(12))3) CI N’/4’2(0, T; (W-"-(12))3),

8P L-- (0, T; W-’q(O)),
Ot- Ou" v dx <-_ girly Vv e 1/ where g e La-(O, r).

Proof. The proof is the same as that for Propositions 7 and 8, with the imbeddings
H(a) c Lq(f), for all q < oo and H(a) x H-(a) c w-1,-(12) for all e > 0.

The solution with a strong initial condition is obtained with a weaker assumption
on 0o than in 8. Moreover if 0o is bounded from below, the solution is globally
regular, that is, regular on all of [0, T]. More precisely, we have Theorem 17.

TEOREM 17. (i) For 12 c the solution given in Theorem 14 satisfies, for all q <

p L2(0, T,;

pu L(O, T,; (Lq(12))2), Opu L:(0, r,; (W-"o(12)):),
dt

Op
W_ Lq--e L(0, T," ’(12)) f-) (0, T,;

Ot
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(ii) In (ii) of Theorem 14, the assumption l/poe L6/5(-) may be replaced by

l/poe Lr(l) where r> 1.

(iii) If in addition inf po> 0, then all the results of the present theorem and of
Theorem 17 are satisfied with T, T.

Remark. The results of part (iii) are due to Antonzev and Kajikov [2].
Remark. The existence and uniqueness have been proved by Kajikov [6] in a

class of smooth solutions u C2/’1//2(1) x [0, T]), p C1( x [0, T]).
Proof of eorem 17. The proof of (i) is the same as for Theorem 14, by now

using Hl() Lq(), for all q <.
(ii) Now poU(t) is bounded on [0, T,] into (Lq(O)), for all q<m. Thus the

proof of Theorem 14(ii) gives us that t poU(t) is continuous at zero into (Lq())
weak. Thus, choosing l/q+ l/r= 1, the assumption is enough to conclude that u(t)
is continuous at zero into (L()) weak.

(iii) For v e H() there holds

iVvl(4(m < clvll/;(a 1/2 < rID[l/4 13/4

Thus in the proof of Theorem 14, estimate (24) may be replaced by

f (ffl ) 1/2(f 14 )1/2v)u l lull dx Iv u dx

Now (25) yields

Ne/3b la.ml Iv ml- 0 -- dX + l- Vuml2 dx + e IAu dx

where km= Ict [Vuml2 dx is boundedin L1(0, r).
Thus u are bounded in L(0, T; (H(O))) fq L(0, T; (H(O))) by Gronwall’s

lemma. From this we can choose T, T in the third step of the proof of Theorem
14(i). [3

Acknowledgments. The author is indebted to J. C. Saut, who encouraged him to
work on these questions, and to the referee for many improvements, in particular, in
the case of space dimension 2.
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A DYNAMIC FREE-BOUNDARY PROBLEM IN PLASMA PHYSICS*

YOSHIKAZU GIGAf AND ZENSHO YOSHIDA:

Abstract. A viscous incompressible inhomogeneous plasma in a bounded domain in RN (N 2,3) is
considered. The resistivity is discontinuous and the set of discontinuities corresponds to the interface (free
boundary) of two plasmas having different temperatures. The dynamics of the free boundary is studied. A
reasonable model system is a parabolic system with discontinuous coefficient coupled with a transport
equation for the resistivity. No assumptions are imposed on the regularity of the initial interface. A priori
estimates are derived for the resistivity in the class of functions of bounded variations, and global-in-time
weak solutions are constructed for the model equations such that the area of the free boundary does not
blow up in finite time provided that either N 2, or the difference of resistivity is small (for N 3). The
fixed boundary 0fl surrounding the total plasma is assumed to be perfectly conductive and adherent.

Key words, plasma, free boundary, parabolic system, discontinuous coefficients, transport equations

AMS(MOS) subject classifications. 35F10, 35K20, 35R05, 35R35, 76W05

1. Introduction. This paper studies the dynamics of the interface (flee boundary)
of two incompressible viscous plasmas--high and low temperature plasmas in a
smoothly bounded domain 12 in RN (N 2, 3). Each plasma has different electric
resistivity r/L > r/n > 0 which are assumed to be constants for simplicity. A large r/L
(small r/n) corresponds to low- (high-) temperature plasma. We consider a step function
r/with two values r/L and r/H. The region occupied with low (high) plasma corresponds
to the place where r/ takes the value r/L (r/H). The interface corresponds to a jump
discontinuity of r/. We study the dynamics of r/ instead of the interface itself. The
kinematic viscosity is assumed to be constant on whole 12.

Plasma confinement experiments, for example, in controlled fusion researches,
produce high-temperature plasma that are necessarily detached from the boundary
wall materials. A high-temperature plasma is generally surrounded by a low temperature
plasma.

The evolution of r/ is described by a convection transport equation:

O,r/+ (v. V)r/= 0 in f,

where v is the fluid velocity. This v is governed by momentum equations of the
incompressible Navier-Stokes system. The momentum equations have the magnetic
force term, which couples the equations with the magnetic induction-diffusion equations
which are essentially Ohm’s law. The discontinuous resistivity function r/ appears in
the magnetic diffusion term. The boundary 012 is assumed to be perfectly conductive
and adherent.

This self-consistent model describes many interesting phenomena of plasmas.
Some variety of free-boundary instabilities have been studied by linear stability analysis,
and nonlinear numerical simulations also have been developed (for example, see [1]).
For constant r/ a global (in time) regular solution is known to exist for arbitrary
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(respectively, small) initial data when N 2 (N 3) (cf. [20]). In the present work
we consider a perturbation around an equilibrium and drop quadratic terms ofperturba-
tions of the magnetic field and the fluid velocity, however, keeping (v. V)r/ in the
transport equation. We also assume, just for simplicity, that the equilibrium is current-
free. For this model system, we construct a weak global solution such that the area of
the free boundary does not blow up in a finite time provided that either the space
dimension N 2 or r/L/r/H 1 for N 3. We do not even need to assume that r/ is a
locally constant function to construct a weak global solution. We consider the transport
equation in BV, the space of functions of bounded variations. If r/ is in BV with two
values r/L and r/n, the (essential) total variation in space variables Ill,Ill(t) equals
r/L-r/H times the area of the interface at the time t. Here the interface should be
defined as the (approximate) jump discontinuity of r/ [5], [10], [19]. In this paper we
do not assume that initial interface is smooth, but only assume initial V r/ [[1(0) is finite.

To construct the solution of our system, we appeal to the Schauder fixed-point
theorem. The crucial step is to obtain various a priori estimates. We need a regularity
of v to get a priori estimates for r/in BV space. The regularity of v follows from the
regularity of the magnetic field b. However, since the magnetic diffusion coefficient r/
is discontinuous, we do not expect much regularity for b. Although it is easy to show
that V b is a space-time L: function, by an energy equality, this does not give enough
regularity for v. We will prove Vb is a space-time L function for some r > N by a
perturbation argument. Here we need to assume that N 2, or r/L/r/H 1 for N 3.
Such a perturbation argument is found in Campanato [4] for Dirichlet problems. Since
our boundary condition for b is Neumann type (see 2)

nxrotb=O, n.b=O onOf,

his theory cannot be applied directly to our problem. We are forced to use an
approximation argument, since the trace n rot b is not well defined for b, when Vb
is only a (space) L2 function.

This paper is organized as follows. In 2, we formulate our problem including a
two-dimensional version. In 3, we state our main results, and sketch our scheme to
construct solutions. In 4, we solve the transport equation in BV space assuming that
v is a given function. Section 5 is devoted to deriving a priori L estimates for parabolic
systems with discontinuous coefficients when the boundary condition is a Neumann
type. In 6, we construct a weak solution by applying the Schauder fixed-point theorem.

2. Formulation of the problem. We consider an incompressible plasma (a current-
carrying fluid) with inhomogeneous resistivity. The plasma is contained in a smoothly
bounded domain 11 in R3. The boundary 0f is assumed to be perfectly conductive and
adherent. We begin by formulating a model equation when the space dimension N
equals 3. The dynamic state of the system is characterized by the following functions:

b(x, t): magnetic flux density (three vector),
/9(x, t): fluid velocity (three vector),
p(x, t): pressure (scalar),
r/(x, t): resistivity (scalar).

We here consider an incompressible viscous plasma whose kinematic viscosity v and
density p are positive constants. The dynamics of the plasma is described by the
following system of partial differential equations:

(2.1) O,b -rot r/rot b + rot (v x b), div b O,
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(2.5)

(2.6)

(.7)

and on

(2.8)

(2.2) O,v vAv-(v. V)v- b x rot b/(lop)-grad p/p, div v =0,

(2.3) err/+ (v. V)r/= 0,

where 0, =O/Ot, rot r/rot b =rot (r/rot b), and/Xo represents the vacuum permeability.
Equation (2.1) is essentially Ohm’s law. Equation (2.2) is the Navier-Stokes system
with the magnetic-force term -b x rot b; here grad p is the gradient field of p and

(v-V)=
i=1 OXi’

where v (Vl,. , vN). Equation (2.3) is the transport equation for the resistivity 7.
Since the boundary is perfectly conductive and adherent, the boundary conditions we
impose are

n.b=g(x), nxrotb=0, v=0 on0fl,

where g(x) is a given time-independent function with vanishing mean value and n is
the exterior unit normal vector to

To avoid other difficulties, we consider small perturbations b, v, and p around a
current-free equilibrium B, V, P such that

rotB=0, divB=0, V=0, P=0 in
(2.4) n. B g(x) on 0f.

We plug b+ B, v+ V and p+ P in (2.1)-(2.3), and neglect quadratic terms of perturba-
tions b, v, p. System (2.1)-(2.3) now yields

0,b =-rot r/rot b + rot (v x B), div b 0,

O,v Av B x rot b grad p, div v 0,

am +(v. v) =0,

n.b=0, nxrotb=0, v=0,

where we set v o p 1 for simplicity of notation; our existence result in 3 is still
valid without assuming v =/Xo p 1. The boundary condition for b at the interface
(jump discontinuity of r/) is implicit in (2.5)"

[/n xrot b] 0,

where [f] is the jump of a function f at the free boundary.
In this paper, we also consider a two-dimensional version of the problem. This

is obtained by considering an ignorable coordinate, say x3 of x (xl, x2, x3). However,
it is necessary to be careful in definitions of the rot operators and the vector products.
For a two-vector function w (w(x, x2), W2(Xl, X2)), we define

rot w-
OX OX2

which gives a scalar function. We also define, for a scalar function 0,

rt*q=(0x’ Ox

which gives a two-vector function. For a three-vector function u, we define

rot *u rot u,
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where rot is the usual rotational operator. We use the notation of the exterior product
instead of the vector product. For two-vectors u (Ul, u2) and v (Vl, v2) we write

uAv ulv2- U:Vl.

For scalar , we define a two-vector by

uA*--(u2,-UlI).

For three-vectors u and v, we define

uAv=uA*v=uxv.

Using these conventions of notation, we now write the model equations (2.5)-(2.8) in
a general form which is valid for both two and three dimensions"

(2.9) O,b -rot *r/rot b+rot *(vAB), div b =0 in

(2.10) O,v=Av-BA*rotb-gradp, divv=0 in 12,

(2.11) O,r/+(v. V)r/=0 in 12,

(2.12) n.b=0, nA*rotb=0, v=0 on

where t2 is in RN and N=2 or 3.

3. Main results and outline of the proof. Our goal is to prove the existence of
global-in-time solution of the initial value problem for (2.9)-(2.12) even when initial
resistivity r/o is discontinuous. We first list our assumptions on initial data. We assume
that initial resistivity r/o r/o(X) satisfies

(3.1) r/oBV(12) and 0<a=<r/o -</3 in 12,

where a and/3 are constants. Here BV(12) is the set of functions of bounded variations
(see [10], [19]), i.e.,

BV(12) {r/; r/ L1(12), Vr/ M(12)},

where M(12) is the set of finite Radon measures on f and V is a (distributional)
gradient. Here and hereafter we do not distinguish between spaces of vector-valued
and scalar-valued functions. For the initial velocity Vo, we assume

(3.2)
Vo, 72/)o L(12), div Vo=0 in 12,

Vo=0 on 012,

with q> 1, where Lq(f) is a usual Lebesgue space and 72 represents any spatial
(distributional) derivative of the second order. The initial magnetic field bo satisfies

bo, rotbo, VrotboL(f), divbo=0 in
(3.3)

n.bo=0, nA*rotbo=0 on

The trace n. bo on 0 is well defined because div bo-0 and bo LO(f) (see [7]). Since
our r/(x, t) may have jump discontinuity, we should interpret (2.9)-(2.12) in some
weak sense.

If v is smooth, for r/ we expect, from (2.11) and (3.1), that

rl(x, t) BV(Q) CI C([0, T); L1(12)),
(3.4) V r/ L(0, T; M(f)),

Otr/ LI(O, T;



1122 YOSHIKAZU GIGA AND ZENSHO YOSHIDA

where Qr f/x [0, T); f Lr(0, T; X) means that the mapping from to f(., t) is L
with value in X, and f C([0, T); X) means that the mapping from to f(., t) is
continuous with value in X, where X is a Banach space. Equation (2.11) can be
understood as an equality of measures on Qr provided that v is smooth. The initial
condition r/[=o r/o is well defined since r/ C([O, T); LI(’))).

If b and B are not singular, it is natural to expect that our v satisfies

(3.5) v(x, t) Wr2’I(QT),

viz., v, 0,v, V2ve Lr(Qr) for some r, since (2.10) is parabolic. The traces of v on t=0
and on 0f are well defined for such functions. Both sides of (2.10) can be understood
as an equality of L functions.

Since r/ is discontinuous, for b we only expect

(3.6) b(x, t) C([0, T); Lz(f/)) fq L2(0, T; W), W= HI(-]) (’] LZ(f),

where Ha(f) is the Sobolev space of order 1, and

(3.7) L2() {u LZ(f/); div u =0 in 12, n. u =0 on Of/}.

We need a weak formulation of (2.9) so that we can interpret boundary condition
nA* rot b 0. We define a bilinear form

(3.8) a(t, , q5)= In [r/(x, t) rot . rot 4] dx.

A weak formulation of (2.9) with nA* rot b =0 and blt=o bo is, for any T> 0,

lb. 0,] dx dt + [bomb(x, 0)] dx

(3.9)

=-Io {a(t’b’b)+I[rt*(vAB)’]dx}dt
holding for every b(x, t) C(I [0, T)), i.e., b is C with a compact support in

[0, T). Since the condition div b =0 and n. b =0 is included in (3.6), the weak
formulation (3.9) is formally equivalent to (2.9), (2.12) with bl,=o bo. We thus see
that system (2.9)-(2.12) with initial conditions

bl,=o-bo, vl,=o= Vo,

is formally equivalent to (3.9), (2.10), (2.11) with

(3.10) v =0 on 012,

(3.11) v],=o Vo in 12,

(3.12) r/],=o r/o in 12,

under the condition (3.6) on b.
MAIN EXISTENCE THEOREM. Assume that B is smooth on 12 and satisfies (2.4).

For positive numbers and fl in (3.1), we suppose that fl / a is close to 1 when the space
dimension N 3, and that a and fl are arbitrary when N 2. Suppose that initial data
(bo, Vo, 7o) satisfies (3.1)-(3.3) with q> N. Then for every T>0 there is a function
(b(x, t), v(x, t), (x, t)) that solves (3.9), (2.10), (2.11) with (3.10)-(3.12) for some
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p(x, t), and satisfies (3.4)-(3.6) for some r> N and Vb Lr(Qr). It also satisfies the
energy equality

fab2(x’T) dx+Iav2(x’T)dx+2IIo rl(rtb)2dxdt+2IIo rl(Vv)2dxdt

Remark. Since V r/6 L(0, T; M(f)) by (3.4), we see the total variation on f,
IIv,ll(t) is bounded on [0, T). If initial r/o is a two-valued function, this IIv[I,(t)
measures the area of free surface of high-temperature plasma. Our main theorem says
the area of the free boundary cannot blow up in finite time at least for our solution.

Remark. The condition rot B 0 in (2.4) is assumed only for simplicity. We may
drop this assumption in the Main Existence Theorem; the only change appears in the
energy equality.

Remark. Our assumptions on B, bo, Vo are not at all optimal. We choose this
assumption to avoid using functions spaces with fractional derivatives.

We construct a solution by a fixed-point argument. For a function rtl(x, t) satisfying
r/l(x, 0) r/o(X), we solve (3.9), (2.10) with r/= r/ under (3.10), (3.11) to get a solution
(b, v) denoted (bl,/91)- We then solve the transport equations (2.11) and (3.12) with
v vl and find a solution denoted r/. This procedure defines a mapping

F" ,ql -+ r]2.

We will show the existence of a fixed point of the mapping F using the Schauder
fixed-point theorem in appropriate function spaces. A fixed point of F is the desired
solution of our problem.

4. Transport equations. To study the evolution of resistivity, we consider a trans-

po equation

(4.1) Otr/+ (v. V)r/= O,

even if initial data is merely a function of bounded variation. We will always assume

(4.2) divv=O inO, n.v=O onO0 (fora.e. t);

the space dimension N is arbitrary in this section. Our v(x, t) is not singular; we assume

V v(x, t) is continuous in x 1 for a.e. t,
(4.3) r

where II" II is the supremum norm on . Our goal in this section is to prove the
existence and uniqueness of solutions of (4.1) with (4.2), (4.3) when r/ is initially a
function of a bounded variation, i.e.,

(4.4) r/I,=o r/o BV(f).

We will also show the continuity of rt with respect to v. Since

(v. V)r/=div (vr/)

by (4.2), equation (4.1) can be regarded as a special example of scalar conservation
laws. Existence and uniqueness of global (in time) entropy solutions of scalar conserva-
tion laws is well known under some regularity assumptions on coefficients when f is
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RN by various methods (e.g., [11], [15], [19]). Similar results are known when f has
a boundary (see [2]). Usual theories need to assume continuity of the second derivatives
of v because (4.2) is not assumed. Although it is not difficult to adjust their arguments
to our situation, we give here instead a proof independent of their arguments, because
our equation is just linear and we do not need the concept of entropy solutions.

By (4.3), the characteristic equation

dx
v(x, t), x[t= y f(4.5)

dt

has a unique local solution x(t, s, y). Since n. v 0 by (4.2), the characteristic curve
stays in f. Since fl is bounded, x can be extended to a global solution. We note that
x(t, s, y) is continuous in (t, s, y), and that x(t, s, y) is a C ditfeomorphism of f for
each t, s, since div v 0 by (4.2). Let y(t, s, x) be its inverse, viz.,

ay
-v(y,s),

ds

We have

(4.6)
Oxj

(t’s’x)<-Aexp allVvlld l<_--i, j<-N,

with positive constants a and A depending only on N; this follows from

(4.7) det
\Oxj/

1,

since div v 0. We begin with existence of solutions of (4.1)-(4.4) when initial data
is C 1.

LEMMA 4.1. For qbo C (() and O C (QT-) with VO L1 (QT), we set

dp(x, t) d/(y(t, s, x), s) ds + 60( Y(t, O, x)).

Then,

and

Moreover, x, t) solves

V e L(O, T; Ll(a)), Otdp LI( QT),

Ott-(v" V)--l// in LI(QT),

lt=0 0"

Proof Since y(t, s, x) is continuous in x, t, s, the function is in C(Qr). We take
the (distributional) gradient of and see

OXk j= Oyj OXk Oyj OXk

Since

Ir lTytp(y, s) dx- I IVyd/(y,
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we have

I[X7tl(t)J. g. IIX7II ds+llXToll

where J supxa {det (Oxi/Oyj)}, K is the supremum of Isy/x,I for >= s >= 0, x 12,
1 <_- i, j,<_- N, and Ilfll-- . Ifl dx. By (4.7) we have J= 1. We thus conclude from (4.6)
that

(4.8) IIVll(t)--<A IIVq]ll ds+llVolll .exp allVvllds,

which yields

(4.9)

A direct calculation shows that

V 4’ L(0, T; L’(Y)).

, -(v. v) +

Since v LI(0, T; L(12)), and q LI(QT-) by boundedness of QT, (4.9) shows that
is in L(QT).

We now consider (4.1)-(4.4) when r/o is merely in BV(f). The total variation of
/x M(f) will be written by

LEMMA 4.2. Assume that (4.2) and (4.3) hold. We suppose that rlo BV(12) f’) L(f).
Then,

The function

(x, t)= "qo(y(t, O, x))

is a unique solution of (4.1), (4.4) on QT with

q L( QT), O,rl L’(O, T; M(f)),
(4.10)

X7r/ L(0, T; M(12)) and 7 C([0, T); LI(o)).
(ii) Moreover, we have

Ilvw II,(t)--< A[lVwoll .exp allVvl[ds.

(iii) If a <= rio(X) <= for some numbers a and , then

a<-V<-_fl on QT.

Proof. Since Vv(., t) C(12) for a.e. by (4.3), (Oyi/xj) is continuous in x12.
We thus see

Or/ 0r/o 0y
z M() for a.e.t.

OXk = Oy OX

Similarly to obtain (4.8), (4.6), and (4.7) deduce

[[Vr/[l,(t)-<AIIVr/ol[,.exp al[Vv[lds for a.e. t,

which leads to (ii). We thus see V 7 L(O, T; M(12)). Taking the (distributional) time
derivative, we have

0,n =-(v. v)n.
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Estimating the right-hand side yields

IIo,,11, ds<- Ilvllo ds. sup

We thus observe 0,7 LI(0, T; M(fl)). The assertion 7 L(QT) and (iii) is clear from
the definition of 7. The property that 7 C([0, T); LI()) is easy to check.

It remains to prove the uniqueness of the solution of (4.1), (4.4). Suppose that

a, +(v. v) =o, 1,__o o,
with

0,r/ LI(0, T; M(I’)), V/ L(0, T; M(I’)), L(QT).

It is enough to prove 0 on QT. We will appeal to a simple duality argument. By
Lemma 4.1, for every C(OT), there is a function C(QT) that solves

a,+(v.V)=6 in0tT, lt==0,
with

Ot LI(QT), Vb L(0, T; LI()).
We multiply by and integrate over QT. By (4.2), integrating by pas yields

6n dx ds [Ot + v V)]n dx ds

This equals zero by definitions of and . Since 0 is arbitrary, we conclude that
0. The uniqueness of the solution is now established.
As an application of Lemma 4.1, we will show the continuity of with respect

to v. Since we have no good uniqueness results as in Lemma 4.2 for

when 0 is not in C(Qr), we need to approximate v by smooth functions. In approxi-
mating v we should preserve divergence free propeies. We prepare a density lemma
for our approximations.

LEMMA 4.3. Assume tha 1 < r <, and that r > N/2; then the space

Q={ve C(0r); div v=O,

is dense in a Banach space

o

equipped with norm II111, where ll/ll denotes the L-norm off in

Proo We use a solution of the Stokes equation. As is well known L() space
admits a direct sum decomposition called the Helmholtz decomposition [7]:

Lr(a)=L;+G,
(4.11) L;= {re L(a); div v=O, n.

G {v 4; ,4 e g(a)},
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provided 1 < r <. Let P be the projection to L associated with the decomposition.
The Stokes operator A =-pA is defined on

D(A) {v L 7Zv L(), vlo 0}.

By a priori estimates [17], we see

(4.12) [[V=u I1_-< cllaul[, u o(a),

with C independent of u. The Stokes operator generates an analytic semigroup e-’a

on L (cf. [8], [17]), and w= e-’awo with Woe L solves the Stokes system

O,w-Aw+Vp=O, divw=0 inl(0, T),

with

wlo.=0 and w(x, O)= wo L.
Since e-’a is an analytic semigroup and (4.12) holds, we observe that w e-taWo is
smooth for > 0. For v Er we set

De eeAtg( t), e < 0

which is smooth in x for almost everywhere t. We observe

(4.13) v - v in Er.
Indeed, by (4.12) we see

72( eeAV V)llr ds <= C A(e eAV /))11 dS
0

-C I[(eA-I)Avllds.

Since II(ea- I)wll- 0 for w e L; as e 0, and since II(ea- I)Avll <- 21[Avll, applying
Lebesgue’s convergence theorem yields

’llV2(eav-v)lldsO as e-0.
o

This yields (4.13) by using the Sobolev inequality. Since the function v is approximated
by a C((7-) function in E by smoothing the time direction, we conclude that Q is
dense in E.

PROPOSIa’ION 4.4. Suppose that vi (i 1,2) satisfies (4.2), (4.3) with vi Er, r> N,
and that rl rli solves (4.1), (4.4) with v= vi and satisfies (4.10) for
BV(fl) fq L(fl). Then,

(4.14) 11-,211(t)_<- t IIv-v=ll(s) as / I[,,o-,=,oll,

where L is an upper bound of

max {CllVTi,o[[aexp ff llVvillds}i= 1,2

with C depending only on N.
Proof We first assume that v C(07-) and r/i.o C(l)). By a representation of

r/i, we see r/i C((7-). The difference w r/1- r/2 solves

(4.15) Otw+(v,’V)w=-(Vl-V)Vrt, wl,=o rh.o- n2.o.
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Since (v2-vl)Vri_ C(Qr), Lemma 4.1 shows that

iob(x, t)= [(Vz-vl)Vriz](yl(t,s,x),s) ds+[ri,o-riz,o](y(t,O,x))

solves (4.15) with b w, where yl is a characteristic curve corresponding to v, viz.,
y is defined by (4.5) with v Vl. By the uniqueness of the solution in Lemma 4.2, we
see b agrees with our w. In a similar way, to obtain (4.8) we have

Ilwll,(t)-<- IIv2-Vlll (s)llv =lll(s) ds/ll  ,o- =,oll,

since (4.7) holds.
We approximate vEr and rio. By Lemma 4.3 there is a sequence {v’}

C(Or) 1E such that

(4.16) v

For rio BV(I)) L(), there is a sequence {ri’} C() such that

(4.17) ri’ - ri in L() as m - c,

(4.18) na’lloo=< I1, ollo , Ilvn "lll-< cIIVnoll,.

If 11 RN, we find approximate sequences {ri’} of rio just by mollifying rio; see [10].
If has the boundary, we reduce the problem when 1 is a half-space by a localization.
Since the BV function has the trace on the boundary (see [10]), we can extend the BV
function outside the half-space without increasing IlVnll, and IIn Iloo. The problem is
now reduced to the case when 1)= RN.

Let ri" solve

(4.19) O,rim+(v V)ri =0, ri [,=o rio.

We observe that rim actually approximates the solution ri of

(4.20) Otri+(v" V)ri =0, ri],=o ri0.

Applying (4.14) for smooth data, we see {rim} is a Cauchy sequence in C([0, T];
L(II)) since (4.16)-(4.18) holds. Let ri denote its limit. Since v" --> v in L(0, T; L(O)),
we see v"ri converges to vri in LI(Qr). This implies that ri solves

Otri+div(vri)=O, nl,=o- no.(4.21)

Since r > N, we have

by the Sobolev inequality. By Lemma 4.2 (ii), (iii), we see { rim} and {V ri"} are bounded
in L(Qr) and L(0, T; M(f)), respectively, since (4.16)-(4.18) hold. Also {0,ri"} is
bounded in LI(0, T; M()) by (4.19). We thus observe that the limit ri satisfies (4.10).
This implies that ri solves (4.20) since ri solves (4.21) and div v-0. By uniqueness
(Lemma 4.2) we conclude our ri is the only solution of (4.20) and

(4.22) rim_> ri in C([0, T]; LI(’])).
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It remains to prove (4.14) for vi Er and r/i,o BY(t2)f-)L(t2). We approximate
each vi, r/i,o by vT’, r/i,mo defined above, and pass the limit. Applying (4.16), (4.17), and
(4.22) now yields (4.14) for general initial data.

5. A priori estimates for parabolic systems with discontinuous coefficients. We
consider a parabolic system

0tb -rot * 7 rot b -/3 grad div b + rot *f in QT l) (0, T),

with the boundary conditions

nA*rotb=0, n.b=0 on0Ox(0, T),

and initial condition

bit:0 0.

Here f and r/are given functions and 0 < a <_- -</3 with constants a and/3. Our goal
is to derive a space-time L estimate for V b, when f is in Lr(QT) and satisfies a
compatibility condition nA*f 0 on 0, even if r/is discontinuous. When the boundary
condition is of Dirichlet type, Campanato [4] establishes such a result for r very close
to 2 by using a perturbation argument. We also apply a perturbation argument; however,
we need more. We approximate r/by smooth functions so that the trace nA* rot b is
defined at least for smooth f We first consider the initial value problem for the heat
equation

(5.1) O U -/3A U rot *f in

(5.2) nA*rotU=0, n. U=0 on0(0, T),

(5.3) Ul,=o: 0,

where f is a smoothly bounded domain in RN (N 2, 3). As is well known (see [12]),
there is a unique solution U W’I(Q) of (5.1)-(5.3) iff satisfies

(5.4) f, Vf L2(Q) for some T> 0.

If f is smooth in t) (0, T), then so is U (cf. [6], [12]). Throughout this section, we
will assume that f satisfies (5.4) to understand (5.2) by usual identities of traces of
functions without using a weak formulation of (5.1)-(5.3).

LEMMA 5.1. Suppose that U solves (5.1)-(5.3). Then we have

(5.5) [V U]r,T<= Ar-[f]r,T,
where

[f],7 Ilfll ;(s) as,

and the constant Ar is independent off, T, and . Suppose furthermore that nA*f 0 on
012. Then we may take Ar such that Ar- 1 as r- 2.

Proof Except for the last assertion, these are essentially known as a priori esti-
mates. Such estimates are found in [14] for single elliptic equations with Neumann
boundary condition. However, since our problem is a system, we do not find a suitable
version in the literature, so we give here an outline of the proof. We may assume that
/3 1 by setting O(x, t)= U(x, t/fl). We observe that (5.5) holds when 11 is RN or a
half-space R+ by applying the Calderon-Zygmund inequality. For general f we appeal
to a usual cutoff procedure and changes of coordinates near the boundary so that the
boundary becomes flat in the new coordinates. The operator may have variable
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coefficients because of the coordinate changes. Since 0f is smooth, so are the
coefficients. Applying a standard method of freezing coefficients, we deduce from (5.5)
for RN and R+ that

(5.6) IV U]r,T Cr([f]r,T’f-[ U]r,T).

The estimate (5.5) follows from (5.6) and the uniqueness of the solutions of
(5.1)-(5.3). Indeed, we may assume T -> 1. Suppose that (5.5) were false for T -> 1.
Then there would exist a sequence of functions {f/} and {Ul} (the corresponding
solutions of (5.1)-(5.3)) such that

1
(5.7) IV Ul]r,r(/) 1, [fi]r,r(1) <-
with some sequence { T(/)} converging to T 1, which may be . Since is bounded
and Ut satisfies (5.2), the Poincar6 inequality and (5.7) imply that

(5.8) UI V, V UI V V weakly in L(Qr)

with some V by taking a subsequence. A standard argument for parabolic equations
shows that

U V strongly in L(Qr).

We sketch the argument for completeness. We multiply lUl]-U with (5.1) for U UI,
and integrate by pas to get an energy estimate which yields

(5.9) sup sup u, ll(t) <.
110tT

Since U solves (5.1)-(5.3) with (5.8), we also observe that

[ U(x, t)(x)lim dx

exists for every e C(). By (5.8) and (5.9), this yields

U(., t)- V(., t) weakly in U() for a.e.t.

We may regard this convergence as the strong one in U(fl) by (5.7), (5.9), and Rellich’s
theorem. By (5.9) we apply Lebesgue’s convergence theorem to get the strong conver-
gence UI V in U(Qr). By (5.6) and (5.7) we see

(5.10) Cr[ V]r,T 1,

since U V strongly in Lr(Qr). Since UI solves (5.1)-(5.3), V solves a weak form of
(5.1)-(5.3) with f=0; the condition n. V=0 follows from n. U=0 on Off. We now
apply the following uniqueness of solutions.

LEMMA 5.2. Suppose that L(Q) and that fl with two positive constants
and ft. Suppose that V with V V L(Qr) satisfies

(5.11 VOt dx dt + (rot V. rot + fl (div V. div dx dt O,

for every CA( x [0, T)) with n. 0 on 0. Suppose that n. V 0 on 0. en
V 0 on Qr.

Applying Lemma 5.2 with a fl 1, we conclude that V 0 which contradicts
(5.10). We thus obtain (5.5) for T 1.
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It remains to prove that Ar- 1 as r- 2 for a suitable choice of Ar provided that
hA*f= 0 on 012. We multiply U with (5.1) and integrate over 12. Integrating by parts
with (5.2) yields

2dt
ullE(t)4-Ilv ul[22(t) rot *f u dx a.e.t.

Since

ta rot*f. Udx= Iaf rot Udx+ Ia (nA*f)UdS,

and nA*f=0 on 012, we now have

d
2dt

IIUI[(t)+IIVUII(t)<=IIflI211VUII2 a.e. t,

where dS denotes the surface element. Integrating over (0, t) and noting (5.3) yields
(5.5) with Ar 1. Interpolating (5.5) for p =po> 2 or Po <2 and p- 2 by the Riesz-
Thorin theorem (see, e.g., [16]), we obtain the desired choice of Ar (cf. Lemma 1.II
of Campanato [4]).

Proof of Lemma 5.2. We only give a proof when r >_-2 because we do not use the
case r < 2. Since V V L2(Qr) and CI() is dense in HI(o), we may plug b C([0, T);
H1(12)) in (5.11) with n. th 0 on 012. We extend V= 0 for <0and t> T, and consider
V8 p8 * p8 * V where p8 is a Friedrich’s mollifier on R with ps(x)= ps(-x) and
denotes the convolution on R. Let 08 be a cutoff function of (-oe, T-6) such that
08 I on (-o, T- 6), 08 0 on T, c), 0 _-< 08 -< 1, and 0 _-< -Or08 <- 2/6. We plug b 08 V8
in (5.11) and obtain- 08(s)-s [12(s) ds+ 08 [Tlrot VS[2+flldiv VS121 dxds=O,

where V8
p8 * V. Since

I [[rot V812+ [div Vs[2] dx f IV VS[2 dx,

letting tS0 implies V-0 (cf. Temam [18, p. 311]). [3

PROPOSITION 5.3. Suppose that u W’I(QT) solves

(5.12) Otu -rot *r/rot u-/3 grad div u + rot *f in QT,

(5.13) hA* rot u =0, n.u=O on O12 x (O, T),

(5.14) ult=o--0 on 12.

Suppose that q C(Qr) satisfies a <-_ r <-fl in Qr, where a and fl are two positive
constants, and that f satisfies (5.4). Then there is a function Po(tr) > 2 defined on tr > 0
such that

(5.15) [VU]r,T<=K[f]r,T for 2<-_r<po(a/fl),

(5.16) po(tr) o as tr- 1,

with K 1 A(1 a/ fl ]-1Afl-, provided that

nA*f=O on Ofl.

Here A is defined in Lemma 5.1.
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Proof We rewrite (5.12) and obtain

0tU --/AU rot *F,

where

F f- r/rot u +/3 rot u.

By (5.13) we see F fulfills all assumptions for f in Lemma 5.1, since u W’I(Qr).
Applying Lemma 5.1 yields

[VU]r,T Arfl-([f]r,T+SUp [fl

Ar[-l[f]r,T + At(1 a //3)IV U]r, T.

If A(1-a/)<l, then this inequality yields (5.15). Since A--> 1 as r->2 and A2 1,
we now conclude that there is po> 2 satisfying (5.15) and (5.16).

We extend these L estimates to the case when r/ is discontinuous. Since the
solution of (5.12)-(5.14) is no longer expected to be in W’(Qr), we need a weak
formulation similar to (3.9). We say u is a weak solution of (5.12)-(5.14) if u satisfies

(5.17)
Ior fn u 0, dx dt

rot*f, qbdxdt withn.u=0 on 012

for every 4(x, t) e C(fi x [0, T)), where

(5.18) g(t,u,d)=Ia(x,t)rotu’rotchdx+IaCl(divu)(div4))dx.
PROPOSITION 5.4. Suppose that u with Vu L2(Qr) solves (5.17) with fsatisfying

(5.4), and that q L(Qr) satisfies 0< a <= r <-_ ft. en, there is a function po() > 2

definedfor > 0 such that (5.15) holdsfor 2 r < po(a/fl) and that (5.16) holdsprovided
that nA*f 0 on 0.

Proof There is C(Qr) such that in Lq(Qr), q> 1 strongly as 60
and a N N ft. By a standard parabolic theory, there is a unique solution u which
solves (5.12)-(5.14) with setting see [6], [12]. Similarly to the last pa of the
proof of Lemma 5.1, we multiply u with (5.12), and integrate over space-time.
Integrating by pas yields energy inequality

u, + Ivu [z dx ds [fl= dx at.

As in the proof of Lemma 5.1, this estimate together with a standard argument for
parabolic equations implies that there is some ti such that

u --> ti strongly in L2(Qr),

Vu --> V ti weakly in L2(Qr)

by passing to subsequences. Since 7 --> r/in Lq(Qr) for every q > 1, we conclude that
fi solves (5.17); the condition n. ti =0 on 012 follows from n. u =0. The uniqueness
of solution (Lemma 5.2) implies that ti u. We thus conclude that (5.15) and (5.16)
still hold for u , since the norm [VU]r,r is lower semicontinuous under the weak
topology in L2(Qr). I-I

a(t, u, qb) dt+
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Remark. The existence of solutions u of (5.17) follows from a generalized Lax-
Milgram lemma (cf. Lions and Magenes [13, Chap. 3, Thm. 4.1] with a remark on the
Neumann problem [13, Chap. 3, 4.7.2]. However, for u, Vu e L2(QT), the meaning of
nA* rot u is unclear, so it seems difficult to apply a perturbation argument of the proof
of Proposition 5.3 directly to Proposition 5.4 without approximations.

6. Proof of the Main Existence Theorem. We will prove that our F in 3 has a
fixed point in a suitable class of functions by using a priori estimates we obtained in

4 and 5. We begin with existence and uniqueness of solutions of the initial value
problem for (2.9), (2.10), (2.12) assuming that r/ is a given function.

PROPOSITION 6.1. Suppose that B is smooth on f and satisfies (2.4). Suppose that
q L(QT) and a <- 7 <- fl with positive constants a and ft. Then,for initial data vlt=o Vo,

blt=o bo L(fl) there is a unique function (b(x, t), v(x, t)) that solves (3.9), (2.10),
(3.10), and (3.11) with some p(x, t) such that

b C([0, T]; L(f)) f’) L2(0, T; W),
(6.1)

w= nl(a) L(-),

v e C([0, T]; L(a)) CI L2(0, T; Wo),
(6.2)

Wo { v e W; v 0 on Of}.

Moreover, b, v) satisfies the energy equality

Ilbll(t)+llvll(t)+2 r/(rot b)2 dxdt+2 (Vv)2 dxdt

(6.3)
boll / Voile, 0 _--< _--< T.

Proof. We set

A(t, u, u’)= a(t, b, b’)

-I, (rot*(vAB) b’)dx+IaVv. Vv’dx+Ia (BA*rotb) v’dx

for u (b, v), u’ (b’, v’), where a is defined by (3.8). We set V W x Wo and observe
that A is coercive on V, since

a(t, u, u)= a(t, b, b)+ fa Iv I= dx >- c Ilrot bll@/

and the right-hand side is a norm of V. We also observe that A is continuous on V
and A(t, u, u’) is measurable in for u, u’ e V. Applying a generalized Lax-Milgram
theorem (Lions and Magenes [13, Chap. 3, Thm. 4.1, Remark 4.3]), we conclude that
there is a unique solution u (b, v) such that

(6.4) u G L2(0, T; V) C([0, T]; H), H L2(I’) x LE(f),

and that at least satisfies

;o A(t, u(t), (t)) dt- (u(x, t) 0,I’) dxdt

(6.5)

I. u(x, O) I’(x, O) dx
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for every =(b, q,), where u(t)=u(., t). From this we deduce (2.10) and (3.9) at
least for test functions b satisfying 4(’, t)L2(12). For arbitrary 4
Co([0, T); HI(fl)), we have a Helmholtz decomposition such that

(6.6) th th+Vp,

and

(6.7) b Hl( t), IlVPllHl(t) cIlll,,(t),

with C independent of and b. In other words, the projection P associated with
Helmholtz decomposition (4.11) is continuous in H topology (see [9, Lemma 3.3]).
We observe that

Io7 Ia b. 0,(Vp) dx dt =0, bo" Vp(x, O) dx O,

since b(., t) L(I). Since v(t) Wo implies v 0 on 0fl and rot (Vp) 0, we have

rot *(vAB). 7p dx= I, (vAB). rot (Vp) dx + Io, nA*(vAB) Vp dS=O

and

r

a(t, b, Vp)=O.

These calculations are justified by (6.7). We conclude that (3.9) holds for every
(b, v) L2(0, T; V) if b X7p. We thus see (3.9) holds for every b C([0, T); H1(12))
because of (6.6). The regularity (6.1), (6.2) follows directly from (6.4). Condition (3.10)
follows from v(t) Wo.

It remains to prove (6.3). This is obtained by plugging u in (6.5). To justify
this calculation we should approximate u by test functions. The idea is similar to the
proof of Lemma 5.2 and it is standard so the proof is omitted. [3

We next study regularity of (b, v). The regularity of v in (6.2) is not enough to
solve the transport equation uniquely in BV spaces. We apply a priori estimates for
(3.9) and derive a suitable regularity of v through (2.10).

PROPOSITION 6.2. Let (b, v) be a solution of (3.9), (2.10), (3.10) given in
Proposition 6.1.

(i) Suppose that the initial data bo satisfies (3.3) with q > 1. Then

(6.8) [Vb]r,T<----K(CB[v]r,T+Tllrot boll), o-= 1/r,

for 2_-< r < min (q, po(a/3)), where Po and K are defined in Proposition 5.3 and CB
sup Inl.

(ii) Suppose that the initial data Vo satisfies (3.2), i.e., Vo W(II). Then

(6.9) [vv],<-C([Vb],+[Ivoll.)), 1 <r<-q,

with some C depending only on r, T, N, and fl.
(iii) Suppose (3.2) and (3.3) with q > N. Then we have

(6.10) [V2V]r,TZ,
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with some r, N < r <-q, and a constant Z depending on data as

(6.11) z= z(t3/ , t3, T, Ilvoll Ilrot boll , r, B),

provided that either
(a) N=2, or
(b) N- 3, and fl/a is sufficiently close to 1

holds.
Proof. (i) Since div b- 0, we may add -/3 grad div b to both sides of (2.9). We

set b b-bo and rewrite (2.9) to get (5.12) (or precisely, its weak form (5.17)) with
u--/ and f-vAB- /rot bo. Since (6.2) and (3.3) imply that f satisfies (5.4), we now
apply Proposition 5.4 to obtain (6.8).

(ii) This follows directly from a priori L estimates for the Stokes system (2.10)
due to Solonnikov [17], where -BA* rot b should be regarded as an external force.

(iii) Since (6.3) yields

we first observe that

sup [[vll 2[Vv] < IlvollZ2/ libo[12 to,2,T

(6.12a) [V]4,T <- Cto 1/2 for N=2,

(6.12b) [V]lo/3,r <- Cto 1/2 for N 3,

with C independent of b, Vo, and B. Applying the Gagliardo-Nirenberg inequality
yields (6.12a, b) (cf. [3, p. 781]).

Suppose that N 2. Then combining (6.12a), (6.8), (6.9) yields (6.10) for all r
such that 2_-< r<min (q, po(a/), 4). When N=3, by (5.16) we can take/3/a close to
1 so that po(/a)> N=3. Since 10/3> 3, combining (6.12b), (6.8), (6.9) now yields
(6.10) for all r such that 3<r<min (q, po(a/fl), 10/3).

For a given 0 < a <_-/3 we consider a class of resistivity functions:

S(L)-- I /(x, t) BV(QT); ct <_- <_-/3 a.e. (x, t) QT,

(6.13)

sup IIVr/lll(t)_-<L, II0,/111 ds<-_L

For r/ S(L) we construct a solution (b, v) of (3.9), (2.10), (3.10) by Proposition 6.1;
we will write (b, v) (Gl(r/), G2(/)). Ifwe assume (3.2) and (3.3) with q > N, v G2(r/)
satisfies (6.10) provided that either (a) or (b) in Proposition 6.2 holds. Here and
hereafter we will always assume that (a) or (b). By the Sobolev inequality and (6.12a, b)
we observe that v satisfies (4.3) and moreover

(6.14) (llvll / IlVvil ) as<- el,

with C depending only on f, N, and T. Applying Lemma 4.2 now implies that, for
v= G(7), the transport equation (2.12) has a unique solution r/=E(v) satisfying
(3.4), if the initial data r/o satisfies (3.1). We will write

F(rl)= E(G(n)).

PROPOSITION 6.3. Suppose that (3.1)-(3.3) holdsfor q > N. IfL is sufficiently large,
then F maps S(L) into itself.
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Proof By Lemma 4.2(ii) and (6.14) we see

ecz Z’ 0 < < T,

II0,ffll() as<- Ilvllllvll(s) ds el sup
OtT

czllolleCZ= czz’,

with F(). Since Z’ and CZZ’ are independent of L, we take L large such that
Z’, CZZ’ L. Since a o fl implies a ff by Lemma 4.2(iii), we conclude that
F maps S(L) into itself for L defined above.

PROPOSITION 6.4. e set S(L) is convex and compact in

Proo Clearly S(L) is convex. Since S(L) is bounded in BV(Qr), it is relatively
compact in Lh(QT), Ih<(N+I)/N by Rellich’s theorem [10]. Since S(L) is
bounded in L(Qr), this means that S(L) is relatively compact in every L(Qr),
1 p <. Since sup IIV I1 and as are lower semicontinuous in Lp topology,
we conclude that S(L) is compact in L(Q).

PROPOSITION 6.5. Suppose that (3.1)-(3.3) holds for q > N. en F is continuous
under the topology of L (Qr), 1 p <.

Prooy For hi, n2S(L) we set (b,,v,)=(G(ni), G:(n,)), i=F(i) (i=1, 2),- :, and ff ff- if:. We will prove that

(6.1) [C], c[],

with some p, 1 p <, and c independent of and :. We first derive the estimate
for b b-b:. For technical reasons we approximate b by a solution of (2.9) with
mollified coecients in the term of the second order. As in the proof of Proposition
5.4, we take . C(0r) such that i, in Lh(QT) strongly for h> 1 as 80 and

,fl. Let bi, denote the solution of (5.12), (5.13) with bi,[,=o bo, i.,

f viAB. As in the proof of Proposition 5.4 we see

b b strongly in L2(Q)
(6.16)

Vbi, V bi weakly in L2(Qr),

since bi uniquely solves (5.17) by Lemma 5.2. Since the difference b b.- b:, solves

Ob =-rot *, rot b rot* rot b:, +rot *(AB),

div b 0,
(6.17)

nA*rot=0, n.b=0 on

b l,=o=0,
with v- v and .- :., we apply Proposition 5.3 to obtain

(6.18) [Vb].r K([ rot

for 2 r < Po(a / fl). For we have

O,=A-BA*rotb-gradp, dive=0 in

(6.19)

31__o 0 on f.
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We multiply the first equations of (6.17) and (6.19) with b and 3, respectively, add
two identities and integrate over 12. Integrating by parts using boundary conditions,
we obtain

2d--S(ll7ll/llll)/llvll(t)/ ,,lvtTl2 aN

=-fab-Clrotb,dx+Ia (/7 rot *(t3AB)-t3(BA* rot/7,) dx.

Integrating over (0, t) and applying the Cauchy inequality to the right-hand side yields

b II(t)+ [[O[[(t) +2[V012.,+
(6.20) C[ rot b.]z,,

+ ( rot *(0AB)- 0(BA* rot )) & ds, ON N T,

with C depending only on a. By (6.16) and integrating by pas we observe that the
last term in (6.20) tends to zero as 6 0. Letting 6 0 in (6.20) yields an energy inequality

(6.21) sup (llll(t)+llell(t))+2[ve]2,+[v]=,c=[ rot b212,T.
OtT

Similarly letting 0 in (6.18) yields

(6.22) [Vb]r,r K([ rot b:],r+ []r,r).
If r 10/3, (6.21) together with (6.12a, b) yields

]r,T C[ rot b212.r,

with C depending only on a, , and T. Since we have assumed either (a) or (b) of
Proposition 6.2, we may conclude from (6.22) that

(6.23) [V b ],, C ’[ rot b2] ,, r
for r > N sufficiently close to N with C’= C’(a, fl, T, , r).

An a priori estimate for the Stokes system (6.19) (see [17]) and (6.23) yields

(6.24) [V2]r,T C,[V]r,T C,C’[ rot b2]r,r C,C’[O]p.r[rot b2]r+,T,

with 1/p+l/(r+e)=l/r, l<p<, e>0. Since r> N sufficiently close to N, (6.8)
and (6.12a, b) imply that [rot b2]r+.r Z" where Z" has the same propeay as Z in
(6.11). By Proposition 4.4 we conclude that

[,,T TL I[[l(s) ds C’rE [IV20[lr(S) ds C*T2-/rL[V2]r,T

by the Sobolev inequality with some constant C*. Applying (6.24) yields

[,, CrC’C*tT-’/Z"[OL,,
which is the same as (6.15) by setting c= CC’C*LTZ-/Z". Since

[p,T<[ lip Z] 1-1/P <1,T[b,T =(2) 1-1/ l/p

it follows from (6.15) that

(6.as) [],s (2) -/oc/O[ ].,.
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If p <= p, this implies that F is continuous in LP(QT-). If p-> p, since

[gL,<[g][g]’-=, ,=

with 1/p= O/p, (6.25) implies the continuity of F in LP(QT.). [3

Proof of the Main Existence Theorem. By Propositions 6.3-6.5 we apply the
Schauder fixed-point theorem to F, and observe that there is r/ S(L) such that F(r/) r/
provided that L is sufficiently large. Since (b, v)= (Gl(r/), Gz(r/)), Propositions 6.1
and 6.2 together with (6.12a, b) imply that (b,v) has the desired regularity properties
and the energy inequality holds. Since E(G2(/))--r/, we see (b, v, r/) solves a weak
form of (2.9)-(2.12) with initial conditions, which completes the proof. [3
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STABILITY OF PLANAR WAVE SOLUTIONS
TO A COMBUSTION MODEL**

DAVID TERMANf

Abstract. A system of reaction diffusion equations which arise as a model for a one-step
combustion process is considered. The primary concern is with the stability of planar wave solutions to
this model. This problem has been studied extensively from the point of view of matched asymptotics
in the limit of infinite activation energy. The asymptotic analysis has demonstrated that for a large
range of parameters, the planar wave solution is unstable. As a particular parameter is varied, the
planar wave solution may undergo either a Hopf or steady state bifurcation. This paper gives a
rigorous mathematical justification of some of the asymptotic results.

Key words, reaction-diffusion equations, planar wave equations, high activation energy
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1. Introduction. We consider the thermodiffusive model for a premixed flame
arising from the one-step chemical reaction A B. This model gives rise to the
system of reaction-diffusion equations:

(I.I)
Tt AT + QYf(T)
Y A-1Ay- Yf(T)

where T(x, y, t) is the temperature, Y(x, y, t) is the mass fraction of the reactant A,
(x, y, t) 6 ]R ]R lR+, A is the usual Laplace operator with respect to the spatial
variables x and y, and Q, the heat release of the reaction, and A, the Lewis number,
are both assumed to be positive. For ](T) we assume that there exists T, > 0 such
that

(a) f(T)=0 if0<T<T,_
(1.2)

(b) f(T) Boe-E/RT for T >_ T,.

Here B0, R, and E are all assumed to be positive constants. The activation
energy, E, will be taken to be very large. The constant T, is often referred to as an
ignition temperature; for T < T, no reaction can take place. For T > T,, f(T) is the
usual Arrhenius kinetic term.

By a planar wave solution of (1.1) we mean a nonconstant, bounded solution of
the form

(1.3) (T(x, y, t), Y(x, y, t)) (To(z), Yo(z))

where z (x, y). u + 0t for some unit vector u 6 IR2, and 0 > 0 is the wave speed.
We assume, without loss of generality, that u (1, 0), so that the wave is moving in
the negative x direction. The planar wave solution is assumed to satisfy boundary
conditions of the form

(1.4) lim (To(z), Yo(z)) (T_, Y_) and lira (T0(z), Y0(z)) (T+, 0).
Z----O0 z--*--O0

*Received by the editors January 30, 1989; accepted for publication October 25, 1989. The
work of the author was supported in part by National Science Foundation grant DMS-8702693.

Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
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The unburned state (T_,Y_) is prescribed with 0 <_ T_ < T. and Y_ > 0. This
actually determines the burned state as T+ T_ + QY_; see [1].

Our primary concern is with the stability of the planar wave solutions. This
problem has been studied extensively from the point of view of matched asymptotics
in the limit of infinite activation energy. See Sivashinsky [9], Joulin and Linan [7],
Fife [4], Margolis and Matkowsky [8], and the references cited there. The asymptotic
analysis has demonstrated that, for a large range of parameter values, the planar wave
solutions are unstable. As a particular parameter, the Lewis number, for example, is
varied, the planar wave may undergo either a Hopf or steady state bifurcation. In this
paper we give a rigorous, mathematical justification of some of the asymptotic results.

Before stating our results it will be convenient to first rescale the equations (1.1)
in a standard way. See [1], for example. Let e be the reciprocal of the Zeldovich
number; that is

1 E T+-T_
e RT+ T+

Then let
=T-T_

T+-T_
T+ T_

T+
{ Zt, =Zx,

e(Boe-E/IT+)/2

Then (1.1) becomes, after dropping the hats,

(1.5)
Tt AT + -YY A-AY -Y (T-1 ,

where, it s (T- 1)/e, then (s, e) 0 for 0 g T < T., and (s, e) exp (s/1 + eas)
forT> T..

A planar wave solution is then a solution of (1.5) of the form

(1.6) (T(x, y, t), Y(x, y, t)) (T(z), Y(z)) z x + Ot

where

(1.7) lim (T(z), Y(z)) (0, 1) and lim (Te(z), Ye(z)) (1, 0).

Note that a planar wave solution satisfies the system of ordinary differential equations

(1.8)
T" OT’ + -jY o,

h-g" o g’ -g e o,

together with the boundary conditions (1.7).
Berestycki, Nicolaenko, and Scheurer [1] proved that for each e > 0, there exists a

solution of (1.7), (1.8) for some speed . They also analyzed the asymptotic behavior
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of the solution as e 0. They demonstrated that lime,0 0 x/-, and the solution
converges strongly to a limiting free boundary problem. In their paper, Berestycki,
Nicolaenko, and Scheurer assumed, for simplicity, that (s, e) does not depend on e
with the most important case being (s, e) (s) e8 for T > T,. In this paper we
also make this assumption; that is, we assume that (s, e) (s) where

(a) (T-1)e =0 ifT<T,

if T> T,.

The purpose of this assumption is to simplify the (already tedious) calculations which
follow. The results of this paper still hold for the original equations.

We now consider the stability of the planar wave solution. We linearize the
equations (1.5) about the planar wave solution and then compute the eigenvalues of
the resulting equations. The first step is to change to a moving coordinate system;
that is, we let z x / t. We then linearize the resulting equations about the planar
wave solution to obtain the system

Here, and represent, respectively, the variations in T and Y. They are functions
of z, y, and t, and A is now the Laplace operator with respect to the variables z and
y. We look for a solution of (1.10) of the form

fi(z, y, t) eikV+atu(z) and Or(z, y, t) eiky+atv(z)

where k > 0 and a is complex. Hence, we are looking for perturbations of (1.5) which
are periodic in y with wave number k, and which grow (or decay) in time at the rate
eat. Note that (u(z), v(z)) satisfy the system of ordinary differential equations:

(I.ii)

ifT T*. If T T,, then (Te l/e) is discontinuous. Hence, we cannot expect
u(z) and v(z) to be differentiable whenever T(z) T,. Berestycki, Nicolaenko, and
Scheurer [1] proved that Tg(z) > 0 for all z. Hence, there exists a unique z such that
Te(z) T,. We shall impose the natural regularity conditions on u and v. We assume
that u(z) and v(z) are both continuous for all z, twice continuously differentiable if
z z, and

where
Y(z)u(ze)exp (T, l/e)



1142 DAVID TERMAN

DEFINITION. Assume that k > 0. The planar wave solution of (1.5) is linearly
unstable (stable) to perturbations with wave numbers k, if there exists (does not exist)
a bounded, nontrivial solution of (1.11) with Red > 0 (Red >_ 0). The case k 0
will be discussed shortly.

Before stating our main results we set

h 1 + el, r v/1 + 2(a +
k, r +

We assume throughout this paper that

(b)

e>0, k_>0, A=l+e/>0,

(0e V/t?2 + 4(a + k2) <Re 0 and Re (0e V/02 + 4(a + Ak2) < 0.

Remarks concerning this last assumption will be given later.
PROPOSITION 1.1. Assume (1.14) is satisfied. There exists a complex valued

function De(a, k,l), which is holomorphic in a, and has the property that there exists
a bounded, nontrivial solution of (1.11) if and only if De(a, k,i)- O.

In the following theorem we compute De(a, k, i) in the limit as e 0.
THEOREM 1.2. Assume that (1.14) is satisfied. Then lim-,oDe(a,k,I)

D(a,k,l).
Remark 1. The complex valued function D(a, k, I) was obtained by Sivashinsky

[9], Joulin and Linan [7], Fife [4], and others using the methods of matched asymptotics
in the limit e 0. Since D(ak, l) is defined for e positive but small (or E finite but
large), Theorem 1.2 gives a rigorous justification of these previous asymptotic results.

Remark 2. Recall Rouche’s theorem which states that if two holomorphic func-
tions are close to each other, then so are their roots. Hence, if (1.14) is satisfied and e
is sufficiently small, then the values of a for which there exists a bounded solution of
(1.11) are close to the roots of D(a,k,l). In particular, we have the following result.

COROLLARY 1.3. Fix k and I. If there exists a root of D(a, k,l) with Red > 0,
then, for e sufficiently small, the planar wave solution is linearly unstable to perturba-
tions with wave number k.

It is a simple manner to determine the roots of D(a, k, l). See [8].
PIOPOSITION 1.4. There exist two smooth curves, I hi(k) -2- 2k2 and

/ h2(k), such that .for each k > O,
(a) h(k) < 0 < h2(k), lim h(k)= -oc, lim h2(k)=
(b) /f either < h(k) or I > h2(k), then there exists a with Red > 0 such that

D(a, k, i) O,
(c) /f h(k) < < h2(k), then there does not exist a with Red _> 0 such that

D(a, k, ) O,
(d) If ! h (k), then D(O, k, i) O,
(e) /f t h2(k), then there exists a with Red 0 and Ima 0, such that

D(a, k, i) D(, k, t) O.
If k O, then D(O,k,t) O. Moreover, there exists a with Red > 0 such that
D(a, O, i) 0 if and only if i > h2(k).

Theorem 1.2, together with the Implicit Function Theorem demonstrates that the
results of Proposition 1.4 perturb for e > 0.
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THEOREM 1.5. Fix M > O. There exists eo >0 such that if 0 < e < eo, then
there exist smooth curves I h (k) and l h(k), defined .for 0 <_ k <_ M, such that

(a) lim h(k)- hi(k) i= 1 2,
e--0

(b) /] k > 0 and either -M < l < h(k) or h(k) < l < M, then there exists a
with Re a > 0 such that De(a, k, l) O,

(c) /fk > O,h(k) < l < h(k),la < M, andRea > O, then De(a,k,) O,
(d) /f k > 0 and h(k), then De(O,k,l) O,
(e) If k >_ 0 and h(k), then there exists a with aea 0 and Ima 0 such

that De(a, k, l) De(’5, k, I) O,
(f) /f k 0, then De(O,k,t) O. If I > h(O), then there exists a with Rea >

o such that D(a,0,) 0. //g < hS(0),ll < M, Rea >_ O, and a O, then
De(a, 0,) O.

Remark. In parts (c) and (f) we assume that lal < M. Because of this assumption
we are unable to conclude that the planar wave solution is linearly stable for h (k) <
l < h(k) if k > 0, and for 1 < h(k) if k 0.

It is straightforward to show that if the planar wave solution is linearly unstable,
then it is really unstable as a solution of (1.5). It is not clear, however, if linear stability
implies nonlinear stability. This will be true if we restrict ourselves to perturbations
which are constant in the y-direction. In order to state this result precisely, we may,
without loss of generality, drop the dependence on the y variable entirely in (1.5) and
(1.0).

For e sufficiently small, we consider the linear operator,

defined on the weighted Banach space

Xp {(Ul(Z), u2(z))lui is uniformly continuous and

suplePl ’lui(z)l < oc for i= 1 and 2}.

Here p is fixed with 0 < p < 0e. The results of Henry [6, p. 140] imply that Le defines a
sectorial operator with essential spectrum in the left half complex plane bounded away
from the imaginary axis. From the definitions given in 3, we find that in the weighted
space Xp, the holomorphic function De(a, O, l) is well defined in an open region which
contains the right half complex plane. From Theorem 1.2 and the explicit formula for
D(a, k, ) given in (1.13), we easily conclude that a 0 is a simple eigenvalue for e
sufficiently small. The results of Henry [6] now imply that the planar wave solution
is stable to the one-dimensional perturbations if there does not exist an eigenvalue a
of the linear operator Le with Re a >_ 0, a 0. Therefore, if we could obtain an a
priori bound, independent of e, on the eigenvalues of Le, then we would be able to
conclude that the planar wave solution is stable to one-dimensional perturbations for
t < h(0).

We also point out that two complex eigenvalues cross the imaginary axis as the
parameter l increases past h2(0). Theorem 1.2, together with the explicit formula
for D(a, k,l) given in (1.3), implies that this crossing is transversal if e is sufficiently
small. Henry’s results now imply that if we are able to obtain an a priori bound on
the eigenvalues of Le, then a Hopf bifurcation takes place at / h(0).
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The organization of the paper is as follows. In 2 we prove the estimates needed
on the planar wave solutions (Te(z), Y(z)). Certainly we need to understand these
functions very well, because they appear explicitly in the linear equations (1.11). We
prove Proposition 1.1 in 3. We begin the proof of Theorem 1.2 in 4, with the explicit
computation of De(a, k, t) given in 5. The technical details of the proof of Theorem
1.2 are carried out in 6.

We assume throughout this paper that (1.14) is satisfied and M > 0 is chosen so
that

1
(a)

(b) O<_k<_M,

(c) lal < M

(d) Re (Oe V/O2 + 4(a + K2)) <

(e) Re (Oe- V/O2 + 4(a + Ak2)) <

1

M’
1
M"

2. Estimates for the wave.

A. Introduction. In this section we present the estimates needed on the planar
wave solution for the remainder of the paper. Many of these estimates are extensions
of the results of Berestycki, Nicolaenko, and Scheuer [1] who proved the existence of
the planar wave solution. They also proved that there exists a positive constant K
such that if e is sufficiently small, then for each z,

(2A.1) (b)
(c)

0 < T (z) < 0 < Y (z) < 1,
0 < Tg(z) < K, -K < Y’(z) < O,
ITe(z) + A-lYe(z) 11 <_ I1 A-l[(1 Te(z)).

Note that every translation of a planar wave solution is also a planar wave solution.
Throughout this paper we fix the translation so that

(2A.2) Te(0) 1 + 6e In e.

We choose z and ze so that

(2A.3) Te(ze) T, and Te(ze) 1 e.

We derive estimates in each of the intervals z _< ze, z < z _< 0, 0 < z _< ze, and ze < z
separately.

B. ze < z. It will be convenient to introduce the variables

(2B.1) pe
Te- 1 Y z

q---, --Let (e (7) ze. In these new variables (1.8) becomes

(2B.2)
p’ eOep + qe(Pe) O,
A-lq e0eq qe(Pe) 0
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where differentiation is with respect to .
We now state the main results of this section. The proofs of these results are then

split into a number of lemmas which follow.
PROPOSITION 2B.1. There exist positive constants a and , which do not depend

on e, such that i] is sufficiently small, then for > e,

(2B.3)
(b)

< <
1/2e-f(-) < Iqe()[ < 2e-a(-)-

For the next proposition we introduce the local Shvab-Zeldvich variable

(2B.4) (I)e() pe() + A-lqe()

PROPOSITION 2B.2. There exists a positive constant KI, which does not depend
on , such that if is sufficiently small, then for > e, max{IOe()l, IO()1} <
2Kle-a(-)

Here, a is as in the preceding proposition. Using the definitions, we conclude
from Proposition 2B.2 that

(2B.5) ITs(5) + i-xY()l <_ e3Ke-"(-).

The proofs of the preceding propositions are now split into a number of lemmas.
LEMMA 2B.3. If is sujficiently small, then-pe() < qe() < -2pe() .for

all .
Proof. If we divide (2A.lc) by e, and use (1.15), then the result follows easily.
LEMMA 2B.4. There exists lo such that if is sujficiently small, and > 1o,

then -Pe() < P’() <-2pe().
Proof. We begin by writing (2B.2) as a first-order system:

(2B.6)

p ye,

y eOeye qe(Pe)
q We,

W eOeAwe + qeA(pe).

To determine the asymptotic behavior of pe() as --, , we linearize (2B.6) at the
origin, O, to obtain the system

where

and Ae= 0 e0 -1 0
0 0 0 1
0 0 A e0eA

The matrix Ae has two positive and one negative eigenvalues. There is also one zero
eigenvalue due to the fact that the line qe 0 consists of rest points of (2B.2). The
negative eigenvalue of Ae, and a corresponding eigenvector are

e0- v/4A + e2O
me and ee2A illme(O-me)
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As e - 0, We() approaches O tangent to Be. Because lime-.0 me -1, we conclude
that if e is sufficiently small and z is sufficiently large, say > /0 then -lpe() <
ye() < -2pe(). Because y()--p(), the result follows.

LEMMA 2B.5. There exist constants a and , which do not depend on e, such
that if e is sulCficiently small and >_ e, then -ape() < p() < -pe().

Proof. As before we let ye() p(). Fix e > 0, and a and/ such that 0 < a <
and/ > 2. Let

,-’{(Pe, Ye)" -l_pe<0, -ape <ye<

Note that Pe(e) -1 and -1 < pe() < 0 for > e. We show that a and can be
chosen so that (pe(), ye()) E for all > e. From the preceding lemma we know
that this is true for > /o. Suppose that (pe(), ye()) ti for some E [e, /0). Let
/1 sup( (Pe(),Ye()) t . Then (Pe(),Ye()) must be entering at /1.
We shall prove that this is impossible unless / e if a is sufficiently small and/ is
sufficiently large.

Suppose that (pe(),ye(r])) 6 e {(Pe, Ye): Ye --ape}. Let n (a, 1) be a
vector normal to ie which points into $. Then, because (pe(), ye()) is entering $ at, we must have that n. (p’(yl), y’c(r)) >_ 0. However, using (2B.6) and Lemma
2B.4 we find that

n. (p(), Y(7)) aye(7) + eOeye(l)
<_ (a + ee)ye(/) +

+ +
1 _lpe(Vl)< + +

<0

if a is sufficiently small, independent of e. This gives the desired contradiction. A
similar computation shows that if is sufficiently large, then it is impossible for
(Pc(V1), y(1)) E t {(pe, y)’y -p}. This completes the proof of the lemma.

Proposition 2B.1 now follows easily from Lemmas 2B.3 and 2B.5.
Proof of Proposition 2B.2. For convenience, we shall drop the subscript e. We

add the equations in (2B.2) to find that

"() eO’() cO(1 A-1)q’().

We integrate this equation from to to obtain

(B.7)
() ’() O() 0( A-)(),
() (-())’ 0(1 -)-0().

We integrate this last equation from to to obtain

It now follows from (1.1g) and Proposition 2B.1 that

20M ee-(-).
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This, together with (2B.7a), implies that

202M
Ie()l < e3e-a((-() + 2e2OMe-a((-(,)

and the result follows.

C. z <_ z. If z _< ze, then (T(z), Y(z)) satisfy

Tg O TI O, A- Y" O Y’ O,
T(z) T, lim (T(z), Y(z)) (0, 0).

Z-’--O

Hence, T(z) T,e(z-z’).

D. z < z _< 0. Once again we work with the variables p, q, and (. Let (e
ze/e. For convenience, we shall drop the subscript e throughout this section. Note
that p(0) T(0)- 1/e 6 ln e. Since f() > 0, it follows from Lemma 2B.3 that if

<_ 0, then

(2D.1) Iq(P)l <- 21pepl <- -12(lne)e6 _< e5

if e is sufficiently small. Let (() - + be the solution of the
equations,

"- e0/’ 0, (fl(e), &(e)) (p(e),p(e)).
om (2D.1) we expect that IP(()- fl(()l is small for (" < ( < 0. This is made precise
in the following proposition.

PROPOSITION 2D.1. fie is sufficiently small and k (ln2/T,), then 0 < -(" <
k/e. Moreover, IP() ()1 < e2 for " O.

Prooy. Let () p() Z((). Then a() satisfies

It follows that

cd’ e0cd -q(p), (,) -o,() o.

c’() -e’(-")

Using (2D.1) we conclude that if " < < 0, then

k

_
a ke4eOSuppose that(-(eN < Then, (()IN ,and

Recall that lim,0 0 . Therefore, if e is sufficiently small, then In 2/T, < 0k <
2 In 2/T,. Hence,

p e+_ = +_ + +_

1 T,
> eOk k2e3eOk

1 2 ()k2e3

>0
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if e is sufficiently small. This, however, is a contradiction because p() < 0 for all .
COROLLARY 2D.2. If e is sufficiently small, then

IP’ (0) 0 1 + 6e In e) < 3.

Proof. Recall a() which was defined in the preceding proposition. If _< _< 0,
then using the estimates obtained in the preceding proposition,

if e is sufficiently small. Since p(0) 6 In e, the result follows.
Note that p(0) Tz(0). Hence,

(2D.2) ITz(O)- 0(1 -I-6e lne)l _< 3.

Moreover, using (1.S) and (2D.1), we conclude that

(2D.3) O T (0)I _< 4 and Iv,.(0)- h0V(0)l < 4.

E. 0 _< z _< z. It will be again more convenient to work with the variables p,
qe, and . We shall often drop the subscript e. Recall that z/e.

7PROPOSITION 2E.1. Let a be as in Proposition 2B.1, and kl -5" If e is suffi-
ciently small, then < -kl In .

Proof. Note that p" cop’-q(p) _< cop’. This implies that

(2E.1) p’() >_ p’(e)e-eO(-)

However, from Lemma 2B.5, p’(e) >_ -ap() a. Therefore,

If _> -kl In e, then

p(0) < -1-

-1 + akllne -1 + 71ne

as e --, 0. Since p(0) 6 In e, this is impossible if e is sufficiently small.
As in 2B, we consider (I)() p() + h-lq().
PROPOSITION 2E.2. There exists K2 such that if e is sujficiently small and 0 <_

<_ , then
max {[()[, [’()[} < K2e2(lne)2
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Proof. We integrate (2B.7b) from to e to obtain

(I)() ee(-)(I)(e) + e0(A-1 1)eO e-eevq()dy.

We use Proposition 2B.2, Proposition 2E.1, (1.15), and Lemma 2B.3 to conclude that
if e is sufficiently small and 0 _< _< , then

I()1 < e2K + 2e20M max
>_o

<_ e2K + 1220Mk In e)2
_< e2K2( In e) 2

for some K2 which does not depend on e. A similar bound is obtained for [(I)’()l if
we use (1.15), Lemma 2B.3, and (2B.7a).

The next two corollaries follow from the preceding proposition, (2E.1), and the
definitions.

COROLLARY 2E.3. (a) ITe(5) + A-Ye(5)I < g2e3(lne)2 for 0 g <_ .
(b) ITs(0)+ h-Yz(O)l _< g2e2(lne)2.
COROLLARY 2E.4. There exist positive constants ao and o such that if 0 <_ <_, then ao < p’() < o, and ao < -q’() < o.
3. Proof of Proposition 1.1. Throughout this section we fix the constants

k, and . For convenience, we shall drop the subscript e in T, Y, and 0e. We set
u p, v q, and write (1.11) as the first-order system

(3.1) W’=Aa(z)W

where W (u, p, v, q)T and

A(z)

0 1 0 0

+ bro 0 ) 0

0 0 0 1

0 Ao’+k2+AAY(-T--) AO

We say that a is an eigenvalue if there exists a nontrivial bounded solution of
(3.1). It is not hard to prove that a is an eigenvalue if and only if there exists a
nontrivial solution W(z) of (3.1) which satisfies limlzl._, W(z) O, the zero vector
in 4, complex four-space. Here we used (1.15). Consider the linear subspaces"

E;- {W(z) W(z)is a solution of (3.1) and lim W(z) O},

Ea+ {W(z) W(z)is a solution of (3.1) and lim W(z) O}.

Then a is an eigenvalue if and only if E;- has nontrivial intersection with Ea+.
LEMMA 3.1. dimE dimE+ 2.
Proof. Let A limz-,-o Aa(z) and Aa+ limz-,+o Aa(z). Using (1.15), it is

a simple manner to show that both A and A+ have two eigenvalues with negative
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real parts and two eigenvalues with positive real parts. The result then follows from
Coddington and Levinson [2, Thm. 8.1].

Let {e-(z),e(z)} form a basis for E- and {e+(z),e+2(z)} form a basis for Ea+.
Let (I)(z) be the 4 x 4 matrix whose column vectors are e(z), e(z), e+(z), and
e+2(z). We then define

(3.2) De(a, k, g) det (I)(0).

The following two lemmas complete the proof of Proposition 1.1.
LEMMA 3.2. a is an eigenvalue if and only if De(a, k, g) O.
Proof. Recall that a is an eigenvalue if and only if E- has nontrivial intersection

with E+. This is true if and only if there exist constants cl, c2, c3, and ca, not all of
which are zero, such that

This last statement is true if and only if the columns of (I)a(z) are linearly dependent;
that is, det (I)(z) 0 for all z. This is true if and only if det (I)(0) 0.

LEMMA 3.3. The vectors e, e, e+ and e+2 can be chosen so that De(a, k,g) is
a holomorphic function of a.

Proof. See Gardner and Jones [5].
In the next few sections we prove Theorem 1.2 by constructing, to high enough

order, vector functions e- and e in E-, and e+ and e2+ in E+. We then compute
De(a, k, g) det (I)(0) explicitly. We assume throughout that the translation of the
wave is chosen so that (2A.2) holds.

Remarks. (1) Evans [3] defined a function D(A) in his study of nerve impulse
equations. That function played a role analogous to the function De(a, k, g) used here.

(2) Gardner and Jones [5] have demonstrated how to construct D(A) for more
general reaction-diffusion systems. I am grateful to both of them for discussing their
work with me.

4. The basic formulas. We fix e, g, k, and a as in the preceding sections.
As before, we drop the subscript e. In this section we derive formulas for linearly
independent solutions in E- and E+. The basic idea of how to derive the formulas is
straightforward, but the actual proofs are quite technical. We shall present the proofs
in 6.

A. Eg. We now compute two linearly independent solutions of (3.1) which vanish
at z -. The basic ideas is that the reaction terms in (3.1) are very small for z _< 0.

Recall that the translation of the wave is chosen so that T(0) 1 + 6e Ine. Since
T and are monotone increasing functions, it follows that if z _< 0, then

Hence, the nonlinear terms in (1.11) are very small. This leads us to consider (1.11)
without the reaction terms; that is

(4A.1)
u"-Ou’ (a + k)u,
A-iv’’- Ov (a + A-k)v.
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Two linearly independent solutions of (4A.1) which decay at z -oc are:

(Ul(Z),Vl(Z)) (erlz,0) and (u2(z),v2(z)) (0, er2z)

where

+ V/O + 4(a + k) 0 + V/0 + 4A-(a + A-k)(4A.2) rl- r2-
2 2A-Hence, our guesses for e (z) and e (z) are

(4A.3) - (z)
 i(z)

,i(z)

rlerl z

0

0

u (z) o

o

In 6 we shall prove that these are indeed good guesses.
PROPOSITION 4A.1. There exists eo such that if 0 < e

_
co, then there exist

vector functions e’ (z) and e (z) in E such that for z <_ O,

(4A.4) [le (z) - (z)l <_ e2 and Ile (z) (z)ll ,
B. e+. We now construct, to high enough order, a trajectory e+(z) in Ea+. As

in 2B, it is convenient to work in the variables p T- l/e, q Y/e, and z/e.
In these new variables, (1.11) becomes

(4B.1)
u" e0u’ + q(p)u + (p)v e2(a + k2)u,
A-u’’ coy’ q(p)u (p)v e2(a + A-k2)v

where differentiation is with respect to .
The basic idea of this section is that the right-hand side of (4B.1) is small com-

pared to the left-hand side. Hence, we look for a solution of (4B.1) of the form:

(4B.2) u() u() + e2u2() and v() vl() + e2v2()

where (u(), v()) satisfies the system:

(4B.3)
u7 eOu + q(p)u + (p)v 0,

A-iv eOvi q(p)u (p)v 0.

Of course, we must also impose the boundary conditions"

(4B.4) lim (u(),v())= .lim (u2() v2())= (0, 0).

It is not hard to check that for (ul(), vl()) we may take

(4B.5) u() =p’() and v() q’().

That is, e+ will be a perturbation of the derivative of the wave.
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We can now make a preliminary guess for e+. When we compute e+, we must
be careful to distinguish between the variables z and . Of course, we are only really
interested in e+ (0). Our guess for e+ (0) is then

ul 0) p(0) + e2u2(0) Tz(O) + e2u2(0)

u:0) 7p(0) + eu2(0) Tzz(O) + eu2(0)
(4B.6) +(0)

vt 0) q(0) + e2v2(0) Yz(O) + e2v2(0)

Vz :0) 7q(0) + ev2(0) Yzz(O) + ev2(0)
We now use the results of 2 to express Tzz(O), Yz(O), and Yzz(O) in terms of Tz(O).
From (2D.3), and Corollary 2E.3, we have that

(a) Tzz(O) OTz(O) + h.o.t.

(4B.7) (b) Y(0) -hTz(0) + h.o.t.

(c) Yzz(O) OAYz(O) + h.o.t. -0h2W.(0)+ h.o.t.

By "h.o.t." we mean, throughout this paper, a term which is 0(e21n4e). Therefore,
(4B.6) becomes,

T(0) + e2u2(0)

0T(0) + eu2e(0) + h.o.t.
(4B.8) + (0)

-ATe(0) + e2v2(0) + h.o.t.

--0A2Tz(0) + ev2e(0) + h.o.t.

We must now worry about the terms u2(0), u2e(0), v2(0), and v2e(0). In 6 we prove
the following proposition.

PROPOSITION 4B.1. There exists a positive constant C such that if is suffi-
ciently small, then

()
(4B.9) (b)

(c)

It then follows that

lu2(0)]

_
C(lne)2 lue(0)l

_
C(lne)2

Iv.(0)l _< C(lne)2

lu2(0) + A-lv2(0)l _< eC(lne)2

Tz(0) + h.o.t.

(4B.10) + (0)
OTz(O) + eu2(0) + h.o.t.

-ATz(0) + h.o.t.

-0A2T(0)- eAu2(0)+ h.o.t,

Finally, note that by (2D.2), Tz(O) is bounded away from zero. Hence, we may
divide each term in (4B.10) by Tz(O), and set

(4B.11) p u2(0)
Tz(O)
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to obtain

(4B.12) e+ (0)
0+eP

-OA2 eP

+ h.o.t.

Note that we have not computed PI explicitly. When we evaluate D(o, k, i.) by
taking a certain determinant, this term will cancel, to high enough order.

(2. ea+. In this section we construct, to high enough order, another trajectory in
E+. We begin by rewriting (4B.1) as

u" eOu’ + q(p)u + (p)v e2(a + k2)u O,
A-Iv’’ eOA-lv q(p)u (p)v e2(a + k2)A-lv

e0(1 h-1)v’ + e2 (1 h-1)av.

Let w() u() + A-lv(). Adding the two equations in (4C.1), we find that
w() satisfies the equation

(4C.2) w"- eew’- e2(a + k2)w ee(1 A-1)v + e2(1 A-1)o-v.

Since the right-hand side of (4C.2) is of order e2, we guess that w() wl()+ h.o.t.
where Wl() satisfies the equation

(4C.3) - e vl -e=(a 0.

For wl () we take

(4C.4) wl () eee’r{ where -y
8- V/O2 + 4(a + k2)

Recall from (1.15) that Re7 < 0. Choose P2 and P3 so that

(4C.5) u(O)=P2 and u{(O)=eP3.

From the definition of w({), we expect that

v(0) -Au(0) + Aw(0) -AP2 + eA + h.o.t.,

R(0) -Au’(0)+ Aw’(0) -cAP3 + e=A’/+ h.o.t.

Therefore,

(4C.7) 7u (O) Pa
1
v(0) -APa + eAT + h.o.t.and vz(O)

e
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Our guess for e2+ (0) is then

u (0)
(4C.8) e2+(O)

-AP + eA

-APa + eAT

/ h.o.t.

In 9 we prove the following proposition.
PROPOSITION 4C.1. For e sufficiently small, there exists a solution e+2 () in

E+ such that e+2(O) is given by (4C.8) for some constants P2 and P3. Moreover,
IP3 1 < Cle In ela and IP21 < ce(ln e)2, for some constant c which does not depend
O ..

Note that we do not compute P2 to highest order. This is because when we
compute De(a, k, l) by computing a certain determinant, P2 will cancel to high enough
order.

5. Computation of D(a,k,g). We are now ready to compute D(a,k,l).
Actually, we first compute another complex valued function/)(a, k, l) which satisfies
Proposition 1.1. Then D(a, k, t) will be equal to some constant multiple of/)(a, k, l).
The constant will be chosen so that Theorem 1.2 is satisfied.

From (3.2), Proposition 4A.1, (4B.12), and (4C.8), we have that

/)(a, k, l) det

"1 0 1 P

r 0 O + eP Pa

0 1 -A -AP2 + eA

0 r= -OA= eP -APa+eA7
A straightforward computation shows that

"1 0 1

det
0 0 O+eP-r Pa-rP2

0 1 -A -AP2 + eA

.0 0 -0A2-ePl+r2A -A(r2P2 P3) + cA(7 r2)

A(0 + eP1 rl)(r2P2 P3 + e7 er2)
(P3 rlP2)(-OA2 eP1 + r2A) + h.o.t.

hP3(rl r2) + 0PaA(A 1) + cA(0 rl)(7 r2)
+ OAP2(r2 Arl) + eP1P3(1 A) + eP1P2(r2A rl)
+ e2AP1 (7 r2) + h.o.t.

Let Pe V/(02/4) + a + k2 Recall that we are not writing the subscript e on 0e.
A straightforward computation shows that
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r +r, = -r,

r2=rl-e[a-t-2k22r t2 Fe] / h.o.t.

We combine (5.1), (5.2), (1.15), Proposition 4C.1, and Proposition 4B.1 to conclude
that

Let De(a, k, l) (2Fe0/e) /:)e (a, k, ). Then,

De(a, k, ) - (OFe 2
2 a)-40F (20- -Fe)+h(e)

where lime--.0 h(e) 0.
lime-0 Oe . Hence,

To complete the proof of Theorem 1.2, we recall that

limFe i +a+k2

where F is given by (1.13). This implies that

De(a, k, 1) i(F- 1 -a)- ) + h()

where lime--.0 h (e) 0.

6. Proofs of the basic formulas.
A. Proof of Proposition 4A.1. Throughout this section we use the notation

of 4A.1. The proof of Proposition 4A.1 is straightforward so we shall only outline the
details. In later sections, similar, but more complicated, arguments will be worked
out in detail. We only outline the proof of the first inequality in (4A.4), because the
proof of the second one is almost identical.

If z < ze, then (T(z)-l/e) 0. Hence, e-(z) =_ (z) E Ej for z <
ze. Throughout this proof we let (u(z), v(z)) be the solution of (1.11) such that
(u(z), v(z))= (u(z), v(z)) for z _< ze.
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Let/(z) u(z) -ul (z) for z g z g 0. Then (/(z), v(z)) satisfies the system

1
/" ee/’ (a + k2)/ -Y e

(/ + ul)
e

v,

(6A.1)

-,, o, (, +-) ( +) +

ogether with the boundary conditions

Here we used the jump conditions (1.12). In 2C we showed that T’(z) OT,. It
follows ha if e is suciently small, then

(6A.3) I’(z+)] < e4 and Iv’(ze+)l < e4.

We use an iteration scheme to prove the existence of a solution of (6A.1), (6A.2). The
existence proof will also give us the desired estimates. To set up the iteration scheme,
we write (6A.1), for j 1, 2,-.., as

Z’ -eZ -(. + =)Z -_,(z),
(A.4)

h-*,,’_, -e} -(. + h-*=) _,()
where h_(z) (1/e3)y(T l/e)(_ +u)+ (1/e2)(T 1/e)v_. We assume
that (0, vo) (0, 0), and for j 1, (&, vj) satisfies the boundary conditions (6A.2).
Let

8 {((z), (z)) max(](z)], ’(z)], ](z)], ]’(x)]) g e2 for z z 5 0}.
Using induction we prove that each (j, vj) e 8. Clearly, (0, vo) e 8. Suppose that
(_,v_) 8. We shall only obtain the necessary estimates for i(z) since the
estimates for vj (z) are obtained in a similar fashion.
om the variation of constants formula it follows that

(6A.5)

where

Z(z) (-)V(z) +

+ / + a( + ) v,,. + a( + :)
(a) rl--

2 m- 2

(6A.6)
(b)

(c)

(d) Z,(.)/v/0 + a( + k).
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Because (T-l/e) <_ e6 for z _< 0, and (/j-l,vj-1) e q, it follows that
Ihj_(z)l <_ 2e3. From Proposition 2D.1, Izl is bounded, independent of e. It now
follows from (6A.4) and (6A.6) that there exists a constant C, which does not de-
pend on e, such that if ze _< z _< 0, and e is sufficiently small, then I@(z)l <_
Ce3 and 1@2(z)l <_ Ce3 It then follows from (6A.5) and Proposition 2D.1, that
if z g z g 0, and e is sufficiently small, then Ij(z)l _< e2. Moreover, since

a similar argument shows that if z _< z _< 0, and e is sufficiently small, then I/}(z)l
e2. In a similar fashion we may obtain the necessary estimates for Ivj(z)l and
Hence, (/j, vj) E q. In order to complete the proof of the proposition, we must
show that a subsequence of {(/j, vj)} converges to functions (l(z),v(z)) in q such
that ((z), v(z)) is a solution of (6A.1), (6A.2). This is a straightforward argument,
especially with the estimates we have obtained so far. The complete details for this
type of argument will be given in the next sections when we consider Ea+.

B. Solutions of the homogeneous equations. We now prove a very impor-
tant preliminary result. Consider the homogeneous equation

(6B.1) r,,-  or, + h) + 0

where , q(), p(), and (p) are as in earlier sections, and A is a complex number with

IAI <_ A0. Let

e0 v/4h + e20 e2A e0 + v/4A + e202 e2A
i and i2

2 2

be the characteristic roots of (6B.1) at ec. We assume that e is so small that
Reb < 0 < Reti2.

PROPOSITION 6B.1. There exist positive constants M, MI, C, and p, and so-
lutions FI() and F2() of (6B.1) such that for sufficiently small,

(6B.2) (b)
(c)
(d)

max {Ir()l, < ce,(e-e, for ( _> (e,
M < IF()l < M and Ir ( )l < M(I ln e[ + 1)
r(() p,((), -o < aer(() < 0,
1 _< Re F2(() <_ p, 1 <_ Re F() <_ p.

Proof. From Coddington and Levinson [2], there exist solutions FI() and 2()
of (6B.1) and a positive constant C such that for >_ ,

_<

It is not hard to see that C can be chosen independently of e and F() can be chosen
so that if p > C1, then (6B.2c) is satisfied. Actually much stronger properties of F
are proven in Proposition 6C.2.

We now consider F2(). Choose such that p(e) -P0 where P0 > 1 is to
be chosen shortly. Since p() -1 and p’() > 0 for all , it follows that e < e.
Moreover, from Corollary 2E.4, we conclude that (-) is bounded from above and
below, independently of e. Let F2() be the solution of (6B.1) such that F2(e) 0
and F(e) P where P > 0 is determined as follows. Because (- ) is bounded
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from above and below, and F(e) P1 > 0, it is clear that we can choose P1 and p;
independent of e, such that 1 < Re F2() < p and 1 < Re F(e) g p. This verifies

(6B.2d). Moreover, because F2() can be written as a linear combination of
and F2(), (6B.2a) follows. It remains to show that Po can be chosen so that (6B.2b)
holds.

We first need some preliminary estimates. It follows from Corollary 2E.4 and
Proposition 2E.2 that if 0 < < , then

p() < p(e) + (o( ) -Po + co( ),
q() g q(e) o( e) < 2Po o( Ce).

Therefore,

(6B.3) (q A)(P) <_ (2Po 4- o( ) A)exp (-Po 4- (o( Ce)).

Now let m() r()/ri(). Then m’ +eOm 1 +[(q-A)v(p)+e2A]m2. We multiply
both sides of this equation by ee(-,) and let X() e(-,)m() to obtain

(6B.4) X’() e’(-,) + [(q A)qo(p) + e2A]e,(-,)X2.

Therefore, from (6B.3),

(6B.5) IX’()l < e,o(-,) + {[2Po + Zo(, ) A]e-Pe’(-’)
/ eAo}e-’o(-,)lXl.

Note that X() 0 and, from (6B.4), X’() 1. Hence, there exist 5 > 0 such that
]X()] < 2(- ) for - 5 < < . We claim that

(6B.6) IX()l < 2(- ) for 0 <

Suppose that (6B.6) is not true and o sup{ < " IX()l 2(C- )}, Since
IX()I g 2(- ) for o < < , we conclude from (6B.5) that if Po > A, e is
sufficiently small, and o <_ g , then

(6B.7) IX’()l < 1 + {[2Po + o( )]e-Pe’(-’) + e2Ao}ee(’-)4(, )2.

A straightforward computation shows that if Po is sufficiently large, and < , then

(6B.8) 1[2Po + Bo(, )]e-Pe’(-’)4(, e) < -.
Together with (6B.7) and Proposition 2E.1, this implies that if e is sufficiently small
and o < g, then

1
IX’()l < 1 + + e2Ao8,,2

1< 1 + + 82Aok2( In e) 2

<2.

This however implies that IX(5o)l < 2(C 5o) which contradicts the definition of o.



STABILITY OF PLANAR WAVE SOLUTIONS 1159

We have now verified (6B.6). Using the definitions we now conclude that if
0 _< <_ Ce, and e is sufficiently small, then

Ir()/ri()l =-I()1 Ir()l‘(’-) _< 2(-
< 4( ).

Together with (6B.1) and (6B.3) this implies that for 0 and e sufficiently
small,

01r()l + {[2P0 + fl0(e )]e-Pea(-’) + e2A0}4(Ce )lrh()l

This is a separable equation with the dominant term being e-Poea(-). We integrate
this equation and find that, since a(-) < 0, there exists M > 0 such that if P0 is
sufficiently large, then ]F() > M for 0 e. This is the desired lower bound
for ]F() needed for (6B.2b). The upper bound is actually easier, and is obtained in
a similar fashion.

C. The inhomogeneous equation. In this section we prove two more pre-
liminary results. For both results we consider equations of the form

(6C.1) u"- eOu’ + [(q h)(p) + e2A]u

where q(), p(), and A are as in the preceding section and g() is a continuous function
which satisfies, for some positive constants M2 and

(6C.2) ]g()] < M2 for 0
M2e-a(-’) for e.

Here, M2 may depend on e, but al, does not. Let 6 and 62 be as in the previous
section. We assume that

(6C.3) e0 < 1/2Re62 and al < 1/2Re(52-e0).
PROPOSITION 6C.1. There exists a solution u() of (6C.1) such that

lim-,oo u() 0, and, for some positive constant M3 which does not depend on
or ol1

< M2M3]lne(-+l) for0g{lu()l lu’()l}mx
[ M2M3e-a(-) for .

Proof. The proof is straightforward, using the variation of constants formula. We
write the solution of (6C.1) as

(6C.4) u() F()@()+ F2()@2()

where F and F2 are as in Proposition 6B.1, and

(a) (()= Wo
e-(n-lr()g()d’

-o(-r(n(ldn,(ac.) (b) ()= Wo

(c) Wo r()r() r()r=().
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The proof now follows from estimating the various terms in (6C.5) using Proposition
6B.1 and the assumptions on g(). For the proof we shall assume that IFI()I < 2K
and IF()I < 2K for all > 0, where K was defined in (2A.1). Actually, all we need
is that both F1 () and F() are bounded for > . This will be verified in the proof
of Proposition 6C.2.

To begin with, note that from (6B.2c,d), we have that

(6C.6) IW01 > 1.

We now consider 1(). From (6B.2b), (6C.2), (6C.6), and Proposition 2E.1, it
follows that for 0 _< <_ ,

I@1()1 <_ eMlllnelM2d
< 2MiM2[ lnel( )

if e is sufficiently small. We are assuming that IF1 ()[ <_ 2K for 0 <_ <_ . Therefore,

(6C.7) _< 4MM2K[lne[(, ) for 0 _< _<

and e sufficiently small.
Now suppose that > . We use (6B.2a), (6C.2), and (6C.6) to conclude that

I1()1 <_ e-O(n-)Mle(n-)M2e(n-)d?

M1M2 ,o)(-:) [.

Since til+ 52 e0 and al <_ 1/2Re (52 -e0), it follows that there exists a constant Md,
which does not depend on e or 1, such that for e sufficiently small,

(6c.8) [r(5)ml(5)l <_ MdM2e-al(-) for >_ .
We now consider @2(). If >_ e, then from (6B.2a), (6C.2), (6C.5b), and (6C.6),

o

e-(n- M1e (n- M2e-((n- dr]

M1M2 le(---o)(-) I"

Since 51 + 52 e0 and 51 < 0, it follows from (6B.2a) that M4 can be chosen so that

(6C.9) <_ MdM2e-’(-) for

_ .
Finally, consider 2() for 0 _< _< . From (6C.2), (6C.6), and our assumption that
IFI()I _< 2K, we conclude that

<_ 2KM2ee* (e ) + MdM2
MdM2(- + 1)
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if e is sufficiently small. From (6B.2b) we have that

(6C.10) IF2()()I _< M1M2M411neI(e- -t- 1).

It now follows from (6C.4), (6C.7)-(6C.10) that M3 can be chosen independently
of e such that for e sufficiently small,

(6C.11) lu(()l <- I M2M31 In el(e + 1)

( M2M3e-a(-)

for 0 <_ <_ e

To complete the proof of Proposition 6C.1, we consider u’(). A consequence of
the variation of constants formula is that

The same assumptions we used for F1 (() and F2(() to estimate u(() also hold for F(()
and F((). Therefore, (6C.11) holds with u(() replaced with u’((), and the proof of
Proposition 6C.1 is complete.

We conclude this section with a result which will be needed when we consider e2+.
For this result we let p(() be as before, and F (() be as in Proposition 6B.1.

PROPOSITION 6C.2. There exist positive constants Mo and co, which do not
depend on e, such that .for e sufficiently small,

max{lr ( ) p’(()l, P"(()I} < ’f Me2l In el3((e ( + 1)
I, Moe2e-(e-e)

Proof. Let u(() F(() -p’((), and (I)(() p(() + A-q((). Differentiating the
first equation in (2B.2) we find that

u"-eOu’+ (q- A)o(p)u A(I)’(()(p)- e2AF g(().

Now o(p) is bounded, and from Propositions 2B.2 and 2E.2, there exists a constant
kl, which does not depend on e, such that

< e2k(lne)2

[ e2ke-a(-’)

Therefore, we may choose k0 so that

Ig( )l < e2ko( In e) 2, e2k0e-a(-,)

Now Proposition 6C.2 follows from Proposition 6C.1 as long as Iri(()[ < 2K and
IF(()I <_ 2K. Recall that we assumed this to be true for the proof of Proposition
6C.1. However, it follows from (2A.1) that IP(()I < K and IP’(()I ITz(z)l < K for
all (. The completion of the proof now follows easily.

D. Proof of Proposition 4B.1. Throughout this section we use the notation
of 4B. Note that (u2((), v2(()) satisfies the system:

(6.D1)
ug eOu’2 + q(p)u2 + (p)v2 (a + k2)(p + 2u2)
A-vg eOv q(p)u2 (p)v2 (a + A-k2)(q + e2v2)
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where differentiation is with respect to . Using a straightforward iteration argument,
we prove the existence of a solution of (6D.1) which satisfies (4B.4). The estimates
needed for the existence proof will prove Proposition 4B.1.

To set up the iteration scheme, we first write (6D.1) as

(6D.2)
ug eOu2 + q(p)u2 + (p)v2 (a + k2)p + e2(a + k2)u2,
h-lv e0A-lv q(p)u2 (p)v2 (a + k2)A-lq + e2(a + h-lk2)v2

+ O( h-) +( h-)q’.

We set u() 0 and v() 0. Assuming that (uJ-(), vJ-()) have been defined,
we let (uJ(), v()) be the solution of

(6D.3)

together with the boundary conditions lim_(uJ(), vJ()) (0, 0).
Let wJ() uJ() + h-lvJ(). Adding the equations in (6D.3), we find that

Let

H() ce-’(-)

where the constants c and r are to be determined. Let

S {()" max((), ’()) _< H() for >_ 0).

Using induction, we shall prove that {uJ, vJ} C S for each j. Clearly, {u,v} c $,
so assume that {uJ-, vJ-} c 8. We first estimate hJ-l(), which was defined in
(6D.4), and then wJ().

In order to estimate h’-() we note that q() Yz(z). From (2A.lb) it follows
that Iqe()[ <- K for all . This, together with (1.15) and Propositions 2B.2 and 2E.2
imply that there exists a constant c such that if r _< a, which we always assume to
be true, then

< [ ecl for 0 _< _<(6D.5) Ih-l()l , ecxe-r(e-e) for _> .
Throughout this section the constants c, j 1, 2,..-, do not depend on e.

We now estimate wJ(). From (6D.4), we have that

(6D.6) w() ee(-) e-t(’-)h:i-(rl)&7.
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It follows from (6D.5) and (6D.6) that there exists a constant c2 such that

(6D.7) iw() < { ec2( + 1) for 0 _< _<
ece-(-) for >_ .

Since wJ() -f,o w(7)dr, we conclude from Proposition 2E.1 that there exists a
constant c3 such tat

(6D.8) Iw ( )l < { c3l lnel( + 1) for 0 < <
ecae-"(-,) for >_ .

Note that c3 does not depend on e. It also does not depend on the constant c used in
the definition of S if we assume that ec < 1.

We now consider (uJ(), v()). Note that vJ -Au / AwJ. We plug this into
the first equation of (6D.3) to obtain

(6D.9)
u eOu + (q A)(p)uJ -A(p)wJ + (a + k2)p + e2(a + k2)u-1

We wish to apply Proposition 6C.1, with 0, to obtain the desired solution
of (6D.9). To do this we must first estimate gJ(). From (6D.8), Proposition 2E.1,
(1.15), (2A.1), and the fact that uJ-1 E S, we conclude that M2 can be chosen so that
g:i(z) satisfies (6C.2) with c1 r. Note that M2 does not depend on the constant
c in the definition of S, if we assume, as before, that ec < 1. We also assume that
r _< min (, 1/2Re(2 -e0)}. We may then apply Proposition 6C.1 to conclude that
there exists a constant M4, which does not depend on e, such that for e sufficiently
small, there exists a solution uJ () of (6D.9) with lim-oo uJ() 0, and

(6D.10) max{lu()l, lui()l} _< { M4e_r(_,M41 In el(re- + 1) forfr 0 < fe.<_ fe

Hence, u() e S if M4 g c. Because vJ -AuJ + AwJ, we conclude from (6D.10)
and (6D.8) that c can be chosen so that v() e S.

We now complete the proof of Proposition 4B.1 by showing that ((u, vJ)} forms
a Cauchy sequence. It is then straightforward to show that some subsequence of
((wi, vJ)} converges to a solution of (6D.1) which satisfies (4B.9).

Let H() be as in the definition of S. We shall prove, by induction, that

(6D.11)

for >_ 0 and j 1, 2,.... Since u() 0 _= v(), and (ul(), vl()} C S, (6D.11)
holds for j 1. We assume that it holds for some j >_ 1, and prove it holds for j + 1.

From (6C.5) we have that for each j >_ 1, u F + F2, where

(6D.12)

i

Wo
e-(’-’)r2(Y)g(7)d7

Wo
e-’(’-’)Ft (o)g (rl)do
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FI() and F2() are as in Proposition 6B.1 with A 0, and gJ() is defined in (6D.9).
We must now do quite a bit of estimating. Recalling (6D.4) and (6D.6), we begin with

(6D.13)

where

hi(y) hJ-l() e2((7 -I- A-1]g2)(uj uj-l) + 2((7 q- A-lk2)(vj vj-l)
(6D.14) + e0(1 A-)(v v-l).

We plug (6D.14) into (6D.13) and integrate by parts to obtain

cO(1 A-1)(vJ() vJ-())

+ e0(1 A-1)ee0((-() e-eO(-()(vj vj-)d.

Using (1.1), we conclude that there exists a constant c such hat for ( 0

+ (vl -l(vl + i(vl -(vllev.

herefore,

+ I( -(1 + I( -(lle e

+ ( (1( -(1 +( -(llle.

his, together with the definition of 9J(() given in (6D.9), and (1.1) imply that
ghere exists a consan e such that for ( 0,

(.1 + (n )(l(n) -()1 + I( -(v))av

+lcg() + e+c ()(1 + n ()a.
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A straightforward computation shows that for e sufficiently small and >_ 0,

1
c2H()e1/2 H(7)(1 + 7 )d <_

Together with (6D.15), this implies that if e is sufficiently small and >_ 0, then

(6D.16) IgJ+l() gJ()l -< eJ+/2H()
The remainder of the proof is now straightforward. From (6D.12), (6D.16), and

the properties of F() and F2() given in Proposition 6B.1, we find that if e is suffi-
ciently small and >_ 0,

Therefore,

luJ+l()- ()1 _< Ir()(v{+()- {())1 + Ir()(i+()- v{())l
<_ 1/2eJH().

A similar calculation shows that IvJ+l()- vJ()l _< 1/2eJH(). This completes the
proof that {(uJ(),vJ())} forms a Cauchy sequence. As we mentioned earlier, it
follows quite easily that some subsequence of {(u(), vJ())} converges to a solution
of (6D.1) which satisfies (4B.9).

E. Proof of Proposition 4C.1. Throughout this section we use the notation
of 4C. The proof of Proposition 4C.1 is similar to the proof of Proposition 4B.1. We
prove the existence of a solution of (4C.1) using an iteration scheme. The estimates
needed for the iteration scheme will imply that the proposition is true. To set up the
iteration scheme we consider the system

(6E.1)

for j >_ 1. Let wJ uJ + A-vJ. Then wJ() satisfies the equation

We assume that

(6E.3) o() , + dv()

where -y was defined in (4C.4). Then () is a solution of the equation

(6E.4) + (1 A-1)o’vJ-1

We assume that u({) v({) 0 for all .
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We now set

(6E.5) H(() / ec( In e)2(( ( + 1)

eee-er((-()

for 0 <_ <_ ,
where r and c are positive constants, which do not depend on e, and will be determined
later. Let

,5 {(()" max(C((), ’(()) <_ H(() for ( >_ 0}.

Using induction we shall prove that uJ E S and vJ E S for all j. This is certainly true
for j 0, so we assume it is true for j- 1. We must now estimate wJ((). This is,
unfortunately, a rather long and involved calculation.

Using the variation of constants formula we write OJ (() as

(6E.7)

where 7 is as before, and

(a) 6=
0 + v/ + a( + k)

(6E.S) (b) @1(()

(c) ,()

1 f e’(e-)(n- hi- 1 (r/)dr/,
e V/02 + 4(a + k2)

1 e(’r-)(n-) h)- (r/) dr/.
ev/O. + a(a + k)

First we estimate ((). Using the definition of h- given in (6E.4) we have that

0(1 A-) fe,(e_o)(,_,)v_(?)de2 V/02 + 4(a + k2)

0(1- A-)a
eV/02 + 4(a + k2)

ee(e-)(’-’)v:i-(rl)drl

(I)+ (II).

We integrate by parts to obtain (I) (Ia) + (Ib) where

(Ia) -0(1- A-)
e2 V/02 + 4(a + k2)

[ee(-0)(-,)vj- () vJ-l(.,)]

and
-0(1 A-)(O(Ib) { + k2)

e’(-)(n-(,)vJ-(r)dr/.

Suppose that 0 _< ( <_ (. It follows from (1.15) and the assumption that vJ- S
that

(6E.10)
OM

I(Ia)l < -- (ec( In e)z((, + 1) + ec)

_< cc In e)2((, + 1)
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for some constant cl which does not depend on e. It follows from (1.15) and Proposition
2E.1 that if 0 <_ <_ , then

(6E.11)
< 0MS f ec( In )2( ?’1 -- 1)dr/I(Ib)[

< ccl( In e)2( + 1)

if e is sufficiently small.
Now suppose that >_ . Using (1.15) and the assumption that vJ-1 E S, we

have that

(6E.11)

OM
I(Ia)l < ---[e(-)(-’)ce-(-)+ ee

< 2Mclee(-o-r)(-)
where we assume that

5-0 V/O2+4(a+k2) -0
(6E.12) Re Rer

2 2

From (1.14), we may choose r > 0 independent of e. On the other hand,

(6E.la)

OM5 fe e(_o)(,_e,)ece_r(,_)

Me

Combining (6E.9)-(6E.13) we conclude that there exists a constant c2, which does not
depend on e, such that

(6E.14)
cc e(--)(-)] for k e.

The estimates for (II) are easier. If 0 < { < , then from (1.15), Proposition
2E.1, and the assumption that vJ- E we conclude that

(6E.15)
M2

I(II)l < - ec( In e)2( r/+ 1)dr/

<1

if e is sufficiently small. If { k {,, then using (1.15) and the assumption that vJ- S,
we find that

(6E.16)
I(II)l < T e’(-o)(’-’)ece-"(n-’)dY

M2c< e,(-O-r)(-,)
O(- O- r)
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Combining (6E.14)-(6E.16), we conclude that there exists a constant c3, which does
not depend on e, such that

1/2(n)(-+ )
()

1/2c3cle(5-O-r)(-)
for0<<,

Since 5 + 3’ 0, it follows that if e is sufficiently small, then

(6E.17) le"r(-’)@l()[ < / 1/2c3c(lne)2(e + 1) for 0

c3ce-r(-,) for ,
A similar estimate holds for @2(). That is, c3 can be chosen so that

c3c(lne)2(e + 1) for 0
le(-’)2()l

c3ce-(-,) for

if e is sciently small. om (6E.7), we conclude that if e is sufficiently small, then

(6E.18) I()1
c3c(lne)2(, + 1) for 0

c3ce-r(-,) for .
Note that @() eTe’(-,)@() + eSe’(-,)@2(). om our estimates on

@() and 2() it follows that c3 can be chosen so that

eC3C( In e)2(, + 1) for 0
(6E. 9)

c3ce-’r(- for

Recall that vJ -A + AwJ. We plug this into the first equation of (6E.1) to
obtain

u ,Ou + [( h)(p) ,( + )] -h(p)

We wish to apply Proposition 6C.1 with A -(a + k2), u() ()/e, and g()
-A(p)wJ()/e. Then, from (1.15), 0 [ 2M2, assuming that M > 1. Moreover,
it follows from (6E.4), (6E.18), and Proposition 2E.1, that if 0 ,, and e is
sufficiently small, then

<5.

If , and e is sciently small, then from (6E.4) and (6E.18),

< 5e-er(-,)

We now apply Proposition 6C.1 with M2 5 and er to conclude that there
exists a constant M3, which does not depend on e such that

feM3]lne](e-+l) for0

eMze-r(-,) for e.
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Therefore, u() E S. Since vJ -AuJ / AwJ, it easily follows that vJ E .
Recall from the statement of Proposition 4C.1 that we must estimate u(0) P2

and uz(0) P3. For this reason, we estimate u(0) and u(0). As in (6C.4) and
(6C.5), we find that

(6E.20) u#() r()()+ F2()2()

where F1 and F2 are as in Proposition 6B.1, and

(6E.21) (b)

(c)

Recall from (6C.6) that ]W01 > 1. It then follows from (6B.2b), (6E.3), (6E.18),
and Proposition 2E.1 that for e sufficiently small,

](0)[ < A e-(’-)Mllnel2ee’rdrl

(6E.22) < (2AM)e In ele(7+),
_< Ne(lne)2

for some constant N1 which does not depend on e. From Proposition 6C.2, there exists
a constant N2 such that

Ir()l < N for 0 _< _< .
It therefore follows that

Ir,(o),(o)l <_ NN2e(lne)2

A similar estimate holds for Ir(0)(0)l. From (6E.20) we conclude that c can be
chosen so that

(6E.23) lu(0)l < ce(lne)2

We must now consider

(6E.24) u(0) Fi(0)(0 + F(0)2(0).

From Propositions 6B.1 and 6B.3, Corollary 2D.2, and (2D.3), it follows that

(6E.25)

()
(b)
(c)
(d)

F1 (0) p’(0) + h.o.t. 0 + 0(e In e)
F (0) p"(0) + h.o.t. e02 + h.o.t.

IF2(0)[ < M[ ln e[
Ir(o)l >_ M.

It now follow from (6E.22) and (6E.25b) that

(6E.26) Ir(o),x(o)l < e202N ln e)2
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We now consider F2 (0)@2 (0) We write @2(0) as

(6E.27) (o)
Ae’ e-nF (r/)(p)wJ (r/) dr/.Wo

Note that

o
-,o,r()(p)()d

e p, (r/)(p)dr/+ e (F1 (r/) p’ (r/)) (p)dr/

+ (-o(v) ) r
(I) + (II)+ (III).

iow

(I) e ePp’(rl)drl e epdp
(o)

e eep(O)

--__.7.

From Proposition 6C.2, it follows that if e is sufficiently small, then I(II)l _< ez. It
remains to consider (III). A straightforward, but tedious computation shows that if
we use the bounds (6E.3) and (6E.18) for wJ(r/), the bounds given by Proposition
6C.2 for Fl(y), and the fact that I(P)I < 1 for all y, then for some constant No,
independent of e

[(III)l G No2( In e)4.

Therefore, if e is sufficiently small, then

(6E.28) e-’oF(I)(p)wiOT)dl e + O (e(ln)4)

We now estimate e0,/Wo which appears in the formula for 2(0) in (6E.27). It is
straightforward to check that if

w() r()ri()- ri()r(),

then W’ eOW. Therefore, W() Woe(-,). It follows that

eG 1

Wo w(o)

This, together with (6E.25) implies that

(6E.29)
Wo

r(o)
r(o)r (o) r(o)r. (o)

r(o)
or(o) + o(, in e) + o(e in e).
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Combining (6E.27)-(6E.29), we have that

(6E.30) F(0)$2(0) + O (e2( In e)).

It then follows from (6E.24), (6E.26), and (6E.30) that

u(0) 4- 0 (e2(ln )4).

This then implies that

(6E.31)
1u{(0) 4- 0 (e( In e)4).

We have now shown that for each j, u() E ,5, vJ E S, and (6E.23) and (6E.31)
are satisfied. To complete the proof of Proposition 4C.1, we must demonstrate that
some subsequence of {(uJ(),v())} converges to a solution of (4C.1). The proof
of this last statement is similar to the proof given in 6D. Since that argument was
worked out in complete detail, we do not give any details here.
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BOUNDEDNESS AND DECAY RESULTS FOR
REACTION-DIFFUSION SYSTEMS*

JEFF MORGAN?

Abstract. Boundedness and decay results are obtained for semilinear parabolic systems of partial
differential equations, m-component systems of the form

u,=DGu+f(u) on ft x+
with bounded initial data and various boundary conditions are considered, where D is an m m positive
diagonal matrix, l) is a smooth bounded domain in En, and f:E" " is locally Lipschitz. These results
are based upon f satisfying a Lyapunov-type condition. The theory is applied to some specific reaction-
diffusion problems.

Key words, reaction-diffusion, boundedness, decay, Lyapunov function
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1. Introduction. In recent work, Hollis, Martin, and Pierre [8] employ a simple
Lyapunov-type condition to obtain global existence and boundedness results for
semilinear parabolic systems of the form

(1.1) Ui,--di/kbli-l-fi(u) onlIx(0, oo), i=1,2,

with bounded nonnegative initial data and various boundary conditions. (Here dl, d2 >
0, 12 En is a smooth bounded domain, and f--(f) is locally Lipschitz and of poly-
nomial type.) They impose conditions on f to guarantee that ul and u2 remain
nonnegative, and they assume Ul to be uniformly bounded. Their Lyapunov-type
condition is given as

(1.2) fl(Vl, /)2) -[-f2()l, /)2) N for all Vl, v2--> 0,

with the size of the constant N dependent only upon the type of boundary condition.
Based on these assumptions, they have been able to prove global existence and
boundedness results for (1.1).

More recently, Morgan [13] has extended the global existence portion of these
results to m-component systems of the form

(1.3) Ui,-’- di/ l,l -Jt-f l,l - x (0, oo), 1,. ", m.

Morgan assumes the existence of an invariant region M of E" (such as E’) and a
smooth, functional H" M -JR (deemed a Lyapunov-type function) of the form H(u)=
i= hi(ui), with hi convex and nonnegative, such that

(1.4) OH(v)f(v) <= N for all v M.

Condition (1.4) is used to obtain L2( (0, t)) bounds on H(u). These bounds are
then combined with a so-called "intermediate sums" condition and polynomial growth
restrictions to obtain global existence results for (1.3). In this present work, we extend
these ideas to generalize the boundedness results of Hollis, Martin, and Pierre, and
to obtain decay results. Our primary tool in obtaining these results is an extension of
a duality technique that originated in [8].

* Received by the editors December 19, 1988" accepted for publication (in revised form) October 2,
1989. This work was supported in part by the National Science Foundation under grant DMS-8813071.

? Department of Mathematics, Texas A&M University, College Station, Texas 77843.
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We should note that our "intermediate sums" condition is motivated by Rothe
[16]. Rothe develops estimates for solutions of scalar equations such as

u, d/u +f(u), l-I x (0, ),
subject to various boundary conditions and initial data. His primary assumption is
that If(,)l<-K(lulr+ ) and that some La(12 x (0, T)) a priori bound is known for u.
He then gives conditions relating a and r which guarantee both global existence and
certain growth estimates for u. In our work, we employ the structure of H to obtain
v (v,) (hi(ui)) as a "subsolution" of

vi, <= di/ v + gi(v), x (0, ),
where gi(v)=h(ui)(u). The "intermediate sums" condition then requires the
existence of A (a) lower triangular satisfying ai 0 and a, > 0 for all
1 < i,j < m such that = ag(v) K(H(u) + 1) for all 1 j m. We then employ
(1.4) to obtain an L(O x (0, T)) a priori bound for v and give conditions relating a
and r guaranteeing both global existence and ceain growth estimates for v. These
estimates yield similar estimates for u.

We remark that similar problems have been solved in Kanel [9] and conceptually
related work can be found in Bates [1], Redheffer, Redlinger, and Walter [15] and
Weinberger [20]. Thoroughgoing mathematical surveys of reaction-diffusion systems
are given by Rothe [16] and Smoller [18].

Our work is organized as follows. In 2 we develop notation and state our main
results. In 3 we establish some preliminary estimates, and in 4 we prove our main
results. In 5 we develop some a priori estimates, and in 6 we apply our results to
some specific reaction-diffusion problems.

2. Notation and statements of results. We assume that the standard Lp and Sobolev
spaces are familiar to the reader. If 0r<T and lp<, then W’’P(Ox (r, T))
will denote the Banach space consisting of the elements u of LP(x (7, T)), having
the distributional derivatives O7Ou, where 2r+ s2 and each of the derivatives lie in
tp( X (, T)). The norm is defined by

2r+s2

The positive oahant of E is defined by E {x Elx 0 for all 1 m}.
Throughout, O will be a bounded domain in E" with smooth boundary O (say

O is an n- 1 dimensional C+" manifold such that O lies locally on one side of
Fuhermore, if s and are real numbers satisfying 0 s t, then Q(s, t) will denote
O x (s, t). In addition, Q(0, ) will denote O x (0, ).

The primary concern of this work is the system

u,(x, t) Du(x, t) +f(u(x, t)), x O, > O,

(2.1) Bu(x, t) O, x dO, > O,

u(x, O) Uo(X), x O,
where D diag {d, , d} is positive, f= ()" EE is locally Lipschitz, is the
Laplacian operator, and B and Uo satisfy the following assumptions.

(A1) B=(B) is a diagonal operator given by Bu=(Biu), where Biui=aiu+
#(Oui/On) for all 1 m.
Here a =(ai)E and #{0, 1} satisfy:

(i) If=0thena=l for alllkm;
(ii) Ifa=0forsome lim, thena0and=l.
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The notation 8/0/ above represents the derivative with respect to the outward
unit normal on af. In all that follows, V is the gradient operator and a is the derivative
operator.

Conditions (A1), (A2) guarantee local existence and uniqueness for (2.1). A proof
of the following result can be found in [8, Prop. 1, p. 745].

PROPOSITION 2.2. Suppose (A1), (A2) hold. Then there exists Tmax>0 and N
(Ni) C([0, Tmax), Rm) such that

(i) System (2.1) has a unique, classical, noncontinuable solution u (x, t) on f
[0, Tmax)

(ii) u (., t)II,= N(t) for all 1 = = m, 0 = Tmx.
Moreover, if Tmax , then Ilu(’, t)ll.- o for some 1 = m.
For the remainder of this paper M will be an unbounded region of R" for which

(2.1) is invariant. Since we are primarily interested in the ease when the d are distinct,
we are motivated by Chueh, Conley, and Smoller [3] to assume there exist (possibly
unbounded) intervals M of such that M M1 " Mm. In addition, to accommo-
date this invariance assumption, we require"

(A3) If 1 - m then Uo,(X) M for all x .
We are now ready to postulate the existence of a symmetric generalized Lyapunov-

type structure for (2.1). Namely, we assume there exist He C(M,+) and h
C2(M, +) for 1 = = m such that

(H1) H(z)= h(z) for all zM;
(H2) H(z)=0 if and only if z=(0,...,0) r"

(H3) O-H(z) is nonnegative for all z M;
(H4) there exist L, L2 such that ,H(z)f(z)LH(z)+L for all z M.
Conditions (H1)-(H3) have some immediate straightforward consequences that

we will need in the work below.
PROPOSITION 2.3. Suppose u solves (2.1) on fix[0, Tmx) and (A1)-(A3), (H1)-

(H3) are satisfied. Then
(i) hi (zi), h’.’, (zi) >-- 0 for all zi Mi, 1 <- <- m, and hi (zi) 0 if and only if zi 0;
(ii) h ,(z,) 0 if zi 0 for all 1 < < m;
(iii) H(z) - o as in M;
(iv) a,h(u,(x,t))+flO(h,(u(x,t)))/Orl<-_O for all (x,t)aD, x(O, Tmax) and 1 <-

i<-_m.

Before we can state boundedness and decay results for (2.1), we need to know
that solutions of (2.1) exist globally. That is, we need Tmax- . The following assump-
tions are very helpful in this respect.

(H5) There exists A--(aij)Gmxm satisfying a0_->0 and a.>0 for all 1 <- i,j <- m,
such that for each 1 =<j_-< m either

(i) There exist r, K1, K2--> 0 independent of j such that

Z a,h’,(z,)f(z) <-_ gl(H(z)) + g2
i=1

for all z M, or
(ii) There exists /=> 1 such that for all /-<p<oo there exist 0< Bp < 1 and

K3p g4p C(R2+, +) such that for all 0-< r < T-< Tmax
Ilhv(uv)ll,, < g(, T)/ g4p(7" T)IIH(u)II ,p,Q(r,T)"

(H6) There exists ql, Ks, K6 0 such that for all 1 -< i-< m and z M

h’,(z,)f(z) <-_ Ks(H(z)) q’ + K6

We can now state a global existence result. The proof can be found in Morgan 13 ].
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PROPOSITION 2.4. Suppose (A1)-(A3) and (H1)-(H3), (H5), and (H6) hold. If
there exist a > 0 and g C([0, )) such that

(H(u(x, s)))O dxds <= g(t)

for all 0<t< Tmax and r<l+2a/(n+2), then Tmax= .
Some remarks are probably in order at this point. First, condition (HS) states that

there is either some cancelling of higher-order terms for the jth "intermediate sum"
or hi(uj) satisfies an Lp growth restriction. Clearly (H5(ii)) is satisfied if uj can be
bounded a priori on Q(0, Tmax). Second, note that Proposition 2.4 is dependent upon
our being able to obtain an L bound for H(u) and then comparing this with the size
of r. We show in 5 that this bound can be obtained with a 2 provided (H1)-(H4)
hold. Consequently, we are guaranteed global existence provided r < (n +6)/(n + 2).
This condition is satisfied by many reaction-diffusion models (see 6).

We are now ready to state our boundedness result. Since the hypotheses of the
results below contain those of Proposition 2.4, we assume throughout that Tmax .

THEOREM 2.5. Suppose the hypotheses of Proposition 2.4 hold with 1, and for
all O< r< T and p>- 1

(2.6) g3p(7" T), g4p(’r T), II/-/(u)llo,o,w--< g(T-r).

If 1 <= r < a or 1 <= r= a < (n + 2)/n, then there exists N > 0 such that [lu(., t)ll,oo, <-
Nfor all 1 <- <- m.

We can also state a decay result.
THEOREM 2.7. Suppose the hypotheses of Theorem 2.5 hold and Ke K6 O. Ifthere

exists T > 0 such that for all p >- 1

(2.8) lim []lH(u)lla,Q(t,t+r)+K3p(t, t+ r)+K4p(t, t+ r)] 0,

then limt_, Illu ", t)lll, 0.
We remark that if (H5(i)) is satisfied for all 1 -<_j-<_ m, then the conditions on K3p

and Kap in Theorems 2.5 and 2.7 are vacuous. We give various conditions in 5
guaranteeing that (2.6) and (2.8) are satisfied for each of a 1, 2.

So far, we have not stated a result based solely upon the hypotheses of Proposition
2.4. Our last result comes close to achieving this.

THEOREM 2.9. Suppose (A1)-(A3), (H1)-(H3), (H5(i)) for all 1 <-_j<-_ m, and (H6)
hold. If Ke K6 0 and there exist a, K > 0 such that

(2.10) IlH(u)ll,,oo, K,

2a/(n+2)<r<l+2a/(n+2) and 2a<n+2 when la]=0, then

limt--cx3 Illu ", t)l , 0.

In a forthcoming paper we will examine the asymptotic behavior of solutions to
(2.1) under the hypotheses of Theorem 2.5.

3. Preliminary estimates. We follow [8] in developing the following notation. For
each 1 < p < o and j {1,. , m} we define Aj,p on LP(fl) by

(3.1)
A2,pW d2A w for w (A2,p),

{ ,Taw }@(aj.p)= we W2"P(f) ajw+ fl-S--_ =OonOf
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where %,/3, and dj are given in 2. It is well known (cf. Pazy [14]) that Aj,p generates
a compact, analytic semigroup Tj.p { Tj.p(t): >-0} of bounded linear operators on
Lp (1"), and that

(3.2) IIT,(t)wll,<-e’llwll, fort>=0, weLP(12),

where ,Xo< 0 if % > 0 and Ao=0 if % =0. Furthermore, for each y > 0, A > Ao the
fractional powers (AI-Aj.p)-r exist and are injective, bounded linear operators on
LP(). In addition, if for y>0 we define Bj-,--(-mj,p)-v if %>0, Bj,--pV---(I-mj,p)-v
if % =0, and B,p -v -1 3/Bj,p) then @(B.p) is a Banach space with graph norm Iwl
n, ,.. Also, for 3’1 > 3’2 -> 0, (B,,) is a dense subspace of @(B,p) with the inclusion

Vl ’Y2 0 Lp(B,p) @(Bj,p) compact (here @(B,p)- (f/)). The following lemma is quite useful.
LEMMA 3.3. Suppose T,p and B,p are as above. Then
(i) T,p(t)" LP() (B,p) for all t0;
(ii) IIB,pT,p(t)wllp,<= Cv,pt-VeollWllp, for tO and we LP(12);
(iii) T,p(t)Bpw- B,pT,p(t)w for all tO, we (B,p),
(iv) If 3" n/(2p) then (Bp) L(f) and all

(Bp);
Lq <-- Ntz,q B,pw p,a(v) If Ix > n(q p)/(2pq)>O then ffJ(B2,p)C (lI) and

for all w e (Bj,p).
The proofs of parts (i)-(iii) and (v) can be found in Pazy [14, p. 74], and the proof
of (iv) is contained in Henry [6, p. 40].

In order to rewrite (2.1) as an integral equation system via variation of constants,
we define F on (LP(’),)) by

(3.4) [Fi(w)](x) =f(w(x)) for x e f, w e LP(f, Im),

for all 1 _-< _-< m. Then, by variation of constants (see Pazy [14]) it follows that u (u)
is a solution in (LP(f)) to the system

(3.5) ui(t)= Ti.p(t)(Uo,)+ Ti.p(t-s)Fi(u(s)) as

if and only if u(x, t)=[u(t)](x) solves (2.1).
Before continuing, we need some results concerning scalar equations. Let 0 <- r < T,

l<p<oo, and OeLP(Q(r, T)) such that 0->0 and For all l<-_i<-_m

consider

b,, d,A b,- b, + 0 on Q(r, T),

(3.6) bl&i+fl=0 on01x(r, T),

bi(x, 0) 0 on

where bl rain {c1, am}.
LEMMA 3.7. For all 1 <-i <- m there exists a unique solution qbi e W2’I’P(Q(r, T))

for (3.6). Furthermore,
(i) b >_- O;
(ii) There exists Ce > 0 such that

(2)..(
_Proof. Part (i) is a consequence of maximum principles. The proof of part (ii)

can be found in Hollis [7, Lemma 2.6] or Hollis, Martin, and Pierre [8, Lemma 3, par.
2, p. 759].
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We can actually improve on a portion of part (ii) above. We state this result along
with an imbedding result.

LEMMA 3.8. Let 1 < p < ee, 1 <= <-- rn and suppose qbi solves (3.6).
If 1 < p < n + 2)/2 and p <- q <- p n + 2)/ n + 2 2p then there exists p > 0

such that

(ii) If 1 < p < oo then T)II...-<- pl/p.,
(iii) If 1 < p < oo and bl min {al, , a,,} 0, then there exists N > 0 such that

p,o(-,r < 1 exp -( T z)
N+ d(p 1).

=N+d(p-1) N

and/fbl=0 then ][[[p,o(,-<_(1-exp (-(T--))).
Proof. Part (i) is a consequence of Lemma 3.10, part (ii) and Ladyzhenskaja [10,

p. 80]. We note that it is sufficient to prove parts (ii) and (iii) for 0 smooth. Let e > 0.
Then from (3.9) we have

(6, + a,(6, + + (6i + 6, (6, + 0.

Consequently, if we integrate over Q(z, t) for - <_- _<- T and let e - 0/, then we obtain

1
(,(x, t))Pdx+d,bl Cf drds+d,(p-1) Cf-lvl dxds

+ cbf dx ds <- Cf dx ds

Now, t n Cf-lV,le dx ds (4/pe) t a IV(bf/)l dx ds, and if 51 0then there exists
N > 0 such that

dxds+ CP &rds.
p-1 n

If we substitute this above and set w(t)=I’, [.a Cf dxds, then we obtain

w’(t)+p 1 +
N

w(t)<--P(W(t))l-1/P’ <- t<- T

and w(-) 0.
A straightforward calculation yields part (iii) for bl 0. Parts (ii) and (iii) for

b --0 are trivial consequences of the integral inequality above.
In all that follows, we set (x, t) O(x, T+ -- t) and 0i(x, t) di(x, T+- t) on

f x It, T]. We note that 0i is the unique solution of

Oi -diA Oi -It- Oi- 0 on Q(z, T),

(3.9) b14,,+=0 on0flx(-, T),

Oi(’,T)=O on.
The next two lemmas combine with Lemmas 3.7 and 3.8 to give technical results

needed in the proofs of Theorems 2.5 and 2.7.
LEMMA 3.10. Suppose solves (3.9).
(i) If p>(n+2)/2 then there exists Kp(T-)>O such that
(ii) If 1 <p < (n + 2)/2 and 1 < q < np/(n -2(p- 1)) then there exists Kp,q,(T_,> 0

such that
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Proof. For part (ii), our hypothesis implies there exists 0< Ix < 1 such that Ix >
(n(q-p))/2pq and Ixp/(p-1)< 1. Thus from Lemma 3.3 and the definition of i we
have ,(" )11, < N.q B.
(3.11)

gtxqCp (r--s)-"llO(’, T- s)ll,, as,

and from HOlder’s inequality we obtain

fo
r-, [ T- "r)’ IxP/ (P -1) ] (p-I,/p

(3.12) (T-’-s)-llO( T-)ll, ds<=
1 --ix-]-(---i)

Combining (3.11) and (3.12) proves part (ii). For part (i), note that if 2p > n + 2 then
the choice q oo is admissible.

LEMMA 3.13. If 1 <=r<k and there exists 0< Ix <2 such that r+(2-Ix)/(n+2)<
1+2k/(n+2), then there exist 6> 1 and 1 <p<(n+2)/2 such that

(i) k
np

6,
(n+Z)(p- 1)

k p(n+2)
(ii) -<

k-r n+2-2p’
n+2

(iii) P _->k.
p-1

Proof Since l<=r<k, there exists 0<e<k-1 such that [(n+2)/2]r<-k+
(n/2)(k- e). Set 6 min {(n + Ix)/n, k- e} and p (n + 2)k/((n + 2)k- n6). Then 1 <
p < (n + 2)/2 and 6 > 1. A simple calculation shows that (i)-(iii) hold.

The final lemma in this section is a straightforward technical result used in the
proof of Theorem 2.9. We omit the tedious proof.

LEMMA .3.14. Suppose a,r>O,nN, and 2a/(n+2)<r<l+2a/(n+2). Then
there exists e > 0 such that if 1 < p < 1 + e and

ap[(p- 1)(n + 2)+ 2p]- arp(p- 1)(n + 2)
k=

[p-a(p-1)][(p-1)(n+2)+2p]

then

a
(i)

k

rp(n + 2)
k ’k p

(ii)
(p-1)(n+2)/2p a

-t- <
p n+2 a p

4. Proofs of Theorems 2.5, 2.7, and 2.9. In this section we combine the estimates
in 3 with the hypotheses of Theorems 2.5, 2.7, and 2.9 to obtain our results.

The following lemma is critical to the proofs of Theorems 2.5, 2.7, and 2.9.
LEMMA 4.1. Suppose that (H1)-(H3) and (HO) hold, p > (n +2)/2 and there exist

r>0, a sequence {ti}, and C([0, ee)) such that
(i) t>0 and T/4<ti+-t<T/2 for all i1;
(ii) Ilg(u)ll,o<,.+, II(g(u))qlllp,o<,,,+r () for all 0;
(iii) h u(., t ))11 t, for all 1, 1 j m.
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If there exists K > 0 such that (t) -<_ K for all -> 0, then there exists N > 0 such that
Ilu,(.,t)ll,,<=N for all t>-O,l<=i<=m. Furthermore, if K6=0 and lim,_(t)=0,
then lim,_ u (., t)I1, 0.

Proof Suppose > ts. Then there exists ->_ 1 such that ti < ti+l < < t+2. Note
that t < T. Also, there exists 6 > 0 such that p (n + 2 + 8)/2. Hence, if/z n/ (n + 2),
then n/2p </x < 1 and ptx/(p- 1) < 1. Now, note that for each 1 <= <= m, hi(ui) satisfies

(h,(u(x, t))), <- d,/(h,(u,(x, t)))+Ks(H(u(x, t)))ql+K6 on Q(0, ),

O(hi(u,(x, t)))
aihi(ui(x,t))+fl _-<0 on dO x (0, o),

h,(u(x, 0))= h,(uo,(X)) on ft.

Thus, if we set

w()= r,((h(u0,+ r,(r-sa(sas

for all ’>0 and l<-i<-m, where G(s)= Ks(H(u(.,s)))q,+K6, then maximum prin-
ciples imply IIh(,(’, ))11, IIw,()ll, for all ’>0. Consequently, from (3.5) and
Lemma 3.3,

h(u( ", t) I[,sa <--II w(t)ll,
<--_ MCp[(t- ti)-"llh(u(’, ti))llp,.

/ II(t- s)-e’- p/(p-1),(,,,,)((g5 + 1)(t,) -t- g6(t- ti)I/P)]

(4.2) <= M,pCp ,(t,) + II(r- S)-te’X((T/4)-s)[Ip/(p_l),(O,T/4)

((Ks+ 1)(t,) + K6T1/p)].
Note that since ptx/(p- 1)< 1, there exists N > 0 such that

(4.3) II(T- S)-eXT/4-[l V/p_,O,T/a <= N.
Thus for all > t

][h(u(’, t))]l,.<= M.pC K + N((K,+ I)K + K6T/p)

Consequently, from Proposition 2.2 (ii) and Proposition 2.3 (i), (iii) there exists N > 0
such that [[u(., t)ll, N for a im, tO,

Now, suppose limt, (t)=0 and K6 =0. Then (4.2) and (4.3) yield

for all t>ts. Therefore, lim,hi(uj(.,t))ll.,=o, and hence (H2) implies
lim, uj (., t)II,. 0.

Proofofeorem 2.5. Set M= g(3). Note that since IIH(u)[[,o, g(T-) for
all 0r< T, there exists a sequence {t,}= such that h,>0, 1 < h,+-t,<3 and
IlH(u(’, h,i))ll,,M1 for all i 1. Thus, if T> t,, then there exists i 1 such that
tl,i < Z tl,i+l. Set r t, i.
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Case 1. Suppose 1 _-< r < a. Since r < 1 + 2a/(n + 2), there exists 0</x <2 such that
r+(2-lz)/(n+2)< 1 +2a/(n+2). Then from Lemma 3.13 there exist 3> 1 and 1 <p<
(n+2)/2 such that a=np3/((n+2)(p-1)), a/(a-r)<=p(n+2)/(n+2-2p) and
p(p 1) >-_ (n + 2)/(n +/x)a. Set Pl P(P 1). Suppose 1 -<-j _-< m and there exists

M2>0 such that for all l>_-1 and l<-i<j, Ilh,(ui)ll,,o(,,.,,,,,,+,) <= M=. Now, ifj<=k<-m
such that

(4.4) Ilh,(u)]lpl.O(%T) K3p,(7", T)+ K4p,(% T)IIH(u)II G1
Pl,Q( 7., T)

is satisfied in the sense of (H5(ii)) for all j _-< < k, but not for i= k, then (HS(i)) holds
for k.

Let 0 LP(Q(% T)) such that 0 _->0 and 1, and suppose 0k solves (3.9)
with i= k. Then for 1 _-<i <- k, integration by parts, Proposition 2.3, and (3.9) yield

(4.5)

h, u, dx dt <-_ d, dk hi ui /k d/k dx at

Thus from (H5(i)) we have

d- If hi(ui(x’ "r))k(X’ "r) dx

+ Ok[hi(u,)+ h’(u,)fi(u)] dx at.

ak,h, (u,) dx dt <-_ ak, (d dk) h (ui)/h /k dx dt
i=1 i=1

+
i=1

aki If hi(ui(x’ 7"))k(X’ "t")dx

(4.6)
d- /k[gl(g(u)) -F g2] dx dt

+ b 2 akihi (ui) dx dt.
i=1

We consider the right-hand side of (4.6) termwise. For the first term we have

2 aki (di dk) hi (ui)/ Ok dx dt
i=1

E ak, di dk) hi u, A Ok dx dt
i=1

+ _, a(d d) hi (u)/ 4’ dx dt
i=j

(4.7)
j--1

<= ., akildi dklMCp
i=1

k-1

+ E aildi-dklCp[K3p,(’, T)"I-K4pl(7", T)lIH(u)ll ’’p,Q(’r,r)]i=l

k-1

E aildi-dl[M+g(3)-I-g(3)llH(u)ll ’Pl,Q( 7.,
i=1
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from H51der’s inequality, Lemma 3.7, and the assumptions above. For the third term
we have

f’TIad’lk[Kl(H(u))rd-K2]dxdt
(4.8) ----< Ok T)[K, H u ,o(,T) + K( T r)lOI) r/"

I[Ogll,/,_r,O,[gl(g(3)) + g(3{l) r/a

from H61der’s inequality and the assumptions above. Now, set q=a/(a-r). Then
from HSlder’s inequality and Lemma 3.8, since lqp(n+2)/(n+2-2p), there
exists Cp,r_ > 0 such .that

(4.9) 01,o, C,_.
Hence if we combine (4.8) and (4.9) then

(4.10) [gl(g(u))

The second term can be handled similarly, since 1 < a/(a-1)< np/(n-2(p-1)) and
Lemma 3.10 imply

(4.11)

Finally, for the last term on the right-hand side of (4.6) we have

a Oh(ug) dxd < 2 agCp[M+g(3)+g(3)llH(u)ll p,Q(r,T)
i=1 i=1

(4.

+akkf;Ihg(ug) dxdt,

in a manner similar to that of (4.7). Also

(4.13)

from H61der’s inequality and Lemma 3.8. Consequently,

ak 6kh(u) dxdt E akifp[M2+g(3)+g(3)llH(u)[I ’’ ]
(4.14)

+ a.(1

Thus if we combine (4.6), (4.7), (4.10), (4.11), and (4.14) we obtain

p,O(,r)]
i=1

(4.5
+
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Therefore, combining (4.15) and duality, we see that there exist K7, K8> 0 such that

(4.16) h(u) ,,-< K7+ K8lln(u)ll p’p1.Q(’r, T)
for all z= tl,i < T=< tl,i/l independent of i>= 1. Hence K3pl(7’ T) and K4pl(7" T) can be
chosen such that (4.4) is satisfied for k. Contradiction, and therefore (4.4), holds for
all j<=i<-m. Thus, since IIh,(u,)ll,,o, <- M= for all l<-i<j, we have

(4.17) IIn(u)ll,,o,) < m(M2+ g3p(7" T))+ mg4p(’r, T)IIH(u)II ’pl,Q(r,T
Consequently, for all i=> 1, we have

(4.18) IIH(u)ll,o,,,,,,,/ <- em(M+ g(a))+[mg(3)],
where e l= 1/(1 -Sp). That is, we could have chosen ME such that IIh(u)llp,O,,,.,.,+,<-_
M2 for all l <-j<- m, i>- l, and hence such that IIH(u)ll,,o,,.,.,,.,+,<-M for all i>=l.
Recall that pl>-((n+2)/(n+tz))a,(n+2)/(n+tz)>l and l<tl.+l-tl,<3. Con-
sequently, there exists a sequence {t2,i}i__l such that tl,2i_ t2, tl,2i for all >_- 1 and

IIH(u(.., t=.,))ll..-<- M for all i_-> 1. Note~that 1 < t2,,+1- t2,, <9 for all i->_ 1 and there
exists ME such that IIH(u)llp,,o(t2.,,t2,,/) <- M2 for all i_-> 1. Now, return to the beginning
of Case 1, replace a by Pl, choose the same value of/z, a corresponding value of p > 1,
and set pE=p/(p-1)>--[(n+2)/(n+lz)]pl>--[(n/2)/(n+lz)]2a. Then following the
arguments above we find that there exists M3>0 such that
for all -> 1.

If we proceed inductively, then for all k>=2 there exist Mk+>O, pk>
[(n+2)/(n+tz)]ka and a sequence {tk,,}= such that

(i) tk,1 > 0 and 1 < tk, i+l tk, < 3 k for all ->_ 1,
< Mk for all > 1(ii) liB(u(’, tk, i))llpk_l.,--

(iii) IIH(u)II,Q(,,,,,,,+,)<-M+, for all >- 1.
Note that lim_,p since (n + 2)/(n +/x) > 1. Hence, by taking k sufficiently large,
we can apply the boundedness portion of Lemma 4.1 to obtain N > 0 such that
lul II,to,o--< N.

Case 2. Suppose 1 <= r a < (n + 2)/n. Then there exists 0 < e < 2 such that a <
(n+2)/(n+e). If we set p=(n+2)/(2-e)>(n+2)/2, let OLP(Q(", T)) such that
0=>0 and and suppose q, solves (3.9) with i=k; then Lemma 3.10
implies 4, [[,O(,,r) -< Kv(T_ for all r t, < T <- tl.+ independent of >- 1. Proceeding
as in case 1 with p=p/(p-1)=(n+2)/(n+e) we obtain (4.6). The first and last
terms on the right-hand side of (4.6) are handled as above. For the second and third
terms we have

(4.19) fo d/k(X, 7")h,(u,(x, r)) dx <-

(4.20) bk[Kl(g(u)) + K2] dx dt Kp(r_,[K(g(3))" + 31alK].

Substituting (4.7), (4.14), (4.19), and (4.20) into (4.6), and continuing as in case 1,
yields M2 > 0 such that H(u)II independent of ->_ 1. Then, since
p > a, the result follows from case 1.

Proof of Theorem 2.7. We may assume without loss of generality that

(4.21) lim [[]H(u)I[a,Q(.,r+T)’/K3p(7" 7"/ r)/ g4p(% 7"-t- r)] 0,

for all T>0 and p=> 1. Thus there exist Mle C([0, oo)) and a sequence {tl,i} such
that limt_. M(t)=0, h>0, 1 < 6,,+1- h,<3, and liB(u(., h,,))lla,,<-Ml(tl,,) for all
i>_-l.
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Consequently, if we proceed as in the proof of Theorem 2.5 with K2 K6--0 and
note that (4.21) holds, then there exists M26 C([0, )) such that limt_ M2(t)=0 and
Iln(u)llp,or.,,,.,+)<=M2(ta.,) for all i=> 1, where pa=(n+2)/(n+tx) if r<a and pl

(ha+ n+2)/2n if l<=r=a <(n+2)/n. Then, noting that pl > r>= 1, we can proceed as
in the proof of Theorem 2.5. That is, for all k => 2 there exists Mk/l C([0, )), Pk >=
a[(n+2)/(n+/x)]k-1 and a sequence {tk.i}i= such that

(i) lim,_ Mk+(t) O,
(ii) tk, > 0 and 1 < tk,i+ tk, < 3 k for all ->_ 1,
(iii) [IH(u(., tk,))llpk_,,, -<- Mk(tk-l,) for all i_-> 1,
(iv) IIH(u)llpk, Q(tk, tk,,+,)<= Mk+l(tk,i) for all -> 1.

Hence, if we note that (n + 2)/(n +/x) > 1, then we can apply the decay portion of
Lemma 4.1 to prove that lim,_. I(’, t)l 0.

Proof of Theorem 2.9. We claim that for all 1-<_i-< m there exists q >-1 such that
for all q ->_ qi there exists Kyq Kgq > 0, 0 < tq < 1 such that

(4.22) ]lh,(ui)llq,O(O,T) < KTq + KllU(u)ll q,O(O,T),

for all T> 0. Let 1 =<j =< m such that (4.22) is satisfied for all 1 -< <j. Let 0, T> 0,
and p> 1 be given as in Lemma 3.14 such that p/(p-1)> q for 1 <=i<j and p<
(n+2)/2. Suppose OLP(Q(O, T))such that 0>=0 and II011,(o,= a, and Oj is the
solution of (3.9) with i=j. Then (4.6) becomes

(4.23)

aj,h, u, dx dt <= aj d dj hi u, A 6j dx dt
i=1 i=1

+ @jKl(H(u))rdxdt

i=1

As in the proof of Theorem 2.5, we consider the right-hand side of (4.23) termwise.
HSlder’s inequality, Lemma 3.7, and our assumptions above yield the following bound
for the first term,

E a,(d,- d) h,(u,)Aq dx dt
i=1

(4.24)
j--1

8p/(p--1)-<- E a,ld,- djlCp[KTp/(p_,)+ K8p/(p_,)llH(u)ll
i=1

For the second term, we apply H61der’s inequality and Lemma 3.8 to obtain

(4.25) aj, h,(uo,)O(x, O) dxp’/p E a2,11h,(uo,)lloo.alfl (p-1)/p
i=1 i=l

We now consider the third and fourth terms. Since l<p<(n+2)/2, if we set q=
(p(n+2))/(n+2-2p) then Lemma 3.8 implies II011,o,)_-< . Thus

(4.26) O)K(H(u))dxdt<-_K, dp (H(u))p’ dxdt
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where pl=(rp(n+2))/((p-1)(n+2)+2p) and p2=(p-1)/p+2/(n+2). Now, let k
be given as in Lemma 3.14. Then a/k> 1, (pl-k)(a/(a-k))=p/(p-1), and there
exists 0< ep/p-1) < 1 such that p2((a k)/a) ep/p-1)((p- 1)/p). Consequently,

(4.27)
(H(u))pl dx dt (H(u))pl-k(H(u)) k dx dt

p/(p-1),Q(O,T)"

So, combining (4.26) and (4.27) yields

(4.28) Io ff OkKI(H(u)) dx dt < KiGKkV2lIH(u)l} ep/’p-’
p/(p-1),O(O,T)"

Finally, if bl 0 then 2a/(n + 2) < 1 < 1 + (2a/(n + 2)) implies that we can handle the
fourth term similarly to (4.26)-(4.28). If bl # 0, then we can apply (4.22) and Lemma
3.8 to obtain

d/ a,h, (u,) dx dt baih, (u,) dx dt + d/ah(u) dx dt
i=1

j-1

(4.29) < ’ aji[g7p/(p-1)-- Ksp/p-,)IIH(u)I[ %/’-’’ T)]p/(p-1),Q(O,
i=1

+ Najj []hj(uj)llv/(-l,(O,T.
N+4(p-1)

Consequently, if we apply duality and combine (4.23)-(4x25), (4.28), and (4.29), then
we see that there exist K9p/(p_), Kop/(p_a)>O, and 0< 3p/(v_ < 1 such that

(4.30) Ilh(u2)ll/p-,),oo,) < K9p/(p-,) + Klop/p-,)llU(u)[I p/(p-1),Q(O,T),

for all p/(p-1) sufficiently large and T>0. Therefore, (4.22) holds for all 1 im.

Thus, for all q sufficiently large and T> 0, we have

IIn(u)ll,oo, < mKTo + mK8qlln(u)ll q,O(O,T),(4.31)

which implies

mK7q
(4.32) IIU(u)ll,oo,-< q-(mg8q) 1/(1-q)

1 6q

for all q sufficiently large and T> 0. That is, for all q sufficiently large there exist
Nq > 0 such that

(4.33) I[H(u)llq,oo,) <- No.

It is now a routine matter to show that the hypotheses of Lemma 4.1 can be satisfied.
Our result follows.

5. A priori estimates. In this section we demonstrate that (H1)-(H4) yield certain
L and L2 bounds on H(u), dependent upon the constants L1,L2 in (H4) and

bl =min {a,..., am}. These bounds can be combined with Theorems 2.5, 2.7, and
2.9 to yield boundedness and decay results for (2.1). Before beginning, we recall the
following result from Morgan [13, Thm. 3.3].

PROPOSITION 5.1. Suppose (A1)-(A3) and (H1)-(H4) hold. If u solves (2.1) on
ff X [0, Tmax) and Tma ( cx3, then ]]n(bl)ll2,Q(O, Tmax) ( 00.
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Consequently, if (H5(i)) is satisfied for all 1 -<_j -<_ rn with r < (n +6)/(n + 2), then
Proposition 2.4 implies Tmax . Throughout the remainder of this section we assume
that global existence has been established for (2.1) either through Propositions 2.4 and
5.1 or through some other method.

Now, suppose L1 -<0 and L2=0 in (H4). Let l_-<k=<m such that dg=
max {dl, , d,,} and let to -> 0. For 1 -< i-< rn + 1, let zi be the solution of

zi, diAzi + F on Q(to, c),

Oz___ 0 on Of (to, o),blZ +
Or

zi(x, O) Mi on ,
where F(x, t)= hl(ui(x, t))f(u(x, t)) for all (x, t) Q(to, ) and 1 <=i <- m, Fm+l(X t)=
-OH(u(x,t))f(u(x,t)) for all (x,t)Q(to,),Mi=h(u(.,to)) for all l<=i<-_m,
Mm/l 0 and dm+l din. Note that the strong maximum principle implies z,,+l -> 0 and

m+l
zi -> h(u) for all 1 <= <- m. Also, Y=l F -= 0.

PROPOSITION 5.3. Suppose (A1)-(A3) and (H1)-(H4) hold with LI<=O and L2=0.
Then for all 0_-<r< T, [IH(u)II,,)-< IIH(uo)II,.(T-). If, in addition, either L1 <0
or bl 0 then there exists N1 > 0 such that H(u)ll1,o,.

Proof Let > 0. From (5.2) with to=0 we have

IIz,(., t)ll,., --< Ilz,(., 0) I1,,,, / F,(x, s) dx ds,

for all 1 -<_ _-< m. Consequently, (H4) implies

(5.4) Y z,(., t) -<-[[H(uo)II,,a+ El IIg(u(’, s))[I,,a dx ds.
i=

Thus if L1 0 then for all 0-< z < T

(5.5) IIH(u)II,,O,T> <= z, <-- IIg(Uo)ll,, dt= []H(uo)lll,a(T-z).
i=1 1,Q(r,T)

Now, suppose L1 < 0. Then (5.4) implies

(5.6) IIH(u(., t)) [1,, <= IIg(uo) II,, / E1 IIg(u(., s))lll,a ds,

and hence

(5.8)

1
(5.7) H(u )II,,<<o,o> 1 H(uo) I[,,.

Finally, suppose L ---0 and b # 0. Let to > 0, and for all -> to set

w(x, t)= zi(x, s) ds.
i=1 k

Then

w, dkAw+H(u(’, to))+ 1 z on Q(to, ),
i=1

=0 on oa x (to, ),

(’, to) 0 ona.
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Hence, if we let v be the unique solution of

(5.9)
-dkAv= H(u(’, to)) on

Ov

then the strong maximum principle implies

(5.10) IIw(’, t)lloo,. <-Ilvll, for all >= to.

Consequently, from the definition of w, the result follows.
PROPOSITION 5.11. Suppose (A1)-(A3) and (H1)-(H4) hold with L1 L2=0. If

b1YO then there exists N2>0 such that IIH(u)ll,o(o,<-S=.
Proof. Suppose to > 0 is fixed. Let T> to. Then from (5.8)

z -1 zjdxdt= z[w,-dkAw-H(u(x, to))] dxdt

ziH(u(x, to)) dx dt + ZiW dx dt
to to

wd/zi dx dt
di to

ziH(u(x, to)) dx dt + zwt dx dt
to to

w(zi, Fi) dx dt.
di to

Consequently,

f’TIlimldi 1(k )
to =1 --d- zi

=1
-1 zj dx dt

(5.13)

--,El’= -k ziH(u(x, to)) dx dt

+ E z,(x, T)w(x, T)dx
i=1

ffTIflml(di.91- ) ldj+ 1 zi dx dt.
i=1 \dk j=l-k Zj

Therefore,

(5.14)
2 zi dxdt

i=1 kk <= ,YI= k ,o
zi(x, t)H(u(x, to)) dx dt

--< H u ", to))ll 1,f/II v ..
from (5.10). The result follows.

We now state one of several possible corollaries to Theorems 2.5, 2.7, and 2.9 and
Propositions 5.3 and 5.11.

COROLLARY 5.15. Suppose (A1)-(A3), (H1)-(H4), (H5(i))for all l<-_j<-_m, and
(H6) hold. If 2/(n + 2) < r < (n + 6)/(n + 2), b # 0 and L L2 K2 K6 0 then
limt_ Illu ", t)lll o,. 0.

Before closing this section we remark that the results in Proposition 5.3 and 5.11
can be improved to allow L1 < Ao min {dl, , din}, where Ao is the principle eigenvalue
of-A subject to the boundary conditions bv+(ov/O)=O.
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6. Applications. In this section we give some examples to support our theory.
Before we begin, we state a well-known invariance lemma. For a proof see Lightbourne
and Martin [12].

LEMMA 6.1. Suppose (A1)-(A3) hold andfor all 1 <= <= m,f(z) >- 0 whenever z
and zi O. Then is invariant for (2.1)+

Example 1. First we consider the interaction of oxygen, carbon dioxide, and
hemoglobin as blood travels through a pulmonary capillary (cf. [17]). If we let
ul, u2, u3, u4, u5 represent 02, HbO2, C02, HbCO2, Hb respectively, then the reaction
scheme

Hb + 02 - HbO2, Hb + CO_ - HbCO2,

gives rise to the mathematical model (2.1) with

kEU2 klu
-k2u2 +

(6.2) f(u) (f/(u)) k4u4 k3u3u5,
-k4u4 + k3u3u5
k2u2+ k4u4- klUlU5- k3t/3u5,

where kl, , k5 > 0 are reaction rates. Clearly, f satisfies the hypotheses of Lemma
6.1 and hence M =Rs+ is invariant for (6.2). In addition, the choice

H(u) u + 2u2 +//3 "[- 2U4+ U5

obviously satisfies (H1)-(H4), (H6) with L L2 K6-0 and q =2. Furthermore,
(H5(i)) is satisfied for all 1 -<j_-< 5 with K1 max {k2, k4}, K2 0, r 1, and

1 0 0 0 0

1 1/2 0 0 0

3=11/2100.
1 1/2 1 1/2 0

1 1 1 1 1

Consequently, we can apply Corollary 5.15 to conclude that if b min {al, , as} > 0
then lim,_ lu(., t)l I1,,-- 0. In the case where b 0, we can apply Proposition 5.3
and Theorem 2.5 to conclude that there exists N > 0 such that In(., t)l Jl,--< N for
all -> 0.

Example 2. Second, we examine a model considered by Lasry 11] (see also Bates
and Brown [2]) to study nerve conduction. More specifically, we consider (2.1) with

(6.3) {K(1- p)ul g(fl )u2)f(u)
\g(fl )Ul + K(1- p)v2

where K > 0, (p,/3) are polar coordinates for (u, u), and g is a smooth 27r periodic
function. Now, set M-R and

Then (H1)-(H4), (H6) are satisfied with L1 K, L2=0, K6-0. Furthermore, (H5(i))
is satisfied for 1 <-j _-< 2 with K K + g I1, K= 0, r 1, and
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Now, actually OH(u)f(u)= K[H(u)-(H(u))3/2]. From this it follows that

(6.4) - n(u(x, t)) dx <= K U(u(x, t)) dx- glfll 1/2 n(u(x, t)) dx

Consequently, (6.4) implies that for all >= 0, IlH(u(., t)) IIl, =< max {1/11, H(uo)lll,}.
Therefore, we can apply Theorem 2.5 to conclude that there exists N > 0 such that
lu(’, t)[ Iloo,--< N for all _-> 0. More can be said if b min {al, a2} 0. In this case

we can improve (6.4) to

[ H(u(x, t))dx+ho min {dl, d2} I H(u(x, t)) dx
dt

(6.5)
<=K f, H(u(x, t)) dx-KllIll/:(f,H(u(x, t)) dx) 3/2,

where Ao is the principle eigenvalue of -/ with boundary conditions bl v + fl (Ov/Orl)
0. Hence for Aomin{dl,d:}>=K we obtain lim,_llH(u(.,t))]ll,,=O. Thus, from
Theorem 2.6 we have lim,_. lu(’, t)] II,, 0.

Example 3. Our third example is a system that arises in the modeling of chemical
reactions. Ifwe denote by u and u2 the concentration and the temperature, respectively,
of a given reactant, then we might consider (2.1) with

_1./ 21g exp 3’ 3’/u2]
(6.6) /(u)= u:u’ exp[y-y/u2]]’

for lg 0, U2 > 0 and the obvious extension to Ig 0, 1,/2 0. Here, the constants v and
3’ are positive and denote the Prater temperature and the Arrehenius number, respec-
tively./x: denotes the Thiele number and p ->_ 1 is the order of the reaction. (For further
information, references, and interesting treatment of a more general model, see Fried-
man and Tzavares [4].) Clearly Lemma 6.1 is satisfied, and hence M + is invariant
for this system. In addition, the choice

H(u) PU + U2

satisfies (H1)-(H4), (H6) with L1 L2--K6=0. Furthermore, (H5(i)) is satisfied for
1 =<j-<_2 with K1 K:=0, r= 1, and

Consequently, in the case bl=min {1, a2}--0 we can apply Proposition 5.3 and
Theorem 2.5 to obtain N > 0 such that lu(., t)[ II,-<- N or all -> 0. In the case
b 0, we can apply Corollary 5.15 to obtain lim,_ lu(., t)[ [[o,a- 0.

Example 4. Our last example in this section is the three-component system (2.1)
with

(6.7) f(u)= UlU22--?qlU32--fl(U2--n2U3)
fl (U2 TI2U3)

where/3, ’?1, ’?2 > 0. f represents the basic kinetics of the Schl/Sgl model due to Gray
and Scott [5] (also see Vastano et al. [19]) for the chemical reaction

A+2B 3B, B C,

we note immediately that Lemma 6.1 yields M 3+ invariant for this model, and that

H(u)-ul+u2+u
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easily satisfies (H1)-(H4), and (H6). However, for this choice of H, the exponent r 3
in (HS(i)) is undesirable. Further analysis reveals that (6.7) actually yields a very rich
Lyapunov structure. In fact, for all M ,

1
HM(I2) =[UM q- T/1M-1112M J-(T/1T2)M--lu/]

satisfies (H1)-(H4), and (H6) with L1 L2 K6=0. Thus if we take M sufficiently
large we can apply Proposition 5.3 and Lemma 4.1 to obtain boundedness results if
b 0 and decay results if b # 0.

A preprint by Farr, Fitzgibbon, Morgan, and Waggoner [21] discusses a large
family of chemical reactions possessing similar rich Lyapunov structures.
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A’ITRACTORS FOR THE SYSTEM OF SCHR6DINGER AND
KLEIN-GORDON EQUATIONS WITH YUKAWA COUPLING*

PIOTR BILERt

Abstract. A system of two hyperbolic equations describing the interaction of a complex nucleon field
with a real meson field is considered in a domain of ", n =< 3. The global finite-dimensional attractor is
constructed for slightly damped equations driven by exterior forces. The asymptotic behavior of such
attractors is studied for a singular perturbation problem. Some estimates on the decay of solutions of
homogeneous systems are also established.

R6sum6. On considre un systme de deux 6quations hyperboliques mod61isant l’interaction d’un champ
complexe de nucl6ons avec un champ r6el de m6sons dans un domaine born6 de !", n 1, 2, 3. On montre
l’existence d’un attracteur de dimension finie qui capture toutes les trajectoires du systme en pr6sence
d’une faible dissipation et de forces ext6rieures. On 6tudie aussi un problme de perturbation singulire
ainsi que le comportement asymptotique du systme homogne.

Key words, global attractor, Klein-Gordon equations, Schr6dinger equations, Yukawa coupling,
asymptotic behavior of solutions
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0. Introduction. In this paper we consider the following system of semilinear
Schr6dinger and Klein-Gordon equations:

(0.1) id/t A1 + ie o + F,

q,, + 60, +A2 I1= + ,
defined on a bounded domain f in Rn, n 1, 2, 3. Here A1, A2 are second-order elliptic
differential operators, in the simplest case A1 =-A, A2 =-A+ m2. In the conservative
case, when e 6 0, F G 0, these equations describe the dynamics of a complex
nucleon field and a real meson field q coupled through the Yukawa interaction.
Perturbations of this classical semirelativistic system include weak dissipation (of order
zero) introduced by the terms ied/, 6t with e, 6>0 and driving forces F F(x, t),
G= G(x, t). The system (0.1), (0.2), supplemented with the homogeneous Dirichlet
boundary conditions (or space periodicity conditions if fI [0, 1 In), constitutes a model
in the field theory with energy dissipation and external excitation in finite volume. The
mathematical structure of this system is quite simple (see the system (6.10), (6.11))
but its analysis involves some interesting questions.

The conservative system (and its relativistic generalization) has been studied by
many authors. Most of the results concern the Cauchy problem in the whole space R,
n 1, 2, 3 (cf. [2]). The initial boundary value problems on an open subset of n have
been investigated in [8], [9], and [19]. We refer the reader to these papers and to the
references therein for a more complete account of the physical significance of the
system and the precise statements of the results.

We are interested in the asymptotic behavior of solutions of (0.1), (0.2) when time
t- c in the dissipative case, i.e., e > O, 6 > O. We expect long-time behavior similar
to that for the single nonlinear damped Schr6dinger equation or the single nonlinear
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dissipative Klein-Gordon equation considered in 11 ], 1 ], and 14], i.e., the solutions
are asymptotically confined to a finite-dimensional subset of the infinite-dimensional
phase space. We will show that the weak dissipation in (0.1), (0.2), which does not
suffice to produce regularizing effects on all individual trajectories as for parabolic
equations, is sufficient, however, to impose asymptotically finite-dimensional behavior
as t- c. Namely, there exists a compact set that captures all solutions (Theorem 4.1).
This global attractor consists of regular solutions and its fractal dimension is finite
(Theorem 8.1).

The outline of this paper is as follows. After introducing the notation, in 1 we
give some remarks on the solvability of the initial boundary value problem following
the results in the conservative case due to Hayashi and von Wahl [19] and Fukuda
and Tsutsumi [8]. We establish in 2 and 3 some uniform bounds for suitable norms
of the solutions and then, in 4, we apply these estimates to the construction of the
global attractor. In 7 and 8 we estimate the dimension of this attractor using the
Lyapunov exponents for the flows on compact invariant sets. These techniques presen-
ted for parabolic type equations in [7] have been modified and generalized in [14],
[11], [12] for damped hyperbolic and SchrSdinger (as well as Korteweg-de Vries)
equations. In 9 we study a singular perturbation problem when the damping param-
eters tend to zero and the corresponding attractors are preserved in some sense when
we pass to a singular limit in the Klein-Gordon equation. We also give some estimates
on the decay of solutions of the homogeneous dissipative system (F G 0, 6) and,
improving the results of 19], for the classical Hamiltonian system (e 3 0, 5). We
will only sketch fragments of standard proofs, whereas we will stress some technical
novelties such as intermediate space estimates for hyperbolic equations (3.2), a smooth-
ing effect for globally bounded solutions (Proposition 4.3), a uniqueness result for
weak solutions (Proposition 4.1 and Remark 4.1), and Ha estimates for the conservative
system ( 5).

1. The initial boundary value problem. Here we give assumptions concerning (0.1),
(0.2). Let f be a bounded domain in n, n 1,2, 3, with smooth boundary. The
functions p, p are defined on f x with their values in C, respectively, and they
satisfy the zero Dirichlet condition on the boundary of f for all t. The uniformly
elliptic second-order operators A1, Aa

aij + a k 1,2,(1.1) Agu -E,3
O(((x)Ou/Ox) ((x)u,

have smooth coefficients, so they are defined on the spaces W, Wa equal to the
complex, respectively, the real subspace H2(-) H(’) of the Hilbert space H
n2(’). We reserve special notation V, V2 for the domains of all/2 A12/2 i.e., H(f)
contained in complex, respectively, real, copy of H. We use the notation Ip for Le(f)
norms, II" II for H norms, and (.,.) for the scalar product in La(a). The index p 2
is omitted if it does not produce any confusion with the notation for the modulus of
a complex number. The lower bound of Ak is denoted by ,k)> 0

(1.2) , k)[l,/12 (AkU, U), k 1, 2,

and , is the best constant in the inequalities

(1.3) AIIuI[2<(Aku,,= u) k= 1 ,2.

The spectrum ofA can be arranged in the nondecreasing sequence 0 < , =< , <=.
of the eigenvalues (counting multiplicities). We will only use the positivity of A in
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H and the fact that they generate analytic semigroups in H (to apply the interpolation
theory); however, the dynamics of the system (0.1), (0.2) is connected rather with
unitary groups generated by self-adjoint operators derived from A2 and A1.

C(I, E) denotes the space of continuous functions defined on an interval I c
with their values in a Hilbert space E. Cb (I, E) is the subspace of uniformly bounded
continuous E-valued functions. In the sequel, different positive constants might be
denoted by the same letter C. They do not depend on time. C(.,. , are constants
depending only on the quantities appearing in parentheses. For the questions concern-
ing frequently used interpolation theory and fractional powers of Ak we refer the
reader to Volume 1 of [20].

Two subspaces of H- Hc x Hu x H will be of special interest in the functional
setting for the initial boundary value problem for (0.1), (0.2), namely, W=
W X W2 x V c V V )< V2 x H. The first coordinate in all these spaces is complex, the
second and the third are restricted to the real part of H.

Using the Galerkin approximations as in [8], we can prove in a standard way the
existence ofthe weak solutions (, q, q,) Lc(N+, V) of (0.1), (0.2) with F Loc(N, H),
F, Loc(N, V), G Lc(N, H) and the initial conditions

(1.4) <0, (00, (1>--<t(0), (0(0), (0t(0)> V.

This result can be improved up to the continuity of (q,, q, q,) in time using classical
arguments from [20, Chaps. 3.8, 5.12]. The regularity assumption on F, G can be
relaxed (cf. [20, Chap. 3.11] for the first equation and [14, Prop. 1.3] for the second
equation).

The regularity of the solutions is improved assuming that F Lic(, V), F,
L,(, H), G Ll(, V2), and

(1.5) (q’o, qo, q,) 6 W.

In this situation the integral equations approach from [19] gives the existence of the
solution (q, q, q,) C(+,W) and q, C(+,H). Some uniqueness and continuity
properties of the solutions are proved in 4.

Remark 1.1. Observe that the weak dissipation introduced in the system by the
terms ieq, 6q, provides no problem with backward continuation of the solutions" they
can be defined on the whole real line (see the corresponding results for single equations
in [11] and [14]).

2. Energy estimates I. In this section we derive several energy identities and collect
them to obtain H estimates uniform in time for the solutions of the problem (0.1),
(0.2), and (1.4). The local in time estimates are much easier to obtain and, in fact,
have been used to construct and continue the solutions described in the previous
section. The following calculations are formal and a rigorous justification of them can
be given working with the Galerkin approximations and then passing to the limit.

Although in the study of attractors F and G will be assumed to be time independent,
we state the main result of this section in the following form.

PROPOSITION 2.1. Given F, Gsuch that F, Ft, G Cb(E+, H), and (60, q0, (1> V,
there exists a unique solution (q,q,qt)6C(E+,V) of the system (0.1), (0.2).
Moreover, this solution is uniformly bounded in V:(q,,q,qt)Cb(+,V) with
lim sup,_+ ]( 4’, q, qt)] v <- Cv, where Cv is independent of the initial data.

Proof The first energy equation

(2.1)
d[[2 2+2el0 2 Im (q, F)
dt
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is obtained by taking the scalar product of (0.1) with 0 and the imaginary part of the
resulting identity. The next one is

(2.2)
d(A,, )

dt
2 Re (A10, th,)= 2 Im (A,0, p0)- 2e(Altp, 0)-2 Im (A0, F),

and this follows by taking the scalar product of (0.1) with 0,. The third equation is
reminiscent of the well-known invariant of the classical nonlinear cubic SchrSdinger
equation

d (-I 01, ) --(I I[2’ ()t) 2 Re (0,, (P0)
dt

(2.3)
--(1012, q,)- 2 Im (A6, q)/ 2(1412, )-2 Im (F, qO).

Finally, we have for (0.1)

d(Re (V, q))
Re (Ft, )+ Re (F, 0)

dt
(2.4)

Re (F,, )+Im (F, p0)- Im (F, ao)-e Re (F, 0).

Taking the scalar product of (0.2) with q,, q respectively, we get

1 d(a2,d,,,_ 1,1.+- (14,[, ,)+ (,(2.5)
2 dt 2 dt

and

(2.6)
d(,, )

dt
-I,1/(,, o)+ (Ao, q)= (101, ) + (G,

Estimating the right-hand side of (2.1) using the Cauchy-Schwarz inequality, we
get dle/l=/dt + 2101=_-< 21FI Iq’l so dll/dt + lq’l--< IFI and the uniform L2 estimate of
0 follows:

(2.7) IO(t)l<=exp(-et)lOol+(1-exp(-et))e- sup IF(t)l.
t0

Now we pass to H estimates. We have as a consequence of (2.2)-(2.4)

d((A,qJ, if)-([qsl2, q9)+2 Re(F,
(2.8) at

+ 2e(Aq, 0)-2(101=, q) +2e Re (F, q)=-(11=, q,) +2 Re (F, q).

Adding (2.5) and (2.6) multiplied by a small positive number/x (be -< min (e, 6, 1/2)t ]2)/6)
will work perfectly in the sequel), after some rearrangements, we get

d (1/21q +/xql + 1/2(A, q))
+ (-)1, / zl=+(A2,(2.9) at

Let us note that this trick with the use of q, +/x instead of q, in the energy
equation for wave-type equations has been rediscovered by several authors (e.g., [18],
[14], [21], [3]) after Rabinowitz, who found it in 1967. It seems to be indispensable
in establishing certain exact asymptotics (see [3]-[5] where a further modification is
given).
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As a consequence of (2.8) and (2.9) we deduce

+lZ+(2e-l)(A,, 0)+ 6--1dt

(2.10) 2e(lOl 2, )-2(e-) Re(F, )+(6-)(,+,

+(G, ,+)+2 Re (F,, ),

where Z= (A, )-(, )+2 Re (F, )+1, +]+(A, ).
The difficulties connected with the estimation of the nonlinear term (,

increase with the dimension. In the sequel we will mainly consider the three-dimensional
case because the one- and two-dimensional cases are usually easier to handle.

For n 1 we can write

(ll, )llllll cllllI/l/ll, so

(2.11.1) 2(ll2,
(a,, )+.(a, )+ CII, where C C(,., l, ]).

For n 2 we have a slightly more complicated estimate as H L

I(112, )111/3114 cIllll/=l13/=llll, so

(2.11.2) 2e(]l, )Ne(alO, )+(A2, )+ ClO6

with a constant C C(e, , ]), ).

Finally, for n 3 we proceed as in [19] to get

I(1, )111/,11= c111I/113/1111,, so

(2.11.3) 2(
where C C (e, , ]), ).

The other terms on the right-hand side of (2.11) are simpler to deal with"

2(e-)[Re (F, O)[N2(e-)lFllON(e-)(ao,

(2.12)

These estimates lead to the differential inequality

dt
(.3)

and after the integration to

(.14) z(

where C= C(e, 8, , A), A), A, sup,o (lO(t)l, IF(t)l, IF,(t)l, G(t)])). A lower bound
on Z

4z (A.O, )+,+.l+(A, )-c
(2.15)

,+ltl -C,
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with a constant C independent of and suitably small c > 0, is another consequence
of (2.11.n), (2.12). Therefore the uniform bound on Z (2.14) provides us with H
upper bounds on o and t/, that are independent of the initial data. This finishes the
proof of Proposition 2.1.

3. Energy estimates II. Our objective here is to derive uniform in time H2 estimates
of the solutions of (0.1), (0.2) with more regular initial conditions (1.5). We remark
that further regularity results (beyond H2) can be obtained in a similar manner (see
[8] for the conservative system).

PROPOSITION 3.1. Let F, G satisfy the conditions F, F
and (0o, qo, ql)W. Then the unique solution of the system (0.1), (0.2) provided by
Proposition 2.1 is in Cb(+, W). Moreover, there exists a universal constant Cw indepen-
dent of the initial data such that lim sup_,+ I(0, q, q)lw <= Cw.

Proof. We proceed formally differentiating (0.1), taking the scalar product of the
resulting equation with q6, and separating the imaginary part to get

(3.1) +2elq,,l- -2 Im (q,0t, t/,t) + 2 Im (F,
dt

Evidently, the L2 estimate of o, in Proposition 2.1 is not sufficient now. To get a bound
on o, in a stronger norm, a rather delicate (at least in the three-dimensional case)
procedure is involved. We begin with the energy equation for (0.2) obtained by taking
the scalar product of this equation with B(q9 A-qg), where B is a fractional power
of A2:

1 d((B(qgt+tz) qgt+txqg)+(A2q,Bqg))
2 dt

(3.2)
+ 8 tx B qg + la,go q + t.xqg + la, A2, Bq

(B(qgt + la,qg), I,Z(t3 I,Z) + G+ IOl2)
3

-<-(-/x)(B(q,+/xq) q,+/xq)+/x2(-/x)(Bq, q)
4

+ (8 -/x)-I(BG, G)+(,-t)-’(B(IOI2),
The second term on the right-hand side is absorbed by/x(A2q, Bq) for small positive
/x, the third is bounded by assumption on G, and the fourth is the most difficult.

First let B A/2 in (3.2). In the three-dimensional case we may use nonlinear
interpolation (e.g., Lemma 4 in 19]), which gives the inequality A/41q,1212 < C[A/2q, 4.
Together with Proposition 2.1 this implies the uniform boundedness of the fourth term
in (3.2). The cases n 1 and n 2 are simpler as it is not necessary to apply this sharp
interpolation inequality. Now we integrate the inequality resulting from (3.2), and we
obtain uniform boundedness of 1A32/4ol and IA/4(, + )1. In particular, Ij/4o,I,
II,ll/=, and therefore I,l are bounded as H’/2= L3. Equation (3.1) now gives

(3.3) /210,1= --< 10161 ,110,1 / IF, 110,1 =< e q,l2 / c(101 / IEI2)
dt

or dlOt]2/dt + elO,12-< c since Hl c L6. The uniform boundedness of 10,l follows after
an integration. Returning to the original equation (0.1), we see that IAI,I is also
uniformly bounded; note that

(3.4) ]q,l-< Iq,]4]14_-< Clltl, l[’/altt, ll-"/4lloll/4lq[ 1-"/4

hold for n =< 4. In particular, ]q,]oo is uniformly bounded in time since H2c L for
n=1,2,3.
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In the second step of exploiting (3.2) we put B A2 and we estimate (A2([@12), [t[2)
by IA/=(I ,1=)1 - < C[A2@I4 < c , 4

2 ((2.18) in [19] gives an even more subtle estimate
IA/=(I,I=)I _-< cIm/s,l). Anyway, (3.2) implies for small/z > 0 the uniform bounded-
ness of Ial and I1,111. Therefore I111,- and I,1 are uniformly bounded, the last
quantity being estimated directly from (0.2). This accomplishes the proof of Propo-
sition 3.1.

4. Existence and regularity of the global attractor. In the sequel we will consider
the autonomous system (0.1), (0.2), i.e., with time-independent forces F, G. However,
some results can be generalized to the case of time-periodic excitation F, G. Necessary
modifications of proofs that should be done are rather standard so we omit them. They
are described in [11] and [14] for Schr6dinger and wave equations, respectively.

The results on the unique solvability of the initial boundary value problem for
(0.1), (0.2), (1.4), or (1.5) formulated in 1 may be interpreted as follows. The mapping

(4.1) S( t)((qto, qo, qgl}) (O(t), qg(t), q,(t)}

is defined for all and for all the triples ($0, 0, ql)e V. S(t) acts on V and leaves W
invariant. The family of all S(t), e , constitutes a nonlinear group on V and on W
because the considered system is autonomous. As it concerns continuity properties of
the mappings S(t) we prove the following proposition.

PROPOSITION 4.1. For every t, S( t) is continuous as the mapping in V equipped with
the norm inherited from the space L2x H1/2x H-1/2 containing V. Moreover, S(t) is
continuous as the mapping in W equipped with the usual norm.

Proof. We consider two solutions ($(1, q(>}, (,(2, q(2) of the system (0.1), (0.2)
and their differences (1)_ ,(2), = q(_ #(2 satisfying the following system of
equations"

(4.2) iart-Alar+ ie=-((2)’kI3" i/t(1)(,

(4.3) ,, q- (I:) q- A2:I) [/(1) "{- I//(2)I).

Let us write the counterparts of the energy equations (2.1) and (2.5) for the above

dl[----+ 2e}q*[ 2 2 Im (, q,’>) -_< cl’114,<’>16113
(4.4) dt

--< cl’l IIll,/=--< c(lml=+(m/=, )),

1 d(Al/2t, ,) 1 d(A/, )
(4.5) dt

+ 6(A’/2" t)+ dt

(A,/4t, A,/4(O(,) + (2))).
Now we recall the inequality lluv]l_,/pClul2lvl6Clul2{lvll, which follows
easily from the imbeddings H/2c L3, Hc L6, and LZL3L6c L. The right-hand
side of (4.5) can be estimated by CA/4,(11_/2+2_/2)
c[ay/4,l(ll l[all+ c(lay/4,12 + 12), since <1), ff2) are bounded
in H. After summing up (4.4) and (4.5), the Gronwall. inequality applies. This gives
the continuous dependence of (, , ,) with respect to initial data in the L2x H/2x
H-/2 norm. In paicular, the uniqueness of the solutions with data in V, claimed in
} 1, follows.

Remark 4.1. The argument above applies equally to the conservative system for
which the uniqueness of the weak solutions was stated as an open problem in [8].

system"
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However, we are not able to prove the continuous dependence of , on its initial
condition in H norm, which is natural in view of solvability and uniqueness results
in H (except for the case n 1, which is easy due to the imbedding H c L). Although
we do not know whether S(t) is continuous in the norm of V, the property stated in
Proposition 4.1 is sufficient for our purposes.

We turn to the proof of the second part of Proposition 4.1. Let us consider the
equations obtained from (4.2), (4.3) by differentiating them with respect to time. Taking
the scalar product with xI"t, t,, respectively, we get

al’ ’l + ++2e[,12 -2 Im (,, , + (2),
(4.6) dt

C(ltl2+ IIllff+ltl2+ IIO11+
1 d(A2,, ,)+-

2 dt 2 dt

(4.7) (,,, ff,) + ff{,)+2+{2),)
cIo,,1(11 112+1 ,1) c(Io,,I2+ II ll +

Observe that the expressions and
I1 11 ) are equivalent as norms on W. Now a standard argument involving the
Gronwall inequality applied to a linear combination of (4.4), (4.6), (4.7) proves the
continuity of S(t) in W. The family of mappings S(t), R, acts in W as a group of
homeomorphisms. The extension of S(t) for negative and the fact that each S(t) is
a homeomorphism follow from the backward solvability (see Remark 1.1).

Remark 4.2. To prove another continuity propey of S(t), let us consider the
higher-order analogues of (4.4), (4.5)

(4.8)
a(BI’ )

2e(BI, ) 2 Im (Bll/2, Bll/2((2) +
dt

1 d(B2,, ,) 1 d(A2, B2)
(4.9) 2 dt "+2 dt

where B A with a positive exponent s, k 1, 2. Using the fact that for s > n/2,
is a Banach algebra with pointwise multiplication and the Gronwall inequality, we
immediately obtain the continuous dependence with respect to initial data in the
H x H*+ x H* norm for s > n/2.

The results stated in Propositions 2.1 and 3.1 may be interpreted as the existence
of bounded absorbing sets By, Bw for the semigroup (S(t)" tgO) in V, respectively,
W. Namely, if we define By and Bw as the balls in V, W of radii Cv+ 1, Cw+ 1
respectively, centered at the origin, then the following fact holds.

PROeOSIWlOy 4.2. For every bounded set of initial data B in V (respectively, W)
there exists time T= T(B) such that S(t)(B)c By (Bw, respectively) for all

Our next step is the construction of the global attractor achieved in the following
theorem.

THEOREM 4.1. Under the hypotheses of Proposition 2.1 with F, G independent of t,
the set

(4.10) o
sO ts
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where the closures are taken with respect to the weak topology in V, is the global attractor

for the system (0.1), (0.2). is nonvoid, connected, and compact in the norm topology
of V, S( t) invariant, and attracts bounded sets in V:

g c Bw, S(t)(s) g for all R,
(4.11)

lim dist (S(t)(B), ) 0 for each bounded set B in V

(the distance is measured with respect to any metric compatible with the weak topology
restricted to bounded subsets of V).

The formulation of Theorem 4.1 calls for some comments.
Remark 4.3. Of course, we are tempted to define an attractor as the to-limit

set of a bounded absorbing set, i.e., = flso LJts S(t)(B). However, if we would
like to construct the global attractor for the solutions with initial conditions in the
space V, hence to take B By, it is not immediately clear in what topology this
construction will work. The natural choice of the norm topology in V is suitable only
in the one-dimensional case when the continuity of S(t) in this topology is available.
In the two- and three-dimensional cases we should use weak topologies for two different
technical reasons: the lack (of the proof) of continuity of S(t) in V, and the lack of
an asymptotic (when t- +c) smoothness property of the group S(t), similar to that
described in Lemma 3.1 of [14]. This last property may fail because we can prove
merely V regularity of qt when q e C(R+, V1) (however, see Proposition 4.3).

The proof of Theorem 4.1 is based on the following technical Lemmas 4.1 and
4.2, and Proposition 4.3.

LEMMA 4.1. For each t, S(t) is continuous with .respect to the weak topology of V.
The proof is essentially the same as that of Proposition 2.2 in 11] (see also (2.7),

(2.8) in [11] and (4.4) in this section).
LEMMA 4.2 [14, Prop. 3.1]. Let (V, d) be a metric space. If the semigroup S(t)

possesses a bounded absorbing set Bv in V andfor every bounded set B in V there exists
a compact set K cV such that lim_+oosupBdist(S(t)((d/,q,q)),K)=O, then
f-).>-_o >= S(t)(Bv)d is the global attractor in (V, d).

PROPOSITION 4.3. For F Cb(R, W), Ft Cb(, H), and G, Gt Cb(, H) any
solution (, q, q) of (0.1), (0.2) that is defined for all real and belongs to Cb(, V) is
infact in Cb(, W). Its norm in Cb(, W) is estimated by a quantity depending continuously
on its norm in Cb(, V) and the norms of F, G.

The proof of this proposition is postponed to the end of the proof of Theorem 4.1.

Proofof Theorem 4.1. By is a bounded absorbing set in V, so we have information
on all trajectories starting from the initial conditions in V, since they eventually enter
in Bv. The weak topology in V restricted to bounded subsets in V is metrizable. We
take as the metric d in Lemma 4.2 any metric compatible with this topology and we
put K , which is compact in d. Since the weak convergence in By and the continuity
properties of (0.2) established in Proposition 4.1 imply, e.g., the convergence in the
norm of H H Hs-1 for all s < 1, we may interpret the statement in Theorem 4.1
as the convergence in each space mentioned above.

To prove the compactness of in the norm topology of V we use Proposition
4.3, which is a result of asymptotic smoothness of the globally (forward and backward
in time) bounded trajectories. Indeed, 1 contains, together with each element (, q,
whole, its trajectory: forward and backward. Proposition 4.3 implies that such a
trajectory of S(t) is bounded not only in V, as is bounded in V, but also in W.
Therefore 1 is bounded in W and thus compact in V. The argument above is described
in full detail in the proof of Theorem 3.1 of [14]. The attractor /is connected as the
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intersection of a decreasing family of compact connected sets (see, e.g., [11, Lemma
2.1]).

The property described in Proposition 4.3 is somewhat analogous to (3.2) in [14]
for a single nonlinear wave equation. A similar fact was used in [18] to improve the
results of 1 ]. Later it was discussed in detail in 14]. It may be interpreted as an extra
regularity of solutions bounded on R; it is plausible as the trajectories passing at 0
through a point in V\W seem to be "large at =-o" (unbounded in V when t-->-)
due to the damping. This property serves as a substitute of smoothing properties known
for parabolic-type equations and systems in the ease of noncompact (semi)groups S(t).
It is a very interesting problem whether it holds for other damped equations that are,
in the undamped case, Hamiltonian systems such as (genuinely) nonlinear Schr6dinger
equations or Korteweg-de Vries equations. The miracle that Proposition 4.3 holds in
our situation is perhaps connected with the bilinear structure of nonlinearities.

Proof of Proposition 4.3. We consider (0.1) as the linear nonhomogeneous
Schr/Sdinger equation in the space V1
(4.12) b + ed/ + i(A p )d/ -iF,

with time-dependent potential o Cb (R, V2). If we remove the damping term e from
(4.12) by considering the equation for the new variable (t)=exp (et)p(t), then we
can verify the assumptions (8.1), (8.2) in [20, Chap. 3] that guarantee the existence of
solutions to such Schr6dinger-type equations. Namely, I(Pt, tl, V)[ <: [cptl lU[4[V[4 <-

cll I[ull / lull/ ll ll l/ l l holds for all u, v H (cf. (3.4)) and the coercivity condi-
tion is satisfied due to (1.3) and (2.11.n). Hence there exists the family of the linear
operators P(t, s) solving (4.12) with F---0 and the initial condition set at time s. It is
quite easy to prove, using the estimates following (10.12) in [20, Chap. 3], that the
operators exp(c(t-s))P(t,s) are uniformly bounded for t>-s for some c>0, e.g.,
c= e/2. The unique (!) solution of (4.12) in Cb(, V1) is given by the formula

(4.13) (t) iP(t,s)F(s) ds=- iP(t, t-s)F(t-s) ds;

this is the solution with zero condition at -c. Due to subexponential behavior of
P(t, s) this integral is well defined in V (see a similar argument in [14, Prop. 1.2]).

Now observe that g’t + iAlg/= i(og,-F)-ep; hence the uniform boundedness of
g’t in L2 would imply that of AI,. Differentiating (4.13) formally, we get Or(t)=
-o i(P(t, t-s) dF (t-s)/dt+(dP(t, t-s)/dt)F(t-s)) ds. The first integral term is
in Cb(, H) due to the regularity assumption on Ft. The second is also in Cb(R, H),
which follows from the assumption on F and from a regularity result for time-dependent
Schr/Adinger equations [20, Chap. 5, Thm. 12.1]. Finally, g’t Cb(, H), so @ belongs
to Cb(R, W1).

Returning to (0.2) we observe that : pt satisfies the equation {tt + t -- A2-t+--+ G with the right-hand side belonging to Cb(, H) (as H2c L). Therefore
(:, {t} belongs to Cb(, V2 x H); hence ptt Cb(, H) and p Cb(R, W2). We refer the
reader to [14, Prop. 1.2, (5.10)] to compare this with a similar argument for a single
equation.

Remark 4.4. The system (0.1), (0.2) has intermediate properties between those of
two important physical models: the system of two Klein-Gordon equations, and the
system of two Schr6dinger equations. Our Theorem 4.1 also has an intermediate
character: the result is placed between the construction of attractors for hyperbolic
second-order equations (see [14]) in norm topologies of the phase space and for
nonlinearSchr6dinger equations (see [11]), now available only in weak topologies.
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Starting with the weak topology definition (4.10) of the global attractor, Proposition
4.3 gives us the compactness of this attractor in much stronger topology.

Remark 4.5. We max/. also begin the construction of an attractor by considering
M= fq__>o t_Jt___ S(t)(Bw)ww, where the closures are taken with respect to the weak
topology of W. The condition in Lemma 4.1 is fulfilled. Also, Proposition 4.3 shows
that this "small" attractor constructed for solutions emerging from the data in W
coincides with the global attractor M constructed for the larger class of initial data,
in fact, the largest one in which existence and uniqueness are assured. The usual
construction of the global attractor in the norm topology of W raises an important
and difficult question of compactness in W of fq_->o t_Jt__> S(t)(Bw) w.

5. Remarks on the conservative system. The estimates obtained in 2 and 3 allow
us to give another (and simpler) proof of local in time estimates of strong solutions
of the conservative system with e B 0, F G 0 constructed in [19]. Hayashi and
von Wahl do not write them explicitly, but a careful analysis of their proof gives only
the bounds such as exp (Ct2) in [19, (3.12)] and exp (exp (Ct2)) for the norms I111=,
I111= in [19, (3.13)-(3.15)], while ours are polynomial in t. Moreover, their method
uses in an essential way, besides standard Gronwall lemma arguments, a nontrivial
inequality of Br6zis and Gallout [6].

PROPOSITION 5.1. For every solution of the conservative system I(d/, q, q,)lv is
bounded and I(d/, q, p)(t)lw=G(t2) as t-o.

Proof. We rewrite (2.1) as

(5.1) dl12-0,
dt

which immediately gives I,l=<_-c. Equations (2.8) and (2.5) are now simplified to

(5.2)
d((AlO, b)-(lOl2, q))= _(lOl2 tpt),

dt

1 d(l,12+(A2q, q))
(],l(5.3)

SO

(5.4) 2(Alff, )+ I,1+ (A, )= 2(11 -, )+C
holds. The nonlinear term is estimated by

(5.5)
I(11 =, )l--< l,ll=/]16 --<

c111 11 + c=ll I1 + cl]21=-")/<6-"),

with arbitrarily small positive constants Cl, c2, and a large constant C. The uniform
boundedness of (, , ) in V is a direct consequence of (5.1), (5.4), (5.5)"

(5.6) (A,O, )+ (A=, )+l,12 c.
The analogue of (3.2) with 0 is

(5.7)
d((n,, ,)+ (A=, n))= 2(11= n,).

dt

Putting B A/ and estimating the right-hand side of (5.7) with Lemma 4 in [19], by
=lnl/(lt)l(n,, ,)1/ clm/=l(n,, ,)/ CIl{t(n,, ,)/ we get from (5.5)
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the inequality d A/2q, , + A2, A2/q )/dt <= C Az/2qt, q, 1/2. After an integration
this reads

(5.8) Ilq,(t)ll/=+ llq(t)[l/2-- y(t) forltl-.
Now (3.3) implies
Ct[,l; hence

(5.9) 16,(t)[: (t2).
It follows from (0.1) that 1A6116,1+16116,1+ cll61llll[, so

(5.10) 116(t)112 (t2).
Finally, we return to (5.7), this time with B A2, to obtain

d((A,, ,)+lAl)/dt2(Aw,,
C(A2,, ,)/1A/8612
C(A2t, ,)I/=IAI/2IA/=613/z

using nonlinear interpolation as in (2.18) of [19]. An immediate consequence of this
and (0.2) reads

(5,11)

We indicate that in the case of n 1 and n 2 the bounds corresponding to
(5.9)-(5.11) are of the form

(5.12)
if(t) if n 1,

Iq’,1=/11112/1,12/11,11/11112 =(tl/o) for any a>0 if n=2.

Remark 5.1. A natural question arises in this context. Are these norms bounded
in time or not? The similar question for the nonlinear Schr6dinger equation on bounded
domains seems to be far more difficult. In the two-dimensional case the iterated
exponential bound given by Br6zis and Gallout in [6] has not yet been improved.

6. Exponential decay of solutions of the damped homogeneous system. The aim of
this section is twofold: the results on the optimal decay of solutions of (0.1), (0.2) with
F G 0 are interesting on their own, but they also give insight into the behavior of
the linearized system (i.e., the equations in variations for (0.1), (0.2)) studied in 7.
We may expect that for the damped homogeneous system the nonlinear terms would
be negligible for large time and the asymptotics of solutions would be close to that of
the system (0.1), (0.2) linearized about q, =q =0, that is,

(6.1) Iq(t)12 (exp (-et))

and Iq(t)12 (exp (-1/26t)) for +. However, a correction to this statement should
be made: if the right-hand term Iq(t)l 2 in (0.2) is of order exp (-2et), then, in general,
the decay of q is not better than

(6.1’) I0(t)12- (exp (-pt)) with p =min (2e, 1/26) (if2e

as is clearly implied by the Duhamel formula for (0.2). Moreover, we should suppose
that 8 is small: 82< 4A2), to exclude the overdamping phenomenon (cf. [3, Thm. (ii),
(iii), Remarks 3, 4]). We will prove stronger H versions of these decay estimates.

PROPOSITION 6.1. For the homogeneous system (0.1), (0.2) (F= G=0) with
82 < 4A2 IIq,(t)ll (exp (-et)) and II(t)ll, t(exp (-min (2e, 1/28)t)) when +,
except for the resonance case 2e 1/28 where II (t)ll (t exp (-1/28t)).
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Proof Equation (6.1) is simply a consequence of (2.1)" since F=0 we have
dlqlZ/dt+2elq,12=O. Summing (2.8) and (2.1) multiplied by a positive parameter ,,
we obtain

(6.2)
d((alq,, q,)-(1612, q)+ ,lq, 2)

+2e((alq,, q,)_ ([q,[2, )+ ulq,[2)=_([q,12, q,).
dt

Denoting the quantity in parentheses by Y, we easily see that for sufficiently large ,,
Y is equivalent to 4’1121. There exists a constant C > 0 such that

(6.3) c-’llq, 2< Y< cIIq, 2
1--" 1"

This follows from the boundedness of q established in Proposition 2.1 and from the
inequality

(6.4) (I lit 12 )l<----Illql4<Cllqll?/2lq12-"/2<allqll2-+C(a)l 4,1,2
with a suitably small a > 0. Because [q,] is also bounded we have 1(161 =, ,)1 <- I,l 114 <--
Cyn/4]OI2-n/2 for n 1, 2, 3. Now we derive from (6.1), (6.2) the inequality dY/dt +
2eY<= CYn/4 exp ((1/2n-2)et) or d(exp (2et) Y)/dt<= C(exp (2et) y)n/4. After the
integration this gives

(6.5) Y(t) ce( t4/(4-n) exp (-2el)).

Now we recall (2.9) with G =0 and/x --1/23 in a slightly transformed version

d (I q’ + 1/2&12 + ((Ae- 1/432)’ P)) + 3 q,+ 3q q- e2 3
2

dt
qo, qo

(6.6)
1

Let us denote the quantity in parentheses by J. Since 3<4A, J/ is equivalent to
the norm in V x H

(6.7) C-’(ll I1/ 1o,12)_<- J-< c(llll/ I,1=)

for some C>0. From (6.6), the Cauchy-Schwarz inequality, and (6.5) we infer
dJ/ dt + 6J <= CJ/ 4/4-") exp (-2et), or in a more convenient form

(6.8)
dJ1/2 1 (4--n)-F- 3J1/2-- (t4/

dt 2
exp (-2et)).

The integration of (6.8) leads to

(exp (-3t)) if 3 < 4e,
(6.9) J(t) (t28-")/4-") exp (-3t)) if 3 4e,

(ts/4-") exp (-4et)) if 3 > 4e.

Inserting this exponential estimate of q, into (6.2), we can improve (6.5) up to
Y(t)=(exp (-2et)). This bootstrap argument then improves (6.9) up to J(t)=
(t2 exp (-3t)) if 3=4e and J(t) Y(exp (-4et)) if 3>4e.

In the remainder of this section we consider the following homogeneous system
of Schr/Sdinger and Klein-Gordon equations:

(6.10) ibt-- Aid/

(6.11)



SYSTEM OF SCHR6DINGER AND KLEIN-GORDON EQUATIONS 1203

with modified strong damping term i(lAl+e)d/ in the first equation. This system
resembles the Ginzburg-Landau equation studied in [13]. We will show that this kind
of damping mechanism causes more regular decay of q, compared to that in Proposition
6.1. From a purely technical point of view, it may be interesting to compare some
estimates given here with those in [13], where only a two-dimensional problem is
considered but the nonlinearities are stronger. Our main result is Proposition 6.2.

PROPOSITION 6.2. Let (d/, q) be any nonzero solution of the system (6.10), (6.11).
Then there exists the limit A=lim,_+ (AlO(t), d/(t))/Id/(t)l 2 and A belongs to the
spectrum of A1. Moreover, (Alb(t), d/(t)) is equivalent to a constant multiple of the
exponential function exp (-2(1A+ e) t) when --> +.

Remark 6.1. Observe that even with a stronger damping term in (6.11), say
(vA2 + 6)q,, there is no hope for obtaining regular exponential decay (similar to that
for ) of q. An explanation of this can be deduced from [4] and [5].

Proof of Proposition 6.2. We will not discuss here the questions of existence of
solutions that are quite standard, having in mind, e.g., [13]. The counterparts of the
energy identities (2.1)-(2.3) are

(6.12)
d1’/’[----2- 2r/(A, q,, q,) + 2elq, = o,
dt

(6.13)
d(aq, q,) +2rtlaq,12+ze(aq,, 4,)= 2 Im (aq,, qq,),

dt

d (-I ’l,(6.14)
dt

-(101 =, ,)-2 Im (Alff, qq) + 2r/Re (Alq, )+2(112, ).

Clearly, (6.12) implies

(6.15)
Iq,(t)12+2rt (Al(S), qt(s)) ds<-_ C,

Iq(t)l (exp (-2(r/)t ?) + e)t)).

Multiplying (6.12) by a positive number v and summing up with (6.13), (6.14), we
arrive at

d((Alq, q)+ 1[=-(11=, ))
dt

(6.16) +2(r/v+

---(Iq, 2, qt) 2r/Re (Alq, qq).

Recalling (2.5), we have d(lo,l=+(A, o))/dt<-Cl,llq,l4<-fl,l[Iq, llg/21q, -"/=, The
Cauchy-Schwarz inequality combined with (6.15) implies the inequality dJ/dt(t)<=
Cj/2(t)I(t), where J(t) Itl= / (A=, ) and I(t) is integrable over R+. This produces
a uniform bound on J; hence

(6.17) I1111/1o,1-<c with C independent of t.

Now we proceed as in 2, so we recall (2.9), which gives

(6.18) 2 dt

(-)(,,+,, )+ (1,1’, ,)+(161, ),
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and sum it up with (6.16). The new essential difficulty is the term 2r/IRe (Alt qgt)l <
lA,q,12/ wl0q, 2, which should be absorbed by 2r/,(Alq,, q), 2wlAl2, -14(A2, ).
The three-dimensional case is again the most difficult"

(6.19)

with suitably small c>0 and some C>0. The first term can be made less than
1/4/x (A_,, ) and the second is less than 7 (A1 q’, q’) if we take sufficiently large. This
observation follows from (6.15) and the inequality 2n/(6-n)_-<2. Repeating the argu-
ments in the proof of Proposition 6.1, (6.19) and (6.16) combined with (6.18) yield
the exponential decay of I111, I111, and I,1 with the exponent -1/2/.

This preliminary estimate enables us to conclude the proof of Proposition 6.2
in much the same way as in, e.g., [4] and [5]. Namely, we consider the ratio
A(t)=(A(t), q,(t))/lO(t)12=: N(t)/D(t), which satisfies the differential equation
DdA/dt+2I(A1-A)4,[2=2 Im ((A- A)q, qq). In other words,

dA/dt + r/D-1I(A1- A)ql2 =< n-ll qq,l=l q1-2

cllqllT/21q12-"/2[ol-211qllT/=l12-/2
<_ cI1,117/21,1=-./2A/4,

and the coefficient on the right-hand side is exponentially small. The existence of the
finite limit of A(t) then follows easily, and the compactness of A- guarantees that
the limit of A(t) is an eigenvalue of A. For details of similar calculations refer to
[10], [4], and [5].

Remark 6,2. We may also treat in a similar manner the generalized (higher-order)
Yukawa interaction model considered in [2] and in [9], i.e., the system (6.10), (6.11)
with the coupling terms __pl/[2p-2/ and Ii/tl 2p, p 1. We do not present here in detail
the technically complicated proof of an analogue of Proposition 6.2, which holds under
the following restrictions on p" p < for n--- 1, p < for n 2, and p < for n 3.

7. The linearized flow and differentiability of the nonlinear group. This section deals
with some technical tools that will be used to estimate the uniform Lyapunov exponents
on the attractor constructed in 4, and hence to prove its finite dimension. We will
study the evolution of N-dimensional volumes in V transported by the differential
DS(t)((q,o, Co, ql)) of the group S(t). First it is necessary to collect some estimates of
the system (0.1), (0.2) linearized about the solution (q,(t), q(t), q,(t)) passing through
(t/,o, qo, ’1) M at 0, i.e., of the equations in variations

(7.1) igt AIZ -+- iez + qu + qz 0,

(7.2) Utt q- rUt q- A2u z q- .
This system is obtained differentiating formally (0.1), (0.2) with respect to (q, q). It is
quite easy to check that this nonautonomous linear system has a unique solution
(Z, U, Ut) C(R, V) if (Zo, Uo, u) V.

We expect that (at least higher modes of) the solutions would be exponentially
damped, so we introduce new dependent variables Z(t) exp (crt)z(t), U(t)
exp (crt)u(t) with some small o->0. The system (7.1), (7.2) is rewritten now as

(7.3) iZt AZ+ i( e cr)Z + 6U+ qZ O,

(7.4) U. + (6 2o-) U + (A2 o-( o’)) U Z q- tZ.
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We derive some energy equations and inequalities proceeding as in 2. The multipliers
used to obtain them correspond to "linearized multipliers" in 2. For (7.3) we have

(7.s) dlzl=
dt

--2(e-tr)lZI2-2 Im (qU, Z),

(7.6)
d(A,Z,Z)

dt
-2(8 o-)(A1Z Z) + 2 Im (AIZ, tU) + 2 Im (AIZ qgZ),

d(Re(OU, Z))
(7.7) dt

Re (qtU, Z)+ Re (OUt, Z)-(8 -tr) Re (0U, Z)

(7.8)
d(Z,Z)

dt

Im (d/U, A,Z) + Im (qU, qZ),

(q,Z, Z)-2 Im (qZ, A,Z)-2(e-tr)(Z, Z)+2 Im (qZ, U).

For (7.4) we obtain

(7.9)
1 d(IU,I-+((A2-r(6-r))U, U))
2 dt

+(6 -2tr)l U,I2= 2 Re (U,, Z),

(7.10)
d(Ut, U) ( ) dluI

dt -IUtlZ+ 6-tr
dt

+((A2-tr(6-r))U, U)=2 Re (U,Z).

A linear combination of (7.5)-(7.10) gives us

dq
--+2(e-cr)(A1Z, Z)+2,(e-)IZI2+(,-2-)IU,I=+ z(A=U, U)
dt

(7.11) o-(,- o-)1 ul:+ (o-,- o-:+ 2- o-+2,,.,.o-)(u,, U)-2 Re (tU, Z)

2(8-tr+/x) Re (d/U, Z)-(o,Z, Z)+ 2(8- tr)(qZ, Z)- 2, Im (0U, Z),

where

(7.12)
q=q(Z, U, U,)=(A,Z,Z)-2 Re (qU,Z)-(qZ,Z)+ uIZ[2

+1/21U,+UI=+1/2(A=U, u).

Taking sufficiently small/x r > 0 we can choose sufficiently large u > 0 to finally get

dq
< CuI UI IZI(7.13) d---

The estimates necessary to do so are collected here:

21( u,, u)l--<lu, 2 /luI2,

I(q’,U, Z)l--< Iq,l uI41z14 --< cII ull 3/41 uIa/alIzII31/aIz[ 1/4

_<--(A2 U, U)/k(A,Z, Z)/ CIUIIZI,

I(0U, Z)l--< q,ll UI IZl-<- CI UI IZl,

I(o,z, z)l--< 1,161Zl 2 <
,_/- ClI,II,IIZIII/=IZI/=<-{e(A,Z, Z)+ ClZl:,

I(Z, Z)l =< loolZI: <- CIZI.
We have used (1.2), (1.3) above and the boundedness of the attractor in W.
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Remark 7.1. The importance of the quantity q defined in (7.12) follows from the
fact that for sufficiently large v and small/x, ql/_ is equivalent to the norm in V. This
is a consequence of the Cauchy-Schwarz inequality applied to (7.12) and L uniform
bounds for and 0.

Now we sketch a proof of the uniform differentiability in V of the mappings S(t)
restricted to invariant sets bounded in W, that is, we show the following proposition.

PROPOSITION 7.1. Let X be a bounded set in W. Then

lim sup
r-0 /.,o(k) _(k) _(k).2X, k=l,2,

I(xlt0,q0,ql)l

-S(t) ((1/(o1), (o1), (ol)))-[- DS(t) ((11/(o1), ((o1), 1))) ((Io, (I)o, (I)1))] V --0,

locally uniformly in t.
The notation used here is that of 4: V ,1)_ 2), ,1_ ,2.
This property will be used with X M. This technical assumption is used in general

theorems proved in [7] and [14] on the finite dimension of S(t) invariant sets that are
compact in V.

Proof. The functions , satisfy system (4.2), (4.3). We derive from the energy
identity (4.8) with B1 A1 the following inequality (remember that now ,k, ,k),
k 1, 2, are uniformly bounded in H:)

(7.14)
d (AlXIt, xI

dt
+ 2e(Al, )--< C(AlXIt, )l/2((A,, )1/2+ (A2, (I))1/2).

We used above the elementary inequality

(7.15)
-<Cllwll ll ll validforall

Multiplying (4.3) by (I)t, we get

d(1/21,l+1/2(A, ))
(7.16) dt

As a consequence of the sum of (7.14), (7.16) we obtain

(7.17) I((t), dp(t), t(t))lv exp (Ct)l((O), q(O), q,(O))l v

with a constant C. This clearly gives the continuity of S(t) in V when restricted to
bounded subsets of W.

We now consider the solution (z, u) of the system of equations in variations (7.1),
(7.2) with the initial conditions z(0)=-q(0), u(0)--(0), ut(0)=-t(0). Our aim
is to estimate the functions : + z and sr-+ u in the H norm. They satisfy the
system

(7.18) i,-A,+ ie=-/(1)" ((1):-’ ki’tO,

(7.19)

following from (4.2), (4.3) and (7.1), (7.2); moreover, :(0)= O, st(O)= O, t(O)--O.
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The associated energy inequalities are

(7.20)

(7.21)

Combining (7.20) and (7.21) and using (7.15) several times, we arrive at-- c(J/ll.oll q(7.22)
dr-

/ 1),

where J (Alsc, :) + (A2’, ’) + I’,[ 2, J(0) 0. If we modify (7.15) slightly to
obtain IIw ll=<c(llwll ,/llwll /Zllwll ,/2)ll ll l= then (7.22) will imply dJ/dt <=
c(J/ I1 ’11 )) (remember that the norms 1[’112, 11112 are uniformly
bounded). After the integration this gives J(t)<=C(t)l((O),(O),p,(O))l2, which
concludes the proof of Proposition 7.1.

8. Dimension of compact invariant sets. In this section we will prove the main
result of this paper, that every S(t) invariant set XcV bounded in W is finite-
dimensional. Here the dimension is understood as the fractal (or entropy) dimension
calculated with respect to the norm in V. This result implies, of course, that the
Hausdorff dimension of such X is also finite. In particular, X is homeomorphic to a
subset of Euclidean space. Since we can take as X the global attractor constructed
in 4, this result may be interpreted as the asymptotically finite-dimensional character
of dynamics of the system (0.1), (0.2); this dynamics is governed by a finite number
of parameters when t--> +; the system has a finite number of degrees of freedom
when t--> +. The proof is based on the use of classical tools from [7], modified in
[14], to work with noncompact mappings S(t), and some new technical ingredients
from [11] and [12]. These last improvements consist of the use for calculating the
dimension of an equivalent norm in V, which is related to intrinsic energies of the
system more closely than the original norm. Our 7 contains the proof of the important
part of assumptions of the abstract theorem in [7] ((3.50), (3.51) in [11]) as well as
some tools for calculating the evolution of N-dimensional volumes carried by the
differential DS(t)(. of the flow.

We study the volumes of the N-dimensional polyhedra spanned by the vectors
V<ol), , Vou) V and their evolution in time under the action of DS(t)((Oo, qo, q)),
or more precisely the Gram determinants

(8.1) det (v()(t) v(k(t))=lv(l(t) ^’’’^j,k<= N

where v(J(t) DS(t)(<Oo, qo, P,))(V(oj)) with V(oJ)=(Z(oj, U(oj, uJ>V. These deter-
minants are the squares of N! x volumes of these polyhedra. We now prove Proposi-
tion 8.1.

PROPOSITION 8.1. For every S(t) invariant set X bounded in W there exist the
constants r > O, a > O, and C, Co such that for every element (4’o, Po, Pl) of X, N N
and T >= 0

Iv(’)(t) ^...^ v()(t)l < C exp ((CON’-

for all V(oj) V, j 1,. , N, 0 <= <= T.

crN)t)l I)(o1) A’’" A
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Consequently, for sufficiently large Nt the N-dimensional volumes transported
by the tangent flow DS(t)(. are uniformly contracted.

Proof As in 7 it is more convenient to work with new variables w(J)(t)
exp (t)v(J)(t) with r>0 determined in 7. Here v is a short notation for (z, u,
and w corresponds to (Z, U, Ut) used before in (7.1)-(7.4). Therefore

(8.2) Iv(’)(t) ^’’" ^ v(N)(t)l]/= exp (-2o’Nt)GN(t),

where GN(t)=lw()(t) ^’’’A w(N)(t)[2V. As we remarked before, the norm in V is not
particularly well suited for studying the evolution of GN(t). The expression in (7.12)
that we recall here

q(Z, U, Ut) (A,Z, Z)-2 Re (qU, Z)-(pZ, Z)

+ ’IZI 2 + 1/21Ut + I.t UI +(a2 U, U)

is much better in view of (7.13). Furthermore, we consider the E-bilinear form Q on
the real copy of V V that is defined as the polarization of the quadratic form q on
V and

(8.4) HN(t) det Q(w(J)(t), w(k)(t)),
lj,k--N

the Gram determinant with respect to the form Q. The fact of crucial importance here
is the equivalence of ql/ (with suitably large u) and the usual norm on V calculated
along the trajectories for each t"

(8.5) C-1l(Z, U, U,)12v<=q(Z, u,

for some positive constant C independent of time (see Remark 7.1). Therefore Q is
bounded and coercive, and hence defines a scalar product on V V. This implies the
equivalence of the Gram determinants Gu (t) and Hu (t) for each t"

(8.6) c-NGN( t) <= HN( t) CNGN( t)

(see Lemma 1 of the Appendix in [12]). Inequality (7.13) reads (we use the notation
consistent with that of the Appendix in [12])

dq(Z, U, Ut)
(8.7)

dt
<= c[ullzI <- C(K(Z, U, Ut), (Z, U, Ut))v,

where K’V- V is defined by

(8.8) K(Z, U, Ut)= (A-f ’Z, A’ U, 0).

Obviously, K is a compact operator in V and its spectrum is contained in the union
of spectra of A-1, A-, i.e., in the union of two sequences ((Ak))-) decreasing to zero
and (0), j, k 1, 2. The multiplicity of the eigenvalue (A) -1 of K is the sum of the
multiplicities of the eigenvalues of A and A2 coinciding with A. Theorem A of the
Appendix in [12] implies the inequality

(8.9) GN(t) _<- CN exp Co /;1 Gu(0),

for all 0_-< t-< T and N . The proof of this theorem heavily uses (8.6), (8.7).
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Finally, the classical Weyl formula for the asymptotics of the eigenvalues of
second-order elliptic operators permits us to estimate the order of the sum SN Yj= A
for n---- 1,2,3:

(8.10.1)
(8.10.2)
(8.10.3)

Su<=C [’is less than a constant,
N

j-2/nSN-<-ClogN as logN,

SN CN/3 j=l N/3"

Inequalities (8.9) and (8.3) conclude the proof of Proposition 8.1. Therefore, taking
N such that CN1/3- rN < 0 (so a 2- is good), we can apply the general result from
[7]. For such N and for sufficiently large t, the N-dimensional volumes in V are
uniformly contracted by DS(t)((O, 0, ot)) for all (0, o, qt)X. Hence the fractal
dimension of X is finite. Since the global attractor s4 is an S(t)-invariant bounded
subset of W we get Theorem 8.1.

THEOREM 8.1. The global attractor 4 defined in (4.11) is finite-dimensional and its

Hausdorff dimension can be estimated from above by N+ 1.
A bound for the fractal dimension of 4 is more complicated; it contains the values

of global Lyapunov exponents intimately related with the contraction rates in Proposi-
tion 8.1.

A detailed description of relations between Lyapunov exponents and the fractal
dimension in the general setting can be found in [7] and in [11, 3.3].

9. Remarks on the behavior of the perturbed attractor. In this section we give some
remarks on the asymptotic behavior of the family of systems related to (0.1), (0.2):

(9.1) i@- A10 + ie -q9 + F,

(9.2) ,, + fl, + A20 I01 + G,

with e,/3 > 0. Of course, for fixed e,/3 > 0 the results of 2-4, 7, and 8 apply in this
situation but we are interested in a singular limit/3 0, e 0. From the physical point
of view, problem (9.1), (9.2) with F G 0 and/3 - 0 corresponds to the infinite limit
of the velocity of propagation of disturbances in the Klein-Gordon equation, and so
to an instantaneous response of the field q to variations of the field 0. To see this, let
us transform the linear part of (9.2) using the slow time r fit into d2/dT"2+ d/dz+
A2, where (x, z)= q(x, t).

A similar problem has been studied in [24] for the Zakharov system in
n, n=1,2,3:

(9.3) A-2rltt A( rt -F IEI2) O,

(9.4) iE, + AE nE O,

when h- +. Formally, taking the limit/3 0+ or h + uncouples the equations
in both systems. As the result of this formal procedure we obtain a Poisson equation
Ao =[0[2 on f as the limit in (9.2) or n+[E[2=O in n in (9.3). After substitutions
we arrive at the SchriSdinger equations

(9.5)

(9.6) iE,+E+]E]2E=O,
respectively. The justification of this formal argument was a very difficult problem for
the Zakharov system because the solutions of (9.3), (9.4) may develop singularities in
finite time and, in fact, the limiting nonlinear cubic Schr6dinger equation (9.6) possesses
such blowing-up solutions. The theory of existence and regularity of solutions for this
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system is still not complete and may require some new techniques (at least for n 3).
We will prove the weak convergence of the solutions of (9.1) to those of (9.5)

when/3 0, e 0, e-/3, and we will establish H bounds for q q(e,/3) uniformly
with respect to 0 </3 << 1. This will allow us to give a property of the limit behavior of
the global attractors M(e,/3) when e,/3 0 in V. The questions that remain unanswered
now are the following. What is the behavior of (0, o,/30t) in W when e,/3 - 0? What
are the relations between M(e,/3) and the asymptotic behavior of the solutions to the
conservative equation (9.5)?

Several authors have considered problems related to perturbations of attractors
of dissipative equations (see, e.g., [16] in a general setting and [17], [22], [23] for the
single hyperbolic equation). Let us observe that the mechanism of dissipation intro-
duced in (9.2) combines the effects of increasing frequency of oscillations (at least for
the higher modes of o with Ak2)> ) and increasing damping rate /3 -1, so it is quite
different from that for 0 < << 1 in (0.2). It also differs from the damping effects in the
singular perturbation problem considered in [17] and [23] and from large viscous
damping in the wave equation studied in [22].

We begin with establishing the uniform bounds with respect to/3 and e HI-bounds
for (q, q,

PROVOSIWION 9.1. Let q 0(e,/3), 0 q(e,/3) be the solutions of the system (9.1),
(9.2) with the parameters e, converging to zero in such a way that the quotient e/B
belongs to afixed interval [1, M]. Moreover, suppose that [FI2 [F,12 (Y(e), ]GI2 (/3),
and the initial conditions (0o, Oo, Ol) stay in a bounded subset of V. Then

sup sup (llq,(t;
/3,e>0 t=>0

is finite.
Proof. The proof follows from a careful analysis of the modified estimates from

2. The energy equation for (9.2) analogous to (2.9) is

! d(/3l,/]/ (A’, ))
//(1_/3z)1,, /zl/(A, )(9.7) 2 at

(1012 + o +/3(1-/3t), , +),
where/x 1/2/3 will be posed. Estimating the right-hand side terms in a manner similar
to that of (2.11)-(2.12) and using the assumptions on F, Ft, G we get an analogue of
(2.13)-

(9.8)
dZ
dt

with /x =1/2/3-<1/2e, Z--(A10 0)-(101=, o)+2 Re(F, q,)+1/2C:l,t,,+,cl:+(A:,p, ), and
C independent of t,/3, e.

Inequality (2.7) reads Iq(t)12<= exp (-et)lqol2+ -lfl; the rough estimate Iq,(t)l =<
C does not suffice in this case. Inserting this into (9.8), we get

(9.9) Z(t; e,/3) =< C exp (-/zt)
This bound for Z is uniform in /3, 0 </3 << 1. Finally, the estimate of Z from below
4z >_- 4/21, + zl + (Alq,, q,) + (A, ) C similar to that in the proof of Proposition
2.1 concludes the proof of Proposition 9.1.

As the consequence of Proposition 9.1 we have the existence of a universal
absorbing set in V1 V for all/3, e > 0, e =/3. The attractors M(e,/3) exist for each/3,
e > 0 and they are bounded in W as in Theorem 4.1. However we are not able to prove
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either H2 estimates (as in 3) independent of fl, e, or an analogue of Proposition 4.3
independent of/, e > 0, which would show the uniform boundedness in W1 W2 of
the attractors M(e, fl). An analysis of the preceding proofs gives bounds of order fl-1
for H2 norms of and (observe that in Proposition 4.3 the norm of P(t, s) depends
on [Pt[; for the details see [20, Thm. 10.1, Chap. 3]).

Finally, we have the convergence (on each finite time interval) ofthe corresponding
individual solutions of the system (9.1), (9.2) to those of (9.5).

PROPOSITION 9.2. Under the hypotheses of Proposition 9.1 and assuming that
o e, fl o [[1 -> 0, the difference e, fl A1 (I t e, fl )12) converges to zero weak-star

in L(+, V2), d/(e, fl) converges to a function t in Lioc(+, Hl-a) for any a>0 and
1 < p c. The limit function is the unique solution in V1 of (9.5) with the initial
condition o.

Proof. The proof repeats the arguments of the demonstration of Theorem 5 of
[24] in a slightly simpler situation. Here we indicate only the main steps.

Lloc( V) as a consequence ofThe family of Or(e, ) is uniformly bounded in /

Proposition 9.1 and (9.1); hence 0(e,/3) stay in a bounded subset of Ho(+, V).
Using the compactness theorems for such vector functions, we obtain weak-star conver-
gence of a subsequence of (q(e,/3), q(e,/3)) in Lc(E+, V1 x V:). In particular, O(e,/3)
is convergent to some tO in L’oc(E+, Hl-a) for any a > 0, 1 < p <. These facts allow
us to pass to the limit in the weak formulation of (9.1):

--+ iexO + xg,A;(I,l)
i,j OX OXj

(9.10)

/

for every X C(+x). To see that the weak-star limit in L(+, V2) of q(e,/3)-
A(]O(e, fl)[2) is zero we consider after Schoehet and Weinstein [24] the function
R= R(x, t; e, ) =oo (-a-([Oz)) dzds. R is sufficiently regular in and satisfies
the equation

2Rtt + Rt + AzR fl (0)(fl + t) + flt,(O) flZAfl([o{)
(9.11)

-fl A’(101)+ G,

with the initial conditions R(0)--0, Rt(O)- 0. Taking the scalar product of (9.11) with

Rt and using the Cauchy-Schwarz inequality we get

(9.12)
1 d(fl2IRt[2+(AeR, R))
2 dt

+/31R, --- (/3)+/3]R,]2 + C/3 -1

hence IIRI[ (/3). This, together with an easy argument showing the uniqueness of
solutions to (9.5) in V1, concludes the proof of Proposition 9.2, since every subsequence
of the family O(e,/3) converges to the unique .

It would be interesting to reveal relations between the attractors M(e, ) of the
slightly damped system and the time asymptotics of the solutions of the limit equation.
There is a conjecture that sO(e,/3) approximate invariant measures for the flow associ-
ated with (9.5). This seems to be a nontrivial problem and requires further study.
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1212 PIOTR BILER

REFERENCES

[1] A. V. BABIN AND M. I. VISHIK, Regular attractors of semigroups and evolution equations, J. Math.
Pures Appl. (9), 62 (1983), pp. 441-491.

[2] A. BACHELOT, Problme de Cauchypour des syst.mes hyperboliques semi-lindaires, Ann. Inst. H. Poincar6
Anal. Non Lin6aire, (1984), pp. 453-478.

[3] P. BILER, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986),
pp. 839-842.

[4] , Exponential decay of solutions of damped nonlinear hyperbolic equations, Nonlinear Anal., 11
(1987), pp. 841-849.

[5] , Regular decay of solutions of strongly damped nonlinear hyperbolic equations, Appl. Anal., 32
(1989), pp. 277-285.

[6] H. BRIZIS AND T. GALLOUT, Nonlinear Schr6dinger evolution equations, Nonlinear Anal., 4 (1980),
pp. 677-681.

[7] P. CONSTANTIN, C. FOIAS, AND R. TEMAM, Attractors representing turbulent flows, Memoirs Amer.
Math. Soc. 53, American Mathematical Society, Providence, RI, 1985.

[8] I. FUKUDA AND M. TSUTSUMI, On coupled Klein-Gordon-Schr6dinger equations II, J. Math. Anal.
Appl., 66 (1978), pp. 358-378.

[9] ., On coupled Klein-Gordon-Schr6dinger equations III, Math. Japon., 24 (1979), pp. 307-321.
[10] J.-M. GHIDAGLIA, Long time behaviour of solutions of abstract inequalities: applications to thermo-

hydraulic and magnetohydrodynamic equations, J. Differential Equations, 61 (1986), pp. 268-294.

11] , Finite dimensional behavior for weakly damped driven Schr6dinger equations, Ann. Inst. H.
Poincar6 Anal. Non Lin6aire, 5 (1988), pp. 365-405.

12] , Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical
system in the long time, J. Differential Equations, 74 (1988), pp. 369-390.

[13] J.-M. GHIDAGLIA AND B. HIRON, Dimension of the attractors associated to the Ginzburg-Landau
partial differential equation, Phys. D, 28 (1987), pp. 282-304.

[14] J.-M. GHIDAGLIA AND R. TEMAM, Attractors for damped nonlinear hyperbolic equations, J. Math.
Pures Appl. (9), 66 (1987), pp. 273-319.

[15] J. K. HALE, Asymptotic behaviour and dynamics in infinite dimensions, in Nonlinear Differential
Equations, J. K. Hale and P. Martinez-Amores, eds., Res. Notes in Math. 132, Pitman, Boston,
1985, pp. 1-42.

[16] J. K. HALE, X.-B. LIN, AND G. RAUGEL, Upper semicontinuity of attractors for approximations of
semigroups and partial differential equations, Math. Comp., 50 (1988), pp. 89-123.

17] J. K. HALE AND G. RAUGEL, Upper semicontinuity of the attractorfor a singularly perturbed hyperbolic
equation, J. Differential Equations, 73 (1988), pp. 197-214.

[18] A. HARAUX, Two remarks on hyperbolic dissipative problems, in Collge de France, Seminar P.D.E.
1983/84, J. L. Lions and H. Br6zis, eds., Res. Notes in Math. 122, Pitman, Boston, 1985, pp. 161-179.

[19] N. HAYASHI AND W. VON WAHL, On the global strong solutions ofcoupled Klein-Gordon-Schr6dinger
equations, J. Math. Soc. Japan, 39 (1987), pp. 489-497.

[20] J. L. LIONS AND E. MAGENES, Problmes aux limites non homog.nes et applications, Vols. and 2,
Dunod, Paris, 1968.

[21] X. MORA, Finite dimensional attracting invariant manifolds for damped semilinear wave equation, in
Contributions to Partial Differential Equations II, J. I. Diaz and P. L. Lions, eds., Research Notes
in Mathematics 155, Longmans Press, London, 1987, pp. 172-183.

[22] X. MORA AND J. SOLA,-MORALES, Existence and non-existence offinite-dimensional globally attracting
invariant manifolds in semilinear damped wave equations, in Dynamics of Infinite Dimensional
Systems, S. N. Chow and J. K. Hale, eds., Springer-Verlag, New York, 1987, pp. 187-210.

[23] , The singular limit dynamics of semilinear damped wave equations, J. Differential Equations, 78
(1989), pp. 262-307.

[24] S. H. SCHOCHET AND M. I. WEINSTEIN, The nonlinear SchriJdinger limit of the Zakharov equations
governing Langmuir turbulence, Comm. Math. Phys., 106 (1986), pp. 569-580.



SlAM J. MATH. ANAL.
Vol. 21, No. 5, pp. 1213-1224, September 1990

(C) 1990 Society for Industrial and Applied Mathematics

006

ON THE LINEAR HEAT EQUATION WITH FADING MEMORY*

ALESSANDRA LUNARDI"

Abstract. The linear heat equation in materials with memory is studied by reducing it to an abstract
Volterra equation. Results of regularity, asymptotic behavior, and positivity are given.

Key words, heat equation, fading memory, abstract Volterra equations, completely monotonic functions
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O. Introduction. In this paper we consider a model for the heat conduction in
materials of fading memory type:

bout(t, x) +-- ,8( s)u(s, x) as

(0.1)
=CoAU(t.x)- ft ,(t-sa.(s.xas+f(t.x. t. xefi.

.I-

u(t,x)=O, t,

where 12 is a bounded open set in E" (n 1,2,3), u(t, x) is the temperature of the
point x at the time E (which is assumed to vanish at the boundary of ), f(t, x)
is the heat supply, bo, Co are positive constants, and , y’[0, +[E are positive,
decreasing L functions.

Equation (0.1) has been introduced in [15], whereas nonlinear versions of (0.1)
have been formulated in [3]-[6] and [13], and hyperbolic versions may be found in
[14] and [11]. In all these papers the history of the temperature is assumed to be
known in ]-, 0], so that (0.1) reduces to

boUt(t, x+ ( su(s, x s

(0.) co,u(

u(O,x)=uo(X), xea,
u(t, x) 0, 0, xeo

where h is a known function. For physical reasons, we must assume

Io(0.) Co- (s) ds > O.

The relaxation functions and 7 are usually taken as

(0.4)
i= j=

with , b, , c > 0. We consider a larger class of kernels, i.e., the completely monotonic
ones (for equivalent definitions and propeies we refer to [18, Chap. 4]). To study

* Received by the editors May 5, 1987" accepted for publication (in revised form) October 31, 1988.
? Dipartimento di Matematica, Universit di Pisa, Via Buonarroti 2, 56100 Pisa, Italy. Present address,

Dipartimento di Matematica, Universit di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
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(0.1) and (0.2) we rewrite them as evolution equations in the Banach space X of the
continuous functions in f/. We show that they may be reduced, respectively (setting
u(t) u(t," ), f(t) =f(t," ), h(t) h(t," )), to

(0.5) u’(t)=Au(t)+ fjo K(t-s)u(s) ds+f(t), t[,

(0.6)
u’(t)= Au(t)+ K(t-s)u(s) ds+ h(t), t>0,

u(O)-- Uo

where A" D(A)c X- X generates an analytic semigroup in X, and K(t) is a linear
continuous operator from D(A) to X, for every t. Using the abstract theory developed
in [9], we prove several existence, regularity, and asymptotic behavior results for the
solutions of (0.1) and (0.2). In particular, we show that if the function f is continuous,
bounded, and H/Slder continuous with respect to time, then (0.1) has a unique bounded
solution u; if f is T-periodic with respect to time (respectively, constant) then u is
T-periodic with respect to time (respectively, constant); iff(t, x) converges (uniformly
in fl) to fo(x) as t- +oo, then u(t, x) converges (uniformly in ) to the limiting
temperature

(0.7) uoo(x) bo Co- y(s) ds g(x), x e f
o

where g is the unique solution of Ag =-foo, gloa--O, and u,(t, x) converges to zero
uniformly in 12. Moreover, we show that if f(t, x)=> 0 for every and x, then u(t, x)
is nonnegative for every and x, provided that

(0.8) fl(t) Co- y(s) ds is nonincreasing.

We obtain similar results also for problem (0.2). Existence, uniqueness, and
regularity properties follow easily from the abstract results of 10], whereas asymptotic
behavior and positivity are new and need careful study. In particular, the positivity
theorem is proved using the properties of completely monotonic functions and the fact
that the solution b of

(x) ark(x) O(x), x n,
:(x) O, xeoa

is nonnegative, provided :>- 0 and 0 C(I)), q(x) _-> 0 for all x. Completely monotonic
functions have been previously used in [8] to study the positivity of the elementary
solutions to a certain class of hyperbolic partial differential equations.

Our results concerning problem (0.2) are comparable to those of [4], where a
nonlinear version of (0.2) has been studied, as an application of the theory (developed
in [1]-[3]) of abstract nonlinear Volterra equations with completely positive kernels.
The authors choose 1) ]0, 1[ and work in the Hilbert space X L2(0, 1), so that they
find L2-regularity results for the solution u. They state also a positivity preserving
result and show that if h(t, x) converges to ho(x) (in L2(0, 1)) as t- +oo, then u(t, x)
converges (in L2(0, 1)) to the limiting temperature u(x) defined in (0.7) (where g is
the unique solution of g"(x)=-ho(x), 0<x < 1, g(0)= g(1) =0). The kernels/3 and
y are assumed to be completely positive. Completely monotonic kernels are also
completely positive; on the other hand, in [4] it is assumed that/3’(t) + (y(0)/Co)fl(t) <- 0
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almost everywhere for > 0 (which is stronger than (0.8)). Therefore the class of kernels
considered here is not contained in, nor does it contain, that of [4].

The paper is organized as follows: In 1 we state existence, regularity, and
asymptotic behavior results for the abstract problems (0.5) and (0.6), whereas in 2
we consider the cone-preserving property. In 3 we transform problems (0.1) and (0.2)
to the forms (0.5) and (0.6), respectively, and we apply the results found in the previous
sections.

1. Abstract Volterra equations: Existence and asymptotic behavior results. In this
section we recall and develop some results (contained in [9], 12], and [10]) concerning
a class of integrodifferential equations in general Banach space X"

(1.1) v’(t)=Av(t)+ K(t-s)v(s) ds+h(t), t>0,

(1.2) u’(t)--Au(t)+ I K(t-s)u(s) ds+f(t),

where A" D(A) c X- X is a linear operator such that

=lM > 0, to R, 0 ]r/2, r] such that the resolvent set
(1.3) p(A) of A contains the sector S={A C; A #to, larg (A-to)[ < 0} and

[Ih (h A)-lll(x) -< M for h S.

Then A generates an analytic semigroup etA in X (for analytic semigroups in the case
of nondense domain, see [16]).

The operator kernel K(. belongs to L(0, +; L(D(A), X)) (D(A) is endowed
with the graph norm); moreover, we assume that the Laplace transform of K(. )x is
analytically extendible to S for every x D(A), and there are N, a > 0 such that the
extension (denoted by K(h)x) satisfies

where II" is the norm in X.
Then there exists a resolvent operator R(t) (t>-O) such that t--> R(t) is analytic

in ]0, +o[ with values in L(X, D(A)), and

(1.5)
R’(t)=AR(t)+ K(t-s)R(s) ds, t>0,

lim R(t)x x Vx D(A)
t-O

(by D(A) we denote the closure of D(A) in X). R(t) may be represented by the
Dunford integral:

1 f e,t --1

(1.6) R(t)’--2,n.i .],
(A-A-/(A)) dA, t>O,

R(0)--" 1

where 3’ is the curve {A C; larg (A-r)l 0} (oriented counterclockwise) with r so
large that (A A -/(A))- exists for A 3’.

To state precise estimates for R (t) we need some other notation. We fix a maximal
domain 12 of analyticity of K (.) (as a function with values in L(D(A), X)), and we set

(1.7) po(A, K)--" {A C; (A-A-/(A))- exists in L(X)}.
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Since po(A, K) is open, it is not difficult to see (using the Cauchy formula) that for
every h po(A, K), (h -A-/(h))-1 belongs to L(X, D(A)), and h (h A-/(h))-1

is holomorphic in po(A, K) with values in L(X, D(A)). We define an analytic extension
of (h-A-K(h))-1 in the set

(1.8) p(A, K) po(A, K) U {removable singularities of h (h-A-/(h))-1}
setting

F(h)--’(h-a-/(h))-1 ifhpo(A,K),

(1.9) F(ho)-" lira (h-a-/(h))-1 ifA p(a,K)\po(a,K)
h->A

where the limit is in the L(X, D(A)) topology. In contrast to the nonintegral case
K-=0, it can be shown that if ho belongs to p(A, K)\po(A, K), then F(ho) is not
invertible. We denote by o-(A, K) the complementary set C\p(A, K), and finally we set

(1.10) w(a, K)-" sup {Re A; h 6 o-(a, K)}.

Then for every e > 0 there is M(e) > 0 such that

(1.11) [[R(t)[[(x)+l[tR’(t)][(x)+[[tAR(t)]l(x) <- M(e) e((A’K)+)t Vt>O.

From these estimates and (1.5), existence, uniqueness, and several regularity results
for the initial value problem for (1.1) have been proved in [9] and [12]. We mention
one of these results below.

PROPOSITION 1.1. Let (1.3), (1.4) hold, let x belong to the closure D(A) of the
domain of A, and let h’[0, +oe[--> X be locally a-H61der continuous. Then the function

(1.12) v(t) "--R(t)x+ R(t-s)h(s) ds, t>O

belongs to C([0, +c[; X) f) Clg(]0, +c[; X) f’) C(]0, +[; D(A)) and it is theunique
solution of (1.1) such that lim_0 v(t) x.

Since, in the application to the heat equation in materials with memory, r(A, K)
is contained in {h C; Re h < 0}, to simplify notations and statements we assume from
now on that

(1.13) w(A,K)<O.

To give an asymptotic behavior result, we introduce the class of a-H61der con-
tinuous functions in [0, +oo[.

(1.14)

C([O, 4-oo[; X)--" [ h’[O, +oo[-X;

=supteo Ilh(t)ll + o=r<,sup []h(s)-h(r)l](s-r)

PROPOSITION 1.2. Let (1.3), (1.4), and (1.13) hold, let x belong to D(A), and let
h belong to C ([0, +co[; X) (0 < a < 1) be such that

lim h(t) h.

Then

(i) limt_++ v(t)= F(0)h,

(ii) lim,_,+ Av( t) AF(O)h,

(iii) lim,o+ (t) O.
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Proof. Using the representation formula (1.12) and estimates (1.11) (with e so
small that to(A, K)+ e <0), we can easily see that v(t) converges to S R(s) ds h as
goes to +. Since to(A, K)<0, the curve y in (1.6) may be replaced by any curve
contained in {A C; Re A < 0} and joining e-i to oei. We get

f/ F(A)
dA F(0)(1.15) R(s) ds-2ri ----and (i) is proved. For every > 1 we have

IAv(t)=AR(t)x+A R(s)(h(t-s)-h(t)) ds+A R(s)(h(t-s)-h(t)) ds

+ A R(s)h(t) ds Ii(t) + I2(t) + I3(t) + I4(t).

Due to (1.11), limt_+ Ii(t) limt_+ I2(t) -0. Let us show that I3(t) also goes to zero
as goes to +00: If we fix e >0, there is M_> 1 such that ]]h(t-s)-h(t)]]<-_e for every
t>-M and s[0, 1]; on the other hand, we have I[h(t-s)-h(t)][<-_[h]c-([o,+o[;x)Sa,
so that

I]h(t-s)-h(t)]l<-e’/2sa/2([h])c.([o,+o;x)) 1/2 t>M, 0<s<l

which (together with (1.11)) implies [[I3(t)[[<=const.e /2 for t>-M. Finally, since
limt+Aog(s) ds=Ao g(s) ds in L(X) (see [10]), we get limt_+I4(t)=
limt_+Av(t)= A o R(s) ds h. Statement (ii) now follows from (1.15). Finally, for
every x X we have

(A+I(O))F(O)x= lim (A+I(A)-A)F(A)x=-x
Reh>0

so that, letting t---> +o in (1.1), we get lim,_+o v’(t)= 0, and (iii) is also proved.
Equation (1.2) has been treated in [10], assuming that f belongs to any of the

following spaces (0 < a < 1, to > 0)"

(1.16)
Ca(; X)-" {f: X; Ilfllc;)= supta [[f(t)[[

+sup< IIf(s)-f(r)ll(s- r) < +},
(1.17) C,(; X) "--{f:X; t-->e-y(t) Ca(R; X)}.

The latter space consists of exponentially decaying functions as t--c, and it is
endowed with the norm

The following proposition holds.
PROPOSITION 1.3. Let (1.3), (1.4), and (1.13) hold. Then for every f belonging to

C (E; X) (0 < a < 1), problem (1.2) has a unique bounded solution u, given by

(1.18) u(t) " R(t-s)f(s)ds,
d-

Moreover, u, u’, and Au(. belong to Ca(; X). For every f belonging to C,(; X)
(0<a<l, to>0) the function u defined in (1.18) is the unique solution of (1.2) such
that e-’’u(t) is bounded. Moreover, u, u’, and Au(. belong to Ca(; X).

Concerning the limiting behavior of u(t) as t-+/-o, we can prove the next
proposition.
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PROPOSITION 1.4. Let (1.3), (1.4), and (1.13) hold, andletf Ca(R; X) (0< a < 1)
be such that there exists limt_.+f( t)=f (respectively, limt__f(t)=f-w). Then

(i) limt_+ u(t) F(O)f (respectively, limt__ u(t) F(O)f_),

(ii) limt_.+ Au( t) F(O)f (respectively, limt__ Au( t) Af(O)f_),

(iii) limt_,+ u’(t)=0 (respectively, lim__ u’(t) 0).

The proof is the same as in Proposition 1.2, with obvious modifications, and we omit
it.

2. The cone-preserving property. Let C be a closed convex cone in X. A necessary
and sufficient condition for R(t)(C)c C for every positive is given by the following
proposition (see [10] for a proof).

PROPOSITION 2.1. Let (1.3) and (1.4) hold, and let R(t) (t>=O) be the resolvent
operator defined in (1.6). Then R(t)(C)c C for every t>=O if and only if there is

Ao >= to (A, K) such that

(2.1) (--1)kF(k)(A)(C) C VA > ho, VkN.

Generally, in the applications C is the cone of the nonnegative functions in some
functional space X. Then, recalling Bernstein’s theorem on completely monotonic
(real) functions, the result of Proposition 2.1 is not surprising, since h - F(A) is the
Laplace transform of t- R(t), as is easy to check. The infinitely many conditions in
(2.1) are verified in some applications, including the heat equation in materials with
memory (see 3 below).

Using Propositions 1.1 and 1.2, we easily get the following corollary.
COROLLARY 2.2. Let (1.3), (1.4), and (2.1) hold. Then
(a) If x belongs to C, and h :[0, +c[- C is locally H61der continuous, then the

solution v of (1.1) such that v(O)= x has values in C.
(b) If to(A,K)<O andf Ca(R; X) is such that f(t) Cfor every tR, then the

unique bounded solution of (1.2) has values in C.
Remark 2.3. Existence and uniqueness of a bounded solution of (1.2) may also

be treated in the case where to(A, K)>0 (see [10]). But, even if R(t)(C) is contained
in C, we do not expect that the unique bounded solution of (1.2) has values in C iff
does. Consider, for instance, X R, C [0, +c[: Easy computations show that the
resolvent operator for the equation

v’(t) v(t)+ 5 e-2(t-S)v(s) ds,

is given by

R( t)x ( e-4t +- eZt)x,
so that R(t) maps C into itself, but the unique bounded solution of

u’(t) u(t) + 5 f e-2(t-s)tl(s) ds +f(t),

e2( t-u(t) - e )f(s) ds - s)f(s) ds,

which is not necessarily nonnegative for every nonnegative f.
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3. The heat equation in materials with memory. We study here in detail a particular
class of equations of the type (1.1), (1.2), arising in the study of heat flow in materials
of the so-called fading memory type. The model is discussed in [15], and here we
recall briefly its derivation.

Let [l be a bounded body in (n 1, 2, 3). Denote by e (t, x) (x ) the internal
energy at the time t, by f(t, x) the heat supply and by t(t, x) the heat flux. The energy
balance law yields

(3.1) e,(t, x) -div’ (t, x) +f(t), e N, x e 1".

Generally, we assume that the energy and the heat flux depend linearly on the
temperature u(t, x) and on its gradient, respectively. This assumption leads to the
classical heat equation, which describes sufficiently well the evolution of temperature
in many kinds of materials. This is not the case of materials of fading memory type,
where e and t are assumed to be given by

(3.2) e(t, x) bou(t, x) + (t s)u(s, x) ds, e i, x e l),

(3.3) (t,x)=-coVu(t,x)+ y(t-s)Vu(s,x) ds, teN, xef

(there are also nonlinear models, where Vu is replaced by a nonlinear function of Vu
in (3.3)). Here bo and Co (called, respectively, heat capacity and thermal conductivity
constants) are positive, and the functions/3 and y are generally chosen as in (0.3).
Moreover, it is assumed (see [15] for a physical motivation) that

(3.4) Co- y s ds > O.

The mappings

(3.5) a(t) bo+ fl(s) ds, - c(t) Co- "y(s) as

are called internal energy and heat flux relaxation functions, respectively.
Replacing (3.2) and (3.3) in (3.1), and assuming that the temperature is zero at

the boundary of f, we get the linear heat equation

bout(t,x)+- (l-s)u(s,x) as

(3.6)
=CoAU(t,X)-- f]oT(t--s)Au(s,x ds+f(t,x), E [, X E ,

u(t,x)=O, te, xe01.

In many papers, the history of u is assumed to be known in ]-oo, 0], so that (3.6) is
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replaced by

bout(t, x) +- fl( t- s)u(s, x) ds

(3.7)

=coAu(t, x) y(t- s)Au(s, x) ds + h(t, x), > O, x

u(O,x)=uo(x), xf,

u(t,x)=O, t>=O, xO

for suitable h’[O, +[-R.
We will study (3.6) and (3.7) for a larger class of kernels than the ones given in

(0.3)" we will consider completely monotonic kernels, i.e., C
[0, +[ such that

(3.8) (--1)kfl(k)(t)O, (--1)kT(k)(t)O Vt>0,

For (3.6) to make sense, we assume also that

(3.9) fl, fl’, e L(0, +).
Due to Bernstein’s equivalence theorem (see [18, Chap. IV]), fl and 7 may be
represented as

(3.10) fl(t)= e-tdv(w), y(t)= e-td(w), t>0

where v, " ]0,+[ are suitable positive nondecreasing functions. Then (3.9) is
equivalent to

+ dr(w)
< +, <+.(3.11)

To write problems (3.6) and (3.7) in the abstract form (1.1), (1.2), we set

X C(fl) (endowed with the sup norm),

(3.12) (a) { e C(); e C(),o 0},

Co (0)
(a)(x) (x)-

bo
(x).

The Laplace operator A is in the sense of distributions, and D(A) is endowed with
the graph norm of A. If the boundary of fl is sufficiently smooth, then A" D(A)X
satisfies (1.3) (see 17]).

We also set

(3.13) ((t))(x)=
’(t) v(t)
b

so that (3.6) reduces to (1.2), with f(t) replaced by f(t,. )/bo, and (3.7) reduces to the
initial value problem for (1.1), with h(t) replaced by h(t, )/bo. Due to (3.9), K (t)
belongs to L(0, +m; L(D(A),X)). Since the Laplace transform of K is given (for
>0) by

d() +(=-o a+ +(3.14)
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then (due to (3.11)) h K(A) is analytically extendible in C\]-c, 0], and the extension
is given again by (3.14). In order for (1.4) to be satisfied, we assume there is cz [0, 1[
such that the extension of (h) to C\]-, 0] is bounded by const. ]hi -, i.e.,

d (o)
(3.15) l_---Z-- < +o.

Then the assumptions of 1 are satisfied. To apply the results of 1 and 2, we must
study the set p(A, K) and the function F(A).

PROPOSITION 3.1. Let (3.8), (3.9), (3.15), and (3.4) hold. Let A and K be defined
by (3.12) and (3.13), respectively. Then

(3.16) po(A, K) D {z C; Re z _-> 0},

bo / \

Co (A)
R A VA->0

Co- ()

where, for >= O, R(, A) (A )- is the resolvent of the Laplace operator with Dirichlet
boundary condition.

Proof. Let Re A _--> 0 and b D(A)" then

bo th + bo Ark

so that (since (A)-Co0, due to (3.4)), A-A-/(A) is invertible if and only if

(3.18)
A(bo+/(A))

--An VnIN
Co-()

where {-A. n e } ]-, O[ is the sequence of the eigenvalues of the Laplace operator
with zero boundary condition. Using the representation formulas (3.10), we easily get

Re h(bo+/(h)) >= 0.

We also get

Re (Co- (A))--> Co y(t) dt>O.

Therefore, since -An < 0 for every n, the real part of-An(Co- /(h)) is negative, and
(3.18) holds. Formula (3.17) follows now easily. U

Since p(A,K) contains po(A, K) and it is an open set, then (3.16) implies
w(A,K)<0. Formula (3.18) yields a cone-preserving condition, as the following
proposition shows.

PROPOSITION 3.2. Let (3.8), (3.9), (3.15), and (3.4) hold. Let A, K, c be defined
by (3.12), (3.13), and (3.5), respectively, and let C be the cone of nonnegativefunctions
in X" C {4’ C(I); th(x) => 0 Vx }. If
(3.19)

then

(3.20)

- fl(t)/c(t) is nonincreasing in [0, +[

R(t)(C) C Vt0.

Proof. Due to Proposition 2.1, it is sufficient to show that for every A > 0 we have

(--1)kF(k)(A)(C) C, ket.
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The proof is in two steps" we show first that h --> (bo/Co /(h )) is completely monotonic
on ]0, +[, and then that- R -=i;) A (C) C, k N.

Recalling Leibnitz’s rule and (3.17), we will prove (3.20).
Due to (3.4) we have (A)/Co ]0, 1[ for A > 0, so that

Co-() Co.=o Co
Since y(t) is nonnegative for every t, then A (A) is completely monotonic on ]0, +[,
as is A ((A))" for every n (the product of two completely monotonic functions is
obviously completely monotonic). Therefore A bo/(Co- (A)) is completely
monotonic.

Let us show (3.21): since

(bo+())
g()= >0

Co-()
is positive, and R(, h) maps C into itself for positive , then (3.21) holds for n =0.
Let us show that g’ is completely monotonic in [0, +[. To this aim it is sufficient to
prove that for every e >0, the function A of(A) =(1/g(A))/(e+ 1/g(A)) is completely
monotonic in [0, +[, ,and to remark that -(d/dA)f(A)/e converges uniformly in a
neighborhood of the real positive semi-axis to g’ as e 0, so that g’ is also completely
monotonic.
To show that (A)= (A)/(e(bo+(A))+ (A)) is completely monotonic, consider

the equation

(3.22) boh(t)+ [e(t-s)+c(t-s)]h(s) ds=c(t), teO.

It is easy to see that 3.22) has a unique solution h, which is of class C and Laplace
transformable, with h(1) =f(1) for I 0. Moreover, writing (3.22) in the form

boh( t) e( s) + c( s)
(3.23)

c(t)
+

c(t)
h(s) ds 1, 0

and recalling that

e(t-s)+c(t-s)
0 for0NsNt

dt c(t)
due to (3.19) and to the complete monotonicity of c(t) (which implies that c’/c is
not decreasing), it is not difficult to see that h(t) 0 for every 0. Therefore f is
the Laplace transform of a positive function, so that it is completely monotonic. Now
we have

d
(g(g(A), A)) -g’(A)R2(g(A), A), A > 0

dA

so that -(d/dA)(R(g(A), A)) maps C into itself. Now let n 1 and assume by induction
that (3.21) holds for every k n. We have

d -+1 d
dA,+l R(g(1),)=(-g’(1)R(g(1),))

(3.24)
n-k d h

ak,h(--g(k+l)(,))- R(g(A),A)
k=0 h=O

dn-h-k
dA,-h-k R(g(A ), A)
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where the coefficients ak.h are positive integers. Since --g(k+l)(A)20 for k even, and
--g(k+l)(A) =<0 for k odd, then (3.24) and the induction assumption also imply (3.21)
for k n + 1. This completes the proof.

Propositions 3.1 and 3.2 imply, together with Propositions 1.1, 1.2, and 2.1, the
following results.

PROPOSITION 3.3. Let (3.8), (3.9), (3.15), and (3.4) hold, and let 12 be a bounded
open set in n with boundary Of of class C2. Let f: - be continuous, bounded,
and such that

sup If(t, x)-f(s, x)l(t- s) < -+-oo.
st,xE

Then
(a) Problem (3.6) has a unique bounded solution u " x 1->. Moreover, ut and

Au are bounded in x , and

sup [ut(t, x) ut(s, x)l(t- s) + sup ]Au(t, x) Au(s, x)l(t- s) < +.
s<t,x s<t,x

(b) Iff is T-periodic with respect to t, then u is T-periodic with respect to t; iff( t, x)
converges to f(x) as + (respectively, to f_(x) as -), uniformly for x ,
then u t, x) converges to

a(x) bo Co- y(s) ds g(x), x e a

(uniformlyforx ), as + (respectively, -), where g is the solution of Ag -f
(respectively, Ag =-f_) in , glo, O. Moreover

(iolim u(t, -bo co- (s) ds f, lim u(t,.) 0 in
t+ t+

respectively,

( iolim u(t, -bo co- (s) ds f_, lim u(,.) 0 in C(a).
t t

ROPOSITION .. Let (3.8), (3.9), (3.15), (3.4) oM, let
o oe $t t C or . Let C() tt oln=0. Let

(a) Problem (3.7) has a unique solution u E C([0, +[x), such that t Ht(t,x)
and t Au(t, x) are locally a-H61der continuous in ]0, +[, uniformly with respect to
x.

(b) If limt+ h(t,. )= h in C(), then, denoting by g the solution of Ag=-h
in , glo 0, we have

lim u(t, bo Co- y(s) ds g

lim Au(t, -bo co- y(s) ds

lim u,(t,. 0

in C(2),

hoo in C(12),

in C(l)).
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(c) If (3.19) holds, Uo(X) >-_ 0 for all x 1, and h( t, x) >= 0 for all >= O, x 12, then
u(t,x)>=O for all t>-O,

Remark 3.5. We need not assume complete monotonicity on/3 and y to get the
results of the previous propositions. Reading the proofs, we can see that it can be
replaced by the following:

(a) /3 and y are positive, nonincreasing, and log convex.
(b) The Laplace transforms of /3 and y are analytically extendible to a

(3.25) sector S {h C; h 0, [arg hi< O} with O> 7r/2, and the extensions
(denoted by fl(h) and (h), respectively) satisfy

sup Ill()l < +o, sup
hs AS

for some a, > 0.

On the other hand, (3.25b) implies that /3 and y are analytic functions having a
holomorphic extension to some sector in the complex plane around the positive real
semi-axis.
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SYSTEMS OF DIFFERENTIAL EQUATIONS THAT ARE COMPETITIVE
OR COOPERATIVE.

IV: STRUCTURAL STABILITY IN THREE-DIMENSIONAL SYSTEMS*

MORRIS W. HIRSCH?

Abstract. It is shown that among three-dimensional systems that are competitive or cooperative, those
satisfying the generic Kupka-Smale conditions also satisfy the Morse-Smale conditions and are therefore
structurally stable. This identifies a new and easily recognizable class of systems approximable by structurally
stable systems.

Key words, stability, competitive, cooperative, dynamical system
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Introduction. A century ago Poincar6 initiated what he called the qualitative theory
of differential equations. He pointed out that very few systems of equations have
solutions expressible in closed form, or as power series with recursively computable
coefficients. Our only recourse, he suggested, is to understand the topological nature
of the family of trajectories. To this end Poincar6 developed many important tools for
the theoretical analysis of orbit structure: hyperbolic periodic orbits, transverse stable
and unstable manifolds, limit points, recurrence, and stability. He informally introduced
the fruitful idea of ignoring "infinitely improbable" situations. These ideas were
extended and exploited by G. D. Birkhoff. During the explosive modern revival of
differentiable dynamics over the last three decades, many powerful new methods were
introduced. But Poincar6’s philosophical approach is still vital, and his technical
concepts remain fundamental.

One of our advantages over Poincar6 is that we have the benefit of a century’s
accumulation of dynamical lore: both general theory and detailed structure about
many types of dynamical systems. As a result we can perceive, however dimly, that
some of these systems fall into classes with similar dynamic behavior and similar phase
portraits. As a result, for some systems (all too fewI) we can successfully predict the
dynamics from geometrical features of the phase portraits.

This outgrowth of Poincar6’s approach has developed into an intensive research
program into geometrical properties of phase portraits and their relation to dynamics.
Poincar6’s idea of ignoring improbable situations has become systematized into the
search for useful "generic" properties. This is an inexact notion, but a generic property
is often taken to be one that is shared by a Baire subset of the space of vector fields
under consideration; we use this definition for C fields.

One of the important results of modern dynamics that we use below is the
Kupka-Smale theorem: For C vector fields, 1 =< r =< , it is a generic property for all
periodic orbits to be hyperbolic, with their stable and unstable manifolds meeting only
transversely (Kupka (1963) and Smale (1963)). While for a given system it is rarely
possible to verify these conditions, still the theorem is of great theoretical importance.
Moreover, the fact that the conditions are generic---true for "most" systems--makes
the Kupka-Smale theorem of practical importance as well: In the absence of reason

* Received by the editors May 12, 1989; accepted for publication December 1, 1989.
? Department of Mathematics, University of California, Berkeley, California 94720.
A Baire subset of a complete metric space means the intersection of a countable family of dense open

sets. By the Baire category theorem, such a subset is dense.
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to assume the contrary, we might as well assume that the theorem holds for whatever
system is under consideration.

Users of dynamics in many scientific disciplines attach great importance to robust
dynamical properties: a feature of a dynamical system is robust if it persists under all
sufficiently small perturbations of the system. The ultimate robust property is that of
structural stability: A C vector field X on a compact manifold M is structurally stable
if it has a neighborhood in the space of C fields such that for every Y in there
is a homeomorphism of M taking oriented X-orbits to oriented Y-orbits.

Structurally stable dynamical systems were introduced by Andronov and Pontry-
agin (1937), who announced their density in the space of vector fields on the 2-disk
which are transverse to the boundary; proof of this was published by De Baggis (1952).
Peixoto (1962) proved that structurally stable systems are generic among C vector
fields on a compact orientable surface, and he gave simple necessary and sufficient
conditions characterizing such systems: (1) All periodic orbits (cycles and equilibria)
are hyperbolic, and (2) no orbits join saddle equilibria. These are in fact exactly the
generic conditions of the Kupka-Smale theorem. In addition he showed that (3) the
number of periodic orbits is finite, and (4) every limit set is a periodic orbit. A system
satisfying conditions (1) through (4) is called Morse-Smale. Thus Peixoto proved that
for systems on compact orientable surfaces, the structural stability, Kupka-Smale, and
Morse-Smale concepts coincide. This was extended to nonorientable compact surfaces
by Pugh (1967), (1967a) who repaired an error in Peixoto’s proof for this case. An
error in Pugh’s proof was corrected by Pugh and Robinson (1983).

For a short time there was hope that structural stability could be proved generic,
and characterized by simple properties. Unfortunately, it was soon shown that on
manifolds of dimension greater than 2, structural stable systems are not dense
(Newhouse (1970), (1980)). Moreover, even structurally stable systems can have very
complex dynamics: The celebrated Anosov flows are structurally stable (Anosov
(1967)), but the number of cycles in such a flow is infinite: there are limit sets that
are not cycles or equilibria, and it can happen that almost every point has a
dense orbit.

By now there are several general theoretical characterizations of structural stability
and related properties for various kinds of systems on higher dimensional manifolds:
see Palis (1970), Palis and Smale (1968), Smale (1970), Franks (1971), Robbin (1971),
(1972), Pliss (1972), (1972a), Robinson (1971), (1976), Shub (1978), Liao (1980), Marie
(1988). But the dynamical hypotheses in these results are generally exceedingly hard
to verify for any given vector field; and unlike the Kupka-Smale hypotheses, they are
not generic. Moreover, very few specific examples of structurally stable systems are
known, apart from special systems such as certain geodesic flows.

In Part I of this series (Hirsch (1982)) I distinguished between two methodologies
in dynamics" the structural approach discussed above, which emphasizes structural
stability and theoretical geometrical properties such as hyperbolicity and transversality;
and the algebraic techniques that are common in applied dynamics. The structural
approach has led to deep conceptual analyses of the structure of many classes of
systems; but it is often of little use in analyzing a given system because of the extreme
difficulty in verifying the requisite hypotheses. The algebraic techniques have proved
useful in analyzing the orbit structure of many different models in biology, chemistry
and other fields; but as these methods are often ad hoc, few general principles have
emerged.

In this series of articles (Hirsch (1982), (1985), (1988a), (1989); see also (1984),
(1988)) I have combined both approaches to analyze a class of systems that are often
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used as models in applied fields, namely cooperative and competitive systems (defined
below). These systems are characterized by simple inequalities on the partial derivatives
of their vector fields.

We now come to the purpose of this article: to show that there is a certain easily
recognizable class c ofC vectorfields on three-dimensional Euclidean space Ra--namely,
dissipative competitive systemsnin which systems that are structurally stable are generic.
In fact the Kupka-Smale fields in c are precisely the structurally stable ones. Moreover,
these fields have the property that every limit set is a closed orbit, and these are finite
in number; in other words, these fields are not only Kupka-Smale but Morse-Smale.
Thus cg satisfies an exact analogue of Peixoto’s theorem.

Parts I-III of this series analyzed the geometry and dynamics of compact limit
sets of cooperative and competitive vector fields by exploiting the order-preserving
properties of their flows. In particular, it was shown in Part I that such a limit set K
projects homeomorphically into a hyperplane transverse to any positive vector;
moreover, the dynamics in K are isomorphic to the dynamics in the image K’ of K
under a Lipschitz vector field in the hyperplane, having K’ as an invariant set. In this
article I apply this result to the flow defined by a cooperative or competitive vector
field in R3, taking advantage of the simplicity of planar dynamics to study limit sets.
For most of the results I do not need the hypothesis of irreducibility which was used
heavily in Parts II and III.

The basic Cesult of this paper is Theorem 1" Under generic conditions all limit
sets are equilibria or cycles, and the number of cycles in any compact set is finite. (A
similar result is due to Smith and Waltman (1987).) In Part V (Hirsch (1989)) further
implications will be developed, and structural stability of certain feedback loops will
be proved.

We apply Theorem 1 to the case where the vector field is transverse to the boundary
of a compact 3-manifold M c R3. Theorem 2 asserts that if the flow in M satisfies the
generic conditions of Kupka-Smale, then it satisfies the stronger conditions of Morse-
Smale. Such a flow is therefore structurally stable, and the only limit sets are a finite
set of cycles and equilibria. Thus for competitive or cooperative fields transverse to
OM, the structural stability, Morse-Smale, and Kupka-Smale concepts coincide.

Since Kupka-Smale fields are generic, it follows that if F is any competitive or
cooperative field transverse to OM, then F[M is in the closure of the Morse-Smale
fields (for the C topology). Theorem 3 shows that if in addition F is irreducible, then
F[ M is in the interior of the closure of the Morse-Smale fields. This means that not
only F, but also any field sufficiently C close to F, can be approximated by structurally
stable fields having only a finite number of periodic orbits.

Theorem 4 shows that the Kupka-Smale conditions also characterize competitive
and cooperative fields that are structurally stable, in a certain sense, in noncompact
domains in R3. Theorem 5 shows that this holds in the basin of any attractor.

We use the following notation for the vector order in 3.

x<=y if Xi<=Yi (i= 1,2,3),

x<y ifx--<y and x#y,

x<y if xi<Yi (i=1,2,3).

Notations such as y > x have the natural meanings.
The closed nonnegative cone is 3+ {x 6 g3. x _-> 0}; setting x > 0 defines its interior.
A set C is p-convex if it contains the line segment with endpoints a, b whenever

aC, bC, and a<b.
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For any points u, v in R define the

closed order interval u, v] {x: u <= x <= v}

and the

open order interval [[u, v]] {x: u < x < v}.

A set K R3 is balanced if no two points of K are related by <, and strongly
balanced if no two points are related by <.

Throughout this paper X 3 is a nonenpty p-convex open set.
We denote by F:X ... 3 a C vector field generating the (local) flow q {qt} in

X. Thus the solution to the initial value problem ti F(u), u(0) x is the curve t-q,x,
defined for in some open interval Ix (trx, Zx), -oo <= trx < 0 < ’x <- o.

We call F (or q) cooperative if

aE/ax o for #j.

Since X is p-convex, the Miiller-Kamke theorem implies that a cooperative flow q is
monotone, i.e., 0t for >_-0 preserves the vector order of E3 (Miiller (1926), Kamke
(1932); see also Coppel (1965)). In fact, o has the property that for =>0 the Jacobian
matrices Dqt(x) have nonnegative entries, denoted by Dqt(x)>-O. In a p-convex
domain this implies monotonicity of q; see Part II.

For some results we need the additional assumption that F is irreducible, i.e., the
Jacobian matrices DF(x) are irreducible. In Part II it is shown that when this holds
and F is cooperative then Dqt(x)> 0 for > 0, and p-convexity then implies that q is
strongly monotone:

OtX < PtY if X < y and > O.

A vector field H is competitive if -H is cooperative, that is, if OHi/Oxj <=0 for
j. Many propositions about cooperative fields are invariant under time reversal

(replacing the field by its negative) and thus are also true for competitive fields.
A circuit is a finite sequence of equilibria po,...,p,=po, n_>-1, such that

WU(pi_l) WS(p) is not empty, where W and W denote stable and unstable
manifolds. (In Part I this was called a "cycle of equilibria"; in this paper, the term
"cycle" refers to a nontrivial periodic orbit.) If all equilibria are hyperbolic and their
stable and unstable manifolds mutually transverse (which is a generic condition; see
Kupka (1963), Smale (1963), or Abraham and Robbin (1967)), then there cannot be
any circuits.

From now on, F denotes a C vector field in X which is competitive or cooperative;
the flow generated by F is denoted by q.

We begin with the characteristic geometry of limit sets"
PROPOSITION 0. For the system F:
(a) Every cycle is strongly balanced and every compact limit set is balanced.
(b) If the system is irreducible then every compact limit set is strongly balanced.
Proof It suffices to consider a cooperative field F. For cooperative systems the

two statements about limit sets follow from Theorem 2.3(b)(c) of Part II. To see that
a cycle K in a cooperative system is strongly balanced, let A > 0 be the minimum
period of K. If z K, 0-< < A and q,z z, then 0. Suppose x =< y in K. Then we
can find 0 -< < A such that q,x y. As n - oo through positive integers, the monotone
sequence qt.x converges to a point z K fixed under (t But then O; thus x y. [q
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Next we complete a train of thought begun in Part I. Let K be a compact limit
set of a cooperative system, with no equilibrium in K. Then by Theorem C of Part I,
K is either a cycle or a cylinder of cycles; moreover, if K is an w-limit set then it
must be a cycle. Further conditions (on the linearized Poincar6 map) under which K
must be a cycle can be derived from Hale and Stokes (1960), as was pointed out to
me by H. L. Smith. However, Smith (1986) showed that when K is an a-limit set and
the vector field is irreducible, then K must be a cycle; and the following theorem
sharpens Smith’s result by eliminating the assumption of irreducibility. We thus have
a general result valid for both cooperative and competitive systems.

THEOREM 1. A compact limit set K containing no equilibrium is a cycle.
Proof We assume F is cooperative, otherwise replacing it by -F.
According to Theorem C of Part I, if K is not a cycle then K is an a-limit set

consisting of a cylinder of cycles. We assume K has these properties and derive a
contradiction.

Let v be a positive vector, E ’the plane through the origin perpendicular to v, and
7/’:R3"-’ E the orthogonal projection. Then 7r maps K homeomorphically onto a
compact subset of E homeomorphic to an annulus (Part I, Theorem A). Let C c K
be a cycle mapping under 7r into the interior of zrK. The Jordan curve zrC separates
rK. Fix points a and b in K\C such that 7ra and 7rb are in different components of
"trK\ TrC.

Since as - the negative semiorbit q_,x of x repeatedly visits every neighbor-
hood of a and b, it follows that 7rq_,x crosses rC at a sequence of times -t-.
This means that there are points z C related to q_,x by < or >, for all k. Infinitely
many of these relations are the same, < or >. Passing to a subsequence we assume
they are all >, the other case being similar. Thus we assume that 0_,x < z.

For every s > 0 there is a point w C such that q_x > w. To see this, choose k
so large that t > s. Then

(_sx (Otk_s(O_tk X < (tk_SZk C

by monotonicity of qtk- and invariance of C, proving the assertion.
Since K a(x), it follows that every point ofK is less than or equal to some point

ofc.
The same reasoning applies to every cycle C’c K" Either every point of K is less

than or equal to some point of C’ or every point of K is greater than or equal to some
point of C’. Since we can find three different cycles in K, there are two of them for
which this holds with the same relation _-< or _->. We consider the case of -<, the other
being similar.

We assume, then, that there are distinct cycles C1, C2 in K such that every point
of K is less than or equal to some point of C1 and less than or equal to some point
of C2. For any u C we can therefore find w C2 and z C such that u < w < z. But
u < z is impossible because every cycle is strongly balanced, by Proposition 0. This
contradiction shows that K must consist of a single cycle. [3

THEOREM 2. Let F c X be a compact set. Assume:
(i) All equilibria in F are hyperbolic and there are no circuits;
(ii) For any real number T> 0 the number of cycles in F having period less than or

equal to T is finite.
Then:

(a) Every limit set in F is an equilibrium or cycle;
(b) The number of cycles in F is finite.
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Note that conditions (i) and (ii) are generic; condition (ii) holds if all cycles are
hyperbolic, or more generally, if every cycle has a linearized Poincar6 map for which
1 is not an eigenvalue.

Proof. We assume F is cooperative, replacing it with -F otherwise.
We first prove (b). Suppose that in F there is an infinite sequence of distinct cycles.

Then we can choose such a sequence {Cn} together with points x, Cn converging to
a point y F. Let P c F denote the closure of t_J Cn.

LEMMA. For any n and any x C, there exist m > n and y C,, such that x > y or
x<y.

To prove the lemma, suppose the contrary. Passing to a subsequence we can
assume that no two points of P are related by <. By Theorem A of Part I, there is a
Lipschitz vector field G in the plane, with flow , and a homeomorphism g from P
onto a compact set P’ in the plane, such that P’ is invariant under @, and d/,g(x) gt(x)
for all x P. It follows that P’ is the closure of the distinct cycles g(C,)= C’, for @.
Set x’ g(xn), so that x’- y’= g(y). Now the orbit of y’ cannot be a cycle C’, for if
it were, its period would be the limit of the periods of the C’,. But this would imply
that the period of the cycle g-lC, is the limit of the periods of the C, contrary to
hypothesis (ii).

Denote by L the set of points obtainable as limits of sequences v, C,; it is easy
to see that L is a nonempty, compact invariant set. Set L’= g(L). The argument just
given shows that L’ contains no cycles. Moreover, for any u L’ it must be that a(u)
and to(u) are equilibria" Otherwise, by the generalized Poincar6-Bendixson theorem
(Hartman (1964)), L’ would contain a circuit, contradicting the hypothesis that F
contains no circuit (see the remark following the proof). It follows that the alpha and
omega limit sets of every point of L are equilibria.

It is easy to see that if p L is an equilibrium, then L must contain points of
WS(p)\p and points of WU(p)\p, where W and W denote stable and unstable
manifolds.

We show next that L contains a circuit. Let poe L be an equilibrium. Choose
Xo WU(po)\Po and set pl=to(Xo). Then pilL is an equilibrium and W"(po)f)
W (p) . Repeating this construction withp in place ofpo, we obtain an equilibrium
P2 L with W"(p) f-) W(p2) . Since the equilibrium set is finite (by hyperbolicity
and compactness) we arrive at a circuit, contrary to hypothesis. This proves the lemma.

Continuing the proof of part (b) of Theorem 1, by the preceding lemma we can
pass to a subsequence and assume that there are points x, C,, w,+ C,+1 with
x, < w,+l for all n, or x, > w,+ for all n. The two cases are similar; we assume the former.

We can assume w,+l =X,+l for all n" Recursively assume this holds for n
1,..., k-1. Now Xk < Wk+, and Wk+ is on the same cycle as Xk+l. Therefore there
is a positive number s such that Xk+a Wk+. Since preserves order, Wk+ < sWk+2.
We complete the induction by replacing Xk+ with Wk+a and Wk/2 with Wk+2.

By passing to a subsequence we assume x, q L. We know that to(q) is an
equilibrium p. It follows that C, < p for all n: To see this, let z C, be arbitrary and
let ti - c be such that (tiXn Z as c. Then qgt,q ---> p, so z _-< p since x, < p and b,,
preserves <. For all n we now have xn < X,+l-<-p. Since every point of Cn is on the
forward orbit of x, it follows from monotonicity that C, < p.

Now let U c X be any cubical neighborhood of p. I claim C, c U for sufficiently
large n. To see this let m be such that x,, U. For this m, let b be the supremum of
C, in the vector order, that is, each coordinate of b is the supremum of the correspond-
ing coordinates of all the points of C,. Then b < p. Also, since C,, is invariant, by
monotonicity we have tb ->- C,, for all >_- 0. Therefore tb -> b for all t_-> 0, by the
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definition of b. Fix no so large that for n-> no we have b < xn < p. By monotonicity,
ptb < ptxn < p. Since b _-< ptb, we have b < ptxn < p. Therefore b < Cn < p for all n _-> no,
and since U is cubical this implies C, c U.

We have shown that every neighborhood ofp contains a cycle. But this is impossible
since p is a hyperbolic equilibrium. This contradiction completes the proof of (b).

To prove (a), let K c F be a limit set. By Theorem A of Part I the dynamical
system in K is topologically equivalent to the dynamics in a compact invariant set of
the flow of a Lipschitz vector field in the plane. Therefore by the generalized Poincar6-
Bendixson theorem (see remark below), either K is an equilibrium or a cycle or else
K contains a circuit. Since the latter is contrary to hypothesis, the proof of Theorem
1 is complete.

Remark. What Hartman proves (1964, Thm. 4.2) is the following: Let K E2 be
a nonempty compact limit set of a planar flow , containing only a finite number of
equilibria Pl, , P,, n _-> 1. Then K\{pl, , p,} consists of a countable number of
orbits joining the pj. To see that this implies K contains a circuit, observe that if pj is
the to-limit of some orbit {$tXo} in K, then pj must be the a-limit of some orbit {$txl}
in K; for otherwise pj would be an attractor for the flow in K, which is impossible
because K is a limit set. Thus starting from Xo, we recursively find in K a sequence
of points Xk in K and equilibria qk such that to(xk)= qk a(xg+l). Since the set of qk

is finite we must obtain a circuit.
For any manifold Z let I(Z) denote the space of C vector fields on Z which

are transverse to OZ, where r is a positive integer, endowed with the weak C topology
(Hirsch (1976)).

Let M X be a smooth compact three-dimensional submanifold with boundary
OM.

Our next result characterizes cooperative and competitive vector fields F 6 V(X)
such that F[M is structurally stable: for any e > 0 there is a neighborhood of F M
in VI(M) such that for any H there is a homeomorphism h of M moving no
point by more than e, which takes every F-orbit in M onto an H orbit, preserving
orientation.

A sufficient condition for structural stability is that a vector field on M satisfy the
Morse-Smale conditions (see Palis (1969)):
MORSE-SMALE CONDITIONS.

(i) All equilibria and cycles are hyperbolic and their stable manifolds intersect
only transversely;

(ii) Every limit set is an equilibrium or a cycle.
If only (i) is assumed then G is called Kupka-Smale, and these conditions hold for
a Baire subset of //’(M). (See Kupka (1963), Smale (1963); for another proof see
Abraham and Robbin (1967).) The structural stability theorem for three-dimensional
Morse-Smale systems, due to Palis (1969), is stated for manifolds without boundary;
but it is well known that the proof adapts to manifolds with nonempty boundary,
provided the vector field is transverse to the boundary. The theorem is true in all
dimensions (Palis and Smale (1968)).

THEOREM 3. Suppose that F is transverse to OM, and that F M is Kupka-Smale.
Then F[ M is Morse-Smale, and therefore structurally stable. Conversely, if F[ M is

structurally stable, then it is Morse-Smale.
Proof. We assume F is cooperative, replacing it by -F in the competitive case.

Assume F is Kupka-Smale. Then the set of equilibria in M is finite, and their stable
and unstable manifolds are mutually transverse. A well-known argument based on
dimensions of stable and unstable manifolds therefore implies that there are no circuits
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in M. By Theorem 2 (with F M) the set of cycles in M is finite, and every limit set
is a cycle or an equilibrium (Hypothesis ii of Theorem 2 holds by Theorem 24.2 of
Abraham and Robbin (1967).) Therefore F] M is Morse-Smale and so structurally
stable.

Conversely, suppose F] M is structurally stable. It follows by results of Markus
(1961) that a structurally stable vector field is Kupka-Smale; and we have just seen
that this implies Morse-Smale for a field that is cooperative or competitive.

From this it follows that for any C cooperative or competitive vector field G in
X which is transverse to OM, G M is in the closure in I(M) of the structurally stable
fieldsmin fact, of the Morse-Smale fields. A slightly stronger conclusion holds for
irreducible fields.

THEOREM 4. Let G be an irreducible C cooperative or competitive vector field on
X, transverse to OM. Then G IM is in the interior of the closure in /’I(M) of the set of
Morse-Smale vector fields on M. Thus any field in M sufficiently close to G IM is a limit

offields that are structurally stable.
Proof It suffices to consider the cooperative case. In Theorem 1.2 of Part II, I

showed that any field F in X sufficiently C close to an irreducible cooperative field,
in a given compact set K c X, has a flow q with the following property: There exists
e > 0 such that if > e and qs(x) M for all 0 _-< s-< t, then the Jacobian matrix Dqt(x)
has only positive entries. For K we take a compact p-convex neighborhood of the
smallest p-convex set containing M; p-convexity then implies that qt[K is strongly
monotone for > e. For a flow o with this property, the results on projections of limit
sets used in the proof of Theorem 2 are valid; and the same proof of Theorem 3 goes
through.

The existence of the compact manifold M transverse to F is not as stringent an
assumption as it might appear. It follows from Theorem 3.2 of Wilson (1969) that such
a manifold exists as an arbitrarily small neighborhood of any uniform attractor Q: This
term means that Q c x is a nonempty compact invariant set having a neighborhood
in X in which limt_ dist (qt(x), Q) =0 uniformly. The set of all points tending to Q
is the basin of attraction of Q, denoted here by U. It is easy to see that then U\Int M
is diffeomorphic to OM x [0, ). Wilson proved that Q has a C Lyapunov function
h: U: h(qtx)<h(x) if t>0, x U\Q. Bythe theorem of Morse (1939) (extended
by Sard (1942)), h has a regular value a. Then h-(a) is the boundary of the
compact 3-manifold M h-l(-, a], which is a neighborhood of Q; and the flow
enters M transversely along OM h-(a).

If M and U are obtained in this way and F M is structurally stable, then we
will show that the flow in U enjoys the following kind of structural stability.

DEFINITION. The flow q]Y (or the vector field F[ Y) in an invariant open set
Y X is structurally stable if for every e > 0 and every compact subset Q c y there
exists a neighborhood (Y) of F Y with the following properties: For any vector
field G A there is a homeomorphism h of Y onto an open subset of Y such that
Ih(x) xl < 6 for x Q, and h maps orbits of F into orbits of G, preserving orientation
of trajectories.

In the case where U is the basin of a uniform attractor, and M is as above with
FIM structurally stable, we obtain h as follows. Suppose we are given e > 0 and Q U
as in the preceding definition. Let Wc I(M) be a neighborhood of FI M so small
that H M is transverse to OM for any H W, and by the structural stability of F] M
there exists a homeomorphism h of M within e of the identity, taking trajectories of
F M to trajectories of H. Suppose G l(y) is so close to F that G M W. Set
H G[M and let h M - M be as above. Extend h to a map g V V as follows. We
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assume F points out of M at points of 0M, the other case being similar. For each
point x 0M, h maps the forward F-trajectory of x onto the forward G-trajectory of
x, preserving length. It is easy to see that if 7" is a small enough neighborhood of
F M then h lQ is within e of the identity, and h maps Y homeomorphically onto an
open set in Y.

Thus we have proved the following result.
THEOREM 5. Let F be a competitive or cooperative vectorfield in the open p-convex

set X c R3. Let U X be the basin of a uniform attractor. Assume that F u satisfies
the Kupka-Smale conditions. Then F U is structurally stable, there are onlyfinitely many
periodic orbits in U, and every limit set in U is an equilibrium or a cycle.
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LIMIT CYCLES FOR A CLASS OF ABEL EQUATIONS*

A. GASULL" AND J. LLIBRE"

Abstract. The number of solutions of the Abel differential equation dx(t)/dt
A(t)x(t) q- n(t)x(t)2-F C(t)x(t) satisfying the condition x(0) x(1) is studied, under the hypothesis that
either A(t) or B(t) does not change sign for t[0, 1]. The main result obtained is that there are either
infinitely many or at most three such solutions. This result is also applied to control the maximum number
of limit cycles for some planar polynomial vector fields with homogeneous nonlinearities.

Key words. Abel differential equation, limit cycle, Riccati equation

AMS(MOS) subject classifications, primary 34C05, secondary 58F21

1. Introduction and statement of the main results. A problem proposed by Pugh
(see 12]) consists of the following: Let ao, al," ", an" R- R be smooth functions and
consider the differential equation

(1) an( t)xn + an_( t)xn- + + al( t)x + ao( t), O=<t=<l.
dt

We will say that a solution x(t) of (1) is a closed solution or a periodic solution if
it is defined in the interval [0, 1 and x(0) x(1). The adjectives "closed" and "periodic"
are motivated by the case where ao, al,’", an are 1-periodic, in which (1) can be
considered in the cylinder and the "closed" solutions really correspond to periodic
orbits in the cylinder. An isolated closed solution in the set of all the closed solutions
will be called a limit cycle. Then the problem is: Does there exist a bound on the
number of limit cycles of (1) ?

In the case n 2, (1) is called the Riccati equation and the problem of determining
the number of limit cycles is already known: there are at most two of them (see, for
instance, [12], [14]). When n 3, (1) is called the Abel equation. Also in [12] it is
proved that there is no upper bound for the number of closed solutions for the Abel
equations. Hence a more specific problem arises" Give a bound on the number of limit
cycles of Abel equations assuming additional hypotheses on a3(t), a2(t), al(t), and
ao(t).

A problem that is studied in several papers is Pugh’s problem for Abel equations
when a3(t) does not change sign (see [7], [12], [18]). In this case the maximum number
of closed solutions is three.

The Ricatti equation acquired importance when it was introduced by Jacopo
Francesco, Count Riccati of Venice (1676-1754), who worked in acoustics, to help
solve second-order ordinary differential equations. Abel’s differential equation arose
in the context of the studies of N. H. Abel on the theory of elliptic functions.

The aim of this paper is to study the problem of determining the maximum number
of limit cycles of Abel equations when ao(t)-= 0 and one of the other three functions
that define the differential equation does not change sign. For simplicity we write the

* Received by the editors October 31, 1988; accepted for publication (in revised form) October 30,
1989. The work of the two authors was partially supported by Direcci6n General de Investigaci6n Cientifica
y Tecnol6gica (DGICYT) grant PB86-0351.

" Departament de Matemhtiques, Universitat Autbnoma de Barcelona, 08193 Bellaterra, Barcelona,
Spain.
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Abel equation with ao(t)-= 0 in the following form:

(2) d-- A( t)x -1- B( t)x2 + C( t)x.

Note that any Abel equation with a periodic orbit xl(t) can be written in the form
(2) by using the new coordinate g x- xl(t). Observe also that the function A(t) does
not change in the new coordinate.

Let L and L’ be the straight lines 0 and 1, respectively, defined on the strip
(t, x) [0, 1] x R, where part ofthe flow of (2) lies. We consider the return map h L- L’
(when it is defined) as follows. If y L then h(y)= x(1, y), where x(t, y) denotes the
solution of (2) such that x(0, y)=y. Note that a periodic solution x(t, y) satisfies
h(y) y. The multiplicity of a limit cycle x(t, y) is the multiplicity of y as a zero of the
function h(y)-y. Multiplicity of limit cycles for (2) is studied in [1], [16].

The main results that we prove are stated in the following theorems.
THEOREM A. Suppose that A(t) 0 and does not change sign. Then the following

hold.
(a) The sum of multiplicities of all limit cycles of (2) is at most 3.
(b) Table 1 shows a more precise distribution of the limit cycles (2) when A(t)>= 0

(the case A( t) <- 0 has associated the table obtained reversingthe inequalitiesfor c and d).
Theorem A(a), as we said before, is already known. The new contribution consists

of the additional information given in Table 1. The proof of the results stated in this
table will use ideas similar to those of [7].

THEOREM B. Assume B( t) 0 and does not change sign. Then the following hold:
(a) The sum of multiplicities of all limit cycles of (2) is at most 3.
(b) Table 2 shows a more precise distribution of the limit cycles of (2) when B( t) >- 0

(the case B(t)<= 0 has associated the table obtained reversing the inequalities for c).

TABLE
Maximum number of limit cycles of equation (2) when A( t)>=0. Here c=

Maximum number of limit cycles
in the half-strip x > 0 taking
into account their multiplicity

Multiplicity of the limit cycle
x=0

Maximum number of limit cycles
in the half-strip x < 0 taking
into account their multiplicity

c<0

c=0

d<0 d=0 d>0

C( t)dt, d B( t) e C(s) d dt.

c>0

d =0 d>0

0 0

0 2

d<0

Theorem B improves Proposition 2.3 of [17]. Its proof also uses the ideas utilized
in the proof of Theorem A plus some geometrical results associated with the change
of coordinates x -x.

The results ofthese theorems are the best ones in the following sense: The maximum
number of limit cycles stated in the two tables are realizable for Abel equations when
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either A or B does not change sign. It is enough to consider A(t), B(t), and C(t)
constant functions.

Table 2 could be improved by introducing a new parameter (similar to the
parameter d in Table 1) that would give us a maximum number of limit cycles such
that their sum in the whole strip was always at most 3. Unfortunately, we have not
found this parameter.

TABLE 2
Maximum number of limit cycles of equation (2) when B(t)>=0. Here c= 1 C(t) dt.

Maximum number of limit cycles in the half-strip x > 0 taking
into account their multiplicity

Multiplicity of the limit cycle x 0

Maximum number of limit cycles in the half-strip x < 0 taking
into account their multiplicity

The sum of the multiplicities is at most

c<0 c=0 c>O

Similar results to those of Theorems A and B are not possible when we consider
that C(t) does not change sign. In fact, the example of an Abel equation with an
arbitrary number of limit cycles, which we mentioned before, can be constructed with
C(t) a constant function, as was shown in [12]. That example is of the form

dx
ef( t)x + a( t)x- + t3x,

dt

where ]61 is small, a(t) is a polynomial of degree 1, and f(t) is a polynomial of degree
2n, and it can have at least n + 3 limit cycles for suitable a and f

In fact if we find a bound on the number of limit cycles of (2) with C(t) a constant
function in terms of A and B, we could give a bound on the number of limit cycles
that a quadratic system has. Theorems A and B can be used in any way to study the
limit cycles of planar polynomial vector fields with homogeneous nonlinearities. We
consider two-dimensional autonomous systems of differential equations

(3) 2=Ax-y+P,,(x,y), =x+Ay+Q,,(x,y),

where P, and Q, are real homogeneous polynomials of degree n => 2. These systems
for arbitrary n->2 have been studied in [2]-[5], [17]. When n =2 we have a subclass
of quadratic systems which has been studied in [7], [8], [12]. System (3) with P,(x, y)
(ax + by)R,,_(x, y) and Q,,(x, y) (cx + dy)R,,_(x, y), where R,_ is a homogeneous
polynomial of degree n- 1, has been studied in [6], [9]-[11].

System (3) in polar coordinates can be written in the form

(4) t:= Ar+ r"f(O), O 1 + r"-lg(O),
with

f(0) cos OP, (cos 0, sin 0) + sin OQ, (cos 0, sin 0),

g (0) cos OQ, (cos 0, sin o) sin oP, (cos 0, sin 0).

It is known that the periodic orbits surrounding the origin of system (4) do not
intersect the curve O =0 (see the Appendix of [4]). Therefore, these periodic orbits
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can be studied by making the transformation introduced by Cherkas 5], T( r, 0) (p, 0),
where

(5) p r"-l/(1 + r"-lg(O)).
In the new coordinates (p, 0), system (4) becomes the following Abel equation

(6)
dp

a( O)p + B( 0)02 + (n 1)Xp,
dO

where A=(n-1)g(Ag-f), and B=(n-1)(f-2Ag)-g’.
In short, by studying all the periodic solutions p(0) of (6) we study all the periodic

solutions of system (3) surrounding the origin. Then by using Theorems A and B we
can prove the following result.

THEOREM C. (a) Suppose that either A or B does not change sign, B O, and A O.
Then system (3) has at most two limit cycles surrounding the origin.

(b) If either A =-0 or B =-0 system (3) has at most one limit cycle surrounding the
origin.

Examples of system (3) with the maximum number of limit cycles given in the
above theorem are given in [2], [3], [9]. For a more detailed study of the number of
limit cycles of system (3), see Propositions 7-9 of 4.

Note that if B 0 in (6), then it changes sign when n is even.
The rest of the paper is organized in the following way. In 2 we state some

auxiliary results that we will need in the proofs of Theorems A and B, which are given
in 3. Lastly, the cases A-- 0, B 0, and the proof of Theorem C are found in 4.

2. Preliminary results. We will need the following results.
PROPOSITION 1 (see 15]). If h(y) is the return map associated with the differential

equation dx/ dt S(x, t), 0 <-_ <- 1, then

foS(a) h’(y) exp -x (x( t, y), t) dt,

[fo OzS
(x(t,y), t)exp{fo OS

(x(s,y),s) ds} dt](b) h"(y)= h’(y)
Ox2 Ox

(c) h"’(y)= h’(y) h’(y)]
o3S

+ (x(
Ox

t, y), t) exp {2 (x(s, y), s) ds dt

where x( t, y) denotes the solution of the differential equation such that x(O, y) y.
LEMMA 2. Thefirst derivative of the return map associated with a periodic orbit x( t)

of (2) is

exp C(t) dt if x(t)=-O,

or

exp {B(t)x(t)+2C(t)} dt =exp [A(t)x2(t)-C(t)] dt ifx(t)O.

Proof For any periodic orbit x(t) we know from Proposition 1 that the first
derivative of the return map is

exp (3Ax2(t) + 2Bx( t) + C) dt
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so if x(t)-= 0, the lemma follows. If x(t) 0 then from (2) we know that

x’(t)
x(t)

Axa(t) + Bx(t) + C,

and integrating between zero and we obtain

(7) 0 (Axa( t) + Bx( t) + C) at.

Hence, by multiplying (7) by -3 or -2 and adding it to 10 (3Ax2(t)+ 2Bx(t)+ C) dt,
the lemma follows.

LEMMA 3. It is not restrictive in the study of the number of limit cycles of (2) to
consider -B instead of B, or -A and -C instead ofA and C, respectively.

Proof By using one of the following three changes of variables, (x, t) (-x, t),
(x, t)- (x, 1- t), or (x, t)- (-x, 1- t), the lemma follows. []

LEMMA 4. Solutions of (2) in the region x> 0 (respectively, x <0) can be studied
in the region y =-x-E> 0 as solutions of the differential equation (8) (respectively, (9)).

(8) a
dt

(9)
dt

2A(t)-2B(t)yl/a-2C(t)y,

2A(t)+2B(t)yl/a-2C(t)y.

The proof follows easily.
LEMMA 5. Assume that B( t) >= 0 and does not vanish identically. Ifx( t) is a periodic

orbit of (2), then the flow of (2) in the strip [0, 1] R moves upward across the curve
(t, -x(t)).

Proof If x(t) is a periodic orbit of (2), then x’(t) Ax3(t) + Bx(t) + Cx(t). Hence
the tangent of the curve (t, -x(t)) has the direction (1, -Ax3(t) Bx2(t) Cx(t)). Since
we know that the vector field given by (2) atthe point (t, -x(t)) is (1, -Ax3(t)+ Bx2(t)
Cx(t)), the lemma follows. [3

3. Proof of Theorems A and B.
Proof of Theorem A. By Lemma 3 we can assume that A(t)>=O. Since for (2)

(03S/0x3)(t, X) 6A(t) >_- 0, from Proposition 1 we know that h’"(x) >= 0 for all x for
which h is defined. So, by Rolle’s theorem, the maximum number of limit cycles of
(2) taking into account their multiplicities is three.

To show that Table 1 is right we use more information about h. From Proposition
1 and Lemmas 2 and 3 we have h(0)=0, h’(0)=exp c, h"(O)=2dh’(O), where c=

1o C(t) dt and

d B(t) exp C(s) ds dt.
o

Furthermore

(10) h’(x(O)) exp (A(t)x2(t) C(t)) at when x(0) 0.

Assume now that c <0. Then from (10) for any fixed point x 0 of h, h’(x)> 1, and
Table 1 follows.

Consider the case c -> 0. In this case we can assume that d ->_ 0, since the case d < 0
follows from this one and Lemma 3. We define H(x):= h(x)- x. For H we know that
H(0) =0, H’(0) ee- 1 ->_0, and H"(0) 2de >-0. Now we are going to prove that
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there are no limit cycles in the half-strip x > 0. Assume that x Xo gives the initial
condition for the closest positive periodic solution to x 0. Then H’(xo)<= 0 because
x-=0 is unstable. Hence from Rolle’s theorem there exists y, 0<y <Xo such that
H’(y) 0 and H"(y) <- O. Note that conditions H"(0) _>- 0 and H"(y) <= 0 with 0 < y are
in contradiction with the fact H’"(x)= h’"(x)> 0. The rest of Table 1 follows from part
(a) except when c > 0 and d --0, in the half-strip x < 0. Lemma 3 reduces this last case
to the same case but in the half-strip x > 0. [

Proof of Theorem B. From Lemma 4 we have that (2) is equivalent to either (8)
or (9). By Lemma 3 we can take B of suitable sign, so that in the y coordinates the
return map satisfies

ioh"(y) +/- B(t)y-3/(t)exp (B(s)y-/(s)-2C(s)) dt>O.
2

Hence, by Rolle’s theorem, we have proved that the sum of the multiplicities of the
limit cycles of (2) in any half-strip, x > 0, or x < 0, is at most 2.

To show the final result we have to consider more information about the stability
and relative position of the possible limit cycles.

Again by Lemma 3 it is not restrictive to consider c >-0 and B >= 0. From Lemma
2 we have that for any initial condition Xo of a periodic orbit of (2) in the half-strip
x>0, h’(xo)=exp(-Ilo(Bxo(t)dt+2C(t))dt)<l. Hence there is at most one limit
cycle in this region. If c 0 the study in the half-strip x < 0 follows in the same way.

So in order to finish the proof of this theorem it only remains to show that the
maximum number of limit cycles in the whole strip is three, taking into account their
multiplicities.

We consider the case c > 0; the case c 0 follows in a similar way. Assume that
there is a limit cycle with initial condition Xo> 0 and two limit cycles (or a double
one) with initial conditions 0> x x2 Assume that 91 > X2" The case xl x2 follows
by using the same kind of arguments. From the results proved until now we know that
the three limit cycles are hyperbolic and we know also their stabilities. So since the
origin is a repellor limit cycle, we have by Lemma 5 that Xo > Ix21 > IXl], because Xo has
to be different from Ix1] and Ix2] and if Xo < ]xl then another positive limit cycle would
exist between Xo and Ix2]. But, again by Lemma 5, between -Xo and x2 system (2)
would have another limit cycle and this is not possible. So, either the limit cycle with
initial condition Xo or the limit cycle with initial condition x does not exist. [3

4. Cases A 0, B 0, and proof of Theorem C. When either A 0 or B 0, (2)
is of Bernoulli type, and it is well known how to integrate it. Hence in these cases we
can know exactly the trajectories of all periodic solutions. Their initial conditions are
given in the following lemma.

LEMMA 6. Set

c 1o c(t) dr, d 1o B(t)exp {’o C(s) ds} dt, d’= 2 1o a(t)exp {2 o C(s) ds} dt.

Then the following hold.
(a) If A =-0 and c= d =0 all trajectories of (2) in a neighbourhood of x=-O are

periodic.
(b) If A 0 and Ic[ + lal 0, (2) has at most two periodic solutions. Furthermore,

these solutions are the solutions with initial conditions

x(0) =0, x(0)-
1 meC

defined for all between zero and 1.
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(C) If B =- 0 and c d’= O, all trajectories of (2) in a neighbourhood of x =- 0 are
periodic.

(d) If B=-O and Icl/ld’l 0, equation (2) has at most three closed solutions.
Furthermore, these solutions are the solutions with initial condition,

e2c
x(O) o, +

defined for all between zero and 1.
The proof follows by direct computations.
Before applying Theorems A and B and the above result on the Abel equation

(6) associated with system (3), we state some elementary results that can be found in
[3] and [4]. Note that for the Abel equation (6) associated with (3) we are interested
in 27r-periodic solutions. It is not difficult to translate all our results to this case. It is
enough to consider instead of 0 the new parameter := 0/27r.

(R1) In the region >0 the flow of system (3) is diffeomorphic (preserving the
orientation) to the flow of the Abel equation (6) contained in the half-cylinder R1
defined by 0=< p < 1/g(O) where this last inequality only works when g(O)>0; see
Fig. 1.

(R2) In the region <0 the flow of system (3) is diffeomorphic (reversing
the orientation) to the flow of (6) contained in the region R2={p<O}t3{p<l/g(O)
when g(0)< 0}; see Fig. 1.

p=i/g

P=O P=O

0=0 O=2r 0 =0 0=27r 0=0 0=27r

FIG. 1. Some examples of regions R and R on the cylinder (p, 0).

(R3) A periodic orbit of system (3) surrounding the origin is a periodic orbit of
the Abel equation (6) contained in R1 or Ra, and vice versa. Moreover, a periodic
orbit can be contained in R only if g is negative.

(R4) For the values of 0 such that g does not vanish, the curve p 1/g is formed
by solutions of the Abel equation (6).

(R5) If g does not vanish then the curve p 1/g is a periodic solution of the
Abel equation (6).

(R6) The curve p 1/g for the Abel equation (6) corresponds to the equator of
the Poincar6 sphere of system (3) without the critical points.

(R7) Transformation T given in (5) sends the subsets t =0 to p =, r=0 to
p=O, and r=otop=l/g.
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(RS) If n is even and p(O) is a solution of (6) then -p(O+ 7r) is also a solution
of (6).

PROPOSITION 7. Set d=o ((n-1)(f-2Ag)-g’) en-1)x dO, and d’=
2 (n-1)g(Ag-f)e2n-1)x dO’, then the following hold.

(a) IfAg-f=- O (so A=- O) and
(1) A 0, then the origin of system (3) is a center.
(2) A 0, then system (3) has no limit cycles surrounding the origin.

(b) If g =- O (so A=- O) and
(1) A d O, then the origin of system (3) is a center.
(2) either A 0 and d 0 or A O, then system (3) has at most one limit cycle surrounding

the origin. Furthermore, if this limit cycle exists its initial condition is p(O)=
(1-en-l2)/d.
(c) If (n- 1)(f-2Ag)-g’=-O and

(1) A O, then the origin of system (3) is a center.
(2) A 0, then system (3) has at most one limit cycle surrounding the origin. Furthermore

if this limit cycle exists its initial condition is p(0)=-sign (g(O))x/(1-eX-l4)/d’
and coincides with the function p (O) 1/g(0).
Proof. Note that for (6) c A(n- 1)27r. Hence in order to finish the proof of this

proposition it suffices to show that the possible periodic solutions of (6) that Lemma
6 gives do not produce periodic orbits of system (3) except in the cases in which the
origin is a center and in cases (b2) and (c2). Consider Case (a). In this case f-= Ag. So

d ((n 1)Ag + g’) e-1 dO

=-g(O) eX-ll" g(0)(1 eX-l)2").
Hence, by Lemma 6, the initial condition (different from zero) that gives us a possible
limit cycle when A 0 is

x(0)
g(0)(1 en-1)2) g(0)"

Consequently, from (R6), case (a) follows. Case (b) follows, from Lemma 6, in a way
similar to case (a). In case (c), again from Lemma 6, and with calculations similar to
those in case (a), we have that the initial conditions that could give periodic orbits of
(3) are x(0)= +l/g(0). So from (R6), the proposition is proved.

PROPOSI3:ION 8. (a) If A(O) O, A(O) does not change sign and n is even, system
(3) has at most one limit cycle surrounding the origin. Furthermore, it can exist only if. sign (a(0)) < 0.

(b) Assume AO, A(O)>-_O, and that n is odd; then the following hold.
(1) If g(O)=-0 then the number of limit cycles of system (3) surrounding the origin is at

most the number appearing in the first row of Table 1, according to the signs of c
and d. Furthermore, the limit cycles turn in the sense > O.

(2) Ifg( O) > Ofor all 0 [0, 2r], then the number oflimit cycles ofsystem (3) surrounding
the origin is at most the number appearing in the first row of Table 1 minus 1,
according to the signs of e and d. Furthermore, they turn in the sense 0 > O.

(3) Ifg(O) < 0 for all 0 [0, 2r] system (3) has at most one limit cycle surrounding the
origin. It can exist only if c < 0 and then it turns in the sense 0 > 0 or if c > 0 and
d < 0 and then it turns in the sense 0 < O.

The value c is equal to A (n- 1)2r and d is given in Proposition 7. If A(O) <-0 we have
similar results by reversing the inequalities for c and d.
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Proof (a) The proof follows from Table 1 and results (R1), (R2), (R3), and (R8).
(b) The proof follows from Table 1 and results from (R1) to (R7). See also Fig. 1.

NotethatthecaseA(O)<-OcanbeobtainedfromcaseA(O)>-ObyusingLemma3. [3

Most results of the two above propositions are already proved in [3].
PROPOSITION 9. Assume that B(O)O and B(O)>=O (hence n is odd). Then the

following hold.
(a) Ifg(O) =- 0 then the number of limit cycles of system (3) surrounding the origin

is at most the number appearing in the first row of Table 2, according to the sign of c.
Furthermore, the limit cycles turn in the sense 0 > O.

(b) If g(0)>0 for all 0[0,2r], then the number of limit cycles of system (3)
surrounding the origin is at most the number appearing in the first row of Table 2 minus

1, according to the sign of c. Furthermore, they turn in the sense 0 > O.
(c) Ifg(O)<O for all 0 [0, 2r] system (3) has at most one limit cycle surrounding

the origin. It can exist only if c < 0 and then it turns in the sense 0 > 0 or if c > 0 and
d < 0 and then it turns in the sense 0 < O.
The value c is equal to A (n- 1)2r. If B(O)<-0 we have similar results by reversing the
inequalities for c.

The proof of this proposition follows in a way similar to the proof of Proposition 8.
From Propositions 7-9 we obtain Theorem C.
Remark. Theorems A and B can also be applied to more general differential

equations (not necessarily polynomial). It is enough that we can find a system of
differential equations such that there exists.a change of variables (usually polar
coordinates) that transforms it into (2). So, for instance, we can apply Theorems A
and B to a subclass of planar vector fields X(v) Cv+ h(v)Dv, studied in [9], where
C and D are 2 x 2 matrices, h a smooth homogeneous function, when the functions
A(0) or B(0) associated with this differential equation do not change sign.
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ON A SINGULARLY PERTURBED EIGENVALUE PROBLEM IN THE
THEORY OF ELASTIC RODS*

L. S. FRANK?

Abstract. A singularly perturbed eigenvalue problem appearing in the theory of elastic rods is considered.
The least eigenvalue A of the corresponding operator turns out to be exponentially decreasing as the small
parameter e vanishes, A being strictly.positive for each e > 0. Usual techniques based either on the parametrix
constructions or on rescaling and stretching of variables fail to produce asymptotic formulae for A and
the associated eigenfunction q)(x) in the case considered. The classical geometrical optics approach is used
here to derive asymptotic formulae for h and q)(x) as e +0.

Key words, singular perturbations, ellipticity, coerciveness, phase function, asymptotic expansions,
ordinary differential equations, eigenvalue problems
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0. Introduction. Singularly perturbed eigenvalue problems for ordinary differential
operators affected by the presence of a small positive parameter is one of the classical
topics in the singular perturbation theory that goes back to the work by Lord Rayleigh
[12], where the following problem is considered:

E2U(iv)- U"-- AU, X (0, 1),
(0.1)

u(0) u’(0) u(1 u’(a) 0,

and the following asymptotic formula for the eigenvalue A, of this problem is estab-
lished:

A=Tr2n2+47r2n2e+O(e2), e->0, n=l,2,....(0.2)
The operator

with the domain

L := e 2 L" DL -> L2(0, 1)

DL := {u H4(0, 1), u(0)= u’(0)= u(1)-- u’(1)=0}
is self-adjoint for all e > 0 and so it is for the reduced operator

Lo Lo" D -> L2(0, 1

with the domain

D {u 6 H2(0, 1), u(0) u(1) 0}.
Similar abstract self-adjoint problems are investigated in [9].

Not necessarily self-adjoint ordinary differential operators of the form

L 8
2(n-m) Q + P

with ord Q 2n > ord P 2m are considered in [l 1], where an assumption of strong
ellipticity of L (see [14]) is made and boundary conditions are considered that are a
specific case of more general coercive boundary conditions for operators with a small
parameter (see [1], [3]).

* Received by the editors June 16, 1989; accepted for publication November 9, 1989.
? Mathematics Department, Catholic University, Toernooiveld 6525, ED Nijmegen, the Netherlands.
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Very essential in [11] is the assumption that the boundary operators associated
with the reduced problem for L0 P have their orders less than ord P 2m.

The method used in [11] is closely related to that in [16] and goes back to the
classical geometrical optics asymptotic method applied in the specific one-dimensional
situation in 16].

The method introduced in [15] has the advantage of being applicable also in the
case of elliptic partial differential operators. However, its realization in specific situ-
ations requires a considerable amount of technical work for deriving asymptotic
expansions and for proving their convergence as the parameter vanishes.

The reduction method for coercive singular perturbations sketched in [2] and
developed in [6] and [7] (see also [5], [8], [17]) allows us to derive, in a simple way,
asymptotic formulae for the eigenvalues and eigenfunctions of coercive singular per-
turbations (see [4]) in the case where the perturbation shifts the spectrum of the
reduced problem to distances whose order is some positive power of the small para-
meter. Since only the principal symbols of the coercive singular perturbations are used
for producing a singularly perturbed operator that reduces a given coercive singular
perturbation to a regular one, the reduction method based on such a construction
cannot be applied in situations where the shift of the spectrum as a result of the
perturbation is exponentially small when the parameter vanishes. Neither is the method
in [15] applicable in this situation for the same reason as in the case of the reduction
method mentioned above.

Yet problems of this type appear in a natural way in the theory of elastic rods.
Such a problem is considered here and is analyzed directly by using the classical
geometrical optics approach. The singularly perturbed eigenvalue problem in the
interval U (0, 1) considered here is neither self-adjoint nor does it satisfy the condi-
tions in [11], since for the corresponding reduced operator one of the boundary
conditions on 0 U {0, 1} has the same order as that of the reduced operator in the
interval U. Asymptotic formulae are derived and justified for the least eigenvalue and
the associated eigenfunction of the coercive singular perturbation in the theory of
elastic rods in the case where the rod is subjected to a large (rescaled dimensionless)
longitudinal pulling-out force and has one of its endpoints clamped and the other free.

1. Statement of the problem. The following singularly perturbed boundary value
problem describes an elastic rod at the equilibrium state in the presence of a large
(rescaled dimensionless) pulling-out force when one of its endpoints is clamped and
the other is free (see, for instance, [10]):
(1.1) e2D2(q2(x)Du(x))+Du(x)=f(x), x U=(0, 1),
(1.2) Bj(x’,D,)u(x’)=j(x’), j=l,2, x’0U={0,1},
where D, =-id/dx, q(x)> 0, for all x U, q C(U), e(0, eo], eo << 1 (e is propor-
tional to T-1/2 with T the dimensionless parameter characterizing the pulling-out
longitudinal force) and the boundary operators Bj(x, Dx) are given as follows"

(1.3) Bl(X, D,)=(1-x)-xD2, B2(x, D)= B(x, D)O,,,
with 0, (-1)X’d/dx the inward normal derivative.

We associate with (1.1)-(1.3) the following singularly perturbed column-operator:

(1.4) := uB) T,rur D "n’ouB ro
where ru and ru are the restriction operators (traces of continuous functions) to
U (0, 1) and 0U {0, 1), respectively, the differential operator r(x, D) is defined as

(1.5) re(x, D)= e2D2q2(x)+ 1,
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and the upper T stands for the column vector that is the transpose of the corresponding
row vector.

We associate with s4 its reduced operator s defined as follows"

(1.6) 4 := (TruD2, ZrouBl) r,
the corresponding reduced problem being stated in an obvious way"

(1.7) s4u (f, (Pl) 7-.

Considering the boundary value problem
2 4 2 (X) 0, X E U,(e D,+ Dx-A)u

Bj(x’, Dx)u(x’) Cj(x’), j 1, 2, x’ e O U,

with Bj(x, Dx) defined by (1.3) and with given h e (0, zr2), it is readily seen that

lim u(x) u(x),
e+0

where u(x) is the solution of the problem

(D- h )u(x) O, x U,

Bl(X’ D)u(x’)=cp,(x’), x’ eOU.

Of course, the same is true if we consider inhomogeneous perturbed and reduced
equations in U with a smooth second member f(x) instead of zero.

This justifies the somewhat formal definition (1.6) of the reduced operator s
associated with that of the perturbed operator defined by (1.4), (1.5), (1.3).

It is readily seen that the kernel of sg is trivial (while for the reduced operator
it consists of all functions Cx with C any constant).

Indeed, introducing v= Du with u e ker s, (i.e., sgu =(0, 0, 0)r), for v
we get the following problem:

so that v (x) 0, for all x E U.

rv =0, x U,

v(1) =0, Dxv(1) =0,

Furthermore, for u we find

(1.9)
Du=O, x U,

u’(0) =0, Dxu(O) =0,

so that u (x)= 0, for all x e U.
As a consequence of such a situation, it is impossible to factorize s4 by s, i.e.,

to find an operator R (which would be a 3 x 2 matrix operator), such that s =Rs4,o

given that ker ={0} and ker s4= {Span x}. Also, as (1.8) indicates, even if the
inverse operator (s4) -’ exists, its norm grows exponentially, i.e., as exp(y/e) for
e +0 with some constant y > 0. In other words, the eigenvalue ,o 0 of the reduced
operator (with x the associated eigenfunction) is shifted for its perturbation s4 given
by (4), to some value O(exp (-T/e)) with some constant y > 0, as e- +0.

We will find asymptotic formulae for and the associated eigenfunction of s4.
A direct method based on the classical geometrical optics approach will be applied

for deriving these asymptotic formulae.
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Thus, consider the eigenvalue problem

(1.10) 27ru(r Dx-Ao);=O, 7rouBj(x, Dx)q;=O, j=l,2,

where Bj(x, D,) are given by (1.3).
Remark 1.1. Singularly perturbed operator M defined by (1.3)-(1.5) is a coercive

singular perturbation (see [3]) and so it is also for the following perturbation sg of M"- =), uB=) T,M. := (Tru(r Dx+ tx 7rouB1, o

Since the reduced operator

M := (’u(D +/x=), "trouB1) T,

is invertible, so it is also for M,, for all e e (0, Co], provided that Co> 0 is sufficiently
small, and, moreover, (M)-1 is" uniformly bounded with respect to e e (0, Co] as a
linear operator in corresponding Sobolev type spaces (see [5]-[7], [17]).

An unusual feature of sO,,/x > 0, is the boundary operators Bk(X’, Dx), k 1, 2,
whose orders are different at x’=0 and x’= l:0=ord BI(0, Dx)<ord Bl(1, Dx)=2
and l=ord B2(0, Dx) < ord B_(1, D) 3.

2. Asymptotic solutions. Here two different types of asymptotic solutions to the
differential equation in (1.10) with A C instead of A) will be constructed.

We denote by q(x), q" R- R a smooth extension of q C(U) to R such that
q(x) >= qo> 0, for all x R and q(x) q+ ql(x) with ql C(R) (see, for instance,
[13], where the possibility of such an extension is shown).

We introduce the notation

(2.1) 2 2 2 2 2L(e,A,x,O):= e Oxq (x)O-Ox-A,

where 0 ddx, e (0, Co], A C, x e R and q(x), q C(R) is extended as indicated
above.

We start with the following proposition.
PROPOSITION 2.1. The equation

(2.2) L(e,h,X, Ox)U[(x)=O, xR,

has the following formal asymptotic solutions"

(2.3) uj(e, i, X)"" E 62kujk( 1, X), j= 1, 2,
k>=O

(2.4) uj(e,A,x)’-.exp(-Q(x)/e) Ekujk(A,X), j=3,4,
k=>O

where

(2.5) ulo(/, x) A -’/2 sin (A’/2x), U2o(A, x) cos (/ 1/2x),

(2.6) Q3(x) (q(y))-i dy, Q4(x)= (q(y))-ldy, Ujo(A,x)--(q(x)) 1/z, j=3,4,

and where Ujk (A, X), k > O, 1 <-j 4 are defined recursively as follows"
(i) For j 1, 2

2 2(2.7) (0 + A)Uk(A, x) 0 q OU,k-I(A, X) Uk(A, O) OUjk(A, O) O, k 2,"
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(ii) For j 3, 4

Ujk(A,X)=--O, k<0, Ujo(A,x)=(q(x)) ’/2,

Lq(u2k)(A, x) ((Lqq(x)Lq + q(x)(O]- ))u._,)(A, x)

(2.8) -((LqqZ(x)O2 + qZ(x)OZxq(x)Lq)u2,_z)(A x)

+(q2( 2 2 2X)Oxq (X)OxU2,k-3)(X, X), k O, 1,’" ",

U3,,(X, 0)=0, U4,,(,, 1)=0, k= 1,2,’’’,

(2.9) Lq(u) := Ou + q(X)Ox(U/ q(x)).

Proof An elementary computation shows that for the formal asymptotic solutions
uj(e, , x), j 1,2, defined by (2.3), (2.7), holds"

L(e, ,, x, Ox)u2(e, A, x)= O(e), e +0, j 1,2.

We show briefly that formally we have

L(e, A, x, 0x)u3(e, X, x) p(e, X, x) exp (-Q3(x)/e),

where, uniformly with respect to x R and [A] -< r <,
(2.10) p(e, a, x) O(e), e - +0.

Indeed, when we rewrite L(e, A, x, 0,) in the form

(2.11) L(e,A,x, Ox)=O2xr(X, eOx)-A, r(x, eOx)=q2(x)(eOx)2-1,

an elementary straightforward computation shows that

(2.12) r(x, eOx)U3(e,A,x)’-" eZexp(-Q3(x)/e) 2 e(-q(x)Lq(u3.+)+qZ(x)Ou3.)
kO

Substitution of (2.12) into (2.2) yields

(2.13) "-.exp(-Q3(x)/e) Y e((q(x))-2v+2(A,x)-(q(x))-Lq(v+)+oZv(A,x)),

where we have denoted

(2.14) /)k+2(a, X):-- q(x)(Lq(U3,k+,))(Z, x)+ q2(x)OxU3,k(A X), k--0, 1,. ..
Using (2.14), (2.8), it is readily seen that

(2.15) (q(x))-2Vk+2(A,X)--(q(x))-I(Lq(Vk+))(A,X)+O2Vk(A,X)=--O, k>-O,

where, of course, Vk(A, x) =- O, k=0, 1, as a consequence of (2.14), (2.8), and (2.6),
the latter having as a consequence the identity (Lq(u,o))(x)=O. The same argument
applies to U4(e, A, X). [-]

We will use the classical construction due to Carleman to produce functions
v2(e, , x) that are C in variables (e, x) (0, Co] /, analytic in A C, and have the
following properties" v2(e, A, x), 1 =<j -<4, admit an asymptotic expansion by the formal
series representing the corresponding Ui(e, A, x), 1 =<j <= 4.

LEMMA 2.2. Let 0k CO(U), k >-0 and tz [/Xo, oe). Then there exists a function
q(/x, x), q 6 C([/Zo, oo) x U) such that the following asymptotic relations hold"

(2.16) OOxp(ix, X) Z (O[Ul’-k)ox(k(X), Ug -’ --00 VOl, ,
k>_--0
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uniformly with respect to x E U, i.e., for each integer N > 0 we have

(2.17) oXOx(,, x)- E (oX,-)oe(x)
O<k<N

< Ca -(N+a)
,/3 N l.lb

where the constant C./3,N may depend only on its subscripts.
Proof Let X E C(R) be such that X(t) -= 1 for Itl->- 1 and X(t) 0 for [tl--< 1/2. Define

(2.18) q(/x, x)= E X(6klZ)lx-kqk(X),
kO

where the sequence (k0 for k will be chosen later.
Note that, for each/x ---/Xo given, the series on the right-hand side of (2.18) contains

only a finite number nonvanishing terms, i.e., it is convergent for each given/z->/Xo.
The numbers 6k0, k-, are chosen to satisfy

(2.19) /3 1--kIoox(x(),-%(x))l<-, O<=a+<=k Vi>-io, VxeU.

Thus, for all N > 0 and for a +/3 -< N, we find

(2.20) a.a (x(a, ,-%(x) <= E ---= 0(-’-’-’’)

Thus (2.20) yields

/3O.Ox(,,x)=oOx

OkN+l
tz-kqk(X) + O(t, -’-’-N) as/z -+ oo.

Now define the functions

(2.21) v;(e, A, x) Y’, X(6ke--2)e2ku;k(a, X),
kO

j= 1,2,

(2.22) v.i(e,a,x)=exp(-Q(x)/e) E X(6ke--1)ekujk(a,X), j=3,4,
k--0

where Ujk, j 1, 2 and Ujk, j 3, 4 are defined by (2.7) and (2.8), respectively.
THEOREM 2.3. Equation (2.2) has a fundamental system of solutions w(e, A, x),

1 <-j <-4 such that"
(i) wj are C in variables (e, x) (0, Co] x U and analytic in variable A C;
(ii) For any a >-_ O, fl >-O, and N> 0 given the following asymptotic relations hold"

(2.23) (830e)aOflx(Wj(8, l,X)--Dj(8,1,X))’-’O(82e+2N), j=l,2,

(2.24) (e20)O(wj(e,a,x)-vj(e,a,x))=O(e"+rv exp(-Qj(x)/e), j= 1,2,

or, equivalently,

(2.25) (ezo)O{(exp(Q(x)/e)(wj(e,a,x)-v(e,a,x)))=O(e+rv),

the asymptotic formulae (2.23), (2.25) being valid uniformly with respect to x U and
A C, IAI<- r<oo.

Proof We briefly sketch the proof emphasizing the main ideas and constructions
and omitting technical details that can be easily verified.
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Let us start with the solutions wj(e, h, x), j 1, 2 of the first type. Using a smooth
extension of q onto R (with the properties indicated above), we may consider the
equation

(2.26) L(e,A,x, Ox)w.(e,A,x)=O, xeR, j= 1,2.

As a consequence of Proposition 2.1 and Lemma 2.2, we have for the asymptotic
solutions vj(e, A, x), j 1, 2 defined by (2.3), (2.7), (2.21)

(.27) (e, ,, x, o)v(, ,, x) (, ,, x), j 1, 2,

where 6j(e, A, x) is O(e), as e-*0, with all its derivatives, i.e., in the topology of
C((0, eo] x R); furthermore, as a consequence of the construction, A 6j(e, A, x) is
an entire function of A e C.

We will seek the solution w of (2.26) such that

(2.28) wj(e,X,O)=v(e,X,O), OxW(e,A,O)=OxV(e,A,O), j=l,2.

Introducing Y(e, A, x) vj(e, A, x)- wj(e, A, x), j 1, 2, we find

(r(x,D,)D-,)(,X,x)=(,,,x), xeI,
(2.29)

Y(e,h, 0)=0, Ox Y( e, h, O) O, j=l,2,

where re(x, D,)= e2O2xq2(x)+ 1 is an elliptic singular perturbation of order (0, 0, 2).
As a consequence of Theorem 2.2.1 in [6], r (x, Dx) has an inverse s (x, Dx) that

is an elliptic singular perturbation of order (0, 0,-2). Hence we may rewrite (2.29)
equivalently in the following fashion:

(.o (, a,x-a (x-ys(y,D,(,t,y ay =o(, a, x,

with

&(e, A, x) (x- y)s(y, Dy)6(e, A, y) dy, j 1, 2

still being O(e) in the topology of C.x and entire functions of A C.
Volterra integral equations (2.30) have well-defined solutions Y(e, , x), j 1, 2,

that possess the same properties, as p(e, A, x), i.e.,

(2.31) Y(e, h, x)= O(e), j= 1, 2,

in the topology of C((0, e0] x R) and are entire functions of )t e C.
Next, we consider the solutions w(e, A, x), j 3, 4 of the second type. Again,

using a smooth extension of q(x) onto R (as indicated above), we may consider the
equation

(2.32) L(e,A,X, Ox)Wj( e, A, x) O, xR, j=3, 4.

Again, as a consequence of Proposition 2.1 and Lemma 2.2, we have for the
asymptotic solutions v(e, , x) defined by (2.4), (2.5), (2.8), (2.22)

(2.33) exp(Q(x)/e)L(e,h,x,O,)v(e,A,x)=6j(e,A,x), j=3,4,

where again 6j(e, , x) O(e) in the topology of Cx and are entire functions of e C.
We will seek solutions w(e, A, x) of (2.32) that satisfy the conditions

wj(e, A, O) v(e, A, O), j=3,4,

so that for

(2.34) Y(e, A, x):= exp Q(x)/e)(v(e, A, x)- w(e, A, x)),
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we get the following problem:

exp(Qj(x)/e)L(e,A,x, Ox)(exp(-Qj(x)/e)Y(e,A,x))=6j(e,A,x), xR,
(2.35)

Y(e, A, 0) 0, j=3,4.

A straightforward computation shows that

(2.36) e exp (Qj(x)/e)L(e, A, x, Ox) exp (-Q(x)/e)= M(x, eD)O+ g(e, A, x, O),

where

(2.37) M(x, q) := -iqE(x)rl + 4q(x)rl2 + 5iq -6/ q(x),

M(x, eD) is an elliptic perturbation of order (0, 0, 3) and R(x, e, O) is a differential
singular perturbation whose order is at most (0, 0, 2).

Hence, again as a consequence of Theorem 2.2.1 in [6], M(x, eDx) has an inverse
N(x, e, D), which is an elliptic singular perturbation of order (0, 0,-3).

Therefore we may rewrite (2.35) in the following equivalent fashion:

(2.38)

(e, A, x)+ N(e, A, Dy) R(e, A, y, 0y) Y(e, A, y) dy pj(e, A, x), j= 3, 4,

where p(e, A, x) have the same properties as 6(e, A, x).
Thus the well-defined solutions Y of Volterra integral equations with

ord N(e, h, Dy) R(e, h, y, Oy)-< (0, O,-1)

have the same properties as ,5(e, h, x), i.e.,

Y(e, A, x)= O(e), j 3, 4,

in the topology of C((0, eo] x R) and are entire functions of A C. [3

Remark 2.4. The results in Theorem 2.3 are similar to those in [11] and [16].
However, their proof given here and based on the reduction theory developed in [6]
and [7] is quite different and much simpler.

3. Asymptotic formulae. Here asymptotic formulae for the eigenvalues and the
eigenfunctions of the operator defined by (1.3)-(1.5) are derived by means of
Proposition 2.1 and Theorem 2.3.

Let w(e, A, x), 1 _-<j_<-4, be the fundamental system of solutions of (2.2), which
has been constructed in the proof of Theorem 2.3. Introduce the matrix

WI(E ,, 0), W2(E i, 0), EW3(E , 0), E3W4(E, I, O)
W E, I, 0), Wt2( E, , 0), EWI3( E, i, 0), E Wt4( E, ,, O)

(3.1) (e,A):=
w,(e,A, 1), w(e,A, 1), ewa(e,A, 1), e w4(,/ 1)
w;"(e, h, 1), w’(e, A, 1), ew’(e, h, 1), eaw’(e, h, 1)

where the upper dash stands for the derivative with respect to x:’= d/dx.
Obviously, the eigenvalues of 4 defined by (1.3)-(1.5) are the zeros of

(3.2) F(e, h := det (e, h 0, e (0, eo].

F(e, h) being an entire function of h C for each e (0, eo], then (3.2) has isolated
zeros h , n 0, 1, such that 1, ]- for n - .
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As a consequence of Proposition 2.1 and Theorem 2.3, we have

(3.3)

F(0, A):= lim F(e,)

O, 1, O,
1, O, -(q(O))-’/2,

det
-A 1/2 sin A 1/2, -A cos A 1/2, O,
-A cos A /2, A 3/2 sin A 1/2, O,

(q(O))-l/2(q(1))-5/_A 1/2 sin A 1/2.

O
O
O

(q(1))-’/

The zeros

(3.4) A,-- "/r2M 2, n =0, 1,...

of F(0, A) are nothing but the eigenvalues of the reduced operator M defined by
(1.6), (1.3).

LEMMA 3.1. The following asymptotic formula holds uniformly with respect to A on
each compact set in C:

F(e,A)=F(O,A)-e(q(O))-I/2(q(1))-5/2(A cosA 1/2 ocrq(x’)
x’OU

(3.5)

+ A1/2 sin A 1/2 rotO,q(x’)) + O(e2),
x’OU /

where 0 (-1)’d/dx is the inward normal derivative at x’ 0 U.
Proof. As a consequence of Proposition 2.1 and Theorem 2.3, we have the following

asymptotic relations uniformly with respect to x e U and A belonging to each compact
set in C"

(3.6)

wl(e, A, x) 1-1/2 sin (h 1/2X) -- 0(62),w(, , x) cos

where ujl(A, x), j 3, 4, are defined by (2.8).
Inserting (3.6) into (3.1) and using (3.3), we get (3.5), while keeping all the terms

with e k, k 0, 1 and neglecting those that are O(e2), as e +0. [3

THEOREM 3.2. The eigenvalues AT,, n 0, 1,... of M defined by (1.3)-(1.5) are
real and for each n- O, 1,... the following asymptotic formulae are valid:

(3.7) A,= 7r2n2(1--2e x,eou 7ruq(X’)) +O(e2)"

(3.8)

Proof As a consequence of (3.3), we have for Fx -(0/0A)F:

Fa(O, 7r2nZ)=(1/2)(-1)"(q(O))-l/2(q(1))-5/2#O, n= 1,2, ,
F (0, 0) (q(0))-l/2(q(1))-5/2 # 0.
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Furthermore, as a consequence of (3.5), F,(e,A)=(O/ae)F(e,A) is continuous on
[0, eo] x C for each eo> 0 and F(e, A) (O/Oe)2F(e, A) is bounded on (0, eo] x K for
each eo> 0 and each compact K C.

Since A o
7r2n2,n=0,1,’’’arerealandA>n 0, n=l,2,...,theimplicitfunc-

tions theorem implies that the zeros A, =An(e) of F(e, A) defined by (3.2) are real
and continuously differentiable with respect to e [0, eo] with any eo> 0; moreover,
for eo > 0 sufficiently small we have: A , > 0, n 1, 2,. , for all e [0, eo].

Furthermore, for/xn,

(3.9) /zn: An(e)l=o n=0,1,...

using (3.5) we find

/zn =-F(0, 7rn2)(Fx(O, 7rn-))-’=-27r2n2 E 7rotq(x’),
x’OU

n-O, 1,...

and that proves (3.7).
Remark 3.3. In fact, using Proposition 2.1 and Theorem 2.3, we conclude that

F(e, A) defined by (3.1), (3.2) is infinitely ditterentiable with respect to e->0, being
an entire function of A C with all its derivatives with respect to e >= 0. Thus, the
eigenvalues A, An(e), n =0, 1,. of M defined by (1.3)-(1.5) are C in e =>0, and
for each integer N > 0 and each n 1, 2,... we have

,.(e)= E ,e.+o(e’). e-+o.
O.<__k<N

where, of course,

An "rrZn:Z, h n -2"tr2n2 E rouq(x’),
x’OU

and all A k k > 2 can be defined recursively using Proposition 2.1
Furthermore, obviously, A=Ao(e)=O(eN), for all N>0, and an asymptotic

formula for A (which is exponentially small as e- /0) will be exhibited later.
Now an asymptotic formula for A- Ao(e) will be derived.
Using (2.7), for F(e, A) defined by (3.1), (3.2) we find

(3.10) F(e, O)= l4(wt(E, O, 1)w(e, O, 1)- w(e, O, 1)w’(e, O, 1)),

and Proposition 2.1 and Theorem 2.3 yield, with any integer N > 0,

(3.11) F(e’ O)= -2(q(1))-46(o<-k<N Tkek--l + o(eN)) e--0,

where 3’0 1 and ’)/k, k > 0, are computed recursively using (2.8), and where we have
denoted

(3.12) 6 := exp --E
-1 (q(y))-I dy
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The same argument yields for Fx (e, 0)

Fa (e, 0) det

0, 1,
0, 0,

-1, 0,
-1, 0,

+det

(3.13)
O, O
1, 0,
0, -1,
0, 0,

eW3(e, O, 0),
ew3(e,O,O),

0

0

O, e W4(e O, 1)
O, e3Wg’(e, O, 1)

ew3(e,O,O), 0

ew’3( e, O, O), 0

O, e3w(e,O, 1)
O, eaw"te4, O, 1)

+ O(e-:8),

since, as a consequence of (3.6), for e- +0 we have

(3.14) k p kOPw4(e, O, O)= O(e-P6) Vp>0, Vk>0.OAOxW3(E O, 1)= O(e-P6), Oh

Computing the determinants on the right-hand side of (3.13) and using (3.14), we find

F(e, O)= -4(w;(8, O, O)(wt(8, O, 1)-- w(e, O, 1))+ w’’(e, O, 1)Wa(e, O, 1))+ 0(e-26)

(3.15) =(q(O))-l/2(q(1)) -s/2 ckek+O(e)
Ok<N

with any integer N > 0, where Co 1 and c, k > 0, can be computed recursively using
(2.8).

Thus, for each e => 0 fixed we have

(3.16) F(e,A)=F(e,O)+AF(e,O)+O(A 2) as h

and for IAI _<-- e-26 we find

e ).(3.17) F(e, A) F(e, 0) + AF (e, 0) + O( -4

Hence, for the zero A; of F(e,A) in the interval ]A]_-<e-6 we have the following
asymptotic formula with any integer N > 0:

--4 2/0

(3.18) 2(q(O))1/2(q(1))-3/2((o<=
where bo 1, bk, k>0, can be computed recursively and where, of course, (3.11),
(3.15), (3.17) have been used to derive (3.18).

Besides, for e 6 (0, eo] with eo sufficiently small, using (3.11) and (3.15), (3.17),
we find

F(,0)<0, F(,)>0 V(0,o],

so that, in fact, a (0, e).
Thus, summarizing, we have proved the following theorem.
THEOREM 3.4. The least eigenvalueA of M defined by (1.3)-(1.5) is strictlypositive

for all e e (0, eo] with eo> 0 sufficiently small and, moreover, the following asymptotic

formula holds for A with any integer N > O"

(3.19) ) =2(q(0))’/2(q(1))-3/:6( . bkek-’ + O(s) as s +0,
\O<=k<N /
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where bo 1, bk, k > 0, can be computed recursively using (2.8) and where 6 is given by
(3.1).

Next, we will prove the following theorem.
THEOREM 3.5. For the eigenfunction d/)(x) ofa (given by (1.3)-(1.5)) associated

with the least eigenvalue ,t the following asymptotic formula holds"

q,;(x) xC,(e)+ c(e)+ eC3(e)w(e, 0, x)

(3.20) + A((-x3/6)Cl(e)-(ex2/2)C2(e)+ eC3(e)Oxw3(e, O, x)- 62W4(6, 0, X))

+o((,;)),
where the coefficients Ck(6), 1-<k<-3, are C functions in e[0,6o] admitting the
asymptotic expansions:

(3.21) Ck(e) E Ckpep + O(eN),
O<_p<N

with any integer N > O, and for the functions W3(6, 0, X), 0hw3(6, 0, X), W4(6, 0, X) the
asymptotic expansions (2.4) with Ujk(A, x) defined by (2.8) are valid.

Proof We seek an eigenfunction (x) of s associated with the least eigenvalue
A in the form

(3.22)

(X) Cl( 6 )WI(6,/, X) -1- 6C2( 6 )w2( 6,/, x) -}- 6C3( 6 )w3(6,/, x) 62/ w4( 6,/, x),

where Wk(6, 1, X), 1 <- k <-_ 4, is the fundamental system of solutions for (2.2) constructed
in the proof of Theorem 2.3.

The boundary conditions for (x) yield an overdetermined system for the
coefficients Ck(e), 1 _<--k-<_3, which has nontrivial solutions, since F(6, h)=0 for all
6 6 (0, Co] with F(6, h) defined by (3.2).

Thus, neglecting the equation for Ck (6), 1 _--< k =< 3, which results from the boundary
condition 0@(6, Ao, 1) O, and rewriting the boundary conditions @(6, o, O) O,
O@(e, a, 1)=0 in the equivalent form e-@(e, ,, O)=0, (X)-Ox@(e, , 1) =0,
for C(e) (C(e), C(e), C3(e)) we get the linear system

(3.23) A(e)C(6) g(6),

where

(3.24) A(6) :=
o, w(e, ,;, o), w(, ,;, o)

w(, ,;, o), o, w;(, x,, o)

(3.27)

(3.26)

where

O, 1, (q(O))’/

A(0):= 1, 0, -(q(0))-1/

-1, 0, 2(q(0))-’/2

Indeed, as a consequence of Proposition 2.1, Lemma 2.2, and Theorem 2.3, we have

Again using Proposition 2.1, Theorem 2.3, and (3.19), we easily find

a(e)=a(o)+B(e),
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and where B(e) is a 3 x 3 matrix that is infinitely differentiable with respect to e [0, eo]
and whose asymptotic expansion for e- +0 can be found explicitly"

B(e),--. Z eBk,
k>_O

using Proposition 2.1 and Theorem 2.3.
Since A(0) is invertible, the matrix A(e) defined by (3.24) is invertible, as well,

for all e [0, eo] with eo sufficiently small and, moreover, (A(e)) -1 is an infinitely
ditterentiable matrix function of e [0, eo].

Furthermore, taking the first two terms in the Taylor expansion of Wk(e, , X),
1--<k-<3, with respect to A around the point A =0, and noticing that w(e, O, x)= x,
OxW(e, O,x)=--X3/6, W:z(e, 0, X)= 1, OxW2(E O,x)=-x2/2 (as a consequence of (2.5),
(2.7), Lemma 2.2, and Theorem 2.3), we get asymptotic formula (3.20) with Ck(e),
1 --< k _-< 3, admitting asymptotic expansion (3.21).

Remark 3.6. An easy computation yields for the coefficients Ckp on the right-hand
side of (3.21)

(3.28) clo 2(q(1)) -3/2, C2o -2q(O)(q(1))-3/2, C3o 2(q(0))l/2(q(1))-3/2.

Besides, as a consequence of (2.8), we also have

w3(e,O,x)=((q(x))l/+O(e))exp --e -1 (q(y))-l dy

(3.29) Ow3(l?, 0, x) O(e) exp -e -1 (q(y))-I dy

W4(/ 0, X)= ((q(x))/2+ O(e)) exp (-e -1 j. )(q(y))-l dy

so that, keeping only the main terms, we get the following asymptotic expansion for
O;(x)"

tO)(x) 2(q(1))-3/2(1 + O(e))(x- eq(O)+ e(q(O)q(x)) 1/2 exp (-e -1

Moreover, the last formula may also be rewritten in the following equivalent form:

(3.30) q;(x) 2(q(1))-3/2(1 + O(e))(x- eq(0)(1 -exp (-x/(eq(O))))),

since freezing the coefficient q(x) at x=0 brings over an error that is of order
O(e2 exp (-x/(eq(O)))).

Formula (3.30) can, of course, also be derived using the reduction method men-
tioned above in the Introduction.

Next, an asymptotic formula will be derived for an eigenfunction q(x) associated
with an eigenvalue ,, for which (2.7) is valid with a given integer n > 0.

Seeking 0,(x) in the form

(3.31)
q,:(x) -nw(, a:, x)+ c()w(,, x)

-at- 7c3(:)w3( len, X)t- E3C4(E)W4(E, ien, X),
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the same argument as above in the case of q(x) yields a linear system for C(e)=
(C2(e), C3(e), C4(e)) with a 3x3 matrix A(e) that is infinitely ditterentiable with
respect to e [0, Co] and such that

(3.32) A(0)= 0, -(q(O))-1/, 0

0, 0, (q(1)) -5/2

the second member g(e) of this linear system being

(3.33) g(e) (0, -Trnw(e, A,, 0), -Trnwl (e, A,, 1)),

a C function of e e [0, Co].
Therefore, the coefficients Ck(e), 2-<k=<4 on the right-hand side of (3.31) are

well-defined C-functions of e e [0, Co], provided that eo is sufficiently small. Besides,
Ck(e) again admit asymptotic expansion:

(3.34) Ck(e) ., Ckpep.
p>-O

It is readily seen that

(3.35) C2(0) =-q(0)-rrn, C3(0) (q(O))l/2"n’n, Ca(0) (q(1))s/2(-1)"(’rrn)3.

Thus, again freezing q(x) at x 0 for W and at x 1 for W4, and using the fact that
)t-A, O(e), from (3.31), (3.35) we get the following asymptotic formula for q,(x)"

(3.36)
q,(x) {sin 7rnx + eq(0)(exp (-x/(eq(O)))-cos 7rnx)

+(-1)"(eq(1)Trn) exp (-(1 -x)/(eq(1)))}(1 + O(e)).

Also using (3.31) and Taylor’s expansions in h around h--Trn2 of Wk(e,hn,X),
1 <_-k<=4, for q,(x) we obtain a full asymptotic expansion in the form

(3.37)

qle EPI,Ilp(X) -t’- exp (-ep-->0

-1 (q(y))-l dy ePU2p(X)
>=1

+ exp (-e -1 j.1 )(q(Y))-l dY Z Pl’13p(X),
p>=3

where, of course,

ulo(x) sin 7rnx, ull(x) =-eq(O) cos ,rrnx,

/,/21 (X) (q(O)q(x)) ’/2, U33(X (q(1))5/(q(x)) 1/,
and all other coefficients Upk(X) can be computed recursively.

Remark 3.7. Of course, using the asymptotic formulae for wj(e, A, x), 1 _<-j _-< 4, in
Theorem 3.1, we can establish asymptotic formulae for A and q(x) in (1.10) up to
an error term O(eoo6) with 6 given by (3.3), as e +0.

For other eigenvalues )t ,, k 1, 2, , of (2.1) we may apply the reduction method
developed in [6] and [7] as well, the procedure being very similar to the one in [4],
since for the eigenvalues ,,, k= 1,2,. ., of (1.10) we have

h + O(e), e-0,

as was the case for 4 in [4] (i.e., h ,-h, for k_-> 1 is no longer exponentially small,
as e- /0, so that the parametrix used previously in the construction of a reducing
operator for coercive singular perturbations 4 may be used again with necessary
minor modifications).
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Remark 3.8. The following argument can be used to get heuristically the first term
in the asymptotic expansion of the least eigenvalue

As a consequence of Theorem 2.3, we have the following asymptotic formulae for
the fundamental system of solutions Wk(e, h, X), 1 <_-- k <-4 of (2.2):

w(e, h, x) h -/2 sin (h /-x)+ O(e2),

W2(8 , X) COS ( 1/2X)-[- 0(82),

w3(e, h, x)= (1 + O(e))(q(x))/2 exp (-e
w4(e, A, x) (1 + O(e))(q(x))/ exp (-e

\

-, (q(y))-i

- (q(y))-l dy

Using only the first terms in the asymptotic expansions for Wk(e,, A, X), 1 <-k <-4, and
attempting to satisfy for a solution u(e,A,x) of (2.2) the boundary conditions
u(e, A, O) O,u(e, A, O) O, for u(e, A, x) we get the asymptotic representation

u(e, A, x)--. A -/2 sin (A /2x) + eq(O) cos (A 1/2x)

( ( f0 )-e(q(O)q(x))/2 exp -e -1 (q(y))-i dy

+C exp -e- (q(y))- dy

Trying to cancel the leading term in the asymptotic expansion for Ou(e, , 1), we
conclude that the only reasonable choice for the constant C on the right-hand side
of the last formula is

C =exp -e- (q(y))- dy

Fuhermore, we also realize that the only way to satisfy asymptotically the boundary
conditions 0u (e, , 1) 0, k 2, 3, is to have (e) 0 as e +0.

Afterwards, replacing -/ sin (/x) and cos (/x) by x- x3/6 and 1 hx/2,
respectively, and attempting to satisfy the boundary condition Ou(e, , 1)= 0, we get
in this heuristic way for ; the first term in the asymptotic formula given by (3.19),
and for the associated eigenfunction ;(x) the first terms in the asymptotic formula
given by (3.20).

The last term on the right-hand side of (3.20), which is of order O(8) at x 0,
seems to be redundant. However, it is not so, since at x 1 this term is comparable
with all other terms in the asymptotic formulae for 0o(X)[=, k 2, 3, But away
from the point x 1, and especially in the neighbourhood of x 0, only the first three
terms on the right-hand side of (3.20) are relevant for the asymptotic behaviour of
O;(x) as e +0. Of course, freezing q(x) in the exponential term at the point x =0,
we get an asymptotic formula for ;(x) valid in a neighbourhood of x 0:

;(x) -x + eq(O)(1 -exp (-x/ eq(O)))) + ew,
with sup max Ow(x)] < m, k 0, 1, 2, which may also be derived by using a reducing
operator S, constructed in the same way as in [6] and [7], i.e., by using the parametrix
constructions where only the principal symbol of the coercive singular peurbation is
involved.
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)r is solvableRemark 3.9. It is readily seen that the reduced problem Mu (f, ol
if and only if the following condition is satisfied"

f(1) + q91(1) 0,

the solution u(x) being well defined up to the additive term Cx, which is the solution
of the homogeneous problem Mx (0, 0) .

In other words, the index K(0) of the reduced problem is zero" K(0)=0.
Note that this is also true for the perturbed problem ME, i.e., (e)=0, for all

e (0, eo], since for all e (0, eo] with eo sufficiently small the perturbed problem has
a well-defined solution for any data (f, Ol, o2) r (sufficiently smooth), i.e., dim ker M
dim eoker M 0.

The stability of the index (e) of elliptic boundary value problems with respect
to coercive singular perturbations is also a consequence of the general reduction
procedure indicated in [6], [7], and [17].

4. Adjoint operator. We identify the singular perturbation M given by (1.4) and
(1.3) with the differential operator L= L(e, 0, x, 0,,)= e-2q2(x)O-O2x considered as
an unbounded operator in L2(U) with the domain D/,

(4.1) DL, := {u 6 H4(U), 7rouBkU(X’) 0, k 1, 2},

where H4(U) is the Sobolev space of order 4.
Denote by (L)* the adjoint of L. The partial integration implies that (L)* is

the same differential operator L(e, O, x, 0,,) with the domain D(L). defined as

(4.2) D(/). := {U H4(U), "rroutB(x ’, Ox)U(X’) 0, k 1, 2},

where

(4.3)
tB(x, Ox) (x 1) + x( e2q2(x)OZx 1),

tB(x, 0,) (1 x)q4(x)Oxq-2(x) + xO,(1 e2qZ(x)O2).
Hence, we may consider the adjoint operator (L)*" D().-* L2(U) of L"D - L2(U)
as a restriction (to homogeneous boundary conditions) of the operator (M)* defined
as

(4.4) ()*:=( ).7rtr Dx, 7rot B1,7r0vB
Since the least eigenvalue h of M defined by (1.4) is real (and strictly positive for
e (0, eo]), it coincides with the least eigenvalue of (ME)* defined by (4.4), (4.3).

We will exhibit an asymptotic formula for the eigenfunction o(x) of (ME)*
associated with the least eigenvalue h > 0.

Using Theorem 2.3 and the same argument as above for the eigenfunction , of
associated with h, we get the following asymptotic formula for o(x):

( Ioo;(x)--. (2(q(O)q(1))I/2x-2(q(O))/2+(q(x))/ exp -e- (q(y))- dy)

(4.5)
+(q(x))/2 exp -e -1 (q(y))- dy

Neglecting terms that are O(6,) uniformly with respect to x U, we get the following
simplified (and less accurate) asymptotic formula for the eigenfunction q(x) of the
adjoint problem"

(4.6) q;(x) (q(x))/2 exp -e- (q(y))- dy
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Furthermore, freezing q(x) at the point x 1, for p(x) we get an asymptotic formula
that may be established using the reduction procedure from [6] and [7]"

(4.7) p(x).--.(q(1)) 1/2 exp (-(1-x)/(eq(1))).

For the normalized eigenfunction, i.e., p such that [(p, )[ 1 with the corre-
sponding eigenfunction of M given by (3.2), (3.3), using (4.7) we find

(4.8) )(x)---(eq(1))-’ exp (-(1-x)/(eq(1))).

Note that the normalized eigenfunction converges to the Dirac’s mass 6(1- x) at the
point x 1.

The adjoint operator (Me)* defined by (4.4) is not a coercive singular perturbation,
2the operator 7rtr D, however, still being an elliptic singular perturbation (see [3] for

the definition of coercive singular perturbations).
We may wonder what the reduced operator (o),, associated with (e), given

by (4.4), should be like. The answer is the formally defined reduced operator (o),,
where only the first boundary operator ’Be(x, Ox) in (4.3) is kept and afterwards we
sete 0inboth rur D, and zrot B1, the latter yielding

(4.9) (M)* (Trt:V, 7rot:l) .
To realize that the formally defined operator (4.9) is indeed the reduced operator for
(Me)* given by (4.4), we must consider a suitable perturbation of (Me)* by lower-order
operators that shift the spectrum of (Me)* away from zero. For instance, considering
the boundary value problem (with q(x)= 1 for simplicity)

(4.10)
7ru(e20 + O-h)u =0,

7r c, t kU , X Ok X l=<k-<_2,

with A C, O<IAI< 7r and qk(X’), k= 1,2 given and independent of e, it is readily
seen that there exists the pointwise limit

(4.11) u(x) lira u, (x) Vx [0, 1)
e-O

oand that, moreover, ux(x) is the solution of the boundary value problem

O(x) 0, o o (x’)rt(D2x- A)ux tu,(x’) (01

The same is true if we consider an inhomogeneous equation in (4.10) with a smooth
second member f(x) that does not depend on e.

A somewhat surprising situation is the fact that the reduced operator (Mo). for
(M)* defined by (4.4) no longer has ,i =0 as its eigenvalue, whereas for M defined
by (1.6) and (1.3), zero is an eigenvalue with Cx as the associated eigenfunctions.

In fact, the solution u(x) to (4.10) contains a singular part that converges (as
e- +0) to y,8(1-x) with some constant y, depending on o(x’) and o_(x’), where
8(1- x) is the Dirac delta-function. An easy computation also shows that

lim Res u, (x)la_-o y8(1 x) o(x)

so that, to some extent, it would be natural to consider 8(1- x) as an "eigenfunction"
of (M)*.

Let us consider again the operator (M)* associated with (4.10)"

D,,+D, h), 7ruB1, "lroutB2)T, 0<h < "tr
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where of course ’B(x, Ox) are defined by (4.3) with q(x)= 1, i.e.,

B,(x, Ox) (x 1)+x( 2 2e 0,, 1), B (1 X)Ox + xO,(1 eO2,,).
It is readily seen that the function

u(x)=e-l(l+ehx/2)exp(-(1-x)/e), 0<A <Tr2

is the solution of the boundary value problem

(Mx)*u(x) (f(x), q q),

with

f(x)=(-A2x/2) exp (-(1-x)/e),

(4.12)

q(X’)=(1--X’)E -1 exp(--e-1)+eAX’,

sup max If (x)l <,
0<e--<l O

sup max Ip(x’)[ <,
0<el x’OU

q(x’) (1 x’) e-2(1 + eA/2) exp (--E -1 -"/Xt,

sup max Iq(x’)l < oo.
0<e<-I x’OU

Nevertheless,

-l(l+Eh/2)c as E+0.maxu(x)=E
xO

Such a situation is impossible, for instance, for the following singular perturbation of
(M)* (ru(D-A), rou 1)"

Jh :-- (qTU( 22 4 2 2D,+ D,- h), "rroul, "rrouO,,) T, 0<_--h < 7r

which is coercive (see [3]), so that for the solution u, of the problem

u =(f, ,)
with the data (f, o, o)T satisfying (4.12), we always have the following a priori
estimate (a version of the maximum principle)"

sup maxlu.(x)l_-<C sup maxl/(x)l+ 2 sup max l(x’)l
0<e--<l O 0<e_--__l O l=<k--<2 0<e--<l x’OU

with some constant C > 0.
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FREE LAYERS IN A SINGULARLY PERTURBED BOUNDARY VALUE
PROBLEM*
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Abstract. The jumps of solutions of the boundary value problem ex"= g(x)f(x’) c<t<d x(c)=a,
x(d) b are studied for a small, positive e. Using continuity arguments, solutions with a free layer at are
found for all to (c, d) and the position of to as a function of e and of the boundary conditions is given.
A new phenomenon appears as a consequence of the sensitive dependence of o on the boundary data. For
certain values of a and b the location of changes rapidly on [c, d]. There is a sharp transition between
solutions with boundary layers at c and those with boundary layers at d. The set of (a, b) for which there
are free layers is given. Nonstandard analysis methods and the geometrical approach of the observability
plane are used.

Key words, boundary value problem, singular perturbations, free layer, nonstandard analysis
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Introduction. We consider the singularly perturbed boundary value problem

(1) ex"= g(x)f(x’), c < < d,

(2) x(c)=a, x(d)=b, ab,

where a and b are limited real numbers, e is a fixed positive infinitesimal, and c and
d are standard real numbers.

Problems such as (1), (2) arise in the study of compressible fluids in gas dynamics;
cf., for example, [2], where e is a parameter that is small when the viscosity is small.

This boundary value problem has solutions with interesting features like boundary
layers and interior layers.

It is interesting, from both the physical and the mathematical point of view, to
locate the interior jumps as a function of the boundary conditions.

This paper concerns the study of the jumps exhibited by the solutions of (1), (2)
and the location of the position to of these jumps, as well as determining the set of
values of the boundary conditions a and b for which there are free layers. Our methods
use nonstandard analysis and the geometrical approach of the observability plane
method [3].

Our main objective is to study a new phenomenon that appears as a consequence
of the sensitive dependence of to on the boundary conditions. On studying the position
to as a function of a and b we will prove by continuity arguments that for all to e c, d
there exists a pair of boundary conditions (a, b) such that the solution jumps at to.

In addition, we give a method for determining to as a fuction of a and b and e.

Then we study the effect of slight variations at one of the boundary conditions
on the behavior of the solutions. For certain values of a and b, this perturbation rapidly
changes the location of to in [c, d].

The transition between solutions with a jump at one endpoint and those with a
jump at the other endpoint is continuous but very sharp. In fact, if a solution with a

* Received by the editors January 6, 1989; accepted for publication (in revised form) August 28, 1989.

" Universit6 de Paris 7, U.F.R. de Math6matiques, 75251 Paris Cedex 05, France.
We adopt in this article a nonstandard point of view, which turns out to be valuable when studying

singular perturbation problems [8], [10], [13]. An appendix defining the nonstandard terminology used in
this paper is included at the end of the paper.

1264



FREE LAYERS IN A BOUNDARY VALUE PROBLEM 1265

free layer exists for the boundary conditions (a, b*) when a is fixed, any other solution
with a free layer may only be obtained for values of b in "a very near vicinity" of b*
(b -b*; i.e., in the halo of b*) (see Fig. 1.1).

We characterize the values of (a, b) which ensure that to corresponds to a free layer.
We can find classical studies referring to the existence of a solution of (1), (2)

with a free layer and the location of to. O’Malley 11] has considered the f linear case.
Chang and Howes [1] and Howes [6] have studied the f linear and f quadratic cases.
There are also nonstandard studies for f(x’) x’sl, 0 < s _<- 2 by Diener [4], which only
concern the behavior of the solution and its jump but not the location of the transition
point.

FIG. 1. Solutions of ex"=-2xx’, x(0)=-1, x(1)= b, for five values of b" 1, and e =0.05.

When the boundary value problem is an autonomous problem like (1), (2) and
the solutions of the reduced problem are constants, Chang and Howes 1] have shown
that free layers are possible only when the boundary values satisfy a condition corre-
sponding to the classical Rankine-Hugoniot condition in gas dynamics, and have
found the location of the transition point in the quasilinear problem.

We determine the location of to for a wide class of functions f, where f is not
necessarily a power of x’. Also, in connection with the study ofthe flow of a compressible
fluid, we find that a shock is possible not only when the Rankine-Hugoniot condition
is satisfied but also when it is infinitely close to being satisfied.

The behavior of the transition point to as a function of the boundary conditions
is connected with another behavior that has been observed by Matkowsky [9] in the
study of resonance in a quasilinear boundary value problem. Matkowsky has remarked
that perturbations at one endpoint of the interval of O(e) for any 6 change a solution
with two boundary layers into a solution with only one boundary layer. Our results
explain this phenomenon and make precise the order of the perturbation that causes
significant changes in the solution.

To our knowledge, the phenomenon studied in this work has not been detected
before. This is probably due to the fact that, classically, the behavior of the solutions
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as e tends to zero is studied for fixed boundary values. This obscures the dependence
of the jump location on the boundary values. The nonstandard approach allows this
dependence to appear very clearly.

Finally we note that we can expect this phenomenon to occur in a more general
class of equations than (1), (2), since it may arise when a certain geometric situation
(independent of the equation itself) takes place in the observability space, as we will
see later.

In 2 we give some nonstandard definitions of boundary layers and free layers,
thickness and extremities of jumps, and we show briefly that problem (1), (2) has a
unique, strictly monotone solution.

In 3 we study the solution as a trajectory of the slow-fast system associated with
(1). We prove that there is only one jump, and we study it in its observability plane.
We give a geometrical picture of the behavior of the boundary and free layers.

We prove in 4 that for every to [c, d] there exists a solution with a jump at

to. We locate the transition point to as a function of a and b and e, and we give
the values of (a, b) for which the solution has a free layer at to.

In 5 we present some numerical results that illustrate this phenomenon in different
examples.

Finally in 6 we discuss other related examples, and a problem that arises in
modelling compressible flows. In this case, we find a supersonic-subsonic shock not
only when the boundary conditions satisfy the Prandtl shock relation, but also for
values exponentially close to these conditions (O(e-1/)).

2. Preliminaries. We adopt the same definitions of a jump, its thickness, and its
extremities as in [4].

DEFINITION 2.1. An internal function x(t) has a jump in the interval [tl, t2] if
x(q), x(t2) are limited values, x(tl) x(t2), and x’(t) is unlimited on t, t2]. (A real
number L is limited if its absolute value is smaller than some standard integer. A real
number W is unlimited if it is larger than any standard integer.) We say that there is
a jump at to if there exists an interval t, t2] c hal (to) in which there is a jump and
to is the standard part of t, t2, i.e., to is the unique standard that is infinitely close to
tl, t2 (it is the standard to =tl t2).

Remark 2.2. We note that any jump is monotone strictly increasing or decreasing
since, by continuity, x’(t) may not change its sign without becoming limited.

DEFINI3:ION 2.3. We assume that x(t) is a function with a jump in [q, t2] and
that there is T < tl with x(T) and x’(T) limited, such that x(t) is increasing for all

T, t2]. We say that the standard x_ is the origin of the jump in t, t2] if for all
t [T, tl] we have: If x(t)>> x_ x’(t) is unlimited and if x(t)<< x_ there is ’ [t, t]
such that x’(r) is limited.

The extremity x+ of the jump is defined in the same way.
DEFINITION 2.4. Suppose x" I - R has a jump in tl, t2] c I of extremities x_ and

x+. The thickness of the jump is the external set

:= {t 6 I: x_<< x(t) << x+}.
The thickness is a galaxy contained in hal (to), with to t t2. (A set G is called

a galaxy if G is external and if there is an internal sequence (A,), of internal sets
such that G [5, A,.)

DEFINITION 2.5. We say that a solution of a boundary value problem has a
boundary layer at c (or at d) if it has a jump at to= c (or at to= d). We say that a
solution of a boundary value problem has a free layer at to if the solution has a jump
at toe (c, d).
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We assume that f and g are internal functions that satisfy the following hypo-
thesis H:

(i) g e C(R), g locally Lipschitz and f, g are of class S,
(ii) fe CI(R); f(0)= 0; f(v)>0 if v>0 and f(v) <0 if v<0,

(iii)
v

dv +oo,
VO

where Vo is a limited positive constant.

f is the type of growth of (1) for unlimited v:
(iv) The function G’R-->R, G(x) g(u) du satisfies b* >> a (b* << a) such that

G(b*)=0, G’(a)>>0, G’(b*)<<0,

G(x) >>0 for all a<< x<< b* (G(x) << 0 for all b*<< x<< a).
We assume in condition (ii) that the appropriate reduced problem has only constant

solutions. Condition (iii), which implies, in particular, the so-called Nagumo condition,
restricts us to functions f having at most a quadratic growth.

Finally, in (iv) we assume, when a is fixed, the existence of the value b* that
satisfies G(b*) O, which is nothing more than the Rankine-Hugoniot shock condition.

We are interested in the behavior of the solutions of (1), (2) for b infinitely close
to b*.

The existence of a solution x(t) of (1), (2), such that a _-< x(t)_-< b, follows from
Jackson’s version of the classic theorem of Nagumo [7, p. 354], with a a and/3 b.

Monotonicity is ensured by the following lemma.
LEMMA 2.6. Supposefe CI(), g e C(g), g locally Lipschitz. Then the solution x(t)

of (1), (2) is strictly monotone.

Proof. As a consequence of the uniqueness of solution of the initial value problem
associated with 1 ), the solutions of 1 ), (2) are strictly monotone. In fact, if we suppose
that x(t) has a maximum (or a minimum) M at re (c, d), then the initial value problem

ex"=g(x)f(x’),

x(’) M, x’(’) 0

would have two different solutions x(t) and x(t)-- M.
From Lemma 2.6 we deduce that the inverse function t(x) of x(t) exists, is also

strictly monotone in [a, b], and satisfies the next boundary value problem:

(3) et"=-g(x)f(1/t’)t’3, a<x<b,

(4) t(a)=c, t(b)=d.

From the application of the maximum principle [12] to (3), (4), it turns out that
the solution t(x) is unique. This allows us to deduce the uniqueness of the solution
X(t) of (1), (2).

The relationship between x(t) and its inverse t(x) plays an important part in the
study and description of the behaviors of the solution to problem (1), (2).

Remark 2.7. A direct application of the maximum principle to boundary value
problem (1), (2) requires g(x) to be such that G(x) results a convex function in [a, b*]
for x’> 0, or a concave function in [b*, a] for x’< 0. Such restriction on the sign of
G"(x) is not possible under the hypothesis given above when we are interested in free
layers.
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3. Slow-fast system.
3.1. To describe the solutions of (1), (2) for a fixed infinitesimal e, let us consider

the differential equation (1) as the slow-fast system in the phase space (t, x, u):

(5) x’= v,

e9’= g(x)f(9),

where ,(t)=(t,x(t),9(t)) is the trajectory associated to a solution x(t) of (1). A
solution of the boundary value problem (1), (2) is, then, an integral curve y(t) of (5),
which starts at the vertical line ra defined by c, x a and reaches rb defined by

d, x b (see Fig. 3.1).

8

FIG. 3.1

From the properties of slow-fast systems it turns out that the solution of (1), (2)
must necessarily jump in order to satisfy the other boundary condition. If not, as the
slow portions of 3/(t) (for v x’ limited) are in the halo of the slow surface S defined
by the horizontal plane v 0 and the vertical plane x a, where g(c) 0, the solution
would be almost constant in the whole interval [c, d] with a b, which is absurd (see
Fig. 3.2).

In order to study the trajectories of (1) with rapid motions (for u x’ unlimited),
which are outside the limited region (called main galaxy G) of the space (t, x, u), we
use the observability space (t, x, V) [3].

We will use the transformation given by 9 h V e), where h is the diffeomorphism
of class S, h [0, +) -> 90, +) defined by

(6) hh’=f(h), h(O) 90.

The rapid motions of y(t) related to the jump at to are, in the observability space,
contained in the halo of the vertical plane of equation to (called the observability
plane) and are infinitely close to the curves (see Fig. 3.3):

V(x(t))=G(x)+C, t--to.

The slow motions of y(t) appear in this space, in the halo of V O.
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u

d

F(t)

b

=0

FIG. 3.2. Trajectory /(t) of (5) associated with the solution x(t) with a jump at t---t in the phase space.

V

G(x)

V(x( t)) (;(x) t--to

FIG. 3.3. The trajectory of (5) associated with the solution of (1), (2) for b b*, in the observability plane

The rapid motions of any trajectory related to ajump at to move, in the observability
plane t- to, from the left to the right in the positive half-plane (and from the right to
the left in the negative portion). In Fig. 3.3 we have drawn only one curve, which
represents the rapid portion of a trajectory associated with the solution of the boundary
value problem for b--b* in the case of an increasing jump (V>0). In the negative
region V<0, the two portions of trajectories correspond to the rapid motion of
trajectories with decreasing jumps. The arrows on the curve V--G(x) (Fig. 3.3) show
the direction in which the point (x, V(x)) describes each trajectory.

Remark 3.1.1. When y(t) reaches the halo of V=0 in x= Xo with V(xo)--0,
V’(xo)-G’(xo) @0, Theorem 3 [4, p. 552] ensures that (Xo) is the extremity of the
jump, i.e., y(t) has finished jumping. Then it remains in the halo of V--0 and it
continues as a slow trajectory. Therefore condition (iv) in hypothesis H ensures that
the standard part of a and b* are the origin and the extremity of the increasing jump
(see Fig. 3.3).



1270 ADRIANA BOHI

LEMMA 3.1.2. Suppose f and g satisfy hypothesis H; then for any a < b <-_ b* and
for any bhal (b*), the solution x(t) of (1), (2) has only one jump.

Proof. As the solution x(t) is strictly increasing and near constant in its slow
portions, then if we suppose there are two jumps, there exists a << fl << b such that
x(t)-fl with x’(t)-O. Then the trajectory associated with this slow portion must
reach, in the plane (x, V), the halo of V--0, i.e., G(fl)-O. But this is not possible
because, during each jump, the trajectory of (5) is such that V(x)-G(x)>>0 for
a (< x << b*.

3.2. Boundary and free layers. Geometrical features. Let us now investigate the
existence of boundary layers and free layers by studying the related trajectory F(t)-
(t, x(t), V(x(t))) in the observability space.

Let us assume that a is fixed, and consider the surface S* defined by

S* {(t, x, V): c, d], x a, b*], V G(x)}.

S* is built up by considering any possible jump in [c, d] from the slow solution x a
(see Fig. 3.4).

V

FIG. 3.4. The trajectory F(t), associated with the solution x(t) with a boundary layer at d for b<< b*, in
the space t, x, V) and the surface S* of the jumps.

Note 3.2.1. Since G(x) is a function of class S and b* is such that G(b*)-0
and G’(b*)-g(b*)<< 0, then there exists a standard s>> b*, such that G(b)<< 0 for
b*<< b<__s.

LEMMA 3.2.2. Suppose hypothesis H is satisfied, then for any b:
(i) a << b << b* there is a boundary layer at t- d,
(ii) b*<< b <-s there is a boundary layer at c.

Proof. (i) Since a<< b<< b*, V(b) >>0, then, in order to join ra with rb, F(t) must
remain in the halo of V-0 with x(t)- a and must reach rb with a jump in the halo
of to d. If not, if we suppose that x(t) jumps at to d, F(t) would reach the halo of
V 0 with x(t) b* >> b and V’(b*) g(b*) : O. By virtue of Remark 3.1.1, (b*) would
be the extremity of the jump, and as there is only one jump (Lemma 3.1.2), F(t) would
remain in the halo of b*. Then F(t) would never be able to reach rb, which is absurd
because there is a solution.
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(ii) Since b*<< b<-_s, G(b)<< O, then the curve V(x)=G(x)-G(b) is such that
V(a)=-G(b) >>0. In order to join ra with rb, F(t) must jump at t=c, i.e., it must
leave ra at V(a) to reach the halo of V=O with x(t)-b. If we suppose the contrary,
arguing as in (i), we arrive at an absurdity.

On the contrary, if b b*, V(b) =0, then any toe [c, d] will allow F(t) to join ra
with rb.

The following proposition states that we can also find, in the halo of b*, solutions
with boundary layer at one endpoint or at the other.

PROPOSITION 3.2.3. Assume hypothesis H is satisfied; then there exist b, b2 in the
halo of b* such that the solution x(t) of (1), (2) has a boundary layer at to c if b b2
or at to= d if b bl.

Proof Let us consider the following external sets:

H1 ={b: a<< b<b* and x’(d) +oe}, Gl={b: a<< b<< b*}.

H1 is a halo and G is a galaxy such that G H1.
It follows from Fehrele’s Principle that G H1. (The Fehrele Principle is a

permanence principle stating that a halo cannot be at the same time a galaxy; it shows
the incompatibility of certain kind of set.) Thus there is b< b* for which the solution
of (1), (2) with b b has a boundary layer at d.

In the same way we prove that there is b2 b* for which the solution has a
boundary layer at c if we consider the halo H2 and the galaxy G2". H2 {b: b* % b <= S

and x’(c) +oo}, G2= {b: b* << b -<_ s}.

4. Continuous dependence of the location of the jump on b.
4.1. Continuity and S-continuity of to. Let us fix . For each b there is a unique

ma such that the solution x(t) of (1), (2) satisfies x’(c) ma>0, as a consequence of
the uniqueness of solutions to the boundary value problem.

Let us consider the family of initial value problems

(7) ex"=g(x)f(x’),

(8) x(c)=a, x’(c)=m.

The inverse function t(x) of each solution of (7), (8), is a solution of the parameter
family of problems

(9) t’=H(x,m),

(10) t(a)=c,

where H(x,m)=l/(h(G(x)/e+h-l(m)))is of class C with respect to x and ma,
and h is the diffeomorphism defined by (6).

It follows from the theorem of continuous dependence of solutions on parameters
that t(x, m), the solution of (9), (10), is of class C with respect to x and m. In
addition, b and m satisfy the implicit relation t(b, m)= d, where Ot/Oma(b, m)O
for ma > O b> a.

Then, as a consequence of the Implicit Function Theorem, there exists a neighbor-
hood Uo of b and a unique function q(b) C, such that 0(b)- mo, t(b, q(b)) d,
for all b Uo.

Now one of the principal results of this section is the following theorem.
THEOREM 4.1.1. For any standard toe[C, d], there exist a and b such that the

solution x( t) of (1), (2) has a jump at to.
Proof. Let us consider a << bl << b* andb> b* the values given by Proposition 3.2.3.
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We define the function b’[bl, b2]- [c, d] by

qb(b)=t((a+b)/2, (b))=c+Ii+)/ H(x, d/(b))

i.e., b(b) -, such that the solution Xb(t) of (1), (2) satisfies Xb(r)=(a+b)/2. ch is
well defined because of the uniqueness of solution of (1), (2) and b(bl)= rl, ’1 d,
4(b2) r2, r2 c. Finally, b is a continuous function in [bl, b2]. Therefore, for any

’ It1, r2], there exists b [bl, b2] such that b(b) r. Then, for any standard toe [c, d],
there exists b such that the solution Xb(t) has a jump at to

Remark 4.1.2. b is an internal function of class C 1. As it turns out from Proposition
3.2.3, 4 is not S-continuous at b= b* (bl b2 but 4(bl) b(b2)).

4.2. The position of to. If x(t) has a free layer at to, then t(x) has two boundary
layers at x (a) and at x (b). If x(t) has a boundary layer at c, t(x) has a boundary
layer at b (see Figs. 4.1 and 4.2).

The observability plane of the jump of t(x) is defined by the diffeomorphism h"

(11) /=2f(1/), dt/dx=fl(Q/e), /(0)=o.

d a

d*-

C-

(i) (ii)

FIG 4.1. (i) Solution of (1), (2) with afree layer. (ii) Corresponding solution of (3), (4) with two boundary layers.

d a

d.

(i) (ii)

FIG. 4.2. (i) Solution of (1), (2) with a boundary layer. (ii) Corresponding solution of (3), (4) with a
boundary layer.



FREE LAYERS IN A BOUNDARY VALUE PROBLEM 1273

Each jump of t(x) is, in (t, V), infinitely close to straight lines of slope (-g(a)) or
(-g(b)), and we can describe the behavior of the trajectory associated with t(x) as
follows (see Fig. 4.3).

PROPOSITION 4.2.1. Problem (1), (2) has a free layer for b b*.
Proof. If we suppose there exists a boundary layer at c, the inverse function t(x)

of the solution x(t) has a boundary layer at b*. This jump is, in its observability plane
(t, Q), infinitely close to

Q=-g(b*)(t-d)+ /(d).
Since G(b*)=O,x’(c)=x’(d),then l(d) l’(c), and since t(x)-‘ c for x= a, Q(c) =0.
Then g(b*)(c-d)-‘O with g(b*)O and c d, which is absurd. In a similar way we
prove that a boundary layer at d is not possible.

PROPOSITION 4.2.2. Ifproblem (1), (2) has a free layer at to, then

(12)

g(a)c-g(b)d
g(a)-g(b)

g(a)- g(b) h((G(b)/e)+h-(q(b))) 1/q(b))},
where tfi(b) is defined implicitly by

f,:, dx
d-c=

h(G(x)/e+h_l(d/(b))).

Proof As x(,,t) has a free layer, t(x) has two boundary layers, each of which is
in the plane (t, V) close to

(t)-‘-g(a)(t-c)+ /(c), x-’a,

(t)-‘-g(b)(t-d)+ l(d), x-‘b.

As x’(d)=h(h-(x’(c))+G(b)/e) and t’(b)=f((d)/e) and x’(c)=p(b), we have
that (d) ef-(1/(h( G(b)/ e + h-(d/(b))))), (c)= ef-(1/ (b)). Then, as ,,(to)-‘
V(to), equation (12) follows easily.

Remark 4.2.3. Proposition 4.2.2 gives an estimate of the transition point to for
problem (1), (2). The second term of this estimate is zero when b b* since G(b*) =0
and, in this case,

t.o -‘g(a)c-g(b*)
d

g(a)-g(b*)

to d

(i) (ii)

FIG. 4.3. Trajectory corresponding to a solution of (3), (4) with (i) two boundary layers; (ii) one boundary layer
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Chang and Howes [1] have found the same location of to* for the quasilinear problem"
ex"= g(x)x’, c < d, x(c) a, x(d) b, considering only b b*. However, for certain
values of b # b* but in the halo of b*, the second term of (12) is not infinitesimal and
the transition is then located at to # to*.

4.3. The galaxy s of the free layer. Let us consider the function &, which has been
defined in Theorem 4.1.1. th is a monotone, decreasing function, having a jump at
bo (b*), of extremities c and d.

The thickness of the jump of a solution to a singular perturbed second-order
problem is known for a wide class of equations (see [4].)

In this case, the thickness of the jump of & is given by the following galaxy ::
={b" c<< cb(b)<< d}.

From Proposition 4.2.1 we know that b* e . We will see that characterizes the
set of values of b for which there is a free layer, as the next theorem shows.

TI-IeOeM 4.3.1. Problem (1), (2) has a free layer in c, d] if and only if b .
Proof () If x(t) is a solution with a free layer, 4(b) r is such that to (r)e

(c, d), and thus b e s.
() Let us consider be s:. Then r= 4(b) is such that the solution x(t) satisfies

a<< x(r)<< b since x(r)=(a+b)/2. Then r belongs to the thickness galaxy : of the
jump of x(t) since the extremities of this jump are (a) and (b). Therefore x(t) jumps
at to (r) with toe (c, d) as be . Then x(t) has a free layer.

The thickness galaxy of a jump depends only on the type of growth of the equation
with respect to x’ unlimited. As 4 is a solution of a singu,lar perturbed problem with
a type of growth f(1/4/)4/ for 4’ unlimited, the galaxy : is given by

= b’b=b*+
a 4)(b*) h( V/e

Its determination is not difficult in many examples that have been considered in
classical literature. For example, if f is linear, ={beN:lb-b*l<e-/I, LEG},
which is called the e-microgalaxy (b*). If f is a power function of x’ with 1 < s-<_ 2,
then ={bN" b-b*= e3-L, LeG} is called the ea-’-galaxy (b*).

Remark 4.3.2. It follows from Theorem 4.3.1 that the transition of a boundary
layer at one endpoint to a boundary layer at the other endpoint, passing along the
free layers, is a phenomenon that may be observed only in the very little galaxy sc.
That explains why this behavior has appeared, in general, as a discontinuity. Notice
that, in the simple linear case f(x’)= x, this behavior is much sharper than in the
others, as it takes place in the e-microgal (b*)that is, for values of b that are
exponentially close to b*, instead of b such that b- b*= O(e3-s) if f(x’)= x".

Remark 4.3.3. We note that, in general, this phenomenon would take place every
time, in the observability space, a surface built up from a repelling slow solution by
considering any possible jump in [c, d] falls in with another one, built up from an
attracting slow solution in the whole interval [c, d].

Then let us consider a more general class of problem"

(13) ex"=f(t,x,x’),

(14) x(c)=a, x(d)=b,

where we assume that f(t, x,x’)= g(t, x)F(x’)+ r(t, x, x’), where F(x’) is the type of
growth of f, such that r(t, x, x’)/F(x’) 0 for x’ unlimited.
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Suppose that Ul(t is a solution off(t, u, u’) =0, u(c)= a, and (Of/Ox’)(t, ul, u) >
0, and u2(t) is a solution of f(t, u, u’) =0, u(d)=b, and (of/Ox’)(t, u2, u) <0.

Then this phenomenon would occur in a problem such as (13), (14) provided that

g(t,x) dx=-O for all t[c, d].
l(t)

Remark 4.3.4. Finally we remark that our results explain the "strange phenomena"
reported by Matkowsky [9] in a quasilinear boundary value problem. Matkowsky has
noted that the solution t(x) of the problem

(15) et"=2A(e)xt’-2A(e)nt, n=O, 1,2,...,

(16) t(-a)=c, t(b)=d, A(e)>0,

changes significantly when the location of one of the endpoints of the interval [-a, b]
suffers slight variations of order O(e). The quantity I A(0)(a2-b2) characterizes
the different behaviors of t(x). The perturbation of the location of one endpoint causes
the existence of a solution t(x) with two boundary layers when I 0, while for I 0
(but I-0) there is a solution with only one boundary layer (the other disappears,
since b considered as a function b(a) is increased by a small amount).

Clearly, for n =0, (15), (16) is the inverse problem corresponding to

(17) ex" -2h(e)xxa,
(18) x(c)=-a, x(d)=b where G(b)=Oc, b=a with G(b)=L

Then, in the case I =0, t(x) has two boundary layers, due to the fact that the
solution x(t) of (17), (18) has a free layer at b*=a. Actually, these two boundary
layers exist for all b (b*), which is, in this case, the e-gal (a).

On the contrary, if we consider b hal (a) but outside the e-gal (a), it turns out
from Theorem 4.3.1 that x(t) has a boundary layer; then t(x) must have only one
boundary layer. That is, the slight variations of b a that make one boundary layer
disappear must be of order e but with 8 < 1. In fact, let us consider b a but b :(b*)
(for example, b=a+v/-). Then, if G(b)<O x(t) has a boundary layer at c, t(x) has
a boundary layer at x b while the other disappears. If G(b)>.O x(t) has a boundary
layer at d; thus t(x) has a boundary layer only at x =-a.

5. Numerical results.
Example 5.1. The numerical solutions of ex"= --4XX’3/, X(0) "---1, x(1) b, with

b- 1 and e 0.05, are shown in Fig. 5.1. Significant changes in the position of to are
obtained for variations of b*= 1 of order 10-3. The location of the transition point to
varies from to 0.23 for b 1.001 to to 0.89 for b 0.9949. The set of values of b
such that there is a free layer is the e3/-gal (1).

Example 5.2. This example corresponds to ex" (1 3x2)x!, x(0) 0, x(1) b,
where b 1 and e 0.05. Slight variations of b* 1, less than 10-5, change the position
of to from 0.38 to 0.73. In this case, the phenomenon is much sharper than in the first
example, as it occurs for b e e-microgal (1) (see Fig. 5.2).

6. Examples.
Example 6.1. This is actually a whole family of problems

F_,X" XX[s]

x(-1) a, x(1) b,

where s is a real number s_-> 1 and x’ts= x’[x’S-l[.
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-1

FIG. 5.1. Solutions of ex" -4xx’3/2, x(O) 1, x(1) b, for nine values of b and e 0.05.

FIG. 5.2. Solutions of ex"= (1 3x2)x ’, x(0) 0, x(1) b, for six values of b and e 0.05.

The jumps in their observability spaces are, for all 1 _-< s <_- 2, infinitely close to the
parabola of equation V(x)-x2/2 + C. Then free layers are possible only in the halo
H of the straight line of equation b =-a.

If 1_<-s<-2, the theory discussed above shows that the problem has a unique
solution with a free layer for b in the galaxy : c H for a >> 0.

If s > 2, the equation is more than quadratic and, in this case, the jumps are also
infinitely close to the parabolas V(x)= x2/2 + C, but only for V(x) such that V(x)l <=
Vo, where Vo e/(s-2) [5]. If s >>2, well-known results [14] and a recent result of
Diener [5] ensure that this problem has no solution if a b. In fact, suppose there
exists a solutionmit must be a slow one, since no jump is possible as Vo- 0. But as
slow solutions are constants, it is not possible to satisfy the boundary conditions except
if a b. On the other hand, if s .> 2, the boundary value problem has a solution if and
only if a and b E R (see Fig. 6.1). In this case, the free layers exist for values of b E

for 0<< a _< x/--o.
In spite of the fact that the jumps are, in the (x, V) space, the same for all s E [0, 2],

our results do not apply when 0 < s < as f is not of class C1.
The galaxy and the position of to depend on the values of s.
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\ A a

(ii)

FIG. 6.1. The galaxy of thefree layers ofex"= xx’r], x(-1)= a, x(1)= b is contained in the halo of the
straight line b -a with (i) 0<< a if l-s---2; (ii) 0<< a <x/-o if s > 2. In the square, the rapid portion of a
trajectory associated with a solution x( t) is drawn in the plane (x, V), for a value of b .

If s 1, e-microgal (-a), that is, the phenomenon takes place for b exponen-
tially close to (-a) and the location is given by

with (b) defined by

b+a
+b- a a:)/2e + d/( b

b dx

(x2- a2)/2e + (b)
d c.

If 1 <s_-<2 and if s>2, := e3-S-gal (-a), in this case the transition occurs for b
such that b+ a O(33-s) and

b+a e 1

t-b-a b-a s-1

(2_s)(b2_a2)/2e+((b))2_ ( s2,

with (b) given by

((2-s)(b-a)/2e+(O(b))-)/-=d-c

or

b/a

to-b_ a

e ( exp((a2-b2)/2e)-I )"-t-b_a j’b exp ((a2--x2)/2e) 5x s 2.



1278 ADRIANA BOHI

Example 6.2. We now consider the problem studied by Chang and Howes [1]
which arises in modelling the flow of a compressible fluid.

The problem

ex"- ((2,+ 1)/2-1/xE)x’, O 1,

x(0)- a, x(1)= b

models the one-dimensional and steady-state flow that arises when a gas is injected at
a supersonic velocity a in a duct of uniform cross-sectional area and a back pressure
is applied. The adiabatic index y is a constant value between 1 and , x is the
dimensionless velocity of the gas relative to the velocity of sound, and is the
dimensionless distance with -0 at the entrance of the duct. po is a reference density,
Co is the velocity of sound, and e tzy/poCo is infinitesimal when the coefficient of
viscosity/z is infinitesimal.

Then we want to determine the subsonic velocity b at t-1 that produces a
supersonic-subsonic shock in the duct when a supersonic velocity a is given at t-0
and the position of the shock.

In this case, the jump is, in its observability plane, infinitely close to

2 2

The relation G(b*)=Ib*g(x)dx=O, which is known as the Rankine-Hugoniot
shock condition, is

/+1 1 /+1 1
a+ b*+
2 a 2 b*’

from which it follows that b* satisfies the well-known Prandtl relation

2
ab*

+1
Then, by virtue of Theorem 4.3.1, there is a shock in the interior of the duct, not

only for b* =(2/),+ 1)l/a, but also for the values of be e-microgal (b*) (see Fig. 6.2).

FIG. 6.2. The galaxy of the free layers of ex"-(2/(/+ 1)-l/x2)x’, x(0)-a, x(1)- b is contained in
the halo of the curve of equation b (2/(,+ 1)) 1/a.
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The transition point is located at

a(a-b2/b*) a2b2 ( t]t(b) )to- a2_b2 a2_b2clog G(b)/e+tp(b)

with (b) defined by

When b b*,

b dx
G(x)/e+q(b)

a

a+b*"

When b , if b b* the shock is always close to the end of the duct. On the
contrary, if b < b* the transition point is near the entrance of the duct.

7. Appendix. In this appendix we give only the definitions of the nonstandard
words and the main tools that we use in this work. For an introduction to nonstandard
analysis we refer the reader to [8] and also [10], [13].

class S0, SI: An internal function f is S-continuous at x if for all y, y= x=:>,
f(y) -f(x). For example, f(x) arctg (x) is S-continuous at x 0 butf(x) arct (x/e),
and e infinitesimal is not S-continuous at x 0. An internal function f is of class SO

in E if f(x) is near standard when x E, x is near standard, and f is S-continuous at
x. A differentiable internal function f is of class S if and only if f and f’ are of class
SO For example, f(x)=0 if x-<0, f(x)= ex if x>0, is of class S at x=0, but
f(x) e sin (x/e) is not of class S at x 0 with e infinitesimal.

Fehrele’s Principle. This principle states "No halo is a galaxy." That is, if a halo
contains a galaxy, that halo must overflow the galaxy.

galaxy. The set of limited reals is called the main galaxy and is denoted by 6;.

The pre-image of 6; by an internal function f is called a pregalaxy. It may be an internal
set (e.g., if f(x)= 1) or an external set (e.g., if f(x)= x/e, e infinitesimal). In the last
case, the pregalaxy is called a galaxy. The e-galaxy of a, denoted by e-gal (a), a real
number, is the pre-image of 6; byf(x)=(x-a)/e, e-gal (a) {x [: x=a+eL, L 6;}.
The e-microgalaxy of a, denoted by e-microgal (a), is the pre-image of 6;+ by f(x)
-1/(e log Ix al). e-microgal (a) {x : Ix a < exp (- 1/L2e), L 6;}.

halo. The set of infinitesimals is called the halo of zero and it is denoted by hal (0).
The pre-image of hal (0) by an internal function f is called a prehalo. It may be an
internal set (if, e.g., f is constant) or an external set (if, e.g., f(x)= x/e) and, in this
case, the prehalo is called a halo. The e-halo of a, denoted by e-hal (a), is the pre-image
of hal (0) by f(x)= (x-a)/e. The e-microhalo of a, denoted by e-microhal (a), is the
pre-image of the halo (0) by f(x) 1/(e log Ix a]). The complement of a halo in an
internal set is a galaxy.

infinitely close. The real numbers a and b are infinitely close if a-b= q, rl
infinitesimal. We set them a- b if a and b are infinitely close and a b if not. The
functions f and g are infinitely close in E if for any x E f(x) g(x). We denote by
a<<b (a>>b) ifa<b (a>b) and ab.

infinitesimal A real number e is infinitesimal if its absolute value is smaller than
any positive standard real number.

internal-externaL We work with two kinds of sets: the usual sets of the Zermelo-
Fraenkel theory, which are called internal sets (for example, t, , (0, w)) and the sets
built up with the help of the new predicate "standard" (or with one of those derived
from it, such as "infinitesimal," "large," or "limited"). These sets are called external
or strictly external when at least one classical theorem does not apply to them. For
example, the sets of infinitesimal or of standard reals are external (they are bounded
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subsets of R with no upper bound). A function f is called internal if its graph is an
internal set. For example, f(x)= ex, e infinitesimal, is internal; however, f(x)= 0 if x
is infinitesimal and f(x)= if not is an external function.

limited. A real number L is limited if its absolute value is smaller than some
standard integer. Any limited real number is infinitely close to a unique real standard,
called its standard part and denoted by L.

near. The use of this adverb in an expression such as "near equation" or "near
standard" means that it differs from being an equation or a standard by an infinitesimal.

near standard. A real number x is near standard if there exists a standard s such
that x s.

S-continuous. See "class of So- $1.
standard. The adjective standard is a new predicate introduced in the mathematical

language. The use of it is governed by three axioms: transfer, idealization, and standar-
dization principles (see [8], [10]). The sets may be standard or not. The sets R, Q,
[0, 1], (=0), {@} 1, arct (x) are standard; actg x e and [0, 1/e] are nonstandard if
e is infinitesimal, e 0.

standard part. The standard part of a real x, denoted by x, is the unique standard
(when it exists) that is infinitely close to x. The standard part of a function f is the
unique standard function (of), when it exists, such that f(x)-f(x) for any x near
standard in the domain off

unlimited. A real number W is unlimited if it is larger than any standard integer.
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NONCONVEX FUNCTIONALS RELATED
TO MULTIPHASE SYSTEMS*

AUGUSTO VISINTIN?

Abstract. Let l-I be a bounded domain of IN(N--> 1), with b a (nonconvex) lower semicontinuous
function RRkJ {+}, such that for any u L(12), (u) := a ch(u(x)) dx>-.

Let A L(12) 0, +] fulfill the generalized co-area formula A(u) n A H(u s)) ds (<=+c) for all
u E Lt(l’), where H(:) 0 if :<0, H(:) if ->0. For instance,

V(u):=flVul=sup{faudivrldx’rlclc(fl),ln’<=l },
Ar(u):=IIn21u(x)-u(y)llx-yl-(N+rldxdy (0<r<l),

r(u):=fn+ h-(l+r) dhfa(esssupu-essinfu)dxnh(na
nh(na

(0<r<l),

where Bh(X):={y:ly-xl<=h}. Here it is proven that if A=A**, then for any u LI(f), 0(@+A)(u)=
O(u)+oa(u) in L(I), and (@+A)**(u)=**(u)+A(u).

This and another result entail that for any : E L(I)), if u is an absolute (relative, respectively) minimum
of ’w-a[c(v(x))-(x)v(x)] dx+A(v) in L(f), then there exists (L() such that almost
everywhere in , u(x) is an absolute (relative, respectively) minimum of y--ck(y)- (x)y in R. Hence, for
both sorts of minima, certain values are a priori excluded from u(f), which can be nonconvex. This can
represent the occurrence of a phase structure, i.e., pattern formation. If b is the free-energy density function
of some substance, A can model the phase interaction contribution to the global free energy. The absolute
and relative minima of are related to the stable and metastable equilibrium states, respectively.

Solid-liquid systems are discussed in particular. The proposed model accounts for supercooling and
superheating effects. If A V, the mean curvature of the solid-liquid interface 0 is as prescribed by the
Gibbs- Thomson law. If A Ar (0 < < 1), 0 can be more irregular, as in dendritic formations and snowflakes.
This model can be extended to include mushy regions.

Key words, surface tension, co-area formula, absolute and relative minima, stable and metastable states

AMS(MOS) subject classifications. 49A29, 80A00

1. Introduction and presentation of the model. This paper consists of two parts. In
2 and 3 a certain class of nonconvex functionals is studied; in 4 and 5 these

results are applied to model stationary multiphase systems. In this section we will
outline these developments moving from the physical aspects.

Substances capable of attaining two phases are characterized by a nonconvex
dependence of the free-energy density on the state variables. Here we consider the
potential function q sketched in Fig. 1, although the developments of 3 and 4 hold
for a general (nonconvex) lower semicontinuous function 1[ t_J {+}. To explore
all the possible stationary configurations, we will use a linearly perturbed potential,
so for any :, u E we set b(u) := b(u) (u. This construction has a physical meaning
for instance, in solid-liquid systems : is proportional to the relative temperature. Let
our system occupy a bounded domain 12 (N > 1); for any L(f) and any
u LI(I)), we set (u):= ck(u(x)) dx (_<-+) and (u):= , ck(,)(u(x)) dx. Station-
ary configurations of a thermodynamic system have either a stable or a rnetastable

* Received by the editors December 21, 1988; accepted for publication November 6, 1989. The results
of the present paper were announced at the colloquium on free boundary problems held in Irsee in June
1987 [22].
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equilibrium. Stable states can be attained for arbitrarily long times, whereas metastable
ones will eventually decay because of fluctuations. An example of the latter is given
by a supercooled liquid. If the system is governed by a potential, the stable states
correspond to its absolute minima, and the metastable ones to its relative (nonabsolute)
minima.

For any : L(l)), obviously u Ll(12) is an absolute minimum of the functional
in Ll(12) if and only if almost everywhere in 12, u(x) is an absolute minimum of

the function b(x) in . But has no relative (nonabsolute) minimum in LI(I)) for
any L(I), even if almost everywhere in
(Proposition 5 in 4). This excludes the possibility of representing any metastable
state by means of the potential .

We remedy this drawback by including a space interaction term in the potential
functional. We exclude any term of the form AP(u):-- IVUlp dx (_<_+oo) with -<_ p -<_ oo,
because, by well-known trace theorems, the condition AP(u)< +oo is not consistent
with the discontinuities along surfaces that occur in multiphase states. Rather, we will
consider interaction functionals of the form

(1.1) V u :- I Vu sup {I u d v q dx q C (12 N, q <- I 1,

Bh(X)f-] Bh(X)fi-

where Bh(X):-- {y:ly--xl <---- h}. Thus Dom (V) BV(12): Banach space of functions
12- with bounded total variation; Dom (At)- wr’l(l)): fractional Sobolev space [1].

Let us set H(:)- 0 if se<0, H(se) 1 if :>_-0. Any of these functionals fulfills the
generalized co-area formula

(1.4) A(u) :- jaA(H(u-s)) ds(<-+oo) U LI(’).

The implications of this property are studied in a more general context in 2; there
GC(I) is defined to be the set of functionals A: LI(I’I) - [0, +] that fulfill (1.4). This
class of functionals is studied in more detail in [21].

For any A GC(I) and any L(I)), we then introduce the potential functional
:- + A. Of course is compatible with a multiphase structure, in which discon-

tinuities occur on surfaces separating two different phases. Moreover, for A- V or
A: ar or A- zt (0< r< 1), can also have relative (nonabsolute) minima in LI(),
for suitable p and :.

In Theorem 3 of 3 we show that for any lower semicontinuous and convex
A GC()
(1.5)
(1.6) 0( + A)
(here F** denotes the lower semicontinuous convex hull of F [4]).

Equation (1.6) entails that, for any
in LI(I), then Och(u(x)) almost everywhere in l’l; that is, for instance, for b as
in Fig. 1, u has the phase structure u(l-l)=\]b, g[note that this is a nonconvex
constraint. This can represent several phenomena of pattern formation.

Theorem 4 in 3 proves a similar result for relative minima: Still, for any lower
semicontinuous and convex A GC(I)) and any : L(12), if u is either a relative or
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an absolute minimum of e:=+A in LI(’), then "’OlocCh(u(x))" almost
everywhere in [l; the local subdifferential 01oc is defined in (3.48). For b as in Fig. 1,
such a u has the phase structure u(l-l)c\[c,f]; note also that this constraint is
nonconvex, and can represent pattern formation phenomena.

For a solid-liquid system we can assume b as sketched in Fig. 2, and : proportional
to the relative temperature; here u -1 corresponds to the solid and u 1 to the liquid.
Note that u=-I is an absolute (relative, respectively) minimum of b for :-<_0
(0<:<4’(-1), respectively); and that u=l is an absolute (relative, respectively)
minimum of 4 for : >- 0 (b’(1) < : < 0, respectively).

For a space distributed system we consider a potential functional of the form

e := + A, with A proportional either to V or to Ar (0 < r < 1); here we neglect any
exterior boundary contribution. Then the absolute minima of e can be interpreted
as the stable states, and the relative minima as the metastable ones. This gives a
representation of supercooled and superheated states, corresponding to : < 0 in the
liquid and to :> 0 in the solid (respectively), and of the thresholds for nucleation of
a new phase.

If we choose A tyV, cr denoting the surface tension coefficient, then the extremal
points of contain a weak form ofthe classical Gibbs- Thomson law at the solid-liquid
interface

(1.7)
for l-I c R3; here : is assumed continuous (at least on 5) and K denotes the local mean

c.urvature of O, assumed positive for a solid ball [20]. If we take A =constant; At,
0< r < 1, then can have a dendritic shape, similar to that of snowflakes; and the
smaller r is, the more irregular 5e can be.

Suitably modified profiles of q (of. Fig. 3) allow us to represent intermediate phases
as well. These include mushy regions and, for liquid-vapor systems, clouds and fog,.
Finally, the phase interaction functionals V and A (0 < r < 1) are interpreted through
a quasi-chemical approach to multiphase systems (cf. [3, Chap. 2] and [17]).

Bibliographical note. Several mathematical papers on surface-tension effects in
two-phase systems have appeared in recent years. Some authors have used the van der
Waals/Cahn-Hilliard phase-field model, which is characterized by a continuous poten-
tial function <b" -->R and by an interaction term proportional to [V ul 2 dx [2].

Other models based on the functional V (of. (1.1)) have been studied by Gurtin
10]-[ 12] and Visintin 18], [20]. In particular, in [20] the potential function b sketched

in Fig. 2 is proposed for representing solid-liquid systems. Modica 14], 15] has shown
how the model based on V can be retrieved from a phase-field model by means of a
F-limit in the sense of De Giorgi.

The evolution case, namely, the formation and movement of interfaces (pattern
evolution), is studied in [23] using a hysteresis model; here we note only that the
presence of metastable states in the stationary case corresponds to hysteresis effects
in the evolution.

2. Generalized co-area formula. Let l’ be a set of N(N >_-1). We set

Hs(y)={0 ify<s,
1 if y>-s.

DEFINITION 1. We will denote by GC(II) the class of functionals A" LI(I))-
[0, +c] that are proper (i.e., A +), and that fulfill the generalized co-area formula

(2.1) a(u) LI([I),
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with the convention that the integral is set equal to +c if the function E-
[0, +c]’s-A(Hs(u)) is not measurable.

For any A GC(I), we also set Dom (A):= {u Ll(fl)" A(u) # +c} and (u):=
A(-u) for all u LI(’); note that GC().

PROPOSITION 1. For any A 6 GC(I"),

(2.2) A(u + c) A(u) Vu Ll(12), Vc ,
(2.3) A(cu) cA(u) Vu G LI(-), > 0,

(2.4) A(c) 0 Vc I,

(2.5) A(u)=A(uAe)+A(uvc) VuLl(f), Ve

(where (u ^ c)(x) := min (u(x), c), (u v c)(x) := max (u(x), c)),

(2.6) If A is convex, then Dom (A) is a convex cone, Dom (A +) is a linear subspace
of L1(1) and A + is a seminorm.

The proof of these properties is straightforward.
Examples offunctionals of GC(1))"

(i) Trivial cases" A--0; At(u)=0 if u=constant almost everywhere in
Ac(u) + otherwise.

(ii) We set

(2.7) V(u):=falVul:=sup{faudivndx.ncl(),lnl<-l}(<=+o) VU E LI(’);

then (2.1) holds and coincides with the classical Fleming-Rishel co-area formula [6],
[8, p. 20]. Dom (V)- BV(12), a Banach space of integrable functions with bounded
total variation. V is convex and lower semicontinuous in LI(-); that is, V V**.

(iii) The functional

(2.8) Aoo(u) := ess osc u (:= ess sup u -ess inf u) (__<+o) Vu E LI(’).

(iv) For any measurable function g" f:- +, we set

(2.9) Ag(u) :- II lu(x) u(y)lg(x’ y) dx dy (-/oo) Vu Ll().

It is easy to check that A e GC(), by the identity

(here applied with = u(x), "O- u(y)), and by Fubini’s theorem. Ag is also convex
and, by Fatou’s lemma, is lower semicontinuous in L(f); that is, Ag--Ag

(v) As a particular case of example (iv), we take

(2.10) g(x, y) := lx- yl -(N+) Vx, y 12 (x # y), Vr]0,1[

and set Ar := Ag. This is the standard seminorm of the fractional Sobolev space wr’(O)
(= Dom (A)).

(vi) For any measurable function f" 12 /-* /, we set

(2.11) f(u):= ff (ess osc u).f(x, h)dxdh (=<+c) Vu L(12),
xl -(’Bh(X)
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where Bh(X):={yERN" Ix-yl<h}. It is easy to check that .se GC(f), by example
(iii) and by Fubini’s theorem. As is convex and by Fatou’s lemma, also lower semicon-
tinuous in LI(O), as is Aos; that is, s *.

(vii) As a particular case of example (vi), we take

(2.12) fr(x,h):=h-(l+r) a.e. for(x,h)eax, Vre]0,1[,

and set r := sr. Then

(2.13) Ar(u)<-constant ..,(u) VueD(fl), Vre]0, 1],

whence Dom (A) c Dom (At).
PROPOSITION 2 [21]. Ifeither A Aosc, or A A,,.or A AI, then A e oC(a) and

A A**. Moreover, if either A V, or A A, or A A (0 < r < 1), then the injection
ofthe Banach space Dom (A) into LI() is compact, provided that 1 fulfills the regularity
assumptions of the classical Rellich compactness theorem.

3. On a class of nonconvex functionals. Let fl be a bounded domain of N(N => 1)
endowed with the ordinary Lebesgue measure/x. Let us fix a function

(3.1) b "R--> U {+} proper and lower semicontinuous;

note that we do not require b to be convex. We also assume that

::lC,, Cz[R+: ryES, rb(y)>=-C,ly[-C,(3.2)

whence

(3.3) -oo<(v):= Ja 4(v) dx (<-+oo)

We fix a functional A" LI(E)--> [0, +oo] and any sc e L(O); we then set

)(y) := (y)- (x)y Vy e a.e. in a,

(3.4) (v) := a (x)(V(X)) dx

:=+A, e:=e+A inL().

Lepta 1. (i) For any pe[1,+m], any feLP(O) with fga (aeR), and any
g LP’(a) (l/p+ l/p’= 1),

(3.5) fg & ds H(f(x))g(x) &+ a g &.

Proo Let H be defined as in 2. By the identity

y= Hs(y) ds VyeN+,

and by Fubini’s theorem, for any measurable Nnctions ], g’a N+ we have

]g dx ds H(f(x))g(x) dx (+).

So, takingf=f-a, we get (3.5) for anyfLP(fl),fa, and any geLP’(), gO. It
easily follows that the restriction on the sign of g can be eliminated.
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LEMMA 2. Let A GC(12), {Aj}jt be a partition of R into intervals, possibly
including one or two half-lines, and J c L Let u, v Dom (A) be such that

(3.6) u v a.e. in u-(Aj) Vj I\J,

(3.7) u-(A) v-(A) Vj J.

Then

(3.8) A(u)-A(v) =a fA [A(H(u))-A(H(v))] ds.

Moreover, for any A L(f)

fgl =IAj A(x)[Hs(u(x))-Hs(v(x))]dx.(3.9) A(u v) dx J ds
-’(Aj)

Proof. (i) Equations (3.6) and (3.7) entail

Hs(u)= H(v) a.e. in 12

hence from (2.1)

By the identity

vs e U A;
jel\J

A(u)-A(v) =, Ia [A(H,(u))-A(H(v))] ds

=.2 IA [A(H(u))-A(Hs(v))] ds.

and by Fubini’s theorem we have

-I(A/)
x(u-v) dx= Z I

jJ , u-I(Aj)
X(u-v) dx

dxX(x) I. [H(u(x))-n(v(x))] ds

IadS f X(x)[n(u(x))-H(v(x))] ax. o
-I(Aj)

THeOreM 1. Let A e GC(12) (of 2) and fulfill (3.1) and (3.2); set (3.3) and
(3.4). Let {]a, b[ c} be any collection of disjoint bounded open intervals, such that

(b,)- (a,)
(3.10) ch(y)>-li(y): (y-a,)+(a,) Vye]a,,b,[, VieI.

bi ai

Then for any u L(12) such that O(u) # in L(I))
(i) There exists a a L(12) such that, setting A := U, ]a, b[,

(3.11) If u(x) : A then a(x) u(x) a.e. in 12,

(3.12) a(x) : A a.e. in 12,

(3.13) Oqt(u)=O(a) in L(12).
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(ii) Moreover,

(3.14) l({xEl":ai<u(x)<bi, c(u(x))> li(u(x))})=O ViEI.

Remark. Part (i) can be restated as follows. For any L(I)), if u 6 LI(I) is an
absolute minimum ofv(v)-a v dx (i.e., 0(+ A)(u)), then there exists another
absolute minimum 6 Ll(fl) (i.e., E 0( +A)()), which also fulfills (3.11) and (3.12).

Proof (i) Let us fix any : O(u). First we consider the case of A reduced to a
single interval ]a, b[. We set

A,:=[d(b)-4,(a)]/(b-a), A::= b(a),

(y) := (th(y)l(y-a)+:
Vy \]a, b[,
Vy6]a,b[,

and define (, , as in (3.3) and (3.4), with b replaced by . We also set
Z:= {xf:a < u(x)< b} and

B(s) := fz [’ (x)]Hs(v(x)) dx + A(Hs(v)) VoELI(), VSE.

For any v LI(-) such that a <-v <-b almost everywhere in Z, by (2.1) and Lemma 1
we have

(3.15)

We note that there exists an ]a, b[ such that

1 I Bu(s) ds"(3.16) B.() <=
b a J

then we set

(3.17)
u(x)

a(x) := a

b

if x e

if xEZ and a<-u(x)<g,
if x Z and -< u(x) <= b.

Thus (3.11) and (3.12) hold (for A= ]a, b[); hence

(3.18)
b(a)= (a) a.e. in



1288 AUGUSTO VISINTIN

By (3.17) we have

t(x)->_s if and only ifu(x)>-s a.e. in12, VsE\]a,b],

(x)_->s if and only ifu(x)>= a.e. in12, Vs]a,b];

that is

I-I(a(x))= g(u(x))

H(a(x))= I-I(u(x))

a.e. in 12 Vs N\]a, b],

a.e. in12 Vse]a,b],

whence

Ba(s) B,(s) Vs l\]a, b[,

Ba(s) B.(g) Vs ]a, b[;

therefore, also recalling (3.15) and (3.16), we have

(3.19) e(t)-re(u) [Ba(s)-Bu(s)] ds= [Bu(g)-B(s)] ds<-O.

Moreover, as -< b in , we have

(3.20) (u) -< e(u);

then by (3.18)-(3.20) we get

(a) -<_ e(u) inf;
that is, : 0(). Thus (3.13) also holds (for A= ]a, b[).

Now we prove (3.14). If it did not hold, then we would have e(u)< e(u). Then
by (3.18)-(3.20) we would get e()<e(u); but this would contradict the assumption
that s 0(u). So the thesis holds if A is reduced to a single interval. IfA U if ]ai, hi[,
union of pairwise disjoint intervals, then we set

Zi {x 12. ai < u(x) < bi}, t ,:=[ch(bi)-qb(ai)]/(bi-ai), A2 := dp(ai)

for any i L Note that (cf. (3.15))

(3.21)

,I, v 4,x)(V(x)) clx+,Z, B(s) cls

+ailz[Ai Ie,-C(x)] dx+ 2 Atx(Z,)+ A(gs(v)) as;
il \A

then by Lemma 2 the previous construction "u " can be performed simultaneously
on all the intervals ]a, b[.

1By (3.14), e(u)=e(u); as e()=infe(u), we also have e()=e(a). hence, by (3.18),
e()=r(u). Therefore, by (3.19) the equality holds in (3.16)" that is, for no choice of g]a,b[ the
inequality can be strict. Thus B, (s) is constant for a < s < b, and g can be replaced by any other s e ]a, b[.

Note that replacing g by another s in (3.17) can yield a function a := (t) only if b(y) l(y) for
some y e ]a, hi.

This note is based on a remark by M. Paolini.
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Now we present a set of sufficient conditions for the existence of an absolute
minimum u of, or equivalently for s O(u), to hold for some u.

PROPOSITION 3. Assume that

dp(y)
(3.22) lim

(3.23) A is strongly lower semicontinuous in L1(),

(3.24) The injection Dom (A)-> LI() is compact.

en for any L() there exists an absolute minimum of .
Proo By (3.22) it is easy to check that there exist M, N 0 such that

(y)- (M) IIll()(y- M) Vy M,

(y) (-N) -IIl]()(y + N) Vy N -N;

hence

(3.25) e()(y)- e()(M) (y)- (M)- (x)(y- M) 0 a.e. in Vy M,

(3.26) e()(y) e((-N) (y) (-N) (x)(y + N) 0 a.e. in Vy N -N.

Let {u,} be a minimizing sequence of e, and set

a,(x) := min {M, max [u(x), -N]} a.e. in

By (3.25), (3.26), and (2.5), we have

hence also {a,} is a minimizing sequence; moreover,

x>((x))II>, A() constant.

Hence by (3.24) there exists u LI() such that, possibly extracting a subsequence,
we get

(3.27)

hence, by the dominated convergence theorem and by (3.23),

lim inf A(a) A(u).

Thus
Remarks. (i) By Proposition 2 in 2, the functionals A, and , with 0 < r < 1,

fulfill (3.23) and, if is bounded and smooth, also (3.24).
(ii) If (y)/y is bounded as lyl+, then e may have no absolute minimum,

as is easy to check.
Nrst applications of eorem 1. (i) Let us take

( (
For any e , e" N’y4(y) & has a minimum e ]-1, 1[; otherwise stated,
the restriction of ’(y) 2(y 1)+ 2(y + 1)- to N]-I, 1[ is surjective, even if its graph
is not maximal monotone.
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Something similar occurs for space distributed systems. Let A GC(a) be such
that (3.23) and (3.24) hold; then by Proposition 1, for any : L(a), has a minimum,
that is, 0 is surjective. Hence, by part (i) of Theorem 1, the restriction of 0 to
{v Ll(a):v(x) ]-1, 1[ a.e. in a} is also onto L(a).

(ii) If we take

f a4(Y) :=
(1-y) if lYl <- 1

(a" constant>O)
+c if JYl > 1

(of. Fig. 2), then
ify=-l,

0th(y) if y R\{-1, 1}
R+ if y=l;

therefore 0b]{_l.1} is surjective. Then, by (i) of Theorem 1, for any A Gc(a) such
that (3.23) and (3.24) hold, the restriction of0 to {vL(a):v(x)=+l a.e. in 1)} is
onto L(a).

LEMMA 3 [4, p. 20]. Let V be a separated locally convex vector space and F: V
RU {+oo}. So for any u V, if OF(u) # , then F(u) F**(u); if F(u) F**(u), then
OF(u) 0F**(u).

THEOREM 2. Let A Gc(a) (cf. 2) and dp fulfill (3.1) and (3.2); set (3.3) and
(3.4). Assume that

(3.28) All the connected components of S := {y R: b(y)** < b(y)} are bounded.

For any u L(a), if
(3.29)
then

(3.30)
(3.31)

(3.32)

O(u) # in L(a),

,(u) =**(u),
O(u) # in L(a),

3n aI,(u) V a(u),
Remark. By Lemma 3, (3.30) and (3.31) yield

(3.33) O(u) O**(u)
(3.30) and (3.33) are, respectively, equivalent to

(3.34) th(u) 6**(u), ark(u)=oth**(u) # a.e. in f.

Proof The set S is open, since b is lower semicontinuous and 4** is affine in
each connected component of S. Hence, by (3.28), S is a countable union of disjoint
bounded open intervals. Then, by (ii) of Theorem 1,/x({x a: u(x)6 s})=0; namely,

(3.35) th(u) 6**(u) a.e. in a;
therefore (3.30) holds.

To prove (3.31) and (3.32), we fix any e0qt(u); we also set N:= I111.)and
for any M e N

aM := {x a: u(x) <= -M or 7 O**(u(x)): q <-_ N},
y := sup (]-oo, -M] U {y e R ::17 e 0f**(y) n --< N}),

a(x) :=
(yM(<U(X)) in
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Then

0 a.e. in f,
o(,,)(u(x))-o(,)(f(x)) >-ck(u(x))-ck(yM)-N(u(x)-yM) a.e. in f\fM,

(3.36) q)(u) ->_ q(6),
and the equality holds only if/x(12\f4) 0. Moreover, by (2.5)

A(a) <= A(u);
hence e() <_-(u). On the other hand, (u) infVe, as g: O(u); hence Ve()
Ve(u) and the equality holds also in (3.36), whence

Note that by Lemma 3 and (3.35), Ock(u(x)) =Ock**(u(x)) almost everywhere in 12; then

/({x f’Oqb(u(x)) or Vr/ Ock(u(x)), n > N})

=/x({x f" 0b**(u(x)) or Vr/ 0b**(u(x)), r/> N})

(U (a\a,))=0.
Similarly, we might show that

tx({xefl’Orb(u(x))= or VrleOck(u(x)), r <-N}) =0.

Therefore (3.31) holds and

({xea’wneo6(u(x)),lnl> N}) 0;

that is,

For any u L(f) such that a(u), taking r/ equal to the element of a(u)=
O**(u) of minimum norm, we get (3.32).

Remark. Equation (3.22) is a sufficient condition for (3.28) to hold. If, for instance,
S has a connected component of the form ]a, +oo[ (a e N), then 4** is linear in a
neighbourhood of +oo and

lira 4)(y)/y= lim ck**(y)/y<+oo.
y+oo

In that case, as remarked after Proposition 3, there exists a L(I’) such that the
problem of minimizing V has no solution; that is, 0V is not surjective.

LEMMA 4 [4, p. 26]. Let Vbe a separated locally convex vector space. Let F1, F2" V
R U {+c} be proper, convex, and lower semicontinuous; let F be continuous at some
point of Dom (F1) f’) Dom (F2). Then for any u V

O(F1 + F2)(u)--OFI(U)-t-OF2(u).

THEOREM 3. Let A e GC(I)) (cf. 2) and c fulfill (3.1) and (3.2); set (3.3) and
(3.4). Assume that (3.28) holds and that A is lower semicontinuous and convex (i.e.,
A**= A). Then for any u

(3.37) (q + A)**(u) q**(u) + A(u),

(3.38) O(+A)(u)=O(u)+OA(u) in

(here we set A + for any A c
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Remarks. (i) If 0(+ A)(u) = , then by (3.38)

OA(u) = in L(lq);

that is,

f
(3.39) :It/eL(12) VveDom(A) Jan(u-v) dx >= A( u) A( v);

this can be regarded as a regularity result.
(ii) By (3.37) and (3.38), for any u e L(O) we have

(3.40) 0( + A)**(u) O(** + A)(u) Odp**(u) + 0A(u).

Proof (i) For any u e LI(’), we have

,(u) := (** + n)(u) -< (+A)(u)=: (u).

Hence to prove that is actually the lower semicontinuous convex hull of , it is
sufficient to show that for any u e L1(12) such that aXe(u) # and for any :e a(u),
there exists a a e L1(12) such that

(3.41) (a) (u).
Indeed, by Theorem 1, here applied with replaced by , there exists a a e L1(12)
such that

(3.42) (a) (u)
and (a) **(); that is, () x(a); then (3.41) holds.

(ii) In (3.38) the inclusion is obvious; now we will show the opposite. Let us
fix any ueL(12) such that a(+A)(u)# and any ea(+A)(u). Let b be the
largest Lipschitz continuous, convex function R R such that

(y) =< b(y), I’(y)l--< N := I111<, a.e. in R.

The set T:={yeR" (y) b**(y)} is a closed interval with extremes a, b, with
-<_-a < b <= +. We can exclude the trivial case in which a b; moreover,

If a > -c, then (y) Ny /y <= a,

If b < +c, then (y) Ny /y >= b.

For any y eR\ T such that ack(y)# and any r/eaCh(y), we have It/[> N; then by
(3.32) and (3.34) we get

(3.43)

We set

(u)=6**(u)=6(u)

(v) := 6(v(x))clx

then by (3.43) we have

,(u) ,**(u)= ,(u),
(3.44)

,b(u) a,**(u) (u).

(iii) Now we want to show that

a.e. in 12.

ee(u) **(u) e(u),

(3.45) a(+A)(u).
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To this aim, for any w Ll(it) we set

if(x) := min {a, max[w(x), hi}

then

and by (2.5)

hence

a.e. in It;

4,() **(#)

A(ff)_-< A(w);

()-(w)=()-(w)+A()-A(w)-I, (-w) dx

<=-N Ix lff,-wl dx- f,. (-w) dx<-_O.

Then, still for any w La(it), by (3.44) we have

(w) => e(ff)= *(ff)_-> inf* inf (u)= re(u);
thus : O(u). So we have shown (3.45).

(iv) By (3.45), since :0(+A)(u) is arbitrary we have

(3.46) 0( + A)(u) c 0(+ A)(u);

moreover, by Lemma 4 and (3.44), we have

(3.47) 0( + A)(u) 0(u) + 0A(u) c O(u) + 0A(u).

Finally, (3.46) and (3.47) yield

0(+ A)(u) = O(u) + 0A(u).

DEFINITION. For any Banach space B, any u B, and any function F’B
R U {+o}, we define the local subdifferential OocF(u) as follows"

(3.48) OocF(u) := {s B" ::le > 0" Vv B, if Ilu vii -< e then

F(u)-F(v)<=(, u-v)}.

Note that

(3.49) OoF(u) if and only if u is either a relative or an absolute minimum of

F :B R U {+c} v F(v) -(sc, v).

This statement can be compared with the obvious property that : OF(u) if and
only if u is an absolute minimum of F.

THEOREM 4. Let A GC(It) (of 2) and ch fulfill (3.1) and (3.2); set (3.3) and
(3.4). For any u Ll(it), if
(3.50) 0,oct(U) # in L(it),

then

(3.51) Oloqb(u(x)) # f a.e. in It.

Remark. Inequality (3.51) can be compared with (3.31); however, (3.51) is not
equivalent to OooCb(u) O. In fact, Oo(u) O(u) in L(It) (cf. Proposition 5 in 4),
although in general 01ocb(v) # Oqb(v) in R.
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Proof By assumption there exist : L(f/) and e >0 such that e(u)<=e(v) for
any vLl(O) with Let us fix any a,b with O<b-a<e/lx(12);
then u is an absolute minimum of e restricted to

Y,,b := {v Ll(lq)" v(x) u(x) in {u <= a} {u >= b}, a <- v(x) <- b in {a -< u <- b}}

(here we set, e.g., {u_<a}: {x O," u(x) <- a}); in fact, for any v Y,b, Ilu- <

(b-a)./x()_-< e. We denote the indicator function of ]a, b[ by Ila,t; that is,

0 if a<y<b,
I]a,b[(Y) :=

+ otherwise,

and set

S, := {y e ]a, b[ (th + Ila,bt)**(Y) < th(y)};

as shown for S in the proof of Theorem 3, So,b is also a countable union of disjoint
open intervals.

We are then reduced to showing that/z ({x e f u (x) e S,}) 0; the latter can be
proved by the argument used for (3.14) in Theorem 1.

A question. Does (3.50) entail 0A(u)# in L(f)?

4. Multiphase systems.
4.1. Stable and metastable states. In several models the stationary configurations

of a system correspond to either the relative or the absolute minima of a potential
functional; for multiphase systems this potential is nonconvex. Here we will consider
systems characterized by a scalar state variable. We will distinguish between distributed
and nondistributed systems, namely, between systems with and without space depen-
dence. In a scalar nondistributed system, the state is characterized by a a real variable,
and as a potential we can consider a (possibly nonconvex) lower semicontinuous
function b :R-t_J {+}. A "double-well" potential b as sketched in Fig. 1 corre-
sponds to a two-phase system. A "triple-well" potential represents a three-phase system,
and so on. Certain two-phase systems can be represented by the potential b sketched
in Fig. 2 (see 5).

Any state that can be attained by a system for arbitrarily long times is said to
have a stable equilibrium; any state that will eventually decay into another is said to
have a metastable equilibrium. An example of the latter is given by a supercooled liquid
(water below 0C, e.g.) (cf. 5 and [3, Chap. 3]).

If the potential has a unique absolute minimum, this corresponds to a stable state.
If it also has a relative (nonabsolute) minimum, this represents a metastable state. (To
be more precise, the latter statement requires that lower potential states be accessible
from the considered relative minimum state--a condition we will always assume and
that will hold in the examples we will present.)

Metastable states decay because of thermodynamic fluctuations that allow the
system to explore nearby states. Although fluctuations are a stochastic phenomenon,
at least in some cases, there is a net separation between states whose persistence for
a given time period is almost sure, and others whose persistence is almost impossible
(cf. [3, Chap. 3]). So a deterministic model is not a priori excluded.

As an example, let us consider a nondistributed system associated to the double-
well potential b sketched in Fig. 1. Here the absolute minimum u h corresponds to
a stable state; the relative minimum u b represents a metastable state, which persists
as long as the thermodynamic fluctuations do not bring the system from u b to a
state u >-d, from which the system would evolve towards the state u h.
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u

FIG. 1. Double-well potential function c# e C1(R). u b is a relative minimum; u h is an absolute
minimum; u c and u fareflexi; u d is a relative maximum; ok(b) ok(e) ok(i). The lower semicontinuous,
convex regularized d#** of ch coincides with ch in R\]a, g[ (the drawn segment is tangent to the graph of ck at

u=a,u=g). So,

Oo(u) 0lottO(U) -# Vu e R\]a, g[,

O@(u) , Ooc@(u) @ Vu[a,g]\[c,f],

ao( u) OoO(u) 5 Vu e, f].

In a time period of length T the probability of the occurrence of a fluctuation
from a state Ul to another state u2 (>Ul, say) decreases as the potential variation
4(u2)- th(ul) increases if 4(:) is comprised between th(ul) and 4(u2) for : [Ul, u2].
More precisely, the following occurs for liquid-solid transformations, and seems to be
a typical picture of phase transitions in general. There is a critical value ..(T) > 0 such
that for any 6 > 0 the occurrence of fluctuations with potential variations equal to 6
is extremely likely (extremely unlikely, respectively) if 6 <(T) (6 > E(T), respec-
tively) [3, p. 70].

If the potential has more than one absolute minimum, then the state will oscillate
among the absolute minima that are separated by a "potential barrier" smaller than
E(T). We can imagine that the stability is divided among these equivalent states.
A similar effect occurs for relative minima that correspond to a same value of the
potential and are also separated by potential barriers smaller than ..(T).

However, the system cannot oscillate between two states corresponding to different
values of the potential, since the probability of going from the state with the larger
potential to that with the smaller is much greater than the probability of the opposite
fluctuation.

We summarize the previous discussion in the following statement.
PROPOSITION 4. The absolute minima ofthepotential correspond to stable equilibrium

states. The relative minima represent metastable equilibrium states, namely, states that
can persist for some time, but that will eventually decay. For each of the latter states, the
duration ofits persistence depends on the depth ofthe "’potential well" in which the relative
minimum stays.

In this section we will study only the properties of absolute and relative minima
of a given potential. Thus we will describe stable and metastable states of the corre-
sponding system, without attempting to characterize the metastable states that can
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persist for a given time period. The latter question will be considered in 5; there,
dealing with a solid-liquid system, we will introduce a modified potential for which
the following occurs: The absolute minima of the original and modified potentials
coincide, but the relative minima of the modified potential are just a subset of those
of the original one, and correspond to the metastable states that persist for the given
time period.

In several cases the potential functional contains a linear term, which can be
controlled; this allows us to explore all the possible configurations of the system. For
instance, in solid-liquid systems this linear term is proportional to the relative tem-
perature (cf. 5).

4.2. Distributed systems. For a scalar distributed system occupying a bounded
Euclidean domain 1), the state is represented by a real function u" 1)- N. We assume
that (3.1) and (3.2) hold, so that (3.3) is also fulfilled. We then fix any e L(f) and
consider a potential function of the form

(4.1) b(x(V): b(v)-(x)v Vvg a.e. in

to which we associate the potential functional

(4.2) e(v) := In
PROPOSITION 5. For any e L(O), u e L’(O) is an absolute minimum of e in

D(O) ifand only if almost everywhere in

e has no relative (nonabsolute) minimum with respect to the strong topology of
L’(a).

Proof. The first part is obvious. To prove the second statement, first, for any R
and any y we set

d (y, R):= inf lY- rl,
rR

proj (y, R) := { r R "[y r d (y, R)}.
Almost everywhere in f, let M(x)c R be the set of the absolute minima of

By contradiction let u Ll(f) be a relative (nonabsolute) minimum of ; then by
the first part of this proposition there exists a measurable set A c f such that/x (A) > 0
and

u(x) : M(x) a.e. in A.

For any e > 0, let us consider a measurable set A c A such that /z(A)>0 and

IA d(u(x), M(x)) dx <- e, and let

u(x) if x e
u(x)

e proj (u(x), M(x)) if xe a;
then

,(u)<,(u) and

contradicting the assumption on u. V1

By the first part of the previous proposition, as spans L(I)), the set of all the
absolute minima of e defines a multiphase structure in the following sense.

DEFINITION. For any family , of states u:f-R, the set P:= Uu u() ()
is called phase structure of . The family , is said to have an m-phase structure if P
has m connected components. For any u e and any connected component C of P,
u-l(c) will be called a phase.
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By Propositions 4 and 5, a system represented by the potential can have stable
states but admits no metastable states. To account for the latter we will introduce a
space interaction term.

Space interaction terms. We will use no term of the form AP(u):= [Vu(x)[p dx,
1 =< p =< ; in fact, by well-known trace theorems in Sobolev spaces 1], the condition
AP(u) <+ is not consistent with the discontinuities along surfaces that occur in
multiphase states. Rather, we will consider the functionals V, Ar, and r (0< r < 1),
defined in 2; they, and more generally any functional A e GC(12) (cf. 2), are
compatible with a multiphase structure. The physical meaning of these functionals will
be discussed in 5.

Thus, if b represents the potential density function, as a global potential functional
we consider := + A, or also, including linear perturbations, := + A, for any
: e L(II). As we have seen (cf. Proposition 3 of 3) under suitable assumptions
has an absolute minimum, q can also have a local relative (nonabsolute) minimum
u. By this we mean that

(4.3) =16 >0:’qwe L1(12) such that u-w has compact support in 12 and
Ilu w -< / _-< / A)(w),

and that u is not an absolute minimum. Note that the class of local relative minima
includes that of relative minima.

We will check the existence of such a u in the case of A V, b as in Fig. 1, and
0 almost everywhere in 12. Here u b in 12 is a local relative (nonabsolute) minimum,

since any small local variation of u in L1(12) increases the V-term more than it can
decrease the -term. Let us consider any function we L1(12) such that u-w has
compact support in 12 and ][u-wJJ/,(n) is "small." It is clear that taking values where
b is larger than 4(b) does not help to reduce + V; hence we can assume that there
exists a set S c 12 such that

w=b a.e. in12\S, e<=w<=i a.e. inS.

To reduce V(w) it is "convenient" that S be a sphere, of radius R, say. Then, for
instance, for 12 c R3,

V(w)- V(u) V(w) >= (e- b)47rR2,

(w)-(u) _--> [q(h)- dp(b)]4,n’R3/3;

hence for R sufficiently small, (+ V)(w) > (cb+ V)(u). Therefore u is a local relative
(nonabsolute) minimum of + V. A similar argument can be used for A At, for any
re]0, 1[.

Remark. The distinction between local and global relative minima of the free
enthalpy is related to the phenomena of homogeneous and heterogeneous nucleation
[3, Chap. 3].

4.3. Applications of Theorems 2 and 4 (cf. 3). For any e L(12), obviously
u e LI([-) is an absolute minimum of if and only if eOq(u). By Theorem 2 of
3 this entails that 0(u), or equivalently

(4.4) Oc(u(x)) f a.e. in 12;

hence u can be a multiphase state. For instance, for 4 as in Fig. 1,

(4.5) {y e [ 0b(y) } \]a, g[.
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Note that in general O(u)0(u); moreover, for any :c L(f) the absolute
minima of belong to Dom (A), and hence they do not generally coincide with the
absolute minima of .

Thus we have the following result.
PROPOSITION 6. For any L(f), if u is an absolute minimum of in LI(),

then (4.4) holds.
Thus the introduction of the functional A V, or A Ar, or A r (0 < r < 1) (cf

2) may modify the absolute minima of dp, but it maintains their phase structure.
Let us now consider local relative minima. Let us fix any sc L(O). The argument

of Proposition 5 can be used to show that e has no local relative (nonabsolute)
minimum; instead := O+A may have such a minimum. Any u LI() is either a
relative or an absolute minimum of e if and only if Ooo(u) (defined in (3.48));
by Theorem 4 of 3, this entails that

(4.6) 01oc(U(X)) a.e. in ft.

Thus also the relative minima have a phase structure. The latter can be different from
that of the absolute minima of qt. For instance, for as in Fig. 1,

(4.7) {yc R" O,o(y) } \[c,f] # {yc R" Od(y) # };

however, for as in Fig. 2,

(4.8) {y c N" O(y) } {y c N: 0o(y) # } {-1, 1}.

We have the following result.
PROPOSITION 7. The addition of either A V or A Ar or A r (0 < r < 1) to the

nonconvex functional dp allows local relative nonabsolute) minima to occurfor suitable

49 and . For any such A and any L(12), if u is a local relative minimum of in
LI(I)), then (4.6) holds. The phase structure of the (local) relative minima of can be

different from that of its absolute minima.

Propositions 4, 6, and 7 yield the following conclusions.
PROPOSITION 8. For any see L(E), for. a system governed by the potential :=

+ A, with either A V or A A or A A (0 < r < 1), stable and metastable states
have the phase structures (4.4) and (4.6) respectively; namely, (4.5) and (4.7), for 49 as
in Fig. 1.

5. Surface tension effects.
5.1. Supercooling and superheating. First we review the developments of [20]. Let

us assume that f is occupied by a substance capable of attaining two states, solid and
liquid for instance, here represented by u =-1 and u 1, respectively. At constant
pressure, the potential to be minimized is the total free enthalpy. First we consider the
function (x)(U) := (u)-(x)u, where := I{-1,1} (i.e., (y)=0 if ]y] 1, (y) +oo
if lyl 1) and sO(x) is (proportional to) the relative temperature, namely, the difference
between the actual temperature and its equilibrium value for a fiat solid-liquid interface.
Here, dealing with the stationary problem, we will assume that :(x) is prescribed
almost everywhere in 12.

Obviously, for any sc e L(12), u LI([-) is an absolute minimum of P (cf. (4.2))
if and only if

-1 if :(x)<0,
(5.1) u(x)

1 if :(x) > 0
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almost everywhere in 12. At the interface 5e between the phases, this yields

(5.2) : 0 on

more precisely, the latter condition holds only at points of continuity of
The functional e:Ll(f)RU{+oo} has no relative (nonabsolute) minima, by

Proposition 5 of 4; this excludes the possibility of representing metastable states.
Moreover, is not sequentially weakly lower semicontinuous; this causes difficulties
in the study of the evolution problem, in which the phase equilibrium condition (5.1)
is coupled with the heat diffusion equation, namely, the classical Stefan problem (cf.,
e.g., [7]). In the weak formulation of the latter problem, these difficulties are overcome
by means of convex regularization, namely, by replacing q with q*. This introduces
as possible equilibrium states also those corresponding to -1 < u < 1; the zones where
this occurs are interpreted as very fine mixtures of solid and liquid (so-called mushy
regions), with liquid concentration equal to (u+ 1)/2.

Obviously the convex regularization of does not introduce any relative minimum
for the functional, so that the representation of metastable states is still excluded.
Moreover, in several cases, conditions (5.1) are violated--either u 1 and <0 (super-
cooling) or u =-1 and > 0 (superheating) can occur. These effects are especially
evident in nucleation phenomena, namely, in the formation of a new phase. For a
sufficiently large single-phase system at a uniform temperature, once the duration of
our observation has been prescribed, there are two critical values al al(T)< 0 and
a2 a2(T) > 0 such that any stationary configuration of the system fulfills the following
conditions:

If : =<-a, then u =-1 in 1 ("all solid"),

(5.3) If st>_-a2, then u =- 1 in 12 ("all liquid"),

If -a < : < a2, then both u -1 in 11 and u 1 in lq are possible.

This phenomenon is due to the contribution given by the solid-liquid interface
to the global free enthalpy of the system [3, Chap. 3]. We represent this term by

fn ]Vu]+ f r+ rs (012)""7"0" O’L O’S
Ud N "V n(u) =2 2 a 2

(5.4)

here the constants o-, O’t, and ers denote the surface tension coefficients for a solid-liquid
interface and for contact between liquid and solid phases and an exterior substanc%
respectively; Ygu_ denotes the (N-1)-dimensional Hausdorff measure. Note that A
is equal to (or/2)V (cf. (2.7)) plus an affine term.

Thus our system is governed by the potential *e := e+. As we saw in 4,
admits not only an absolute minimum but also, for suitable :’s, a relative one; moreover,
each of these minima u is the characteristic function of some set 12+ c (i.e., u 1
in +, u =-1 in \+).

The either absolute or relative minima of xI,e fulfill a contact angle condition
between the interface 5’ (i.e., the set of interior points of the relative boundary of +)
and the boundary of ; this condition depends on the boundary terms of (5.4) (cf.
[20, 3]). These boundary terms also satisfy a weak form of the classical Gibbs-
Thomson law (here for c Rt)
(5.5) =-2r on 5e

at the points of continuity of : on 6e; here denotes the local mean curvature of
(assumed positive for a solid ball). Usually r is so small that (5.2) is an acceptable
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approximation of (5.5); however, the surface tension effect is more important where
the interface is only potentially present, as in nucleation phenomena. In 4 we
interpreted all relative (nonabsolute) minima of the potential as metastable states of
the system, namely, as states that persist only for some time and then decay because
of thermodynamic fluctuations. Also note that for any T> 0 there are relative minima
of the potential representing states that cannot persist for a time T. For instance, if
rL rs, then for any s L() both states u - -1 in fl ("all solid") and u 1 in fl
("all liquid") are either absolute or relative minima of cf. [20, 3]. Here we want
to give a criterion for selecting the metastable states that can persist for a prescribed
time T. As we have already remarked, there exist two critical temperatures, al(T)< 0
and a2(T)> 0, such that (5.3) holds; note that these values can be directly measured
by experiments on a system at uniform temperature. Let us take b such that

((-1) (1)= O, ’(-1)= a:, (’(1) --al,
(5.6)

is strictly concave in [-1, 1], (u) + if lul> ;
for instance, for a --a2 (=: a) we can take

(5.7)
a

2)(u)= (1-u if [u -<_ 1,

if lul> 1

(cf. Fig. 2). We conjecture that for any temperature distribution :" 12-> R the relative
(nonabsolute) minima of the functional e:= e+A correspond to the metastable
states that persist for the time period T. Note that if : is uniform in space, then this
criterion is obviously consistent with (5.3).

FIG. 2. Free enthalpy density function of a solid-liquid substance at the relative temperature 0 0:

a
2)(u) :- - (1- u iflul<=l,

(/ if lul > 1,

(a" constant > 0). Here u (u 1, respectively) corresponds to the solid phase (liquid phase, respectively).
More generally, we can consider b as in (5.6). For any 0, setting ::= LO/2rE (with L, rE constants greater
than zero), the free-enthalpy density function is (u):= (u)-u for all u.
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Then it is not difficult to check that, for a system at a uniform temperature
occupying a sufficiently large sample, the either absolute or relative minima of
fulfill (5.3). However, according to this model, in sufficiently small regions there is no
limit to supercooling and superheating, a fact that seems physically plausible; we refer
to [20, 3] for details.

For any : LP(fl) with p > N and for any absolute minimum u of, by (3.39)
the corresponding "reduced interface" 5* is a CI"(p-N)/2P surface, by a classical result
of De Giorgi [8]. The same result holds also for the relative minima of, since they
are absolute minima of a suitably modified functional , by Theorem 4 of [20].

5.2. Selected mushy regions. So far we have excluded intermediate states between
solid and liquid from our model. However, in some cases there is evidence of such
states: Mushy regions can appear by internal heating of a solid; also, clouds and fog
can be regarded as intermediate phases between liquid and vapor. These states corre-
spond to very fine mixtures of the two pure phases; hence they are characterized by
the concentration X of the more energetic component, for instance, liquid in a solid-
liquid system. As we set u=-I in the solid and u= 1 in the liquid, any X[0, 1]
corresponds to u 2X 1. To represent intermediate phases in our model, it is sufficient
to take a potential function b that is locally convex on a suitable subset of ]-1, 1[;
thus we can select a precise concentration range for our stationary mushy regions.

Several choices are possible. If 4) is as sketched in Fig. 3a, then two stable
intermediate phases can be formed; they also appear as two layers between solid and
liquid phases, a fact that does not seem to correspond to usual phenomena. For th as
in Fig. 3b, two metastable intermediate phases can be formed; they cannot appear at
solid-liquid interfaces, which would seem nearer to the usual physical evidence.

A free enthalpy density 4) similar to that of Fig. 3a, but with vertical asymptotes
for u =-1 and u- 1, can represent systems of two partially miscible components; in
this case (u / 1)/2 represents the concentration of one of the two components [2].

5.3. Interfaces with infinite perimeter. The physical meaning of the phase-interac-
tion functionals V and Ar (0 < r < 1) can be roughly understood in the framework of
the so-called quasi-chemical approach (see, e.g., [2, Chap. 2]). This theory is based on
the assumption that there exist bonds, namely, forces, between pairs of atoms, and
that these bonds have different intensities in the two phases. This accounts for the
presence of a latent heat of phase transition. Bonds are also present between atoms
of different phases; this corresponds to the presence of a phase-interaction term in the
energy functional.

Usually, just the interaction between nearest neighbors is considered; then, as
shown in [3, Chap. 2], the atoms at the interface between two phases contribute to
the free enthalpy, which is proportional to the area of the interface itself. Thus, still
setting u =-1 in the solid and u 1 in the liquid, we can represent this quantity by

V(u):-- IVul(5.8)
2

where tr > 0 is the surface tension coefficient. The contribution on the boundary of i)

(cf. (5.4)) can be similarly justified.
Let us now remove the restriction on bonds between nearest neighbors; then the

zone of interaction between the two phases is not confined to their interface. If we
denote by 4g(x, y) (greater than or equal to zero) the contribution due to two atoms
of different phases sitting at two points x, y fl, then the global phase-interaction
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(a)

(b)

FIG. 3. Examples offree-enthalpy density functions for systems with phase mixtures, corresponding to

-l<u<l.
(a) b (a) 4 (d) inf d; u b and u c are flexi. <= u <-_ a and d <- u <- correspond to stable states;

a < u < b and c < u < d to metastable ones.

(b) u a and u b are flexi, u + correspond to stable states; -1 < u < a and b < u < to metastable
ones.

The limit cases b c in (a) and a b in (b) are admitted.
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contribution to the free enthalpy is given by

(5.9) A(u) f f2 lu(x)- u(y)lg(x’ y) dx dy
.I

(__<+o).

This model can be compared with that proposed by Rogers [17].
If the substance is homogeneous and isotropic, then g(x, y)= (Ix-yl), with

decreasing function N+ - N+. If has large orders of infinity at zero and ofinfinitesimum
at +, then the functional Ag corresponds to a short-range interaction; consequently,
the free-enthalpy contribution of the bulk of each phase is not much affected by the
interaction with the other phase. In particular, if

(S.10) ,(h)=o-rh-(3+’) VhG+

(3 is the space dimension, trr: constant greater than zero), with 0< r < 1, then the
corresponding functional Ar is a seminorm in the fractional Sobolev space wr’l(12)
(cf. [1] and 2). Here it is not clear how the exterior boundary contribution to the
free enthalpy might be represented, because the functions of wr’l(l) (0< r< 1) do
not admit traces on 0.

V(u) and At(u) can be regarded as measures of the interface between the two
phases. For any r e ]0, 1[, if V(u) < +, then A(u) < +m, but the converse does not
hold. For instance, a dendritic interface can correspond to Ar(u)<+c for some
re ]0, 1[; then has infinite area, namely, V(u)= +o.

We point out two open questions"
(1) Vectorial case. Phase structures can also appear in systems characterized by

a vectorial state variable. An example is given by the Landau-Lifshitz microscopic
model offerromagnetism [13, Chap. 5]. Here the state is characterized by the magneti-
zation field, which has prescribed modulus and variable orientation; the phase structure
corresponds to the splitting of the system into domains of approximately uniform
magnetization. Some mathematical aspects of this phenomenon are considered in [19].
Here, what is the natural space interaction contribution to the free enthalpy?

(2) Relation to the phase field model For b := I_1.t, Modica and Mortola have
shown that the absolute minima of := + V can be characterized as the F-limit (in
the sense of De Giorgi) of a family of more regular functionals [14]-[16]. Can a similar
result be proved for V replaced by Ar (0 < r < 1)?
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NONADIABATIC PLANE LAMINAR FLAMES
AND THEIR SINGULAR LIMITS*

VINCENT GIOVANGIGLIt

Abstract. A steady, premixed, nonadiabatic plane laminar flame with a one-step chemical mechanism
is considered. By means of standard combustion approximations the model reduces to a two-point boundary
value problem on the real line with an eigenvalue. Existence of a solution is achieved by first considering
the problem in a bounded domain and by using the Leray-Schauder degree theory, and then by taking an
infinite domain limit. The singular limit of high activation energy in the Arrhenius source term is then
studied. Strong convergence to solutions of a limiting free boundary value problem determined by the
discontinuity of the derivatives on the free boundary is proved. Further, correctors are specified in terms

of the activation energy.

Key words, flame, nonadiabatic, wave

AMS(MOS) subject classifications. 34B15, 34B25, 34E20

1. Introduction. Traveling wave solutions to combustion models have recently
been investigated by Berestycki, Nicolaenko, and Scheurer [1]. These authors have
considered a system of two reaction diffusion equations modeling an adiabatic plane
laminar flame with a nonunity Lewis number and a one-step chemical mechanism.
Berestycki, Nicolaenko, and Scheurer have proved the existence of a solution and have
studied the singular limit of high activation energy in the Arrhenius exponential term.
They have proved strong convergence of the traveling wave to singular-limit free-
boundary solutions with discontinuous derivatives. A related initial value problem has
been investigated by Larrouturou [12] and Marion has considered a model with no
ignition temperature [13]. In the framework of the constant density approximation
[16] Berestycki and Larrouturou [2] and Berestycki and Niremberg [3] have also
investigated a two-dimensional thermo-diffusive flame model.

In this paper, we present new results concerning nonadiabatic traveling waves
and their singular limits. Nonadiabaticity is modeled by a heat loss term in the energy
equation [16]. This situation fundamentally differs from the adiabatic case since
multiple solutions are known to occur [4], [9], [16]. The crucial point in our analysis
lies in the exchange of role between the reduced mass flux c of the wave, which is the
natural eigenvalue of the problem, and the maximum heat loss rate parameter A. A
priori estimates for the reparameterized problem are derived and an upper bound Cad
for the reduced mass flux c is obtained. This upper bound corresponds to the adiabatic
flame eigenvalue Cad. Existence of a solution for c (0, Cad is proved by first considering
the problem in a bounded domain, which allows the reduction of the corresponding
problem to a fixed-point formulation, and then by taking an infinite domain limit.

We then specify the dependence of the chemical Arrhenius source term on the
inverse of the reduced activation energy e, and we investigate the singular limit e - 0.
In the adiabatic case, a one-term expansion has been rigorously established by Beres-
tycki, Nicolaenko, and Scheurer for general Lewis numbers [1]. In the nonadiabatic
case, formal asymptotic analyses obtained with matched expansions have been known
for a long time [4], [9], [17]. An important result of these asymptotic investigations
is that the curve c A is bell shaped. But these results are not rigorous from a
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mathematical point of view. In this paper, we first prove strong convergence of the
nonadiabatic traveling wave to singular limit free-boundary solutions with discon-
tinuous derivatives. We next investigate corrector terms, and we rigorously justify a
two-term expansion in powers of e. These corrector terms require the introduction of
stretched variables. In particular, we fully justify for the first time the reactive internal
layer analysis [4], [9], [17].

The governing equations are presented in 2, a priori estimates are derived in
3, and existence of a solution is obtained in 4. The first-order asymptotic analysis

is then given in 5 and correctors are obtained in 6.

2. Setting of the problem.
2.1. Governing equations. We consider a steady, premixed, nonadiabatic plane

laminar flame propagating in a tube. We assume that the chemical mechanism is
reduced to a single-step reaction of order n > 0 governed by Arrhenius’ law. Heat
exchanges between the gases and their surroundings are modeled by a heat loss term
in the energy equation [4], [9], [16]. Using standard combustion approximations, e.g.,
very subsonic speeds, constant specific heats, Lewis number unity, Fick’s law for
diffusion, etc., the problem can be reduced to the following governing equations:

(2.1) -u"+ cu’ f(u)v" Ag(u),

(2.2) -v"+ cv’= -f(u)v",

with the boundary conditions

(2.3) u(-) O, v(-) 1,

(2.4) u(+) =0, v’(+) =0,

where u denotes the reduced temperature, v the reactant mass fraction, c the reduced
mass flux, f the reduced source term, h the reduced heat loss rate in the hot gases,
and g the reduced heat loss rate function. In this model, the physical unknowns are
u, v, and c > 0 and the governing equations (2.1), (2.2) are conservation equations for
energy and reactant mass fraction which include diffusion, convection, reaction, and
heat loss terms. The boundary conditions (2.3), (2.4) mean that the incoming reactant
is at the cold temperature and that heat losses freeze the chemical reaction behind the
flame. We refer to [4], [9], 16] for more details on the physical derivation of the model.

The natural problem would be to find a nontrivial solution (u, v, c), with (u, v)
(0, 1) and c > 0. However, formal asymptotic theories indicate the presence of turning
points with respect to h and therefore of multiple solutions [4], [9], [16], [17]. These
theories also indicate that the reduced mass flux c may be used to reparameterize the
solution’s manifold so that h does not depend monotonically on c. As a consequence,
it is more convenient to consider c as a parameter and h as the eigenvalue and to seek
solutions (u, v, h) of (2.1)-(2.4) with (u, v) (0, 1) and h > 0. This reparameterization
technique closely follows continuation methods used for computing turning points [5],
[6], [11], [15]. Note that from a physical point of view these turning points with respect
to h correspond to flammability limits. More generally, most laminar flame extinction
limits are turning points [5], [6], [16].

2.2. Assumptions. The source term is usually given by Arrhenius’ law and will be
specified in 5. For the existence result we will only assume that

(2.5) f is C1[0, 1] and f is nondecreasing,

(2.6) :10(0, 1) f=0 on [0,0] and f>0 on (0, 1].
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Here 0 is an ignition temperature related to the cold boundary difficulty [1], [7], [8],
[13]. Although the solutions of (2.1)-(2.4) will be such that 0_-<u-< 1 we extend f to
be defined on R by setting

(2.7) Vu>-I f(u)=f(1)=m, Vu<-O f(u)=0,

where m denotes the maximum off on R.
The heat loss function g satisfies the following hypotheses"

(2.8) g is C1[0, 1], g(0)=0, g(1)= 1,

(2.9) :la, fl 0< c -<_ g’-<_/3.

The reduced heat loss term Ag(u) is usually a polynomial in u whose coefficients
depend on the geometry of the tube where the deflagration takes place [9], [16]. We
extend g to be defined on by setting

(2.10) lu>--_l g(u)=g(1)+g’(1)(u-1), Vu<--O g(u)=-g(-u).

Last, for n>0 we substitute Ivl"-lv for v", we define fi =min (1, n) so that v- v"
is Cn(+), and we assume that

(2.11) c>0,

since in scaled variables c represents the reactant mass flux.

2.3. Reduction to a lroblem on +. Let (u, v, A) be a nontrivial solution of (2.1)-
(2.4). Then, after a shift of the origin, if need be, u satisfies

(2.12) u(0) 0, Vx < 0 u(x)< O,

where 0 is the ignition temperature (2.6). Indeed from Lemma A of the Appendix we
easily check that u <_- 0 would imply that (u, v)= (0, 1). Now from (2.6) we get that

v(x) 1 + (v(0) 1) exp (cx),

v’(O)=c(v(O)-l),

(2.13)

(2.14)

and

(2.15)

(2.16)

-u"+ cu’ + Ag(u) =0,

u(-) 0, u(0) 0,

and the boundary value problem (2.15), (2.16) is the object ofthe following proposition.
PROPOSITION 2.1. Assume that O, >-0, and 6> 0 are arbitrarily given constants.

Then the problem

-u"+ u’+ g(u) =O

u(-o) o, u(O) o
has a unique solution u which depends continuously in the C3(_) topology on , , 6),
and the following inequality holds for 0 >- 0:

6+x/ez+4X/3
<u(x) <ffexp x(2.17) Vx_-<0 0 exp x

2 2

Furthermore, if (0", , ) u’(O) then b is C in (if, , ), d is odd in ff and

(2.18)
E" +/6 +4a

<_ 0____=< ’-" X/-’2 -- 4fl2 00 2
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Remark. The case 0 <_- 0 will be needed in 4 where boundary conditions of mixed
type w’(0)- q(w(0), , 6) will be considered for arbitrary functions w.

Sketch of the proof. We first prove the existence of a solution. We do not consider
the trivial cases 0 or t 0 and since g is odd we may assume that t> 0 and > 0.
For y let us denote by uv the solution of the initial value problem

-u"+cu’+g(u)=O,

u(O) o, u’(O) %

and let us consider the subsets F/ and F_ of defined by

F+ {, /lx < O, u(x) < 0},

F_ {/ / lx < O, u(x) > 0}.

We claim that F/ and F_ are nonempty open intervals of R. Indeed F/ and F_ are
open from the continuous dependence of u on y, and from Lemma B of the Appendix,
if y F/ then y, +c) c F/ and similarly y F_ implies that (-c, y] c F_. Furthermore,
from Lemma B and B’ and (2.9) we easily check that (Or, +c)c F/ and (-, Or)c F_

where r =(6+x/62+4.a)/2 and rt =(6+x/62+4fl)/2. Now let yF+, choose Xo<0
such that uv(xo)<0 and u(xo)>0, and let w be the solution of the initial value
problem on (-oo, Xo]

-w"+ cw’ +aw O,

W(Xo) U(Xo), w’(xo)= u’(xo).

Since Vs_<-0, g(s)<-as we deduce from Lemma B that uv-<_ w and hence ur-- as
x - -c. The same type of argument proves that if y F_ then uv - +c as x -* - and
therefore F_ and F+ are disjoint. As a consequence, there exists y such that 0_-< u _-< 0.
Denoting by u this solution we easily deduce from Lemma C of the Appendix that
Vx<-_O, u’(x)> 0. Hence u(-c) exists so that u"-cu’ has a finite limit when x- -and this limit is necessarily zero; otherwise u(-c)=+. Thus hg(u(-o))=0 and
hence u(-) 0 since > 0.

Now the uniqueness of the solution and (2.17) are consequences of Lemma A
and the continuous dependence on (0, A, 6) is straightforward. Furthermore, we can
prove that q= u’(0) is C in (if, , 6) and that if is the unique solution of the
boundary value problem

-"+ 6’+g’(u) O,

(-) 0, (0) 1,

then Od/lO0 ’(0) and inequalities (2.18) are easily obtained.
Now combining (2.13), (2.14), and Proposition 2.1 we get the following propo-

sition.
PROPOSITION 2.2. Every nontrivial solution (u, v) (0, 1) and h >- 0 of (2.1)-(2.4),

after a shift of the origin, is a solution of (2.1), (2.2), (2.4), and

(2.19) u(0) 0, u’(0) if(u(0), A, c), v’(0) c(v(0)- 1),

and conversely every solution (u, v) and h >=0 of (2.1), (2.2), (2.4), (2.19) can be extended
to by means ofProposition 2.1 and (2.13) in such a way that it is a nontrivial solution
of (2.1)-(2.4).

In the following we will denote the problem of finding a solution (u, v, A) to
(2.1), (2.2), (2.4), (2.19)with a->_0.
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3. A priori estimates.
3.1. A priori estimates for (u, v, A). In the following statements, we derive strong

estimates for solutions (u, v, A of , that is to say for solutions (u, v, A) of (2.1), (2.2),
(2.4), (2.19) such that A _-> 0.

PROPOSITION 3.1. U and v satisfy

(3.1) 0<_-v<l, v<u+v<l,

(3.2) -c _-< v’ _-< 0, -c -< u’ + v’ -< 0.

and A is positive.
PROPOSITION 3.2. There exists x> 0 such that

(3.3) Vx [0, x) v’(x) < 0,

(3.4) Vx [x, +oo) v’(x) O.

Furthermore either u(xo) O, u < 0 on (x, +o), and 0 < v(x) < 1 or v(xo) O. The
latter case may only occur in the case 0 < n < 1.

Proof. The proof of Propositions 3.1 and 3.2 is lengthy and technical but simple.
First note that 0< v(0). Arguing by contradiction, we know from (2.19) that

v’(0)=c(v(0)-l) so that v(0)-<0 implies v’(0)<0. Now letting w(x)=
v(x) v(O) + v’(O)x) we have w(0) 0, w’(0) 0 and w"(0) cv’(O) +f( u(O))v (0) < O.
Thus the set E={x>O/Vte[O,x]w(t)<=O, w’(t)=0} is not empty. Letting now
z =sup E we must have z +m; otherwise w(z)<=O, w’(z)<=O and
w"(z)=cv’(z)+f(u(z))vn(z)<O since v’(z)=v’(O)+w’(z)<O and v(z)=
v(0)+ v’(O)z + w(z)< 0 and w" is negative in a neighborhood of z, which contradicts
the definition of z. Thus we deduce that v’<= v’(0) on N/, contradicting (2.4).

Now if n >_- 1 then v > 0, whereas if 0 < n < 1 then v >- 0. Arguing by contradiction,
we assume that there exists Xo such that V(Xo)< 0. Then since 0< v(0), there exists xl
such that v(xl)< 0 and v’(x)< 0, and proceeding as above yields that v’<= v’(x) on
[x, +m), contradicting (2.4). Therefore v->0, and in the case n->_ 1 if V(Xo)=0 and
v’(xo) < 0 we again get that v’=< v’(xo); whereas if V(Xo)=0 and v’(xo)=0 then v =0
from the uniqueness of the solution to the Cauchy-Lipschitz problem, contradicting
(2.19).

We now claim that there exists x>0 such that v’<0 on [0, x) and v’=O on
[x, +c). Indeed v _-> 0 so that we have

v"-cv’=f(u)v>_O,

and from Lemma C of the Appendix, i.e., the strong maximum principle, applied on
Ix, y] we deduce that either v =Cte and v’(x)=0 or v(x)= maxtx,ylV and v’(x)<0,
or v(y) maxtx.ylV and v’(y) > 0. However, if v(y) maxt.y v >_- 0 and v’(y) > 0 then
letting w(x)=v(x)-(v(y)+v’(y)(x-y)) we have w(y)=0, w’(y)=0, and we may
easily check that w" remains positive on [y, +). Thus we have v’>= v’(y) on [y, +),
contradicting (2.4). Hence we have v’-< 0 and if v’(x)= 0 then for all y >= x, v’(y)= O.
Moreover, v’(0)= 0 implies v’= 0 on , and hence v 1 and u-< 0, which contradicts
u’(O) t( O, A, c) >- cO. Therefore v’(0) < 0 and the set

E {x > O/V [0, x)v’(t) < 0}

is not empty. Furthermore E is bounded since there exists Xo such that u(x)<-0 for
x => Xo and hence such that v"- cv’= 0 on [Xo, +), which implies that v’= 0 on [Xo, +o)
since v’(+o)=0. Now letting x=sup E, we obtain (3.3), (3.4). Moreover, since
v’(0) c(v(0) 1) and v’(0) < 0, we have v _-< v(0) < 1 on +.
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Assuming then that u(xo)< 0, we deduce that v’-0 in a neighborhood of x
since v"-cv’= 0 and v’(xo)- 0, contradicting the definition of x. On the other hand,
if u(xo)> 0 then f(u(xo))V(Xo)n=o implies that v(xo) =0, which may only occur
when 0 < n 1 from the uniqueness of the solution to the Cauchy-Lipschitz problem.
Last, when u(x) 0 and v(xo)>O we havef(u(x))=O for x>-xoo and hence u(x)<= 0
and it is straightforward to prove that u 0 on (x, /oo) using the maximum principle.
Hence, we have shown that either u(xo) 0, for all x xo, u(x) O, and v(xo) (0, 1),
or v(x)-0. The latter case may only occur when 0 n < 1.

We now claim that u 0 on /. Arguing by contradiction, we assume that there
exists Xo such that U(Xo) 0 and u 0 on [0, Xo), so that u’(xo) <-_ O. But since -u"/ cu’ +
Ag(u) -0 in a neighborhood of Xo, u’(xo) =0 implies that u -0, contradicting u(0) 0.
Hence u’(xo) 0 and proceeding as for v yields that u(x)<-_ U(Xo)/ u’(xo)(X-Xo) on
[Xo, /oo), contradicting u(+oo)=0.

Now using (2.1), (2.2), we get that

(u + v)"- c(u + v)’= Ag(u) _--> 0,

and from the maximum principle applied on Ix, y] with y large enough, we deduce
that (u / v)’(x) 0 since u(x) u(+oo) and v is nonincreasing. Furthermore, from
(2.19) we have

(u+v)’(O)=d/(u(O),A, c)+c(v(O)-l)>--c(u(O)+v(O)-l)

since q,(u(0), A, c) >- cu(O). Therefore u(0) + v(0) < 1 since u’(0) + v’(0) < 0, and we
have obtained that u + v < 1 and u’ + v’ < 0 on +. Furthermore, u and v are such that
-c(1-v)-< v’ and -c(1- u-v)<= u’+ v’ on +, as we can show by integrating the
inequalities v"-cv’>=O and (u+v)"-c(u+v)’>-O from zero to x.

Finally, assuming that Z =0, we have -(u + v)"+ c(u + v)’ 0, which implies that
u’+v’=y exp (cx), where y is a constant. Then if y#0 we deduce with (2.4) that
u’(x) -> +oo as x - +oo, implying that u(x) --> +oo, which contradicts (2.4). We thus have
y 0 so that u + v is a constant. On the other hand, we get from (2.18) that q,(0, 0, c) cO
and using (2.19) we obtain u’(0) + v’(0) (u(O)+v(O)- 1) so that finally u+v= 1 and
v(+oo) 1 from (2.4), which contradicts v(+oo) < v(0) < 1, and the proof is complete.

Remark. These propositions show how heat losses may freeze the chemical reac-
tion, leading to a positive residual of unburnt reactant v(xoo), unless the reaction has
already been completed. This will occur in the case 0 < n < 1 as will be seen later.

COROLLARY 3.3. We have

(3.5) O<=v(x)<v(O)<l-O,
2

(3.6) 0 < A<

Proof From Propositions 3.1 and 3.2 we deduce that v(0)< 1-0 since u(0)+
v(0) < 1 and 0 <= v(x) < v(0) since x is positive. On the other hand, we also deduce
from u’(0)+v’(0)-<_0 that q,(0, A, c)<=c. Using (2.18), we get A <c2/aO2, and since
A > 0 from Proposition 3.1 we deduce (3.6).

3.2. An upper bound for the reduced mass flux c. In this section we first recall
some results about adiabatic flames and then we prove that if the problem has a
solution, the reduced mass flux parameter c must be in some interval (0, Cad). In the
next sections we will show that this condition is sufficient.
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When there are no heat exchanges between the hot gases and their surroundings
the problem is called adiabatic and A 0. The corresponding equations are

(3.7) -u"+cu’=f(u)v",

(3.8) -v"+ cv’= -f(u)v",
with the boundary conditions

(3.9) u(-oo) 0, v(-oo) 1,

(3.10) u(+o) 1, v(+o) 0.

The unknowns here are u, v, and c > 0. Since (3.7)-(3.10) imply that u + v 1, we can
prove as in Proposition 2.2 that (3.7)-(3.10) is equivalent to finding u defined on
and c > 0 such that

(3.11) -u"+ cu’= F(u),

(3.12) u(0)-- 0, u’(0) cu(0), u(+) 1,

in the particular case F(u)=f(u)(1-u)". This adiabatic flame problem (3.11), (3.12)
has been extensively studied [1], [7], [8], [10], [13], and we have the following theorem.

THEOREM 3.4. (Johnson-Nachbar.) Assume that F C[O, 1], F>0 on (0, 1) and
F(1) =0. Then there exists a unique solution (UaO, Cd) of (3.11), (3.12), the eigenvalue
Cd is positive, and the map sending F to c,o is continuous for the C[ 0, 1 topology and
strictly increasing, i.e., F <-_ F2 and F F2 imply that 0 < Cad(F1) < Cad(F) with obvious
notation.

We can now state the main result of this section.
PROPOSITION 3.5. If there exists a solution of then

(3.13) 0< C < Cad

where Cad is the adiabatic mass flux in the particular case F(u)=f(u)(1- u)".
Proof We use a phase plane argument. From Proposition 3.1 we know that u < 1 v

and hence f(u) _-< f(1 v) so that

(3.14) -v"+ cv’ +f(1 v)v" >- O.

Let us introduce k=(1/c)v’ v- from [v(x), v(0)] to _. From Proposition 3.2 and
(3.14) we get that

k c[v(x), v(0)] c’(v(x), v(0)],
dk 1

(3.15) -k-dfy+k+-fif(1-y)y">=O on (v(x), v(O)],

k<0 on(v(x),v(O)], k(v(x))=O, k(v(O))=v(O)-l.
Let us also introduce the solution (UaO, Cad) of (3.11), (3.12) with F(u)=f(u)(1-
and let us set Vad 1--Uad. NOW introducing kad=(1/Cad)V’do Va- from [0, 1--0] to
we can easily prove that

kad 6 C[0, 1 0] fq CI(0, 1 0],

dkad 1
(3.16) --kad---i---+kad+_--f(1--y)yn=O on (0, 1-0],

ay Cad

kad<0 on(0,1-0], gad(0)=0, kad(1-O)=-O.
Now since (d/dy)(kad-y)<O and O<=v(x)<v(O)<l-O from (3.5) we get, by
integrating from v(0) to 1- 0, that

(3.17) k(V(0)) < gad(V(0)) ( 0.
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On the other hand, for y (v(x), v(0)] we have from (3.15), (3.16)

d
(3.18)

dy

where

{(k2- kad)G(Y)} <- 2(- )f(y)ynG(y)

G(y) =exp
k(s)+ kad(S)

ds

and integrating (3.18) from v(xo) to v(0) yields

(3 19) k:(v(O)) kd(V(O))+k2ad(V(Xoo))G(v(x)) <2 -51 cadl .,(- f(y)y"G(y) dy.

Now combining (3.17) and (3.19) we deduce that c < Cad, and the proof is complete
since c > 0 from assumption (2.11).

4. Existence of a solution.
4.1. Existence in a bounded domain. In this section we consider a problem similar

to but posed on a bounded domain [0, a]. This problem is equivalent to a fixed-point
equation that we solve with the Leray-Schauder degree theory. In the next section we
will pass to the limit a +. Our procedure follows that of Berestycki, Nicolaenko,
and Scheurer 1].

We consider the following problem , where 0 < a <+ is given" assuming that
0<C<Cad as in Proposition 3.5, find a solution (u, v,A) defined on [0, a] with
satisfying (2.1), (2.2), (2.19), and

(4.1) (a) =0, v(a) =0.

Let us introduce the Banach space X cl[0, a] x C[0, a] x N equipped with the
norm II(u, v, )11 =max (llull’eo,, Ilvlllco,, I1) and consider for r[0, 1] the map-
ping K, from C[0, a] x C[0, a]x R+ to X defined by

(4.2) ,(u, v, a) u, v, a + 0 u(0)),

where U and V are solutions of

(4.3) -U"+ cU’= r(f(u)v -Ag(u))+ (1-r)(mV-AaU),

(4.4) V" + c,V’ -rf(u)v -(1 r)m V,

with the boundary conditions

(4.5) u’(0) 6(u(0), a, c,) + (1 ,)c,U(O), v’(o) c,(v(o) 1),

(4.6) U(a) =0,

and where c, denotes the constant

(4.7) c,=c

V(a) =0,

Cad(F-r)
Cad

with F,(u)=-F(u)+(1-’)m(1-u) and Cad=Cad(F). Note that solutions of , are
fixed points of K1 and conversely.

PROPOSITION 4.1. The operator K, is well defined and the map (’, u, v,A)-
K,(u, v, A) is compact.
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Sketch of the proof. U and V can be calculated explicitly, and the compactness
is straightforward.

Now we introduce the open bounded set of X defined by

(4.8) {(u, v,h)X/l[u[[c,o.,<R, llVllc[o.,]<R,O<h <A},
where R > 0, A > 0 are constants and the following proposition shows that the degree
d(I- K, fl, 0) can be defined for suitable R and A provided a is large enough.

PROPOSITION 4.2. There exist constants R and A such that for every c in (0, Cad),
there exists ac > 0 with

(4.9) Va>-ac, VrE[O, 1] (I-K)(O);O.

Proposition 4.2 relies on Lemmas 4.3-4.5 in which we derive strong estimates for fixed
points of K.

LEMMA 4.3. Let u, v, A be a fixed point ofK, then

(4.10) 0_-<v_-<l, v<-_u+v<-_l,

(4.11) -c <_-- v’ <_-- 0, -c <_-- u’ + v’ <_-- 0.

Proof. The proof is essentially similar to that of Proposition 3.1.
First note that 0< v(0). Indeed from (4.5) we know that v’(0)= c(v(O)-1) so

that v(0) -<_ 0 implies that v’(0) < 0. Letting now w(x) v(x) (v(O) + v’(O)x) we have
w(0)- 0, w’(0)-0, and w"(0)= cv’(O)+zf(u(O))v"(O)+(1-r)mv(O)<O. Thus the set
E {x (0, a]/Vt [0, x]w(t) <- O, w’(t) <= 0} is not empty. Now letting z sup E we
must have z=a; otherwise w(z)<-O, w’(z)<-O, and w"(z)=cv’(z)+rf(u(z))v"(z)+
(1-r)mv(z)<O; since v’(z)=v’(O)+w’(z)<O and v(z)=v(O)+v’(O)z+w(z)<O
and w" is negative in a neighborhood of z, which contradicts the definition of z.
Thus we get v(a) <- v(O)+v’(O)a <0, contradicting (4.6).

To prove that v->_ 0, we argue by contradiction and we assume that there exists

Xo with V(Xo)< 0. Then, since 0< v(0), there exists Xl (0, Xo) such that V(Xl)< 0 and
v’(xl)<0. Proceeding as above yields that v(x) V(Xl)+V’(xl)(X-Xl) on [xl, a],
contradicting (4.6).

We now claim that v’_-<0 on [0, a]. Indeed, v-> 0 so that we have

v"-cv’= zf(u)v" + (1- r)mv >_- 0

and from Lemma C of the Appendix, i.e., the strong maximum principle, applied on
Ix, a] we deduce that v=Cte and v’(x)=0 or v’(x)<0 since v(x) > v(a)=0. Thus
v’ <_- 0 on [0, a] and from (4.5) we obtain that c(v(0) 1) v’(0) _-< 0 and v _-< 1.

To prove that u_->0 on [0, a] we again argue by contradiction. Indeed, if there
exists Xo (0, a) such that U(Xo) <0, then there exists x (0, Xo) with U(Xl)<0 and
u’(xl)<0 since u(0)-0>0. Now letting w(x)=u(x)-(u(x)+u’(x)(x-x)) we
have w(xl)=0 and w’(xl)-0 and w"(x)=cu’(xl)-rf(u(x))v"(xl)+rhg(u(xl))-
(1-r)mv(xl)+(1-z)hau(xl)<O, since u’(xl)<O/v(x)>-O, and U(Xl)<0. Thus the
set E {x (Xl, a]/Vt [x, x]w(t) <-0, w’(t) <-0} is not empty. Now letting z=sup E,
we must have z a, otherwise w(z) <-0, w’(z) <-0, and w"(z) cu’(z)-rf(u(z))v"(z)+
rhg(u(z))-(1-r)mv(z)+(1-r)hau(z)<O, since u’(z)=u’(xl)+ w’(z)<0, v(z)>-_O,
and u(z)=u(xl)+U’(X)(Z-Xl)+W(z)<O, and w" is negative in a neighborhood of
z, which contradicts the definition of z. Thus u(x)<-_ u(xl)+ u’(xl)(X-Xl) on [x, a],
contradicting u (a) 0.

Moreover, using (4.3), (4.4) we get that

(u + to)"- c(u + v)’-- rAg(u) + (1 r)Aau 0.
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From the maximum principle applied on [x, a], we deduce that (u+v)’(x)<=O, since
(u+v)(x)>=(u+v)(a)=O. On the other hand, from (4.5) we have

(u + v)’(O) "rO(u(O), A, c.) + (1 ’)c.u(O) + c.(v(O) 1 _-> c.(u(O) + v(O) 1 ),

since q(u(0), ;t, c)>= cu(O). Therefore u(0)+ v(0) -< 1, since u’(0)+ v’(0) =<0, and we
have obtained that u + v -< 1 and u’+ v’ <- 0 on [0, a]. Finally u and v are such that
-c(1 v) -< v’ and -c,(1 u v) -< u’ + v’ on [0, a] as we can show by integrating the
inequalities v"-cv’>=O and (u+v)"-c(u+v)’>-O from zero to x, and the proof is
complete.

In the following lemma we obtain an upper bound for the eigenvalue A.
LEMMA 4.4. Let u, v, A) be a fixed point of K; then

m
(4.12) A<.

aO

Proof Arguing by contradiction we assume that A -(m/aO). In this situation we
easily check that u=> 0 implies that r(f(u)v"-Ag(u)) and (1-’)(mv-Aau) are both
nonpositive. Now letting w(x)=u(x)-(u(O)+u’(O)x), we have w(0)=0, w’(0)=0,
and w"(0)= c,u’(O)-r(f(O)v"(O)-Ag(O))-(1 -r)(mv(O)-AaO) >0, since u’(0)>0,
f(O)v"(O)-Ag(O)<=O, and mv(O)-AaO<-O. Moreover, we may easily show, as in the
proof of Lemma 4.3, that w" remains positive on [0, a]. This implies that u->_ 0 on
[0, a], which contradicts u(a) =0.

The next lemma shows that the eigenvalue A cannot be zero if a is large enough.
LEMMA 4.5. For every c in (0, Cad there exists ac > 0 such that

(4.13) Va>-_ac, VT"[0,1] (I-K)(u,v,h)=O==>h>O.

Proof. Arguing by contradiction, we assume that for every positive integer there
exist ai => i, ri [0, 1], and u, v C1[0, a] such that (u, vi, 0).is a fixed point of K,.
From Lemma 4.3 and (4.3), (4.4) we easily deduce that for every compact [0, a], u
and vi are uniformly bounded in C2[0, a] for i-> a. Now using the H61der continuity
of v--> v n, we further get that u and v are uniformly bounded in C2+[0, a] for i=> a,
where min (1, n). By compactness, possibly taking a subsequence, we may therefore
assume that

ri - r, (u, vi) - (u, v) in Coc(+).

Now 0(0, 0, c) cO from (2.18) so that u’(0) c,O and a simple calculation gives that
u(x)+vi(x)= 1-exp(c,(x-a)) on [0, a]. Taking the limit i-->+ therefore yields

-u"+ cu’= ’f(u)v +(1 -’)mv,

u(O) O, u’(O) cO, u + v l,

which implies that u is nondecreasing and u(+oe)= 1. Hence c=Cad(F), which
contradicts (4.7).

Proof of Proposition 4.2. From Theorem 3.4, Cad(F) depends continuously on -,
and we may let R>sup{cad(F)/O<-7"<=l}+l and A=m/aO and Lemmas 4.3-4.5
obviously imply (4.9).

The value of d (!- K,, f, 0) is now given by the following proposition.
PROPOSITION 4.6. Under the same hypotheses as Proposition 4.2 and provided a is

large enough we have

(4.14) ’r [0, 1] d(I-K,l),O)=-l.
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Proof. From the homotopy invariance ofthe degree we know that d (I K, 1, 0)
d(I-Ko, fl, 0). But Ko is a mapping depending only on A which reads

Ko(u, v, A Uo, Vo, A + O- Uo(O ).

Introducing the homotopy

H(u, v, h (rUo, rVo, h + 0 Uo(0)),

we may easily check that the map (r, u, v, h)- H(u, v, A) is compact. Moreover, if
(u, v, A) is a fixed point of H, then we have u zUo, v rVo, and Uo(0)= 6t. Thus
(Uo, Vo, A) is a fixed point of Ko and for a large enough we have from Proposition
4.2 that Uo]] c’to,al < R, Vo[[ c’to.al < R, and 0< h < A. Hence u c’to, r[] UolJc’o,a <
R and [[V[]c’to, rll Vollc’to,, < R. We have thus shown that

la>-ac, /z[0, 1] (I-H,)(OfZ)zO,

so that d(I-H,,O) is well defined and constant. Hence d(I-Hl,2,0)=
d (I Ho, f, 0) and since H1 Ko we have d (! K1, f, 0) d (I Ho, f, 0). Now Ho
is a mapping which reads

Ho(u, v,h)=(O, O,h +O- Uo(O)),

and from the multiplieative property of the degree we deduce that

d I- K1, n, O) d( Uo(O)- O, (0, A), 0).

To compute this degree, note that if

() Uo(0),

then a lengthy but straightforward calculation leads to

(4.15)

where

2mco/ a 1 + e
(4.16) $(t)= or(s) s

Co+ cr(x/c + 4at) 1 e

This implies that

and thus

q(h)=- b’ A+ ---h r dr,

b’(h)= (1-r)$" A+ -h r dr.

Now from (4.16) we deduce that

(Co + (s))(’(s) s"(s)) + 2s’(s)
"(t) 8mcoa s3(co + or(s))
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where s =x/c+4at [Co, x/c+ 4Aa], but since (tr’(s) str"(s))= 1 + O(a2e-at) on the
interval [Co,X/c+4Aa], we get that b">0 on [0, A] for a large enough, so that
dck/dA < 0 on [0, A] for a large enough. On the other hand, we also note from (4.16)
that

2mco(4.17) , + O(e-aco) on [0, A],
Co+X/c+4at

and an explicit calculation also yields

(4.18) Ca(F0) (1 O)x/m/O.

Now from (4.17) (0)= 1-2Co/(Co+X/c+4m)+O(e-ac) and combining (4.7) and
(4.18) gives that Co< (1-O)x/m/O and hence 1-2Co/(Co+X/c+4m)> 0 so that (0)> 0
for a large enough. Similarly at A=m/aO we have qb(A)<(m)/(Aa-m) so that
(A) < 0/( 1 0))(2Co/( Co +x/c+ 4m)) + O(e-a) but since Co < 1 O)x/m/0 we again
deduce that (0/(1- 0)) (2Co/(Co+X/c+4m))< 0 and that (A)< 0 for a large enough.
Therefore d((A)-0, (0, A), 0)=-1, and the proof is complete.

The main result of this section is thus a direct consequence of Proposition 4.6.
THEOREM 4.7. For all c e (0, Cad) there exists a such thatfor any a >= a the problem
has a solution.

4.2. Existence of a solution.
THEOREM 4.8. For c (0, Cad) the problem has a solution.
Proof From Theorem 4.7 we know that, provided is large enough, there exists

a solution (ui, vi, Ai) of i on [0, i]. From Lemmas 4.3 and 4.4 we easily check that Ai
is bounded and that for every compact [0, a], ui and v are uniformly bounded in
C2/[0, a] for i>=a, where a=min(1, n). From compactness, eventually taking a
subsequence, we may assume that

Ai-"> A 0, (Ui, Vi)-’>(U I)) in Co(+),
and passing to the limit we get that (u, v, A) is a solution of (2.1), (2.2), (2.19) and
that v and u + v are nonnegative and nonincreasing. Hence u(+o) and v(+o) exist,
and by integrating (2.2), we get that v’ has a limit as x-> +c, which can only be zero,
so that v’(+o) =0. Similarly, (u + v)"- c(u + v)’ has a limit as x -> +c, which can only
be zero, so that Ag(u(+c)) =0. On the other hand, A =0 yields u+v= 1 and C=Caa
contradicting c < Ca. Therefore, A > 0 so that u(+)=0, (2.4) holds, and the proof
is complete.

Remark. The uniqueness of a solution, which implies the regularity of c-> A, is
an open problem. Nevertheless, in the limit case of high activation energy, the
asymptotic limit of the solution will be seen to be unique. However, in general, we
observe the following proposition.

PROPOSITION 4.9. Denoting (u, v, A(c)) any solution of for c (0, Cad), we have

lim A (c) 0, lim A (c) 0.
0 Cad

This proposition is a consequence of Corollary 3.3 and Proposition 3.5.

5. Asymptotic analysis.
5.1. Setting the problem. In this part we specify the Arrhenius source termf=f as

(5.1) f(u)= en+l exp
e

X(U),
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where e > 0 is a parameter, > 0 is a constant, and X satisfies

(5.2) X is CI(R) g nondecreasing,

(5.3) ::10’ (0,1) x=O on(-,O] and X=I on[O’,+c).

In scaled variables, e represents the inverse of the activation energy of the chemical
reaction. In practice the activation energy is large motivating the analysis e- 0 [1],
16]. In the case of adiabatic flames, we have the following result 1 ].

THEOREM 5.1. (Berestycki, Nicolaenko, and Scheurer.) Denoting F(u)=
f(u)(1 u) we have

(5.4) lim Cad(F)= x/F(n + 1),

where F is the Euler function.
Simply denoting by CaO this limit value, c < Cad implies that c < Cad(Fe) for small

enough, say e < eo, and therefore implies the existence of a corresponding solution
(u, v, A) with f=f. The goal of this section is to study the asymptotic behavior of
(u, v, A) as e --> 0. Formal multiscaled asymptotic expansions of (u, v, A) as e -> 0
have been known for a long time [4], [9], [17]. In particular, an important result of
these asymptotic investigations is that

/e C
2 log (c2/ 2Cad)

e o (g(u)/u) du + 1’

which implies that the curve c- A is bell shaped [4], [9], [17]. However, such formal
expansions are not rigorous from a mathematical point of view. In the adiabatic flame
case and for general Lewis numbers a one-term expansion has been rigorously estab-
lished by Berestycki, Nicolaenko, and Scheurer [1]. Marion has also studied a model
with no ignition temperature [13]. In this paper, we rigorously justify a two-term
expansion in powers of e of (u, v, A). We first proved strong convergence of the
nonadiabatic traveling wave to singular limit free boundary solutions with discon-
tinuous derivatives. We next investigate corrector tems which require introducing
stretched variables. In particular, we completely describe the internal layer, and we
give the asymptotic expansion of

5.2. The one-term expansion.
THEOREM 5.2. For every a > O, u- Uo and v- Vo converge to zero in H (-c, a)

as e- O, where Uo and Vo are the unique solution of
(5.5) -u’ + cu= Cx=,

(5.6) -Vo + cv -Cx=,

where 15,,= is the Dirac measure at the point , with the boundary conditions

(5.7) Uo(-Oo)=O, Vo(-)=l, uo(O)=O,

(5.8) Uo(+OO) 1, Vo(+Oo) O,

and A converges to zero.
Remark. We may check easily that

-2)) ifx-<2,
(5.9) Uo(X)

1 if x -> , Vo 1 Uo,

where =-(log O/c) is uniquely determined by the condition uo(O)= O.
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The proof of Theorem 5.2 relies on Lemmas 5.3 and 5.4. In Lemma 5.3 we first show
that A is O(e) as e- 0.

LEMMA 5.3. There exists L > 0 such that for e small enough we have

(5.10) 0 < Ae < Le.

Proof. From (2.1)-(2.4) we deduce easily that

(5.11) Ue+Ve 1 --Aehe,

where the reduced enthalpy he is such that

(5.12) he =1 g(ue(t)) dt+ g(ue(t))exp(c(x-t)) dt

(5.13) h’e g(ue(t)) exp (c(x- t)) dt,

so that

1
(5 14) Vx>0 | g(u(t)) dt<=h(O)<=h(x).

c .I-oo

Now thanks to Proposition 2.1 and Corollary 3.3 we have

(5.15) Vx_-<0 0 exp (c(1 +x/l+4fl/0Ecr)x)<-_ ue(x)

and combining (5.14) and (5.15), we deduce the existence of a constant/x independent
of e such that for e small enough

(5.16) Vx>_--0 0</x <-- he(x).

On the other hand, multiplying (2.2) by v’e and integrating from zero to +oo yields

1 v,2(0)+ c v t) dt fe(ue(t))vn(t)v’(t) dt,
2

but from Corollary 3.3 we know that v’2(0)_-> c202 and from (5.1) we have

0 <--fe(ue)vv’e=< exp ---Ae he exp

so that using (5.16) we get

lc202<exp( Ae )---/. r(n + 1),

and the proof is complete.
In the next lemma, we introduce an interval [0, xe] such that fe(ue(t)) O(e) for

[0, xe]. This interval is similar to the one introduced in the adiabatic case 1].
LEMMA 5.4. For e small enough there exists a unique xe in (0, +oo) such that

(5.17) Ue(Xe) 1 + (n + 2) log(e) Vx (-oo, xe) ue(x) < ue(xe),

and xe is bounded by positive constants a and a2 independent of e

O<al <Xe <a2.

Sketch of the proof. Consider the set

E {x > O//t [O, x], u( t) <- l + (n + 2)e log(e)}.
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For e small enough, E is not empty since u(0)= 0< 1 +(n+2)e log (e). Moreover, if
xE, then u(t)<-l+(n+2)e log(e) on [0, x] so that If(u(t))l<=e. Now letting
w(x)=u(x)-(u(O)+u’(O)x), we have w(0)-0, w’(0)=0, and w"(0)=
cu’(O)+O(e)>O for e small enough, say, for (+L)e<c20. Thus the set /=
{s (0, x]/Vt [0, s], w(t) -> 0, w’(t) -> 0} is not empty. Now if z sup E, we must have
z=x, otherwise w(z)>=O, w’(z)>=O, and w"(z)=cu’(z)+O(e)>O, since u’(z)=
u’(O)+w’(z)>-cO and If(u(z))l+l,g(u(z))l<-(+L)e<c20. Thus we have cO<=
u’(t) on [0, x] and by integration, cOx<=u(x)<l, and E is bounded. We can now
set x sup E and integrating the inequality u’ <= c also yields that 1 + (n / 2)e log (e)
0 <-_ cx, and the proof is complete.

Proof of Theorem 5.2. Thanks to Lemma 5.3, A - 0 as e - 0, and now the proof
is essentially similar to the adiabatic case [1]. Denoting al and a2 positive constants
bounding x for e small enough and a > 0 with 0 < a < a: < a, we get from Proposition
3.1 that u and v are uniformly bounded in CI[0, a]. Moreover, it can easily be shown
that he defined in (5.12) is also uniformly bounded on [0, a] so that

u+v=l+O(e) on[0, a].

Now from compactness we may extract a subsequence ei, ->0, decreasing to zero
such that (x,, u,, v,) converges to (x., u., v.) in [al, a2] x C[0, a] x C[0, a]. Taking
the limit +o, we obtain that 0 <_- u. _-< 1, u.(x.) 1, u. + v. 1, and that v. is
nonincreasing. Hence u.--l-v, is nondecreasing and u.(x)= 1 if x>x.. On the
other hand, if x < x. and if is large enough, then x < x, and from Lemma 5.4 and
(5.1) we get that f(u)= O(e) and f’(u)= O(1) on [0, x]. Therefore u and v are
uniformly bounded in C2+n[0, x]. Consequently, u, and u converge in C2[0, x], and
we easily deduce that

-u," cu; 0 on [0, x,),
u,(0) 0, u(0) q,(0, 0, )= 0,

so that (x,, u,, v,)= (g, Uo, Vo), and since the limit is unique (x, u, v) converges to
(g, Uo, Vo) in [al, a2] x C[0, a] x C[0, a] and the convergence in Hl(-oo, a) is straight-
forward.

Remark. For x < g, u and v converge to Uo and Vo, respectively, in C2(-oo, x].
Note also that v converges to Vo in C(R) since v is nonincreasing and nonnegative.

The preceding theorem shows that although the heat loss term is an O(e) perturba-
tion, the reduced mass flux c may take any value between zero and Cad-

5.3. The asymptotic value of A/e.
THEOREM 5.5. The asymptotic value o ofA/ e is given by

c log (c/ 2

(5.18) lim/e__ ,Qg__
Cad)

e0 e 10 (g(u)/u) du+ 1

Remark. Theorem 5.5 shows that the asymptotic curve c-+ At is bell shaped, so
that from an heuristic point of view, there is a turning point with respect to A that
corresponds to an extinction limit. More generally, most laminar flame extinction limits
are turning points [5], [6], [16].

The proof ofTheorem 5.5 relies on Lemmas 5.6 and 5.7. In Lemma 5.6 we determine
the limit as e-+ 0 of a useful integral.

LEMMA 5.6. Let x and x2 be such that 0 <= x < < X2" then

C
2

(5.19) lim L(u(t))v"(t)v’ (t) dr-.
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Proof. Let e C2[0, x2] such that Supp ()e (0, x2). Then we have

Io2f(u(t))v’(t)q(t) dt= Io’2 V(t)(p"(t)+ cp’(t)) dt,

and from Theorem 5.2 we deduce that

o d fo(5.20) f(u(t))v Vo(t)("(t)+ c’(t)) dt= c(g).

On the other hand, assuming that 0 1 and that 1 in a neighborhood of , we
have

fof(u(t))v:(t)(t) dt fof(u(t))v(t) dt=[v’-cv],
so that we have

(5. cv(x+ f(u(v(( t-c v’(xo.

Combining (5.20) and (5.21) we now get that

lim v’(xa) 0,
eO

and passing to the limit in the following identity yields the desired result

-vf(x ’v (Xl)-C v2(t) dr= f(u(t))v(t)v (t) dr,

keeping in mind that v converge in H[0, x] and C[0, x].
In the next lemma we investigate the asymptotic behavior of v(x) as e 0 when

x>.
LMMA 5.7. Let x> and let e(n) + if n 1 and e(n) (n + 1)/(n 1) if

n > 1. en

(5.22) Vse[1, e(n)) lira -0.
eO s

Proo Let Z v/e and xe (, x). From the proof of Lemma 5.3, since h is
uniformly bounded on [x, x] and since (u)= 1 on [x, x] for e small enough, we
deduce that there exist constants and such that

(5.3 f(u(lv(v’( e-ss,
o (

and

(5.24) 0 <- e-’s ds<=-u, f(u(t))v(t)v’(t) dt,
] Ze(x2)

so that Z(x) is bounded from Lemma 5.6 and Z(x.)-Z(x2) converges to zero.
Fuhermore, from (2.2) we may write that

z7(5.25) Z" cZ’
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where k 2 and where b is bounded by positive constants 0 < 3’ -< b =< & Arguing now
by contradiction we assume that ZT(x2)/e2 does not converge to zero. From (5.23),
(5.24) we may then extract a subsequence ei, i>-0, such that Z,(x2) converges to a

2constant Zo and such that Z,(x2)/ei =/ > 0 where / denotes a positive constant.
From Proposition 3.1, Z, is nonincreasing so that we have Z,(x2)=<Z, =<Z,(x) on
[x, x2] and hence Z, converges uniformly on [x, x2] to Zo. On the other hand, from

> [x, x].Proposition 3.1, Z,/e2 is also nonincreasing so that Z,-cZ’, 3’>0 on
But it implies that Z,, X, where X,- cX’, > 0, X,(x) Z,(x), and X,(x)
Z, (x). Taking now the limit +we deduce that Zo Xo where Xo(x) Xo(x2) Zo
and X-cX= >0, an obvious contradiction. Therefore Z/e(2/") converges to
zero. Defining now a new Z V/e(+/") and a new k 2/n we may again write an
equation similar to (5.25) and proceeding in a similar way yields that V/e
converges to zero. An easy induction completes the proof since e(n)= 1 + 2

Proofofeorem 5.5. We may easily check that h converges to ho in Co() where

(5.26) ho =! g(uo(t)) dt+ g(uo(t))exp(c(x-t)) dt

so that from (5.10)

Now if x < < x are in a neighborhood of , and if e is small enough, we have

f(u(t))v(t)v(t) dr= exp h(y) e-s/ds,

where xNyNx. But (V(x)/e)+m from Theorem 5.2 and (g(x)/e)O from
Lemma 5.7, and the result is straightforward using Lemma 5.6, since x and x can be
chosen arbitrarily near .. sytfie erees. In this section, we estimate the corrector terms (u-
uo)/e and (v vo)/e. Estimating these corrector terms requires introducing stretched
variables commonly used by physicists in the method of matched asymptotic
expansions. These correctors terms behave very differently indeed in the preheat zone,
say x < , in the flame zone, say x , or in the burnt gases zone, say x > . However,
the proofs are rather technical and thus will be omitted. We refer to [5] for more details.

.1. edg. Before estimating (u- uo)/e and (v- vo)/e we have to elimi-
nate aificial singularities at for correctors due to a first choice of the origin defined
by u(0)= 0. Therefore we introduce ff such that

(6.1)

and we define

(6.2) a(x)=u(x+),

(6.3)

Note that we have

(6.4)

v() 1- 0,

(x)=v(x+),

x’=x+,, , x,, + c,.
(x) h(x + C),

Ah(0)) ho()=_llog 1+
c 0 cO
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so that (t, ,) converges to (Uo, Vo, ) as (u, v, x), and furthermore

(6.5) a’(0) ,(a(0), A, c), v" (0) -cO, (0) 1 O.

In the following sections we estimate (a- Uo)/e and (5- Vo)/e.

6.2. Correctors in the preheat zone. In Lemma 6.1, we describe the asymptotic
behavior of (5-Vo)/e, from which we can deduce Corollary 6.2 by using (5.11).

LEMMA 6.1. Let k >-1 and K > (n + k + 1)/c, then, as e goes to zero, (- Vo)/e k

is bounded in C2(-o, + Ke log e ].
COROLLARY 6.2. There exists a constant K >0 such that (-Uo)/e +ho and

(5-Vo)/e converge to zero in C2(-,+ Ke log e] where ho is as in (5.26).

6.3. Correetors in the flame zone. Heuristically, near the reaction term f(u)v,
is no longer negligible and there is an internal layer where the chemical reaction takes
place. In this section we describe the structure of this internal layer by introducing
the usual stretched variable : [4], [9]:

x--
(6.6) :=+,

and by estimating (a- Uo)/e and (5- Vo)/e as functions of .
THEOREM 6.3. Let w,(:) 5(+ e(:-))/e and 0< i5 <1/2. Then, as a function of, we converges to Wo in C[ 1/e, +o) where Wo is the unique solution of

(6.7) d:w c:
d:2 -2F(n+ 1)

exp (-Wo)W,

(6.8) lim (Wo(:)+ c(:-))=0, lim Wo(:)=0.

The proof is based on an integral formulation of the governing equation for we, on a
priori estimates, and on Lemma 6.1, which is used to match the flame zone with the
preheat zone [5].

COROLLARY 6.4. Let /o=-C(:- for <-- and /#’o=0 for >-. Then, as

functions of, Uo)/ e + Wo lCo+ ho( and Vo)/ e Wo+ lCo converge to zero
in C[ 1/e, : + 1/e].

Remark. Letting sr- in Theorem 6.3 we obtain that lim_o t()/e Wo()> 0
and that lim_,o ’()=(dwo/d)()(O, c). Moreover, from Corollaries 6.2 and 6.4
we deduce that the matching zone between the flame zone and the preheat zone is
x [- e 1-, + Ke log e].

6.4. Correetors in the burnt gases zone. In this section we estimate (t Uo)/e and
(- Vo)/e behind the flame zone. As in 6.2 and 6.3 we first study t/e and then
from (5.11) we deduce the behavior of (t-l)/e. The convergence of t/e to zero
turns out to be very different depending on the order of the chemical reaction n as
Shown in the following proposition.

PROPOSITION 6.5.
If 0 < n < 1, let o, as in (3.3), (3.4), (6.3) and let , Y, + (, )/e. Then

and

lim :o, + 1 fo* ( 1

-,o c /(S) 1 ds,
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where 3’ is defined by

T(s)= e-ttndt/F(n+l)

If n 1, for all k >-1, there exists a constant K such that /ek is bounded in
C2[ Ke log e, +c). In particular, we have

lim (.)/e k O.
e-0

Ifn> 1,for all k in [1, (n+ 1)/(n- 1)], there exists a constant K such that /ek

is bounded in C2[ + Ke(n+l)-k(n-)/2, +o). Moreover, if t/’ /e(n+)/-, then for
every a > , V’ converges to 7/’0 in C2[a, -Foo) where Vo is the unique solution of

//’ c//’;
2r(n + 1)

exp - (x ))

with

and in particular

lim Wo +, lim W 0,
X-+ X-->+

lim 5(.)/e+’/-’> o(+) > 0.
e-0

COROLLARY 6.6. Let [x, x:] c (, +o); then (a Uo)/e + ho and ( Vo)/e
converge to zero in C:[x, x:].

6.5. The cooling zone. Finally from Theorem 5.2 we know that a converges to 1
on every compact of (, +) although t(+)=0. In this section we investigate how
ff decreases to zero in terms of the stretched variable " [9]

(6.9) ’=+ e(x-).

THEOREM 6.7. Let () (+(-)/ e). Then, as afunction of, converges
to allo in C1[ + e, +c), where llo is the unique solution of

(6.10) do_ g(O?/o)
d c

(6.11) ?/o(g) 1.

The proof again relies on a priori estimates and on an integral formulation of the
governing equation for o?/ [5].

Remark. It is remarkable that the solution (t, , A) exhibits three length scales
of interest, O(1) in general, O(e) in the flame zone, and O(1/e) in the cooling zone.

Acknowledgment. I thank Professor H. Berestycki for interesting discussions con-
cerning this material.

Appendix. In this Appendix, we state several lemmas used in the preceding
sections.

LEMMA A. Let I be a closed interval of, with endpoints a and b, - <-_ a < b <- +c,
and let H be a C mapping from I x x into . Assume that for all x I and z
the mapping y H(x, y, z) is nondecreasing. Let r and s in C(I) and M >-0 such that

/xI r"(x)>=H(x,r(x),r’(x)), r(a)<=s(a)+M,
VxI s"(x)<-_H(x,s(x),s’(x)), r(b)<-s(b)+M;
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then

Vx I r(x) <= s(x) + M.

Proof. If is easy to check that the lemma is a consequence of the particular case
-< a < b<+ and M =0. For this case a proof can be found in Protter and
Weinberger [14, pp. 18 and 48].

LEMMA B. Assume that O, h >-O, > O, and 3, are arbitrarily given constants and
that u C2(_) satisfies

Let tO and (.02 be such that

then

-u"+ ?u’+ g(u) =0,

u(O)= o, u’(O)= .
--tO"+&O’l +g(to1) >0,

01(0) O, 01(0) e 1,

--(.0 2 " ’(.0 "- Ag(t02) < O,

(o) _-> o, (o)_-<

VxO O)I(X) U(X) (.D2(X), tO.(X) Ut(X)tO(X).

Proof. See Protter and Weinberger [14, pp. 26 and 49].
LEMMA B’. Assume that O, ? > O, and v > 0 are arbitrarily given constants, andfor
consider the initial value problem

-u"+ ?.u’ + vu O,

u(O) 0, u’(O) %

lim u 0,

if 3’ Or lim u=-,

if 3’<Or lim u=+m.

Proof. The proof is obvious.
LEMMA C. Let a, b be an interva! of , u in C:[ a, hi, b in C[a, hi, and assume

Then, letting r (+ fie2 + 4v)/2, we have

if /= Or

that

Vx[a, b] u"+u’>=O.
Then, if u reaches its maximum in (a, b), u is constant, if u reaches its maximum at
x= a, u is constant or u’(a) <0, and if u reaches its maximum at x= b, u is constant or
u’(b) > O.

Proof. See Protter and Weinberger 14, pp. 4 and 7].
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BOUNDED SOLUTIONS OF Au + lu]p-lu- lul q-lu = 0 IN THE
SUPERCRITICAL CASE*

WILLIAM C. TROY"

Abstract. The existence of bounded radial solutions of Atl-l-ltllP-lu--ltllq-ltl=O in the supercritical
case q>p> (N+2)/(N-2) with N> 2 is investigated. Of particular interest are solutions that decay to
zero at the rate O(Ixl -<-=>) as Ixl- . For each integer J >- it is shown that there is at least one radially
symmetric solution that decays to zero at the rate O(Ixl -<-) and that has exactly J positive zeros in the
interval 0 < Ixl <.

Key words, differential equations

AMS(MOS) subject classification. 34

1. Introduction. We investigate the existence ofbounded solutions ofthe nonlinear
elliptic problem

(1.1) Au+lul-lu-lul-lu-O in u,
(1.2) u->0 as

Here xERN denotes the independent variable, N>2, and q>p>(N+2)/(N-2).
We focus our attention on radial solutions of (1.1), (1.2). Setting r= Ixl, we find that
1.1 ), 1.2) becomes

(1.3) u"+
(N-l)

(1.4) u(r)-->O as r-->o.

The requirement that u be bounded in the interval 0_-< r < imposes the additional
constraint

(1.5) u’(0) --0.

The existence of bounded solutions of (1.3)-(1.5) has been thoroughly studied in the
subcritical case

N+2
(1.6) 1 <p< q= 1 N> 1.

N-2’

For example, Kwong [2] has proved that there is a unique positive solution. Sub-
sequently, Jones and Kiipper [1], and K. McLeod, Troy, and Weissler [4] have shown
that there are infinitely many additional solutions. They show that for each integer
J-> 1 there exists at least one solution of (1.3)-(1.6) that has exactly J positive zeros
in the range 0< r <. The uniqueness of these solutions relative to the number of
zeros in (0, ) remains an open question. For the supercritical case p > (N + 2)/(N 2),
q 1 and N> 1 a Pohozaev argument shows that there are no solutions of (1.3)-(1.5).
However, if q exceeds p, then solutions of the problem do exist. Recently, Merle and

* Received by the editors May 19, 1989; accepted for publication (in revised form) November 13, 1989.
This research was partially supported by National Science Foundation grant DMS-8501531.

t Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
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Peletier [5] have investigated the behavior of positive solutions of (1.3)-(1.5) for the
parameter range

N+2
(1.7) q>p> N>2.

N-2’

Their analysis of the full problem (1.1), (1.2), (1.7) shows that the decay of the radial
solutions must satisfy the further constraint

(1.8) u O(r2-) as r-->.

They conjecture that the positive solution of the problem (1.3)-(1.5), (1.7), (1.8) is
unique. Recently, Kwong et al. [3] have resolved this conjecture and have proved that
the positive solution is indeed unique.

In this paper we continue the analysis described above for the supercritical case
(1.7). We show that there are infinitely many additional solutions of (1.3) that satisfy
(1.5), (1.7), and (1.8). To do this we follow [5] and "turn the problem around" by
introducing the Emden transformation

(1.9) t= y(t)=u(r).

Then (1.3)-(1.5), (1.8) is transformed into the equivalent problem

(1.10)
1

-ly -yy"+-(lyl p -lYl )=0,

(1.11) y(0) 0, y’(0) > 0,

and

(1.12) -1 =< lim y(() _-< 1

where k (2N 2)/(N 2).
The uniqueness theorem proved in [3] is summarized in Theorem A.
THEOREM A. There exists a unique value ao>0 such that the solution of (1.10)

with y(0) 0 and y’(0) ao satisfies y’(t) > 0 for all > 0 and 0 < limt_, y(t) _-< 1.
We extend the results of Theorem A by seeking solutions of (1.10)-(1.12), which

are not necessarily positive on the entire interval 0 < < o. A precise statement of our
results is given in the following theorem.

THEOREM B. For each integer J>-1 there exists a value ctj > 0 such that if the
solution of (1.10) satisfies (y(0), y’(0))= (0, aj) then (1.12) holds, and the solution has
exactly J isolated zeros in the interval 0 < < o.

It remains an open problem to determine whether the solutions found in Theorem
B are unique relative to the number of zeros in 0 < <.

In the course of these investigations an extensive amount of numerical
experimentation was done. All computations were done using the Adams method. It
was found for N--3, p=7, and q=9, that ao3.4184, a132.37, a299.8247, and
O 225.25. These solutions are shown in Figs. 1-4. Our numerical work reveals the
following additional information:

(i) If 0< a < al, then y increases until y reaches 1. Subsequently, y exceeds 1
and continues to increase throughout the rest of its interval of existence;

(ii) If al < a < a2, then y increases until y’= 0, then y decreases until y reaches
-1, and then continues to decrease throughout the rest of its interval of existence;
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2.5

FIG. 1. Solution with no positive zero" (y(0), y’(0)) (0, 3.4184), 0- t-<_2.5.

1.0

FIG. 2. Solution with one zero" (y(0), y’(0))= (0, 32.27), 0_- t_- 1.00.

FIG. 3. Solution with two zeros" (y(0), y’(0)) (0, 99.8247), 0<= t<=.6.

(iii) If a2 < a < O3, then y has two positive zeros. After the second zero, y increases
until y 1, then y continues to increase throughout the rest of its interval of existence.
We show in our proof of Theorem B that as a continues to increase, the behavior
described in (i)-(iii) persists and there are critical values of a at which there is a
transition between the number of zeros of y(t). At these critical values we prove that
the boundary conditions at infinity hold. That is, y’0 as t-, and -1 <-y(c)-<_ 1.
Thus our method of proof consists of a topological shooting argument that uses the
numerical results described above as a guide.
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.23

FIG. 4. Solution with three zeros: (y(0), y’(0)) (0, 225.25), 0_- t_-<.23.

2. Proof of Theorem B. For the sake of mathematical simplicity we assume
throughout that q and p are odd positive integers. (The details of the proof are exactly
the same for all other choices of p and q.) Thus, with this assumption, the form of the
initial value problem simplifies to

1 p q)d2y+ (y -y =0,7r
dy

(2.2) y(0) 0, - (0) a > 0.

We let y(t, a) denote the solution of (2.1), (2.2). For ease of notation we will suppress
the dependence of y on a whenever appropriate. Our first step is to show that if c > 0
is sufficiently large, then the solution of (2.1), (2.2) changes sign a prescribed number
of times. To do this we use a scaling argument. Let

(2.3) T=a2t and y=aMY
where

(p-l)
L-= and M=I-L.

p+l-k
Then the problem (2.1), (2.2) becomes

(2.4)
d2y 1
dT---+-T-- YP aOYq) O,

dY
(2.5) V(0) 0,

dT
(0) 1

where G=(k-2)(p-q)/(p+l-k). We note that G<0 since p<q, k>2 and p+l-
k >-2/(N-2)> 0.. Thus, over a given compact interval, if c is large and Y bounded,
then the term aYq plays an insignificant role in the behavior of solutions of (2.4).
This leads us to analyze the simpler problem

d2 y YP
(2.6) dT---- + --- 0,

dY
(2.7) Y(0) 0, (0) 1.

dT

We let Yo(T) denote the solution of (2.5), (2.6) and show that Yo(T) has an infinite
number of zeros in the range 0 < T < oo. To prove this we need the following technical
lemma, which is similar to Lemma 1 in [3].
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LEMMA 1. Let To>-_O and A >0. Ifa solution of (2.5), (2.6) satisfies Y(To) 0 and
Y’( To) A, then there is a first T1 > To for which Y(T1) O, and Y’( TI) < O.

Proof If we show that there is a first T > To for which Y’(T) 0, then Y"(T) < 0.
Subsequently, (2.5) implies that Y"< 0 for T> T as long as Y> 0. Thus, since Y is
concave down it follows that T1 exists and that Y’(T)-<0. The uniqueness of the
solution Y-0 of (2.5) guarantees that Y’(T1)< 0. Therefore it remains to show that
T exists. Consider the interval To, To+ 1 ]. Suppose that Y’> 0 for all T To, To+ 1 ].
Then there exists a value r/ (0, 1) such that

(2.8) Y(To+ 1) r(To+ 1) Y’(To+ 1)>0.

From (2.8) and (2.5) it follows that (Y-rITY’)’=(1-)Y’-rlY">O and so

(2.9) Y> ,1TY’

for T> To+ 1 as long as Y’>0. Substituting (2.9) into (2.6), we obtain

(2.10) Y" <= -rlPTp-k( Y’)p.

It then follows that (Y’)-PY"<--PTp-k and a subsequent integration leads to

(2.11) (y,)l_p>=(y,(To+l)l_p) +
’qP(p-1) (TP_k+l_(To+l)P_k+)
(p-k+l)

for T>_-To+l. Let ’>--(To+l)(21/p-k+l)). Suppose that Y’>0 for all T[To, ’].
Then from (2.11) we obtain

(2.12) (Y’)’-P>- r/P(P-1)
Tp-k+l

2(p-k+1)

for T=> . Let Mp-l=2(p-k+ 1)/(riP(p-I)). Then (2.12) simplifies to

(2.13) Y’ <-_ MT(k-p-1)/(p-1).

Note that -l<(k-p-1)/(p-1)<O since N>2, k=(2N-2)/(N-2) and p>
(N+2)/(N-2). An integration of (2.13) leads to

(2.14) Y(T) <= Y() + LTk-2)/p-’))

where L= (p- 1)M/(k-2). We use the estimates (2.13) and (2.14) to obtain our result.
Suppose, for the sake of contradiction, that Y’>0 for all T> To. Then (2.13) and
(2.14) hold for all T_-> T. We multiply (2.6) by Y and TY’(T), integrate, and obtain
the equations

(2.15) Y(T) Y’( T)- y,)2 dx xk dx
To To

and

(2.16)
p+l

T (1 k) YP+I(x)(Y(T))P+’+
To (p+ 1 - dx

(y’(x))2 dx +
2 To

T(Y’(T))2 To( Y’( To) 2



BOUNDED SOLUTIONS 1331

We combine (2.15) and (2.16) into

T T-k YP+ Y(T) To( Y’(To))2

Y’( T))2 + (T)- Y’( T)-
p+l 2 2

(2.17)

+ (x) dx.
7"0 P+

It follows from the definitions of p and k, and (2.14) that

+ x YP+ (x) dx-p;
converges to a positive value p > 0. This and (2.17) imply that

T( Y’( T’-k Y(T) Y’(T) To( Y’(To)) p> 0(2.18) T))+
2 p+l 2 2 2

for all large T. However (2.13) and (2.14) imply that T( Y’( T))/2 -. 0, Y(T) Y’(T) - 0
and T-k( Y(T))p+ --* 0 as T--> oo. This leads us to conclude that

r1-k Y(T) Y’(T)
lim r))+ (Y(T))+’-

T( Y’(
T-, 2 p+l 2

This completes the proof.

To( To)Y\ _<_ 0
2
contradicting (2.18).

We use Lemma 1 to show that Yo(T) oscillates infinitely often as T . A precise
statement is given in the next lemma.

LEMMA 2. There is an unbounded, increasing sequence {T}i__>.l of positive values
such that

(i) Yo(T) 0 and Y’o( T) 0 for each >= 1,
(ii) Yo(T) > 0 for all T (0, TI), Yo( T) O, and
(iii) Yo( T) # O if T { T, T2, "}.
Proof. It follows from Lemma 1 that T1 exists satisfying (ii), and that Y(T)< 0.

Since p is odd, g(T) Yo(T) satisfies (2.5), g(T1) 0, and g’(T) > 0. This and Lemma
1 imply that there is a first T2 > T such that g(T2) 0, and g’(T2) < 0. Thus Yo(T) < 0
for all T (T1, T2), Yo(T2) 0 and Y’o(T2) > 0. Repeated use of Lemma 1 and a
mathematical induction argument lead us to conclude that there are values T2 < T3 <
T4 <’’’ that satisfy (i) and (iii), and the lemma follows.

Next, we proceed with the proof of Theorem B and construct our "shooting" sets.
For each integer J-> 1 we define Aj { > 0[if a > , then the solution of (2.1), (2.2)
has at least J + 1 zeros in (0, o)}.

LEMMA 3. For each J >- 1 the set Aj is open, nonempty and inf A > 0.
Proof. It follows from Theorem A that there is an ao such that y’(t, ao) > 0 for all

> 0 and 0< y(, ao)< 1. Thus ao is a lower positive bound for each A. Next, let
c A and let ’ denote a positive zero of the solution of (2.1) satisfying y(0)= 0 and
y’(0) c. Uniqueness of solutions guarantees that y’(’) # 0. This and continuity imply
that a A if a- t is sufficiently small. Thus each A is open. It remains to show
that each Aj is nonempty. Recall that the solution Yo(T) of (2.5), (2.6) oscillates
infinitely often as T- oo. Thus there is an interval I [0, ], < oo, such that Yo(T)
has at least J + 2 positive zeros in L Furthermore, Yo(T) is bounded on I since ! is
compact. Thus the solution Y(T) of (2.4), (2.5) converges uniformly to Yo(T) on the
interval I as a oo. From this and the transformation (2.2) it follows that the solution
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of (2.5), (2.6) has at least J + 1 positive zeros in I for all large a. Thus each A is
nonempty and the proof is complete.

We need two further technical lemmas to complete our proof.
LEMMA 4. There exists 6 > 0 such that if a solution of (2.1) satisfies y( )= 0 and

lY’(’)I--< 6 for some >- 0 then there is a ?> such that
(i) lY’(t)l 0 for all E , ],
(ii) ly(?)l 1, and
(iii) ly’(t)l 0 for >- ? as long as the solution exists.

Proof Let y’(’)= A and assume that A > 0. The details of the proof are exactly
the same if A < 0 and are therefore omitted for the sake of brevity. For t-> ’, as long
as y < 1 it follows from (2.1) that y"< 0 so that y < A(t-’). From this and (2.1)we
conclude that y">=--yP/tk>=--AP(t t)p-k. Integrating, we obtain

(2.19) y’>_-A
AP(t--t)P-k+l
(p-k+1)

and

(2.20) y _--> A (t- t) A p(t t)p-k+2

(p-k+l)(p-k+2)"

We assume that

O<A <min {(p_k+ l)/(k_2) ( 1

2(p-k+l)(p-k+2) 1/(k-2)}.
It then follows from (2.19) that

(2.21) h---<y’<h
p-k+l

for all E [’, ’+ l/A]. Thus we are assured that y’> 0 for all It, ’+ l/A] since
0 < A < (p k + 1) 1/<k-2). Fuhermore, from (2.20) and the restrictions on A it follows
that

---<1- < ’+ <1(2.22)
2 (p k + 1)(p k + 2)

y

Next, we define the function g(y)= 1--yq-P and set D sup(1/2)_<_y__<l Ig’(Y)[- It follows
from the mean value theorem that

(2.23) g(y)<-D(1-y) Vy[1/2,1].

Thus (2.1), (2.22), and (2.23) imply that

(2.24) y" >-_ --)tA k-2 -k

where y= D/((p-k+ 1)(p-k+2)) for t_-> ’+ 1/A as long as y’>0 and y-<_l. From
(2.21) and (2.24) we obtain

A k-1 /A k-2

y’->_A-
(p-k+ l) (l-k)

(2.25)
A k-1 )tA2k-3

_->A-
(p-k/l) (k-l)"

(tl-k--(t+A-1) l--k)
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Now let 6 > 0 satisfy

h k-2 h2k-4 1
(2.26) 1 -->-

(p-k/l) (k-l) 2

for all h (0, i). From (2.25) and (2.26) we conclude that y’-> h/2 for _-> ’+ 1/h as
long as y <= 1. An integration shows that there is a first ’> ’ for which y(?)- 1 and
y’(’) >_- 0. Uniqueness of solutions implies that y’(’) > 0. Finally, it follows from (2.1)
that y"> 0, y’> 0, and y > 1 for ->_- ’ as long as the solution is defined. This completes
the proof of the lemma.

LEMMA 5. Let > 0 such that for some > 0, [y’(t, )1 y 0 for all >- , and
limt_o (y( t, c ), y’( t, c)) (37, 0), where 0 < [37[ <_- 1. Suppose that y( t, has exactly m >= 0
zeros in (0, oo). If [a 1 0 is sufficiently small, then y t, a) has at most m + 1 positive
zeros in its maximal interval of existence.

Proof. Suppose, first of all, that y(t, c)> 0 and y’(t, c)> 0 for all > T, and that
0 < -< 1. Define the values

(2.27) l= sup lyP-y and t= max {, (1/(6(k-1))) (k-}

where 8 satisfies Lemma 4. It follows from continuity that y(t, a) has at most m zeros
in (0, ’], y(t, a) > 0, and y’(t, a) > 0, if [a 81 > 0 is sufficiently small. Suppose that
y(t*, a)- 0 for some first t*> . Then it follows that there exists ? (/’, t*) such that
y’(, a)--0, and y"(t, a)O for < t*. Furthermore, from (2.1) and (2.27) we
conclude that y"> --lt-k for (, t*). An integration leads to y’>
_i/(l_k)(tl-k_ l-k) for t<_-- t*. From this and (2.27) we conclude that y(t*, a)-0
and -6y’(t*, a)<O. But then Lemma 4 implies that y’(t, a)<O for t> t* as long
as the solution exists. The details for the case -1 <_-3 < 0 are similar and are omitted
for the sake of brevity. This completes the proof of the iemma.

We now proceed with the final details of proving our theorem. For each J >_- 1 we
define aj- inf Aj. We claim that the solution y(t, a) satisfies the theorem. That is,
y(t, a) has exactly J zeros in (0, ), and 0 < ]y(o, a) <__ 1. We let (0, v) denote the
maximal interval of existence of y(t, a). There are three possibilities to consider. First,
suppose that y(t, ar) has at most J-1 zeros in (0, vj). Then there exists a value
a (0, v) such that y(t, cry) 0 for all [a, ,). Without loss of generality we may
assume that y(t, aj)>0 for all t[a, ) since g=-y(t, a) is also a solution of (2.1).
If y’(?, aj)_-<0 for some ?(a, v) then (2.1) implies that y’(t, a)<0 and y"(t, aj)<0
for t> ? until y(t, a) equals zero, a contradiction. Therefore y’(t, a)>0 for all
t[a,v). Suppose that y(?,a)=l at some ?6[a, uj). Then (2.1) implies that
y"(t, a)>0, y’(t, a)> 0, and y(t, a)> 1 for all (’, 9). It follows from continuity
that if [a- a[ is small, then there is a value ’= ?(a)> 0 such that y(t, a) has at most
J-1 zeros in (0, ?), y(?, a)= 1 and y’(?, a)>0. Again (2.1) implies that y"(t, a)>0,
y’(t, a)>0, and y(t, a)> 1 for t> ? as long as the solution exists. Therefore aA if
[a-aj[ is sufficiently small, contradicting the definition of aj. We conclude that
y’(t, a) > 0 and 0< y(t, aj) < 1 for all (a, uj). If , < o, then one of y or y’ becomes
unbounded as ,y. However, it follows from (2.1) that y"(t, a)< 0 for all (a, ,j)
so that y’(t, aj) and y(t, aj) are bounded. Therefore j=o and it follows that
lim,_,o (y(t, a),y’(t, aj)) (37, 0) for some )7 (0, 1]. But this and Lemma 5 show that
y(t, a) has at most J zeros if a-aj > 0 is sufficiently small. This contradicts the
definition of a since Aj is open. This leads us to consider our second possibility, that
y(t, a) has at least J+ 1 zeros in (0, ,j). However, it follows from continuity that if
a- a > 0 is sufficiently small, then y(t, a) has at least J + 1 zeros in (0, ,), again
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contradicting the definition of aj. Therefore, it must be the case that y(t, aj) has exactly
J zeros in (0, v). Thus there exists a value a(0, v) such that y(t, a)O on (a, v)
and we again may assume that y(t, aj) > 0 for all (c, v). Suppose that y( ’, a) 1
at some first ’ (0, v). Equation (2.1) implies that y"(t, a)>0 and y’(t, aj)>0 for
all ’, v). It follows from continuity that if a a > 0 is sufficiently small then there
exists a first ’= ’()> 0 such that y( ’, a)= 1 and y(t, c) has exactly J zeros in (0, ’).
Subsequently, (2.1) implies that y"(t, a)> 0 and y’(t, a)> 0 for > " as long as the
solution y(t, a) exists. Thus a A if cr a > 0 is sufficiently small, contradicting the
definition of aj since A.I is open. Therefore it must be the case that y’(t, a)> 0 and
0< y(t, a)< 1 for all (0, v). As shown in case (i) above since y(t, ce) is uniformly
bounded on [0, vj) then also y"(t, a) is uniformly bounded on [0, v) and it must be
the case that v =c. Thus we conclude that y’(t, a)>0 for all t>=a and that 0<
limt_ y(t, a) -<_ 1. This completes the proof.
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ON A RECURRENCE FORMULA ASSOCIATED WITH STRONG
DISTRIBUTIONS*
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Abstract. Polynomials satisfying a certain three-term recurrence relation are studied. The properties of
these polynomials and an associated strong distribution are observed under various conditions on the
coefficients of the recurrence relation. Some examples are given to illustrate these results.

Key words, three-term recurrence relation (or formula), J-fractions, strong distribution functions,
Stieltjes functions
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1. Introduction. The recurrence formula or relation in our study takes the form

Z
2Q2n_I(z) {(1 ---ol2n_l)Z-2n_l}Q2n_2(z)-ol2n_ Q2n_3(z),

(1.1) n_-->l,
Q:,,(z) (z- fl2n)Q2n-l(Z)- a:z,,Q2,,_:z(z),

where

(1.2)
Q_,(z) 0, Qo(z) 1,

O1 0, On+l > 0, fin R, n >_-- 1.

It can easily be verified that, for any n >-0, Q,,(z) is a monic polynomial of degree
n, satisfying in particular

Q,,(z) z" + + q")z + qo"),
where

(1.3)

qo)=l, qo’)=-fl,, qo2")= fl (fl2r--l2r--O2r),
r=l

q(o2n+l) --fl2.+,qo2"),
(1 + a2 +,)q o2")- fl2.+,q 

for all n => 1. From the theory of continued fractions we also have that Q,,(z) is the
denominator of the nth convergent of the fraction

(1.4) al t2 3Z2 04 05Z2
z-ill z fl: (1 + a3)z fl3 z fl4 (1 + as)z fl5

which is called a regular J-fraction.
So far, in all the attempts at resolving the so-called strong Hamburger moment

problem using regular continued fractions, the two regular J-fractions, one being (1.4)
and the other being of the form

O 2Z2 O3 O4Z2 O

Z--j (1 + 2)z j2 z-3 (1 + o4)z 4 z-5
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are known to provide the best partial solutions to this problem (Sri Ranga [10]). Here
the term "regular" implies that there is a repetitive pattern in the functional forms
taken by the partial coefficients.

In [11] Sri Ranga examines the convergence properties of a class of J-fractions
and gives some criteria for the convergence of a regular real J-fraction. This regular
J-fraction, though it appears to be different from those given above, is equivalent to
the fraction (1.4). Even though these two equivalent continued fractions have the same
convergence behaviour, it will be seen (Theorem 3.2 in 3) that some ofthe convergence
criteria given in 11 are much simpler if they are written in terms of the coefficients
an and fin in (1.4). In view of this and because the denominators of (1.4) are monic
polynomials, it may be considered that (1.4) is of a more natural form than its equivalent
form given in 11 ].

A well-known result on three-term relations is that of the orthogonal polynomials.
Associated with any positive distribution dd/(t) on (-, ) for which the moments

cn =_ dgJ(t) exist for all n >_-0, there exists a sequence of orthogonal (monic)
polynomials {Bn(z)} satisfying a recurrence formula of the form

(1.5) Bn(z) (z- mn)Bn-l(Z)- l,,Bn_z(Z), n >- 1,

where B_l(z) 0, Bo(z) 1, mn E, and In >0. A not-so-familiar result regarding this
three-term relation is attributed to Favard [5]. This result can be stated as: "Given
(1.5), associated with that relation there always exists a positive distribution dq(t)
such that the polynomials generated from the relation form an orthogonal sequence
with respect to this distribution." However, (1.5) generally does not uniquely character-
ize its distribution dq(t). For the uniqueness of dd/(t), the coefficients In and mn must
also satisfy further conditions. The simplest of such additional conditions for the
uniqueness of d(t) is the boundedness of these coefficients.

In recent years considerable work has been done on extracting the properties of
the associated distribution dd/(t) from three-term formulae of the form (1.5). Many
interesting results have been obtained by, for example, Blumenthal [1.], Chihara [2],
[4], Nevai [8], [9], and Van Assche [13].

In this article we consider an analogous study on the three-term recurrence formula
(1.1). We believe that the results presented here can be useful in justifying the
applications of two-point Pad6 approximation and associated continued fractions to
problems in science and engineering. One result, that of Theorem 3.2, can be of interest
to those working on the moment problems, where it provides conditions for the
uniqueness of a certain strong Hamburger moment problem. One interesting aspect
of the classical orthogonal polynomials that may have led to the extended theories on
the subject is the mathematical elegance in their recurrence relations. That is, the
coefficients in their recurrence relations can be explicitly given by elegant mathematical
formulae. Since the recurrence relations of (4.1)-(4.3) in 4 exhibit such mathematical
elegance, we hope that the associated polynomials will also inspire such extended
theories and that they will merit a study analogous to that of the classical orthogonal
polynomials.

2. The strong distribution. From the studies of the J-fractions and the strong
moment problems 10], it has become evident that, given a bounded positive distribution
dq(t) on (-az, ), with existence of the moments c,,

_
t" dq(t) for all values of

rn including negative, there exists a unique J-fraction of the form (1.4) corresponding
to the Stiltjes function

_
&O(t)/(z-t), provided that the moments also satisfy

H(z]Zn>0, "’2n+l >0, and H(2-2n+1) 0, n->_ 1.
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Here Hk) are the Hankel determinants associated with c,. (Distributions for which
the moments exist for all positive and negative values of m are also known as
strong distributions.) Correspondence of this J-fraction is such that the convergents
are two-point (zero and infinity) Pad6 approximations of the Stieltjes function.

The determinantal conditions H2n+l) 0, n_-> 1, ensure that the denominator
Qn(z) of the nth convergent of this fraction satisfies Qn(0) 0 when n is even. Thus
looking at (1.3) we realise that, in the three-term formula (1.1) satisfied by these
polynomials, the coefficients must also satisfy

(2.1) /2n--1/2n a2n # 0, n _--> 1.

We now start from the three-term relation (1.1) and proceed to establish the
existence of a distribution associated with it. We use in conjunction another sequence
of polynomials {Pn(z)} generated by

P. z) z . P._, z) .P._(z),
(2.2) n=>l,

P2n+l(Z) {( ] -}- 2,+l)Z fl2n+l}P2n(z) OI.2n+lT,2p2,_l(Z),

where Po(z) 0, Pl(z) al, and an, fin are as in (1.1).
This relation differs from (1.1) only in the initial conditions of the polynomials.

For any value of al 0, (2.2) generates a nontrivial sequence of polynomials {Pn(z)}.
In this case we can write

Pn(z) alz
n-1 + lower-order terms.

These polynomials are also easily verified as being the numerators of the convergence
of the J-fractions (1.4).

From (1.1) and (2.2) we have that the functions Tn(z) and Un(z) defined by

Tn(Z):{Q’n(z)Q,,_I(z)-Q’n_I(Z)Qn(z)}, n>=l,

Un(z) {Pn(z)Qn_l(Z)- Pn_l(Z)Qn(z)}, n >--_ 1,

satisfy the relations

Tn(Z) {Qzn_l(z)}2 + anTzn-l(z),

Tn+l(Z) { Qzn (z)}2 + azn+l{ Qzn (z) zQ2,,_l(Z)}2 + a2n+lanz2Tzn-l(z),

u.+(z) .+zU.(z)

for n ->_ 1, with T1 (z) 1 and U1 (z) al. Under (1.2) the functions Tn (z), n => 1, are
hence strictly positive for all real values of z other than zero. If we also assume that
the coefficients of (1.1) satisfy (2.1) (i.e., Qzn(0) # 0, n _--> 1), then Tn(z) are also positive
for z =0. This enables us to establish that the roots of Qn(z) are all real, distinct, and
different from those of Qn-l(z).

We take al > 0. Then the functions Un (z), n ->_ 1, are also positive for all real values
of z other than zero. For n _-> 3, Un(z) takes the value zero when z 0. Hence all the
roots of Q2n(Z) are different from those of Pzn (z), and all the nonzero roots of
are different from those of Pn+I(Z). It is possible that at most one of the roots of
Qzn+l(z) is zero. For any n ->_ 1, when zero is a root of Qn+(z) it is also a root of Pzn+l(z).
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From these results it immediately follows that the quotient P.(z)/Q.(z) has a
partial decomposition of the form

P,(z) l)(2.3)
Q,(z) r=l z- z")’ n >- 1,

where z") are the roots of Q,(z) and

l") P,(z"))/ ,)Qn(zr ), r=l,2,’",n.

By noting that l" is also equal to U,(Zr"))/T,(z")), we find that it is a positive
number except in the case when n is an odd number greater than 2 and that Zr") is
equal to zero. In this case l") is also equal to zero.

Taking the limit of {zP,(z)/Q,(z)} as z- in (2.3), we also obtain

Therefore, if we define a step function q,,(t) by

0, -< <-- zn)

,(t)= l"), z")<t -<_ r+l, r= 1,2,..’, n-l,

a Z(nn) < <,
then from the definition of the Stieltjes integral we have

(2.4) P(z)-I_ 1
dq,(t), n->l.

Q.(z) z-t

We now state a result (see [10, p. 271]) on the correspondence behaviour of the
quotients P,(z)/ Q,(z), n >- 1.

THEOREM 2.1. With conditions (1.2) and (2.1), L,(z)= P,(z)/Q,(z), n>= 1, which
are the convergents ofthe .-fraction (1.4), correspond to twoformalpower series expansions

f(z) Co Cl C2 C3=--+z-+-g+-+’’’’

such that

g(z) -c,- c_2z- c_3z2- --4Z3

f(z)- L2,(z) y2,z
-2"-1 + O(1/z)"+2,

f(z)-L2.+l(Z)= T2,,+,z-2"-3+0(1/z) 2"+4,
n>=0,

where

where

TO-- al Co, 2n O2n+lO2n o2al,

T2,+1 (1 + O12n+3)O12n+2012n+l a2al,

Q,(z)g(z)- P2,(z) 6z,z2" + O(z) 2"+1,
Qz,+l(z)g(z)- P2,+,(z) 62,+1 z2" + O(z)-’+1,
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With the requirement Q_n(0) 0, the correspondence behaviour of L2n(z), n => 1,
to the formal series expansions g(z) is very clear, Since we have not considered the
behaviour of Q2,+(0), the correspondence of L2,/(z) to the series expansion g(z) is
not entirely evident. However, from (1.3) we have that, if Q2,+(0) -/32+Q_,(0) =0,
then Q.,+I(0) (1 + an+l)Q,(0) 0. This result ensures that L2,+l(z) corresponds to
at least (2n-1) terms of the series expansion g(z) for n => 1.

Now, by using the results of the preceding theorem with (2.4), we are able to give
the next theorem.

THEOREM 2.2. When conditions (1.2) and (2.1) hold, there always exists a function
d/( t), bounded, nondecreasing in (-oo, oo), and with infinitely many points of increase,
such that

lim ,r)(t) if(t),

ina Lr)(z)= J-o db(t)/(z-t),

Cm-- f--oo tm dq(t), rn ,-2,-1, 0, 1, 2, .
Here {n(r)} is an increasing subsequence of the sequence ofpositive integers.

This theorem follows from arguments analogous to those used for the J-fraction
and positive T-fraction by, respectively, Wall 14] and Jones, Thron, and Waadeland
[7].

3. The (t) and the polynomials Q,(z) and P.(z). Theorem 2.2 states that there
exists a distribution function if(t) such that its Stieltjes function

s(,(t); z)= I_ d(t)/(z-t)

is a limit of a subsequence of {L,(z)}. As a consequence, S((t); z) has formal
expansionsf(z) and g(z). There may also be other distribution functions whose Stieltjes
functions are limits of other subsequences of {Ln(z)} (or even limits of other similar
sequences) and hence have the same formal expansions. That is, the associated
distribution function may not be unique. (We recall that all distribution functions
differing from each other only by constant values are nondistinct.) At the end of this
section we provide conditions on the coefficients c, and/3, that ensure the uniqueness
of 6(t).

For now, let 6(t) be any distribution function such that S(q(t); z) has formal
expansions f(z) and g(z). Then we have Theorem 3.1 below.

THEOREM 3.1. The polynomials Qn(z) and Pn(z) can be given in terms of tp(t) as

Iot_2,,/SQ2,(t) db(t (0, 0_-<s_-<2n-1,
n__>l

)/2n, S 2n,

d@(t)= (0,’)/2n + 1,

where the constants / are defined in Theorem 2.1.

0_--< s_--<2n,
n_-->0,

s=2n+l,



1340 A. SRI RANGA

Proof. We must look at the odd- and even-indexed polynomials separately.
However, as the proofs of both cases are very similar, only the proof for odd-indexed
polynomials is given here. From the results of Theorems 2.1 and 2.2 it follows that

(3.1) f1dd/(t)- L2n+l( Y2n+lz-En-3"+" O(1/ Z) 2n+4 n>--O.
z--t

Hence from (2.4)

2n+2 d2,+l( t) c2,+2-

Writing (3.1) in the form

n>__0.

dd/(t)-Lz,+l(Z)= z-2"-3Gz,+l(Z),

we have

zt2n+2
Gzn+l(Z) d{@(t)-@2n+l(t)}.

Consequently, for values of z V= {z: z iy, y > M > 0},

,G2n+l(Z)l < I_oo tzn+z d{( t)-F d/2n+l( t)} 2C2n+2-),2n+l

This indicates that the function Gz,+l(z) is bounded, at least for values of z V. Hence
in the identity

I Q2n+l(z)-Q2n+l(t)d@(t)-P2n+l(z)z-t
z-2n-3Q2n+l(Z)G2n+l(Z)- fo Qn+l(t)dq(t), n-->0

the right-hand side is a bounded function for z V and tends to zero as z- in V.
But the left-hand side is a polynomial of degree less than or equal to 2n. Therefore
both sides of this identity must equal zero for all values of z to give

P2.+(z)=f Ozn+l(Z)-O2n+l(t)d@(t)’z-t n>--O’

I_o ozn+l(t)
dd/(t)=z-zn-3o2n+l(z)G2n+l(z)z-t n>=O"

The first of these two equations gives the definition of P,(z) when n is odd.
Expanding the second in terms of powers of 1/z yields

tQ2,+l(t) dq(t)

(3.2) n_->O.

Q2,+l(t) d@(t) 0,

Now, from Theorem 2.1 we also have

f d@(t) P2n+l(Z 2n+l z2n +O(z)+ n>--O.
z--t
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With the definition of P2n+I(Z), we obtain

Qz"+I(t) dO(t)= 32,+,z2" + O(z)2"+’ n >0.
z--t

Here, taking the power series expansion about the origin, we obtain

dq(t)=O, 0-<s-<2n-1, nN1.

From this and (3.2), the definition for the odd-indexed polynomials Q,+l(Z),
n 0, immediately follows. This completes the proof.

To examine the conditions for the uniqueness of (t), we define the sequence of
polynomials {Q,(z, )} and {P,(z, )} by

(3.3)
Q,.+,(z, ) Q,.+,(z) + Q,.(z),

n 1.
P,.+,(z, )= P,.+,(z)+ P,.(z),

It is easily seen from Theorem 3.1 that these polynomials satisfy

(3.s) P,.+,(z, )=f Q.+,(z, )-Q,.+,(t, )
dO(t)

2--t

for n 1, where O(t) is any distribution with S((t); z) having formal expansions f(z)
and g(z).

It can be easily proved that, for Qz,+a(z, ), with taking all real values, (3.3)
defines all real monic polynomials in z of degree 2n + 1 that satisfy (3.4). We may
view (3.4) as a skewed quasi-ohogonality relation.

From (3.4) we find that when is real, all the zeros z2"+)(), r 1, 2, , 2n + 1,
of Q,+(z, ) are real and distinct. Fuhermore, if h(t) is any polynomial of degree
less than 4n + 1, the following quadrature formula is satisfied:

t-Z"h(t) d@(t)= 2 A(2"+’)(r) h (7)}, n > 1
r=l

where

(3.6) A(z,+)(r) t_2, Qz,+(t, )
d(t)

for r 1, 2,..., 2n + 1. Here m can take both values 1 and 2. Taking m 2 provides
the result that all A(f"+)() are positive numbers.

Consider the rational function

L,.+I(, )= P,.+,(a )/Q,.+,(z, ),

and, using (3.5), expand it about infinity. We obtain

C1 C2nL,.+,(z, r)=c+ +...+ ,+,+O(1/z)"+

The function corresponds to the formal expansion f(z). Similarly, using (3.4) and
(3.5), expanding Lzn+(z 7) about the origin, we obtain

L:.+(z, r) -c_ c_z c_.z"- + O(z)",
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provided Q2n+l(0, 7-) is nonzero. However, if Q2n+l(0, 7-) is zero, then from (2.1) we
see that Q.,+(0, r) is nonzero, and hence this order of correspondence to the formal
expansion g(z) reduces by only 1.

Since the zeros of Q2+l(Z, r) are distinct, we can write

2L+l
(2n+l

2+1(z, )= r ()
_(2n+

r=l Z-- r 1)(7-)- _(2n+lwhere f,r-(2"+l)(7-) PE.+l{Z(2+l)(7-)r,7-}/Q.+ltZ )(7-), 7-}. Using (3.4)-(3.6) we can
also express pr2"+|)(7-) as

p(?n+l)(7-)=
(2n+l)This indicates that v (7-) is positive unless -(2"+ 1)(7-) is zero, in which case p2,+)(7-)

is also zero.
Taking the limit of zL2n+l(Z, 7-) as z--> oo, we obtain

2n+l

E _(2n+l)
/3 (T)- CO

r=l

Hence we can write

where 6.(t, 7-) is the step function

dd/. t, 7-),

0;
e.(t, )= E p"+’()

CO,

-oo < < "r(2n+l)
’1 (7-),

Z(2"+l)(7-)r < t---< Z’r+l"(En+ 1) (7"),

z(2.+1)(7-) < <.2n+l

r= 1, 2, , 2n,

These results lead to a situation similar to that of (2.4), but with rational functions
of odd orders only. Since the denominator of L2,+(z, 7-) with 7- real represents any
polynomial in z of degree 2n + 1 satisfying the skewed quasi-orthogonal relation (3.4)
for any distribution whose Stieltjes function has formal expansions f(z) and g(z),
from the above we reach the following conclusion.

The associated distribution is unique if and only if (L2,+l(z, 7-)} converges to the
same limit for all real values of r.

Since the regular real J-fraction studied in 11] is equivalent to the fraction (1.4),
after some simple manipulation we obtain

Lzn+,(z, 7-)-- Tzn+,(z, W),
where 7- =-a2.+2/w. These functions T,,(z, w) are defined on page 334 of [11] (with
az.(Z) 12., a_.+,(z)= 12.+,z, n >- 1).

Hence, from the limit point case of T.(z, w) considered in [11], we obtain.the
next theorem.

THEOREM 3.2. If the coefficients a. and . satisfy, in addition to (1.2) and (2.1),
one or more of the following conditions:

I. Y’. 1/{Ce2rOzr+,}’/2=O0,
r=l

II. E l2rl/{a2ra2r+l}’/2 o0,
r=l

III. 2n O, n => 1,
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then {L2,+l(Z, z)} converges to the same limit for all real values of " (in fact, for all -such that Im (r)>= 0). Hence the associated distribution function d/( t) is unique.

4. Special cases. First we look at a case when the distribution function q(t) may
not be unique, but does have all its points of increase in the positive half of the real axis.

To prove that the zeros of Q,(z) are real and distinct, we used the fact that
T,,(z) > 0 for n => 1. By including the condition (-1)"Q,(0) > 0, n => 1, we can also easily
show that the smallest zero of Q,(z) is greater than zero. Since the points of increase
of q’(t) are the zeros of Q’(z), we have that q(t), which is a limit of q’(t), also has
its points of increase in the positive half of the real axis.

From (1.3) it follows that the condition (-1)’Q,(0)> 0, n=> 1, is equivalent to

(4.1) /3,,>0 and j2"_lJ2n Od2" > O, n 1.

Hence we have the following theorem.
THEOREM 4.1. If the coefficients t, and ft, also satisfy (4.1), then there exists a

distribution function associated with (1.1) that has all its points of increase in (0, o).
We now consider the case in which all the coefficients c" and ft, are bounded.

If they also satisfy (1.2) and (2.1), then by Theorem 3.2 the associated distribution
function is unique. We can say more about this distribution function by considering
the convergence behaviour of {L,(z)}’=o, which are the convergents of the .-fraction
(1.4). We write this continued fraction in the equivalent form

(4.2)
A(z) A2(z A3(z) Ar(z)

1 + 1 + 1 + 1 +...’

where

A,(z)= a,/(z-fll),

A2"(z) -ol.2"/[{(l + o2"_l)Z- fl2._l}(Z- fl2")], n >= l,

azn+l(Z --Ol.2n+lZ2/[(Z--j2n){(l 21- Og2n+l)Z--fl2n+l}], n >-- 1.

and such that

(4.3b)

02n_1/(1 + Ce2n_l)< (1 el)(l 2)(1 e)2,

Ol2n / (1 + 02n_1) 1 1)( 1 2)E2M2,
1/32"-,I/(1 + O2n-1) ElM, 1/32,1 < e2M

for n-> 1, then for all values of z such that Izl>= M, Al(Z) is finite, ]aan(Z)l e 2, and
Iaan+l(Z)l (1- e)2. Here, using a well-known result (see, for example, [6, Cor. 4.36])
we obtain that for Izl => M all the convergents of (4.2) (i.e., (1.4)) are finite and converge
also to a finite limit. We note that in the case when e 1/2, (4.2) satisfies the Worpitzky
criteria ([ 14, p. 42]).

This result and the fact that the zeros of Qn(z) are real and different from those
of P’(z) indicate that all the zeros of Q’(z) lie in the open interval (-M, .M). It follows
that the points of increase of {6,(t)}, and hence those of its unique limit 6(t), lie in
the closed interval I-M, M].

Further, by using (2.3), we find that L,,(z) are uniformly bounded for all values
of z lying at a positive distance from the interval I-M, M]. Thus, from the Stieltjes-
Vitali theorem, we obtain Theorem 4.2.

Hence, if there exist constants M, e, el, e2 of real numbers satisfying

(4.3a) 0< M < oo, 0 -< el, e2 < 1, 0< e < 1,
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THEOREM 4.2. If the coefficients an and fin satisfy (1.2), (2.1), and (4.3a, b) then
the associated distribution function q(t), which is unique, has all its points of increase
inside I-M, M]. Furthermore, the convergents Ln(z) of the J-fraction (1.4) converge
unormly to the Stieltjes function -t dO(t)/(z- t) in K, where K is any closed region
in C\[-M, M]. Here C C is the extended complex plane.

For (4.3b) to hold, it is required that an and/3n be bounded. On the other hand,
we also can easily realise that if the coefficients an and fin are bounded, then constants
M, e, el, and e2 can be found such that (4.3) holds. Thus we get the following corollary.

COROLLARY 4.1. If the coefficients an and fin are bounded and satisfy (1.2) and
(2.1), then there exists a positive number M and a unique distribution function O( t), with
all its points of increase inside I-M, M], such that (Ln(z)} converges to the Stieltjes
function -t dq( t)/(z- t), uniformly over every finite closed region whose distance from
the interval I-M, M] is positive.

We now give some examples to illustrate these results.
Example I.

Q2n(Z) zQ2n__l(Z)- Q2n_2(z), /,/_--> 1,

Q2n+(z) (n + 1)zQ2n(z nz2Q2n_(z),

Here/3n 0, a2n 1, and a2n+l n for n _-> 1. Hence,

and, for example,

fl2n-fl2r, a2n 1, n _--> 1,

n>=0.

2n O, n 1,

Z {azr+2/a2r+,} /2= Y’, {l/r} 1/2=.
r=l r=l

The coefficients satisfy the conditions required by Theorem 3.2. This implies that there
exists a distribution function and that it is unique.

The distribution associated with this recurrence relation is in fact dq(t)=
(e/) exp (-(t2+ 1/t2)/2) dt, in (-c, o) [12]. The constant e/x/r is a normalising
factor so that the moment Co 1. All the moments of this distribution can be generated
by the relations

Co c_2 1, Czn-1 0, n >= 0,

C2n+2 (2n + 1)C2n 41- C2n_2, n >= O,

C_n_2-- On, n >--0.

The moments C2n can also be explicitly given as

r=o 2r+l s=o (n-;ii n>=O,

where () are the binomial coefficients.
Example II.

Qz,(Z) (z- 1)Qzn_,(z)-(2n 1)Qzn_2(z), n >- 1,

Qz,+(z)={(2n+l)z-(2n+Z)}Qzn(Z)-2nzZQzn_l(Z), n>=O.

We have/32n- 2n,/32n 1, and an n- 1, for n -> 1. Hence,

fin > O, fl2n-l2n a2n 1 > O,
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and also, for example,

Z l/{c2rff2r+l} ’/2= Z 1/{2r(2r--1)} 1/2=0.
r=l r=l

The coefficients satisfy the conditions required by Theorems 3.2 and 4.1. Hence,
associated with this recurrence relation there exists a unique distribution with all its
points of increase in (0, oo).

In this case we in fact have dq(t)=(e/)t-1/2 exp (-(t+ 1/t)/2) dt in (0, oo)
(see [12]). The moments c,, associated with this distribution are the same as the even
moments of the first example.

Example III. Here we take/3n =0, a2n 1, and

02+1 A2n2/(4n2- 1) for n-->_ 1 where 0< A <oo.

Therefore, /2n-l2n- a2n =-1, for n _>-1. Furthermore, if we let

A +x/A2+4
b=

2
then

b>l,

1 + 2n+l

2n+2

1 + azn+l

Hence, with the choice of

A =(bZ-1)/b,
A2n2 b4

<
b2 )2,(Az+4)n2-1 +1

4n2-1 4b2

<
b2(A+4)n2-1 +1)2

n=>l,

n=>l.

e,=e2=0, e=l/(b2+l), and M=/7=b2+l,
all the conditions required by Theorem 4.2 are fulfilled. Thus we can say that the
associated distribution is unique and has all its points of increase inside the interval

The distribution associated with this recurrence relation is dg/(t)=dt in
[-b, -1/b] U [1/b, b]. This distribution [12] actually has all its points of increase inside
the interval [-b, b]. Here we can also give the relation between A and b in the following
interesting manner:

1 1 1
b=A+--

A+A+A+...

5. An asymptotic ease. In addition to satisfying the conditions of (1.2), (2.1), and
(4.3), an and/3n also have the following asymptotic behaviour:

lim 2n (1) lim /2n--1 /(1)
(5.1)

lim a2n O
(2) lim /2n /(2)

THEOREM 5.1. Let ZN {z" z zn), r 1, 2, , n; n >= N}, where zn) are the
zeros of Q,(z). Let K be any bounded closed region in C\,N, where N is the closure
of ZN. Then as n ->

(5.2) On+2(z)+R(z)=l[z2 x/{z2 t)lZ
Qn(g)

VlZ t)2 --[- t)2}2 4t)32Z2
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uniformly in K. Here

v fl() + )2 a(2)--/(1) (2), and v (1)a(2).

Proof From (1.1) we note that the even-indexed polynomials satisfy

(5.3) Q2,+(z) l)(z)Q,(z)- )(z)Q,_z(Z), n >= 1,

where

)(z) ,,.,.+,z’(z-.+)l(z-.),
6<)(z) [(z fl2.+2){(1 + aZ.+l)Z -/32.+,}- 32.+2 )/.].

Since the coefficients a, and/3, satisfy (1.2), (2.1), and (4.3), the zeros of Q,(z)
lie in the open interval (-M, M) for all n >= 1. Hence for any z [M, ) we arrive at
the chain sequence {D,(z)= d,(z)(1-d,_(z))}, where

=0, D,(z)= ?)(z)/{l)(z)l(Z)}, n >- 1,

with parameter sequence {d,(z)} given by

do(z)=0, 0<d,(z)= 1-Qz,+2(z)/{’)(z)Qz,(Z)}<l, n_>_l.

This parameter sequence is the minimal parameter sequence, as do(z)= O.
As a, and /3, are asymptotically periodic and again satisfy (4.3), we find that

{D,(z)} and hence {d,(z)} are convergent for any z [M, ). (See Chihara [3, Thm.
6.4, p. 102] for the latter.) The convergence of {d,(z)} implies the convergence of
{Qz,+z(Z)/Qz,(Z)}. Now, to determine the limit of {Qz,+(z)/Q2,(z)}, we divide (5.3)
by Qzn(Z) and then let nc obtain

(5.4) R(z) {z2- VlZ v2} vz2/R(z).
Similarly, we can also obtain the exact result for the odd-indexed polynomials.

Hence, for z [M, c) it follows that {Q,+2(z)/Q,(z)} converges to the limit R(z) given
by (5.4). Equation (5.4) gives a quadratic equation for R(z), and we take (5.2) as its
solution, which tends to + as z +c.

Furthermore, since Q,(z), n >= N has no zeros in C\,N, the ratio Q,(z)/Q,+z(Z)
is analytic in this region for n => N. Also, since the zeros of Q,(z) are distinct and
different from those of Q,_(z),

Q._,(z)_ ,,,?)
Q,(z) r=l Z- Zn)’ n 1,

where

rnr,,)= Q,-(Zr")) {Q,_,(z"))}
Q,,(z,))

The functions T, (z) are defined in 2. These equations indicate that mr") are positive
rn") 1 Thus we can write for z C\N and n > Nand Y"

Q.(z,)
Q,+z(Z)

Q.(z)
Q,+,(z)

Q,+,(z)
Q,+:(z)

Here, 6 is the minimum distance of ZN from z. That is to say, Q,(z)/Q,+2(z) are
uniformly bounded on every bounded closed region of C\ZN. Therefore, by applying
the Stieltjes-Vitali theorem we establish the uniform convergence of Q,(z)/Q,+z(Z)
and hence the required results of the theorem.
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THEOREM 5.2. In Theorem 5.1, if vl =0, then as n

Q’.(z___....) g’(z) 1 [" 1 {Itl/
nQ,(z)2R(z--2r Jo z-t

_
t:t2_

dt

uniformly on every bounded closed region of C, where

(5.5) =(+v:-v3 and :=(v+v:+v3,
[-, -,] u [,, ].

Proof The proof of {Q(z)/(.Q.(z))} R’(z)/(2R(z)) for z Ck2u, can be real-
ised from Van Assche [13]. From (5.2),

R’(z) }[2z- 01 +}{(Z2- O1Z-- V)2--4VZ2} -1/2" {2(Z

[(2Z Vl)R(z) 2vz]l{(z2- VlZ v)-4vz} 1/2.

This gives

R’()
R(z)

[(2z v,) v=/R(=)]/{(=:- v,z v:):-4v=:}’/:.

However, from (5.2) and (5.4) we have

Consequently

R’(z) z+v2/z 1

2R(z) 2x/(z2- VlZ- vz)Z-4v23z 2z

In the case where vl 0, it follows that v2 > 0 and thus

R’(z) z + tlt2/ z 1

2R(z) 2x/(z2-/l)x/(z2-/) 2z’

where/ and/2 are defined as in (5.5). Now to complete the proof we point out the

dt

The first of these results is given in Van Assche 13]. The other can be easily obtained
using the first.

We now look at the partial decomposition of the ratio Q’,(z)/(nQ,(z)):
Q’,,(z) 1/ n I 1
nQ,(z)- r=l Z z")--- z-t dF,(t).

The function nF,(t) can be interpreted as the number of zeros of Q,(z) less than or
equal to t. Using the above theorem

where I is the indicator function of the set B [-x2, -] U [, x].
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This result indicates that if the number of zeros of Q,(z) outside B is o(n) then
o(n)/n tends to zero as n

Example. We look at Example III in 4. The coefficients are given by

/2n2
fl,,=O, a,,=l, and a,,+

4n-1’ n >1.

Hence we have

(1) (2) O, O
(2) 1, and a() X (b2-1)2

4 4b2

This gives

(b-- 1)
/’)1 0, /)2 I, /’)3

2b /z 1/b, and /x2 b.

Since the associated distribution function is dt in B [- b, 1 / b] U 1/ b, b] the results
are exactly as we expected.
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LINEARISATION DE PRODUITS DE POLYNÔMES DE MEIXNER,
KRAWTCHOUK, ET CHARLIER*

JIANG ZENGt

Résumé. Soit (pn (x)) (n © 0) une suite de polynômes orthogonaux par rapport à une fonctionnelle
Un calcul de la fonctionnelle 9(f m 1 p n ~ ( x)) pour les polynômes de Meixner, Krawtchouk, et Charlier est
proposé à l'aide de techniques combinatoires. Cette approche combinatoire permet de raffiner plusieurs
résultats analytiques connus.

Abstract. Let (p„ (x)) (n © 0) be a sequence of orthogonal polynomiale with respect to a functional
A calculation of the functional ~(II 1 pn ,(x)) for the Meixner, Krawtchouk, and Charlier polynomiale is
proposed with the help of combinatorial techniques . This combinatorial approchh permits the refinement
of seVeral classical analytical results .

Key words . linearization coefficients, orthogonal polynomiale, derangements, cycles, exceedances, parti-
tions, Pfaff-Saalschütz identity

AMS(MOS) subject classifications. 05A15, 05A17, 33A15, 33A75

1 . Introduction . Les coefficients de linéarisation d'une suite de polynômes
orthogonaux (p n (x)) sont les nombres an,m,k définis par : pn(x)pm(x) = ~k an,m,kpk(x) •
De façon équivalente, si `~ est la fonctionnelle associée, le coefficient an,m,k est encore
donné par: P(pnpmpk) = an,m,k (pkpk) •

Beaucoup d'auteurs se sont proposés de calculer ces coefficients pour les poly-
nômes hypergéométriques classiques en faisant apparaître des conditions simples pour
la positivité de ces coefficients . Ils ont utilisé, soit des méthodes analytiques (cf . [Asl],
[As2], [Ea], [Ra]), soit des méthodes combinatoires (cf . [Az-Gi-Vi], [Fo-Ze2]) . L'objet
du présent mémoire est de reprendre à la fois les techniques analytiques et combinatoires
des précédents auteurs, pour calculer' effectivement S(fl m 1 pn ~) pour les polynômes
de Meixner, Krawtchouk, et Charlier . On obtient ainsi plusieurs formules nouvelles
dans le cas où les paramètres de ces polynômes ont des valeurs arbitraires .

Dans tout cet article, on adopte la notation classique : (a)0 = 1 et (a)n =
a (a + 1) • • • (a + n --1), si n 1 . On suppose que m est un entier 1 fixé et que
n = (n 1 , • • • , n,,) est une suite de m entiers positifs. On note n * _ ( n 1;

	

n 2

	

• ni-

	

-

	

m )
le réarrangement décroissant de n . Enfin, [ n ] désigne l'intervalle {1, 2, • • • , n} des
entiers .

Rappelons que les polynômes de Meixner Mn (x; /3, c) sont définis par

n
(1 .1)

	

M0 (x; l3, c) =

	

n
()(_x)k(p+k)flk(c1_1)k

	

_ - (n 0)
k=0 k

(cf. [Ch]), où /3>0 et 0 < c < 1 . Ils sont orthogonaux par rapport à la fonction-poids
discrète (ck(/3)k/k!) (k > 0), portée par N .

Les polynômes de Krawtchouk (Kn (x ; p, N)) sont définis par :

N (-n)k(-x )k 1 k
(1 .2)

	

Kn (x ; p, N) _

	

- ,
k=0 (-N)kk Ï p

* ReceiVed by the editors June 29, 1988 ; accepted for publication (in revised form) November 9, 1989 .
t Département de mathématique, Université Louis-Pasteur, 7 rue René-Descartes, F-67084 Strasbourg,

France. This work was supported by the French Coordinated Research Program in Mathematics and
Computer Science .

1349



1350 JIANG ZENG

où 0 < p < 1 et n =0, 1,

	

, N. Ils sont orthogonaux par rapport à la fonction-poids
( N) p x(1- p) N-x' portée par les entiers 0, 1, • • • , N (cf. [Ch] ) .

Les polynômes de Charlier C(x) sont eux définis par :
n

(1 .3)

	

Cna)(x) _

	

n (_x)ka-k

	

(a>0, n0)
k=o k

et sont orthogonaux par rapport à la fonction-poids a'/k! portée par N (cf. [Ch]) .
Les trois fonctionnelles correspondant à ces trois suites de polynômes sont données

par : 1

(1.4)

	

i l(n; /3, c) _ (-1)nl+
. .
.+nm(1- c)'3

	

fi Mn.(x ; I3,

(1.5)

	

~C(n; N, p)

m Cx (f3)x
x .

m

	

N m
_ fi (-1)(-N)

	

fi K(~. x • p, N) N px(1_p )
N-x

i=1

	

x-0 t=1

	

x

m

	

m

	

ax
(1 .6)

	

C6(n; a) = e-a fi (-a) n ~

	

jl C(x) .
i=1

	

x?0 i=1

	

x

Nos résultats principaux concernant les fonctionnelles de Meixner et Krawtchouk
reposent sur des propriétés statistiques d'une classe d'objets combinatoires, appelés
dérangements colorés . On les introduit de la façon suivante . D'abord toute suite
n = (n 1 , , nm ) de m entiers positifs de somme n détermine, de façon unique, une
application x de [ n ] sur [ m ], donnée par x (i) = i, si n 1 + + ni_ 1 < j n 1 + + ni
(1 i m ; par convention, no = 0). On dit que x est le m-coloriage de [n] associé à la
suite n. On note C„ l'ensemble de tous les couples (x(j), j), (j =1, • • • , n) . Par
commodité, x (i) est appelé la couleur de j. Soit ir une permutation de C„; par abus
de notation, on pose :

ir(x(j), J) = (x(ir(j)), ir(j)) ;

son nombre de cycles est noté cyc ir ; on dit que ir est un dérangement (coloré) de C„
si x (i) ~ x (ir (j)) pour tout j E [n] ; on note (n) l'ensemble des dérangements de Ce, .
On dit, d'autre part, que ir a une excédante en j (1 j < n), si x (i) < x (IT (j) ) ; on note
exc ir le nombre des excédantes de ir. On définit enfin le poids de ir par : w(Ir) _
1C3 Cyc TyexC r . Le polynôme générateur de (n) par w est alors défini par :

D(n; la, y)_ w(7r)

	

(irE

Pour l'étude de la fonctionnelle de Charlier, on utilise la notion de partition de
l'ensemble C,, . Une telle partition Ir est dite partition colorée, si chaque bloc de ir est
constitué seulement par des éléments de couleurs différentes . Le nombre de blocs dans
la partition ir est noté bloc ir et ?~.(n) désigne l'ensemble des partitions colorées
sans points isolés (c'est-à-dire, sans blocs réduits à une élément) de C,, . Chaque
partition ir de C„ est munie d'un poids défini par: v(~r) = a b'OC7T . Le polynôme gén-
érateur de P 92(n) par v est défini par :

PCS(n ; a) = v(ir)

	

(i E P~'(n)) .

Le résultat essentiel de notre article consiste à établir les trois identités :

(1 .7)

	

.1t(n ; /3, c) = D(n ; /(3, c -1 ),

1 Les fonctionnelles de Meixner et de Krawtchouk auront le même support combinatoire . Pour des
raisons d'homogénéité, on a dû adopter la notation 7C(n ; N, p) pour la fonctionnelle de Krawtchouk, alors
que le polynôme est noté classiquement K n (x ; p, N) .



LINÉARISATION DE PRODUITS DE POLYNÔMES

	

135 1

(1.8)

	

JC(n ; N, p)=D(n; -N, 1-1/p),

(1.9)

	

~(n; a) = PCS(n ; a) .

La première identité montre que At (n ; /3, c) est un polynôme de variables /3 et
c- ' à coefficients entiers positifs ; donc la positivité de .t (n ; /3, c) lorsque /l3 0 et
0 < c < 1 est évidente : 4t (n ; /(3, c) 0 .

La seconde identité indique que 1C(n; N, p) est un polynôme en les variables
(-N) et (1-1/p) à coefficients entiers positifs, mais cette fois-ci l'interprétation de

N, p) ne donne pas d'information sur son signe immédiatement . On a besoin de
faire appel à l'algèbre des fonctions symétriques .

Comme démontré dans le Corollaire 10, on a la forme explicite de la fonctionnelle
sous la forme :

= m - S

	

m (1 - (1 -(110)

	

7C( in N p )

	

n

	

( -N)(P 1) a.,, i•S iµ
=i

	

Sao

	

A

	

i=2

	

kl !

où µ = n* et À varie dans l'ensemble des partitions (1 °2"2 • • • m ' m) de l'entier n =
n i + • • • + nm satisfaisant k2 + • • • + km = s et où les aÀ , sont des coefficients de change-
ment de base s'exprimant à l'aide des nombres de Kostka (cf . Corollaire 10) . On
montrera comment cette formule permet d'établir directement un résultat fondamental
sur la positivité de la fonctionnelle de Krawtchouk (cf . Corollaire 11) .

La troisième identité montre que ~(n; a) est un polynôme en la variable a, à
coefficients entiers positifs . La fonctionnelle correspondante est donc positive lorsque
a O.

Les techniques de démonstration font appel aux méthodes du composé partitionnel
(cf. [Fo-Sch], [Fo]) et d'autre part prolongent, dans un contexte combinatoire, des
calculs analytiques faits par Askey et Ismail [As-Is] . Ces deux derniers auteurs ont
établi l'identité (1 .7) lorsque /3 =1 . La formule (1 .10), valable pour m quelconque se
spécialise pour m = 3 en une formule obtenue par Askey et Gasper [As-Ga] . L'interpré-
tation combinatoire des fonctionnelles de Krawtchouk et Charlier est nouvelle .

Après la présente introduction, l'article s'ouvre sur trois sections et un appendice .
La deuxième section contient toutes les techniques combinatoires utilisées . On y
prolonge un calcul de déterminant introduit par Askey et Ismail [As-Is] (cf . Théorème
1), à l'aide de la 13-extension du "Master Theorem," établi par Foata et Zeilberger
[Fo-Ze2] . En fait, pour mener le calcul de la fonctionnelle à son terme, il faut non
seulement évaluer le polynôme générateur des dérangements, mais trouver la relation
entre ce dernier et le polynôme générateur de toutes les permutations (voir Théorèmes
3 et 4) .

I1 suffit, dans § 3, d'appliquer les résultats établis dans la section précédente pour
démontrer les trois identités (1 .7), (1 .8), et (1 .9) .

Il est remarquable de constater que toutes les fonctionnelles des polynômes
orthogonaux hypergéométriques classiques sont des fonctions génératrices de dérange-
ments. La section 4 montre qu'il y a une cohérence totale entre les diverses interpréta-
tions combinatoires de ces fonctionnelles . On retrouve, pour celles-ci, le même tableau
qu'Askey et Wilson [As-Wi] avaient construit pour les polynômes eux-mêmes .

L'appendice propose une démonstration analytique d'une identité (Corollaire 2),
déjà établie à l'aide de techniques combinatoires .

2. Calcul permutationnel et partitionnel .
2.1. Trois lemmes fondamentaux . Soient A un ensemble fini et S un sous-ensemble

de A. Chaque injection 7r de S dans A peut s'identifier avec son graphe : les sommets
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(2.3)

	

v(~)

11 =: U II[ n ],
n}1

JIANG ZENG

sont les éléments de A, les arcs sont les flèches allant de i à j si Ir(i) -j. On désigne
par cyc ir le nombre de cycles du graphe et l'on définit le poids de ir par w(ir) _ f3' .~ .
On note enfin Inj (S, A) l'ensemble des injections de S dans A et BAI le cardinal de
A. Le polynôme générateur de Inj (S, A) par le nombre de cycles prend la forme simple
exprimée dans le lemme suivant (cf. [Fo-St]) .

LEMME 1 . Soient 0 k n, (AI = n et ~S1= n - k, on a

(2.1)

	

w(Inj (S, A)) _~ w(ir) _ (~3 + k)n-k

	

(ir E Inj (S, A)).

Remarque. Lorsque k = 0, à savoir S = A, l'ensemble Inj (S, A) se compose des
permutations de A . La formule (2.1) se réduit alors au résultat classique (cf . [Ri]) :

(2 .2)

	

w(~) -~ N cyc ~ - (N)n

	

(?T E Sn ) .

Dans l'introduction, on a défini l'ensemble C„ de tous les couples (X(j), j),
(j =1, • • • , n), ainsi que l'ensemble des dérangements £(n) de C,,, définis à l'aide de
la fonction x . On introduit, en plus, l'ensemble Y (n) des permutations de C„ . On
munit ensuite chaque permutation ir de C„ du poids v (r) défini par

et on pose :

(2.4)

	

v(P(n)) _ ~ v(ir)

	

(ir E ?P(n)) .

La fonction génératrice de v (gP (n)) a une forme explicite donnée par la /3-extension
du "Master Theorem" (cf. [Fo-Ze]). Dans l'énoncé suivant, Vm désigne le déterminant
classique du "Master Theorem," à savoir, det (6, - b (i, j )x3 ) (1 i, j m) .

LEMME 2 (13-extension du "Master Theorem") . On a l'identité :

1xm(2.5)

	

X ; . . .

	

v(~(n)) = Vmn1

	

nm .

où la sommation de gauche est faite sur toutes les suites n = (n 1 , • • • , nm) de m entiers
positifs.

Remarque . Prolongeant le résultat du Lemme 2, nous avons, par ailleurs (cf .
[Ze2]), donné une 13-extension de la formule d'inversion de Lagrange à plusieurs
variables .

La formule exponentielle va jouer un rôle important dans cet article . Nous
rappelons ici la méthode du composé partitionnel (cf. [Fo-Sch], [Fo2]) permettant un
calcul simple de plusieurs fonctions génératrices exponentielles . Étant donné un
ensemble fini A, une partition de A est une collection r . = {5, • • • , Sr} de ses sous-
ensembles non vides, mutuellement disjoints, dont l'union est égale à A. On appelle
bloc chaque part Si dans ir, et l'on note bloc ir le nombre de blocs de ir. On note enfin
II[n] (respectivement, S[ n ]) l'ensemble des partitions (respectivement, partitions en
un bloc) de [ n ] et on pose

n

- ~ cyc~

	

b(X(J)~ X(~(J)))
j=1

5 = U S[n] .
nul

On peut identifier II au composé, partitionnel abélien 5 (+) de S (cf. [Fo2]) .
Rappelons qu'une application multiplicative est une application µ de Sdans

une algèbre de polynômes, telle que si Tr est une partition {S 1 ,' • • , Sr}, où chaque Sl
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est un bloc de taille ni , le polynôme µ (ii- ) est donné par le produit
µ(S[nl]) • • • µ(S[nr]) . On peut alors considérer les polynômes :

µ{n[n]} _ ~ {µ(ir) : ii E n[n]} et µ{S[n]} _ ~ {µ(ir) : IT E S[n]} .

Comme démontré dans [Fo2], ils sont reliés par la formule exponentielle exprimée
ci-apres .

LEMME 3 . Si µ est une application multiplicative, on a l'identité
u n

	

u n
(2.6)

	

1+

	

µ{H(n]} = exp

	

µ{S[n]}
n-1

	

n

	

n_1

	

n
•

2.2. Permutations et dérangements. Dans l'introduction on a défini le poids

(2.7)

	

W(1T) _ ~ cyc rr yexc7r

d'une permutation iT de C„ . On a aussi défini le polynôme générateur 1(n) . Nous
rappelons ci-après cette définition et introduisons, en plus, le polynôme générateur
P(n; /3, y) de toutes les permutations de C„ :

P(n ; /3, y) _~ W(ir)

	

(?iE P(n)),

(2.8)
D(n ; /3, y) _ W(IT)

	

(IT E

Les fonctions génératrices de ces deux polynômes ont des formes explicites, qui sont
exprimées ci-dessous à l'aide des fonctions symétriques élémentaires e 1 ,

	

, em des
variables x 1 ,

	

, xm .
THÉORÈME 1 . On a les identités

x~ 1

	

xm
2 ~ n ~ . . .

n ~P(n ;/3 )( .9)

	

n 1

	

m

=[1-e1-(y-1)e2- . . .-(y-1)m-lem]-P,

x1 1

	

xni
2.10)

	

~n1! . . . nm ! D(n;/3,y)(

	

~

?TEP(II)

y

	

y(1 + y)e3 - . . . - y(1 + y+ . . . + ym-2)em] -P ,

où les sommations sont faites sur toutes les suites n = (n 1 , • • • , nm) de m entiers positifs .
Remarque . Lorsque /3 = 1, Askey et Ismail [As-Is] ont obtenu la seconde identité

avec une interprétation combinatoire analogue .
Démonstration. Pour 1 ~ i, j m, posons

y si i<j,(2.11)

	

b(i, j) _
1 sinon .

En substituant b(i, j) dans le Lemme 2 et en posant n = n 1 +

	

+ nm , on trouve :

n

v(~(n))=

	

/3CyClTfll b(X(j),X(IT(j)))
TEP(n)

	

j=1

cyc Ir y exc ar
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Le déterminant det (6,,- b (i, j)x;) devient :

=1-e1-(y-1)e2- . .

Vm =(_1)mxl . . . xm

JIANG ZENG

1

em

(cf., par exemple, Muir [Mu, p. 441]) .
L'identité (2 .10) est démontrée de façon analogue . Il suffit de prendre pour b (i, j )

les valeurs :

b(i, j) _
1

	

sii j.

On notera qu'à cause des valeurs b(i, i) =0, la somme v(~(n)) est égale à D(n; /3, y) .
Le déterminant de MacMahon devient :

y

	

. . .

	

y

	

y
1

	

_x21 . . .

	

y

	

y

1

	

1

	

. . . -x-1

	

ym-1
1

	

1

	

. . .

	

1

	

-xm1

qu'on peut encore exprimer sous la forme :

Vm=1_ye2_y(1+y)e3_ . . .-y(l+y+ • .

(cf. Muir [Mu, p. 441] et Askey et Ismail [As-Is, § 3]) .

	

D
L'identité (2.9) permet de donner une formule explicite pour le polynôme

P(n ; /3, y) donnée dans le corollaire suivant .
COROLLAIRE 1 . On a l' identité

(2.12)
m

P(n ; /3, y) _ (1- y-1 )'(1 - y) n

	

fi (-

-k(
()\

k

O i=1

	

k!

	

'

où n=n 1 + • • •+ nm .
Remarque. Lorsque m = 1, en appliquant la formule binomiale, on retrouve (2 .2) .

Lorsque tous les n i valent 1, le premier membre de (2 .12) devient le polynôme générateur
des permutations de [m ] par le nombre des cycles et celui des excédances . Or, d'après
la transformation fondamentale de Foata [Fo2], ce dernier est aussi le polynôme
générateur des permutations par le nombre des éléments saillants et celui des descentes,
on retrouve donc une formule apparaissant dans le mémoire de Viennot [Vi, formule
(66), p. II-37] .

Démonstration. Il suffit de vérifier que le membre de droite de (2 .12) satisfait la
formule (2.9) . En effet, en substituant P(n; f3, y) dans (2.9) par le membre de droite

_ x11 y . . . y y
1 1-x2 1 y y

Vm _ (_1)m xl . . . x m
-11 1 1-x1 m-y

1 1 . . . 1 1-xm1



de (2.12), on a

(2.13)
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m

	

n .	-k	(1- y-1)P

	

fl

	

( 1_ y)(-k) .

	

y(P)
i

	

k
k~o i=1 n~0

	

n
It •

	

k!

m
= (1 - y-1)~

	

H (1-(1-y)xi)k
k?0 i=1

m

	

(i
=(1-y-')° (1-

	

IIv-'

	

(1-(1-y)x,)>]
i=1

=[1-e1-(y-1)e2- . . .-(y-1)m-lem]-P,

en appliquant par deux fois la formule binomiale .

	

D
Dans (2.12), en faisant y tendre vers 1 et en utilisant l'identité (2.2), on obtient

le corollaire ci-dessous, qui permet d'interpréter la fonctionnelle de produits de poly-
nômes de Laguerre (voir Théorème 8 ci-après) à partir de celle de Meixner .

COROLLAIRE 2 . On a

m
lim (1- y-1)P (1 _ y)nl+ . . .+nm

	

fi
(-k)

y

	

k~0 i=1

y-k(/3)k
k!

	 -k(~)k
k I

	

= ( 1~ ) nl+ . . .+nm .
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On se propose maintenant de trouver une formule polynomiale à coefficients
positifs pour D(n; /3, y) dans le cas où m est quelconque. Pour cela on a besoin d'un
résultat sur les fonctions symétriques. Soient

À=(À1>À2> . .) et µ-(/L1~/h2> . .)

deux partitions d'entiers, la plus grande part étant m. Comme il est bien connu (cf.
[Macd, p . 65]), chaque élément eÀ = eÀ1 eÀ2 s'exprime à l'aide des fonctions
symétriques monomiales mµ par l'équation

4 _

où pour tout couple de partitions (À, µ ), le coefficient a A, est le nombre des matrices
(0, 1) dont les sommes de ligne sont les À i et les sommes de colonnes les p, . Les
coefficients aÀ ,. sont donc des entiers positifs, qui ont une expression simple en fonction
des nombres de Kostka (cf. [Macd, p . 65]) .

COROLLAIRE 3 . On a l'identité

m

	

s

	

m (1	
- y i-1)k~

(2.14)

	

D(n;113, y) _ fi n . !)

	

(/3)s
i --1

	

s_o

	

1y

	

A

	

i=2

	

ktt

où µ = n* et où la seconde sommation est faite sur toutes les partitions A = (1°2"2 . • • mkm )

de l'entier n 1 +

	

+ nm satisfaisant k2+

	

+km =5.
Démonstration. On développe le membre de droite de (2.10) à l'aide de la formule

binomiale, puis à l'aide de la formule multinomiale . On obtient :

[1-ye2-y(1+y)e3- . . .-y(1+y+ . . .+ym-2)em]-P

(~)s	
ys

	

s!

	

m

i

	

2

	

I

	

I

	

1 11 (1 - y`-1 ) ` eA,
s s ! (1-y)

	

k2 ! k3 . . . . km ! i-2

Où k2 + • • • + km = s et À _ (1 °2'2 . • • m'"). On exprime ensuite les ea en termes des
fonctions symétriques monomiales mµ et l'on l'identifie avec le premier membre de
l'identité (2.10) .

	

D
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Remarque . Lorsque m =3, la formule (2.14) se spécialise en une formule
apparaissant comme une /3-extension de l'identité de Pfaff-Saalschütz (voir § 2 .5,
Proposition 3) . On peut aussi obtenir une formule analogue pour P(n; /3, y) .

2.3. Partitions colorées. Considérons de nouveau l'ensemble C„ associé à la suite
n = (n 1 , , nm ) de m entiers positifs. Comme déjà dit dans l'introduction, une parti-
tion IT de C„ est dite partition colorée, si chaque bloc de ir est constitué seulement par
des éléments de couleurs différentes. Notons 3(n) (respectivement, ?~9(n))
l'ensemble des partitions colorées (respectivement, partitions colorées sans points
isolés) de C„ et introduisons pour chaque partition colorée ir de C„ le poids :

a blocTrv(?r) =

Les polynômes générateurs de ?PC6(n) et 2P~9'(n) sont définis respectivement par :

(2.15)

JIANG ZENG

A l'aide du Lemme 3, on peut donner des formules explicites pour les fonctions
génératrices de ces deux polynômes .

THÉORÈME 2 . On a les identités

xi'

	

xm

n
PC (n ; a) =exp (ae 1 + • •

n1 !n

	

m
n l

	

nm
(2.16)

m
PCS(n; a) =exp (ae2 + • •

n n1!

	

nm I

où les sommations sont faites sur toutes les suites n = (n 1 , • • • , nm ) de m entiers positifs .
On présente ici deux démonstrations, l'une s'appuie sur la formule exponentielle

à une variable, et l'autre est de nature plus combinatoire et élémentaire .
Démonstration 1 . Pour chaque partition ir de [ n ] et chaque application 'p de [ n ]

dans [ m ], on définit :

L'application 8 permet d'introduire pour chaque ir E H[n] le poids comme suit :

n

µ(te) _

	

e(?r,'p)ablocrr
fi ç (j)

cp : [n]-~[m]

	

i=1

On vérifie facilement que µ est une application multiplicative . Ceci revient à dire que
µ(ir) est le produit de tous les poids des blocs . Par ailleurs, pour toute suite n =
(n 1 , . • • , nm ) de m entiers positifs de somme n, posons

v{H[n]} _ 6(lr, X)a b ' ° ~~

	

( ir E H[n]),

v{S[n]} _ 8(ir, X)a
bloc ~

	

(ir E S[n]),

où X est le m-coloriage de [ n ] associé à la suite n . On vérifie également :

(2.17)

	

µ{n[n]}=~

	

n'

	

X11 . . . ximv{n[n]},
n

	

1 .

	

m .

1 si la restriction de 'p à chaque bloc de ir est injective,
8(?r, ~p)= .

0 sinon .

PC(n ; a) _ ~ v(ir) (ir E P (n)),

PCS(n ; a)= ~ v(ir) (ir E ~~9(n)) .



8(~,~P) =

où À=(1'12"

1

0
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(2.18)

	

µ{S[n]} _

	

n I.	x11 . . . xm v{S[n]},nn1 .I . . . nm I.

où les sommations de droite sont faites sur toutes les suites n = (n 1 , . • • , n,,,) de m
entiers positifs de somme n. En substituant (2.17) et (2.18) dans (2.6) et en faisant
u =1, on obtient

n

	

n

	

n

	

n
x11

	

xm v{~[n1 + . . -}- nm]} - eXp x11

	

xm v{S[n1 +
n n1 !

	

nm !

	

n n1 !

	

nm

où la sommation de gauche (respectivement, droite) est faite sur toutes les suites
n = (n1 , • • • , nm ) de m entiers positifs (respectivement, de somme 1) . On remarque
d'abord: {H[ n1 + • • • + nm ]} = PC (n ; a) ; d'autre part, {S[n1 + • • • + nm]} = 0 sauf si
tous les n i valent 0 ou 1, il en résulte : v{S[n 1 + • • • + nm]} = au1 + + ao . Ce qui
établit (2 .15) .

On démontre l'identité (2.16) de façon analogue . I1 suffit de prendre pour e les
valeurs suivantes

si ir n'a pas de point isolé

et si la restriction de p à chaque bloc de ir est injective,

dans le cas contraire .
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Démonstration 2 . En identifiant les coefficients de x11

	

xm des deux membres
de (2.15), on constate que (2.15) est équivalente à

m n.'
(2.15')

	

PC(n ; a) =

	

a s

	

n i aÀµ ,
s-o

	

a ~-1 kl

m km ) avec k1 + • • • + km = s et µ = n* et enfin où aÀ , est défini par
eÀ _

	

Donc pour prouver (2.15) il suffit de démontrer que le nombre des
partitions colorées de C„ à s blocs dont ki blocs contiennent exactement i éléments
(1 i m) est égal à

f m
k I aÀ ,L .

i-1

	

1

Ceci est évident car aÀ . est le nombre de matrices (0, 1) dont les sommes de ligne sont
les À i (1 i s) et les sommes de colonnes les µ; (1 j m) . La formule (2.16) peut
s'établir de la même façon.

	

D
A l'aide du Théorème 2, on peut donner une formule explicite du polynôme

générateur PC (n ; a) .
COROLLAIRE 4. On a l'identité :

m

	

ak
(2.19)

	

PC(n; a) _ (-1)nl+
. . .+nme_a

	

fi
(_k)ni I

k_o i-1

	

k .

Remarque. Lorsque tous les n i sont égaux à 1, la formule (2.19) se réduit à une
formule due à Touchard (cf. [Toi); si, de plus, a =1, le polynôme PC(n ; a) devient
le nombre de Bell . On retrouve ainsi une formule bien connue due à Dobinski (cf . [Do]) .

Démonstration. I1 suffit de vérifier que le membre de droite de (2.19) satisfait la
même fonction génératrice (2.15) de PC (n ; a) . Ceci est évident en appliquant la formule
binomiale .

	

D

2.4. Relations entre polynômes générateurs de permutations et de partitions . On se
propose ici de trouver des relations simples entre les polynômes D(n ; /3, y) et P(n ; /3, y) .
Le théorème suivant joue un rôle important dans l'interprétation des 4f (n ; /3, c) et
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JC(n; N, p) . Pour chaque ensemble C„ associé à la suite n = (n 1 ,

	

, nm ), on pose

Ai={(i,j); n 1 + . .+ nl_l+l~j~n1+ . .+ni}

pour i =1, , m, qui est le sous-ensemble des éléments de couleur i de C,, . Soit ir
une permutation de C„ , (X (j ), j) est dit point fixe de ir si x (i) = X (ir (j)) . On désigne
par Fix ir l'ensemble des points fixes de Tr. On établit d'abord le lemme suivant .

LEMME 4. Soient T Ç C„ et I T (Î A i I = n i - ki , i = 1, • • , m, on a alors
m

(2.20)

	

w(~) = P(k ; l3, y) II (a + ki)n-k
Fixrr~T

	

i=1

Remarque. Ce lemme est déjà donné par Foata et Zeilberger lorsque y =1 [Fo-Ze] .
La démonstration donnée ici est essentiellement la même que celle donnée par ces
auteurs .

Démonstration. Posons Ti = T n Ai pour i 1,' • • , m. D'après le Lemme 1, le
membre de droite de (2 .20) est la fonction génératrice du produit ?P(k) x
jj
m

1 Inj (Ti, Ai ) par le poids w. Donc pour démontrer le lemme, il suffit d'établir une
bijection ir (cr, T1, , iTm ), conservant le poids, de (n) sur ce produit. Pour cet
effet, on part d'une permutation ir de C,,, fixant tous les éléments de T. On écrit ir
sous forme de produit de cycles et l'on enlève tous les éléments de T dans chaque
cycle. Ce qui reste est alors une permutatoin de C„\ T écrite en produit de cycles .
Évidemment, o- a les mêmes excédances de ir. On définit ensuite ii-i par la restriction
de ir sur Ti , qui est évidemment une injection de Ti dans Ai . On voit facilement que
le nombre totale de cycles de o-, IT , ~m est égal à cyc Tr. D'autre part, l'application
inverse peut se construire immédiatement .

	

D
A l'aide du Lemme 4, on démontre le théorème suivant.
THÉORÈME 3. On a l'identité

m
(2.21)

	

D(n ; la, y) _

	

. . .

	

P(k; l3, y) II (-1)nt-k`
nt (a +kl? 0

	

km?0

	

i=1

	

ki

Démonstration. D'après le principe d'inclusion-exclusion, on obtient immédi-
atement

D(n; /3, y) _

	

(-1)I TI

	

w(Tr) .
T ç C„

	

Fix ir ~ T

Par ailleurs, d'après le lemme précédent, pour tout sous-ensemble T de C„ tel que
fTnAl=n-ki

	

ii (i=1, . • • , m ), on a

m

( -1) ITI

	

w(ir) = P(k, 13, y) II (-1) n ` -k (a +, k)-k.
Fixir~T

	

i=1

Il y a évidemment fi
m

1 (k~) de tels sous-ensembles . D'où il résulte (2.21) .

	

D
Remarque. Au lieu d'utiliser le principe d'inclusion-exclusion, l'identité (2.21)

peut s'établir d'une façon "plus combinatoire," à savoir, construisant une involution
sur un ensemble adéquat avec un poids approprié associé à chaque élément . On peut
se reporter à l'article de Foata et Zeilberger [Fo-Ze 1 ] pour cette démonstration lorsque
r =1 . Enfin, on peut aussi démontrer (2.21) en identifiant les fonctions génératrices
de ses deux membres. Il suffit, en fait, de remplacer P(k; /3, y) par la formule (2.12)
et d'utiliser la formule (2 .9) .

On a de même une évaluation analogue pour les polynômes générateurs de
partitions. Le théorème suivant établit une relation entre les polynômes PCS(n; a) et
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PC(n ; a) . On peut le considérer comme l'analogue, du Théorème 3 dans le contexte
des partitions colorées .

THÉORÈME 4 . On a l'identiteé :

m

(2.22)

	

PCS(n; a) =

	

. . .

	

PC(k; a) jI (-1)n;-k~ nl a n ;-ki .
k 1~0

	

k0

	

i=1

	

ki

Démonstration . La démonstration de ce théorème est tout à fait semblable à celle
du Théorème 3, à ceci près que nous devons remplacer les termes permutations par
partitions colorées et points fixes par points isolés. Nous nous dispensons donc de la
reproduire ici .

	

D
Comme signalé dans la remarque précédente, on peut aussi démontrer (2 .22) en

identifiant les fonctions génératrices des deux membres .

2.5. Évaluation de polynômes générateurs pour certains cas particuliers . Lorsqu'on
se restreint aux suites n = (n 1 , n2 , n 3 ), les polynômes PCS(n ; a) et D(n; /3, y) prennent
des formes remarquables données dans les propositions suivantes .

PROPOSITION 1 . On a l'identité :

2.23 )

	

PCS(n1'n2'n3'• a)=

	

n1 t n2 !
n3 .

a s

(

	

~ s-n ! s-n ! x-n ! n +n +n -2s !s~0 (

	

1) (

	

2) (

	

3) ( 1

	

2

	

3

	

)

Démonstration . On développe les fonctions symétriques élémentaires e 1 , e 2 , e 3 en
les xi , puis on identifie les coefficients des monômes x;1x22x33 dans les deux membres
de (2.15) .

	

D
PROPOSITION 2 . On a l'identité

n 1 ! n2 ! n3 !(1 + y)
n l+n 2+n 3 -2s

(2.24) D(n 1 , n2 , n 3 ; /3' y) _ ~

	

ys (la)s •
s~o (s-n1)!(s-n2)!(s-n3)!(n1+n2+n3-2s)!

Remarque. On note qu'en faisant /3 =1 dans l'identité précédente, le calcul du
membre de gauche devient évident, à savoir

f

	

\f

	

\f

	

\n 1 ! n 2 ! n 3 ! ~

	

n'

	

n2

	

n3

	

ys ,
s \s-n2/\s-n3/\s-n1/

et on retrouve la formule classique de Pfafl-Saalschütz (cf. [Bal) suivante :

f nl

	

n2

	

n3

	

s _

	

s ~( 1+,y)	
nl+n2+n 3-2s,y s

y

	

o(s-n1)!(s-n2)!(s-n3)!(n1+n2+n3-2s)!s-

	

\
PI

	

II
0\s - n2/\s - n3/\s - n1/

	

s-

C'est exactement sous cette forme que Good [Go] avait donné sa version de la formule
de Pfafl-Saalschütz en appliquant le "Master Theorem" de MacMahon et que Foata
[Fol] l'avait démontrée combinatoirement .

Remarque. Les deux Propositions 1 et 2 peuvent être aussi établies de façon
authentiquement combinatoire . Cette approche fait l'objet d'un article séparé [Zel] .

Démonstration . Lorsque m =3, la seconde sommation dans le membre de droite
de (2.13) se réduit à une seule partition

À _ (23s-n1-n2-n33 n l +n 2+n 3 -2s)

D'autre part, le calcul de aÀ ,L (avec µ = (n 1 , n 2 , n3)*) est facile . On trouve bien

a -

	

(3s-n1-n2-n3) !

	

Daµ (s - n 1 ) !( s _ n2) !( s _ n3) !
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COROLLAIRE 5 . Lorsque n3 = 0, on a

(2 .25)

	

D(n1 , n2 ; X13, y) = n 1 ! y1(/3) 1 6 12 ,

(2.26)

	

PCS(n1 , n2 ; a) = n 1 ! a'6 12 .

Ces deux identités, qui sont immédiates à partir de (2.23) et de (2.24), serviront
à (re)démontrer les propriétés d'orthogonalité des polynômes de Meixner, Krawtchouk,
d'une part, et de Charlier, d'autre part .

Notons, enfin, les évaluations de D(n; /3, y) et PCS(n ; a) dans le cas m quelconque,
mais n 1 n2 + • • • + nm .

PROPOSITION 3 . On a

D

	

n1 ! ynl(f3) ni si n 1 = n 2 + . . . + nm ,
(2.27)

	

(n
•
'/3'y)=0

	

si n1>n2+

n, ! a nl si n 1 = n 2 +
(2

.28)

	

PCS(n•a
)= 0

	

si n1> n2+ • m

Démonstration . Il n'existe pas de dérangements colorés lorsque n1 > n 2 + + nm .
Lorsqu'on a l'égalité, chaque dérangement coloré IT détermine, de façon unique, un
ensemble S~ de n 1 arcs :

[x - ?r(x)]

	

(x = (1, 1), . . . , (1, n1)),

ayant chacun une excédante et une permutation ir' de S~ donnée par

ir ' [x ~(x)] H [1r2(x) - 1r( 1T2(x))]

	

(x = (1, 1), . . , (1, n1)) .

On remarque, par ailleurs, que ir' a le même nombre de cycles que Tr. Cette application
est évidemment bijective. La formule n1 ! ( f3)nlynl compte donc d'abord le nombre de
façons de construire n 1 arcs, puis le nombre de permutations de ces arcs suivant le
nombre de cycles, enfin impose une excédante à chaque arc. La formule (2.28) est
évidente .

	

D
Remarque. Lorsque m =2, on retrouve le Corollaire 5 .

3. Polynômes orthogonaux .
3 .1. Polynômes de Meixner. On est prêt maintenant à interpréter la fonctionnelle

4t (n ; /3, c) définie en (1 .4) . On rappelle que D(n; /3, y) est le polynôme générateur
introduit en (2.4) .

THÉORÈME 5 . On a

(3.1)

	

iLt (n ; /C3, c) = D(n ; /3, c -1 ) .

Remarque. Dans le cas /3 = 1, cette identité a été démontrée par Askey et Ismail
[As-Is] .

Démonstration. Dans (1 .4) développant chaque polynôme de Meixner par la
formule (1 .1), on obtient

m
(3 .2)

	

4(n; /3, c) =

	

. . .

	

F(k, /3, c) rj (_ 1) nt-k ` n ' (p + ki) n-k
ki~0

	

k0

	

i=1

	

ki

ou

m

	

C k(~)kF(k; /3, c) _ (1 _ c)P(1-c_1)kl+fl (-k)k
k~o i=1

	

k .



D'après le Corollaire 1, on a

F(k; /3, c) = P(k ; /3, c- ') .

Appliquant alors le Théorème 2, on obtient bien (3 .1) .

	

0
D'après ce théorème, 41 (n ; /3, c) est un polynôme de variables /C3 et c -1 à coefficients

entiers positifs ; donc la positivité de 41(n; /3, c) lorsque /3 0 et 0 < c < 1 devient
évidente .

COROLLAIRE 6. Soient /3 0 et 0 < c <1, on a

t (n ; /3, c) 0 .

En appliquant les propositions données dans la § 2.5, on obtient les corollaires
suivants .

COROLLAIRE 7 (Linéarisation) . On a :

n l t n 2 ! n 3 t(1 + c-1) nl+n2+n3-2s

	

_s
(~) •

0(
(3.3) (n i , n 2 , n 3 ;

/3, c) = ~ s-n1)!(s-n2)!(s-n3)!(n1+n2+n3-2s)! c

	

s
s-

Remarque. L'identité (3.3) est déjà donnée par Askey et Gasper [As-Gal sous
une forme équivalente (c'est-à-dire à une constante près) .

COROLLAIRE 8 (Orthogonalité) . On a

(3 .4)

	

.i1f(n 1 , n2; I3, c) = n1c -nl(N)n1Snln2 •

COROLLAIRE 9 . On a

n1 !c-n l ((3 ) n1

	

si n, --= n2+ . . ..~- nm ,
(3 .5)

	

,drl(n ; /3, c) =
0

	

sine>n2 +

3.2. Polynômes de Krawtchouk. L'interprétation de la fonctionnelle .7C(n ; N, p )
définie en (1 .5) relève du même modèle que celui utilisé pour 41(n; (3, c) .

THÉORÈME 6. On a

(3.6)

	

3'C(n ; N, p) = D(n; -N, 1-1/p).

Démonstration . Dans (1 .5) développant chaque polynôme de Krawtchouk par la
formule (1 .2), on obtient

m
(3.7)

	

~C(n ; N, p) _

	

. . .

	

G(k; N, p)

	

(-1)n~-kt n,
(-N+k;)n~-ki+

k i ~0

	

kn ,?0

	

i!1

	

ki

ou
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m
G(k; N, P) =P-kl-

. . ._km

	

( - k)k t

	

p(N)k(l _
p)N_k •

k~0 i=1 k

m
(3.8)

	

JC(n ; N, P) _

	

ni !

	

(-N)s(P - 1) S aÀµ H
i=1

	

s~O

	

À

	

i=2

	

k.l

A l'aide du Corollaire 1, on vérifie facilement que l'on a :

G(k; N, p) = P(k ; -N, 1-1/p) .

Appliquant alors le Théorème 3, on obtient bien (3.6) .

	

0
Le Théorème 6 affirme que 7C(n ; N, p) est un polynôme en les variables (-N) et

(1-1 / p) à coefficients entiers positifs, mais cette fois-ci l'interprétation de ''C(n ; N, p )
ne donne pas d'information sur son signe immédiatement . En fait, il y a deux cas à
considérer, comme nous allons l'indiquer après l'énoncé du prochain corollaire . Celui-ci
donne une formule nouvelle de la fonctionnelle 7C(n; N, p) dans le cas n quelconque .

COROLLAIRE 10. On a

1

	

- 1/P)
i-1 ) k
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où ~cc =n * et À varie dans l'ensemble des partitions (1 °2 k2

	

mkm) de l'entier (n 1 + • • • +
nm) satisfaisant k 2+

	

+ km = s et où aÀ,L est donné par ea =
Démonstration . On reporte (3 .6) dans (2.14) et on trouve bien (3 .8) .

	

D
COROLLAIRE 11 . On a les deux inégalités

(3.9)

	

JC(n ; N, p) 0,

	

2~p<1,

(3 .10)

	

(-1) n~C(n ; N, p) 0,

	

0<p< ;2

où n désigne la somme des entiers n 1 , n 2 , et n3 .
Remarque. L'approche de Dunkl et Ramirez [Du-Ra] en termes de caractères de

groupes n'a permis à ces auteurs que d'obtenir l'identité (3 .8) dans le cas m = 3 et
pour 2 p < 1 . Ils n'ont donc pu établir que (3 .9) toujours dans le cas m = 3 .

Démonstration . Ces inégalités sont une conséquence de l'identité (3 .8) . D'abord
le facteur (-N) S (p -1) S est toujours positif pour O <p <1 . Ensuite, lorsque 2 p < 1,
on a -1 1- (1/p) < 0 et tous les termes du membre de droite de (3 .8) sont positifs .

Lorsque 0 < p < 2 , on a 1- -(1p) <-1. Par conséquent, le signe de rjm 2 (1-
(1-1/p) `-1) ki est égal à (-1) s (m), où s (m) est la somme des ki avec i impair. Comme
2k2 + • • •+ mkm =nl + • • •+ nm , on a :

s(m)=-n,+ • • • + nm (mod 2),

qui est indépendant de À . On en tire immédiatement (3 .10) .

	

D
Les corollaires suivants sont des conséquences immédiates des propositions corre-

spondantes établies dans la § 2 .5 .
COROLLAIRE 12 (Linéarisation) . On a :

n,1 n 2 !n3!(2 - 1/p) n1+n2+n3-2s (1 - 1/p) S
(- N)s .

s~o (s-n1)!(s-n2)!(s-n3)!.(n1+n2+n3-2s)!

Remarque. On doit à Eagleson [Ea] d'avoir calculé la fonction génératrice des
~C(n 1 , n 2 , n3 ; N, p) et à Askey et Gasper [As-Ga], d'avoir su déduire du calcul
d' Eagleson l'identité du Corollaire 12 .

COROLLAIRE 13 (Orthogonalité) . On a :

JC(n i , n2; N, p) = n 1 !(1 - (1/p)) nl(- N)n16n1n2 •

COROLLAIRE 14. On a

7C(n • Np)= n1!(1-1/p)n'(-N)n1 si nl=n2+
. . .+nm~

'

	

0

	

si n1>n2+

3.3. Polynômes de Charlier. L'interprétation de la fonctionnelle 6(n ; a), qui est
définie en (1 .6), est liée à la notion de partition colorée. On rappelle ici que PCS(n ; a )
est le polynôme générateur des partitions colorées sans points fixes introduit dans la
§ 2 .3 .

THÉORÈME 7 . On a

(3.11)

	

~(n ; a) = PCS(n ; a) .

Démonstration . Dans (1 .6) développons chaque polynôme de Charlier par la
formule (1 .3) ; on obtient

m7,(k ; a)

	

(_1)n`-kl ni an l -k~



ou
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m

T(k, a) = (-- 1)k,+ . . .+kme_a

	

H (-k)ktak/k! .
k~0 i

1
=1

Par ailleurs, d'après le Corollaire 4, on a

T(k; a)-=PC(k; a) .

Appliquant alors le Théorème 4, on trouve bien (3.11) .

	

D
Le Théorème 7 montre que ~(n ; a) est un polynôme en la variable a, à coefficients

entiers positifs. La positivité de 6(n ; a) devient alors évidente lorsque a > 0 .
COROLLAIRE 15 . Soit a > 0, on a

6(n;a)~0.

Les corollaires suivants sont des conséquences immédiates des propositions corre-
spondantes établies dans la § 2.5 .

COROLLAIRE 16 (Linéarisation) . On a :

n 1 ! ne t n3! a s

t (n1, n2, n3 ; a)= s~o (s - n1) . (s n2 ) . (s n 3 ) . (n1 n2 n3 2s) .

COROLLAIRE 17 (Orthogonalité) . On a

~(n1, n2; a) = n1! a n'Sn l n2 .

COROLLAIRE 1$ . On a

n 1 ! a1 si n 1 = n2+

0

	

si n 1 > n 2 +

.+nm,

	 + nm •

4. Passage aux limites entre les fonctionnelles. On se rappelle que le tableau
d'Askey et Wilson [As-Wi], détaillé par Labelle [La], classe les polynômes orthogonaux
classiques d'après leur hiérarchie hypergéométrique . Nous reproduisons dans le
tableau 1 la partie située au-dessous des polynômes de Krawtchouk et Meixner .

Une flèche va du polynôme P au polynôme Q, si l'expression analytique de Q
peut être obtenue de celle de P par un passage à la limite approprié . Par exemple,
nous avons

(4.1)

	

2n! lim -nLn~2~ 2) (~3 2/2 - fax) _ Hn (x)~

où H(x) (n 0) sont les polynômes d'Hermite définis comme suit :

t n
(4 .2)

	

H(x) t = exp (2xt - t 2 ),
n~0

	

n .

ou
-n'

.

	

(- 1)k(2x)n-2k
(4.3)

	

Hn (x)

	

~

	

2k kt
(n _ 0) .

k-0 (n - )t
Rappelons que les polynômes de Laguerre L(x) sont définis par

(4.4)

	

Ln«)(x ) u n = (1 _ u) -«-1 eXp -xu

n~o

	

1-u

ou

(4.5)

	

n ! Ln" )(x) _

	

(-1) k n (a + 1 + k) n _ k xk

	

(n 0) .
k~o

	

k
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Krawtchouk

JIANG ZENG

Meixner

Hermite

TABLEAU 1

Comme signalé par Foata [Fo3 ] (voir aussi [ La-Ye] ), les interprétations combinatoires
des polynômes apparaissant dans le diagramme précédent sont connues et compatibles,
en ce sens que toutes les formules de passage ont des démonstrations simples dans la
géométrie de ces modèles .

Introduisons maintenant les fonctionnelles des polynômes de Laguerre et
d'Hermite :

1

	

m

	

m
(4.6)

	

S?(n; a) =	( 11 (- 1) n ~ni t

	

11 L(x) x«e-x dx,
I'(a+1) j-1

	

o

	

i=1

°O

	

m
(4.7)

	

(n) _ (2 nl+ . . . +nm ~) -1~2

	

11 Hn , ( x)
e-x2 dx

.

Les interprétations combinatoires de ces deux fonctionnelles sont déjà données respec-
tivement par Foata et Zeilberger [Fo-Zel] et Azor, Gillis, et Victor [Az-Gi-Vi] . On se
propose ici de redémontrer d'abord l'interprétation combinatoire de 2(n; a) à partir
de celle de 4(n; /3, y) et l'interprétation de C(n) à partir de celle de 2(n; a) . On
démontre aussi que les interprétations combinatoires des fonctionnelles des polynômes
apparaissant dans le diagramme sont compatibles dans le même sens que ci-dessus .

THÉORÈME 8 (Foata et Zeilberger) . On a :

(4 .8)

	

2?(n; a) = D(n ; a +1, 1) .

Démonstration . Dans (4.6) développant chaque polynôme de Laguerre L(x)
par (4.5) et intégrant terme par terme en utilisant le fait que (1/F(a + 1) f ô e -xx n+« dx =
(a+1) n (cf. [Fo-Ze]), on obtient

m
(4.9)

	

~(n; a) _

	

. . .

	

(a + 1)kl+ . . .+km fi (-1)n;-k`
ni

(a + 1 + ki)n~-k~ .
k1~0

	

k r„~0

	

i=1

	

ki

En comparant (4.9) avec (3 .2) et en appliquant le Corollaire 2, on a immédiatement :

(4.10)

	

~(n; a) =1im 4t (n ; a + 1, c) .
cil

D'autre part, l'identité £(n; a + 1, 1) = lim ~~ 1 (n ; a + 1, c -1 ) est évidente. En
appliquant le Théorème 5, on a (4.8) .

	

D
On appelle involution dérangée toute involution de C,,, qui est en même temps

un dérangement de Ce, . On désigne par Invd (n) l'ensemble des involutions dérangées
de C„ .

THÉORÈME 9 (Azur, Gillis, et Victor) . On a

(4.11)

	

éC(n) _ ~ Invd (n)~ .
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Démonstration . C'est un exercice élémentaire d'analyse de vérifier

(4.12)

	

lim (/ /-1) n1+
. . .+nm'(n ; /3 2/2) _

(--
1)n1+

. .
.+nm (n),

à l'aide de (4.2) . Par ailleurs, on a

(/ /_1)n1+
. . .+nmD(n

; /32/2+1, 1) _

	

(/3 2/2+ 1)cy~~(/ /-1)n1+
. .
.+nm'

1-E(n)

lorsque (3 -* oo, tous les termes de la somme tendent vers zéro, sauf ceux qui satisfont
2 cyc ~r = ~m 1 n r , c'est-à-dire ceux qui correspondent aux involutions dérangées de C„ ;
or ces termes tendent vers 1. Par conséquent, d'après le Théorème 8, on a

(-1)n1+
. . .+nm C(n) = IInvd (n)I .

Comme il n'existe pas d'involution dérangée lorsque n 1 + • • • + n e,, est impaire, on a donc

(n) _ (Invd (n) l .

	

D

Les interprétations combinatoires (Théorème 5-9) des fonctionnelles définies dans
cet article permettent de trouver facilement les passages au limite entre ces fonction-
nelles .

THÉORÈME lO. On a

(4.13)

	

lim 4n; a + 1, c) _ S?(n ; a),
c-+1

a n1+ . .
.+nm

	

a
(4.14)

	

lim -

	

t n;/3,- _ ~(n; a),
13-*co/3

	

/3

(4.15)

	

lim
/3 -+ o0

(4.16) lim
a-+oo

rFs

(a)

a 1 ,
b 1,

n 1 + • • • + n

a n1+ . . .-~.ylm

(4.17)

	

lim --

	

7C n ;
N-+œ n

1

	

n1+ . . . + nm

	

1
(4.18)

	

Ni m ( q )

	

~cn; N, 2 = ( n) .

Démonstration . L'identité (4.13) (respectivement, (4.15)) est, en fait, déjà
démontrée dans la démonstration du Théorème 8 (respectivement, 9), si l'on part
d'abord de l'interprétation de (4.8) (respectivement, (4 .11)) . Les autres identités sont
démontrées de la façon analogue, à l'aide de leurs interprétations .

	

D

5. Appendice : quelques remarques sur le Corollaire 2. Dans la § 2 .2, on a établi,
de façon relativement élaborée, le résultat analytique suivant (Corollaire 2) :

m

	

y-k
k

(5 .1)

	

lim (1 y)~ (1 -- y) n1 + . . .+ nm

	

fl
(-k)
	((3)'	= (/3 1m') n+ . .

.+nyil

	

k~o t
11
=

11
1

	

k .

où n 1 , , nm sont m entiers positifs . Il est intéressant de transcrire ce résultat en
termes de fonctions hypergéométriques et de voir si les identités classiques sur ces
fonctions permettent de retrouver (5.1). Rappelons que si r et s sont deux entiers
positifs, (a 1 , • • • , ar ) et (b 1 , • • • , bs ) sont deux suites de paramètres (réels ou com-
plexes), la fonction hypergéométrique rFs est donnée par (cf. [Ba]) :

m

	

3
2

n 2 = (n),

1

	

n 1
±

. .
.+n m

() ~

al
Nl

_ ~(n; a ) ,

(a1)n. .(ar)n
xn

n~~ (bl)n

	

(bs)n n .
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(5.2)

lim 2F1
x-11

ll ,i:--1(n1-ni)!

JIANG ZENG

Prenons n1 = max {n 1 , n 2 ,

	

, nm } et récrivons le membre de droite de (5 .1) à l'aide
de ces fonctions . On obtient l'énoncé équivalent :

m-1 R
lim n2+ . . .+

(
nm 1 _ -1 ) P +nl+ . . .+nyn	 (nl!)	(N)nl

y

	

y

	

~m
y-1

	

lli-1 (n1 _ n •)

f

	

/3+n 1 , n 1 +1, • • • , n1+1

	

-1
X m m-1

n1 n2+1, n1 n3+1>

	

>n1 nm+1' y

- (~) nl+ . . .+n,,, .

Si l'on supprime le facteur lim y~ 1 yn2+
• •'+nm =1 et si l'on pose x =

	

on est conduit
à l'énoncé

~Ci+nl+ . . .+nrn	 (n1!) m-1'
P 1

lim (1 _ x )
x-~1

	

n:1 (n1 - ni) !

/3 + n 1 , n 1 + 1,
x mFm-1 n1-n2+1, n1-n3+1,

ou, de façon équivalente, à :
lim (1 _ x) P+nl+ . . .+nm
x-11

x
mFm- ' n -n +

11
-n +11

	

2

	

1

	

3

f3 + n 1 , n1 + 1 , . • . , n1 +1

1-x ~+nl F ~ +n' • x =1(

	

)

	

1 0

qui n'est autre que l'identité binomiale .
Pour m =2, on peut appliquer la transformation d'Euler (cf . [Ba, p. 8]) à la

fonction mFm-1 = 2F1,
n1+1

• x = 1 _ x -,a-n l-n2 F, - n2 - f3+1, -n2 • x
2 ' n -n +1

	

)

	

2 1

	

n 1 -n+1 '1

	

2

	

2

Le premier membre de (5 .2) devient donc :
F -n2---/3+1, -n2, x

.2 1

	

n1 -n2 +1

	

'

On peut alors appliquer la formule de Gauss (cf . [Ba, p . 6]) lorsque x tend vers 1 .
(-n2 -f3+1,-n2

	

r(n 1 - n 2+ 1)F(n 1 + n2+ /(3)
n1 -n2+1 '

x

	

h(n 1 +1)r(n 1 +fi)

(n1-n2)!(/3)1±2nn

n1!(f3)nl

Ce qui établit (5.2) dans le cas m =2 .

n1 +1
	 x

,n 1 -nm +1'

,n 1 -nm +1'

	 (f3+ n1)n2+ . . . +n, n
m

n -ni+1 n
(f3m-1

	

) nl+ . . .+n11 =
(n1!)

	

(i )n l

	

112 ( 1

	

)

Pour m 2, l'identité (5 .2) peut être vérifiée directement à l'aide de la formule
binomiale, d'Euler et de Gauss. Lorsque m =1, l'énoncé (5 .2), avant le passage à la
limite, se réduit à
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Comme les transformations utilisées ci-dessus (binomiale, Euler, Gauss) n'ont
pas de généralisations analogues dans le cas m quelconque, il semble qu'une transfor-
mation appropriée reste à trouver . En fait, on a seulement besoin de connaître une
formule asymptotique pour la série mT'm _, ci-dessus lorsque x tend vers 1 .

Remerciement. L'auteur tient à remercier M . D. Foata pour son aide et ses
suggestions durant toute la préparation de ce travail .
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LOCAL EXISTENCE OF SOLUTIONS
OF THE DIRICHLET INITIAL-BOUNDARY VALUE PROBLEM

FOR INCOMPRESSIBLE HYPOELASTIC MATERIALS*

MICHAEL RENARDYf

Abstract. Energy methods are used to show the well-posedness of the Dirichlet initial-boundary
value problem for incompressible hypoelastic materials and for a related class of viscoelastic fluids.

Key words, hypoelasticity, polymer rheology, local existence
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1. Introduction. The equation of motion for an incompressible continuous me-
dium is

p-=p -+(v.V)v =divT-Vp+f,

with the incompressibility constraint

(2) div v 0.

Here v is the velocity, p the pressure, T the extra Cauchy stress, p the density, and f
a given body force. Throughout this paper, d/dt denotes the material time derivative,
while c9/Ot or a dot denotes the Eulerian time derivative.

In addition to equations (1) and (2) we need a constitutive law, which relates T
to the motion. For isotropic elastic materials, the stress T is a function of the (Finger)
strain. By differentiating such a relationship with respect to time, we obtain a linear
relationship between the time derivative of the stress and the velocity gradient, with
coefficients depending on the strain or, alternatively (if the relationship between stress
and strain is invertible), on the stress. Hypoelastic materials [16] were introduced as a
natural generalization. In a hypoelastic materials, the material time derivative of the
stress is given as a linear function of the velocity gradient, with coefficients depending
on the stress. If special integrability conditions are satisfied, then integration with
respect to time yields an elastic constitutive law, but in general this is not the case.
Hypoelasticity has sometimes been used to model the behavior of solids, but does
not seem to have gained much popularity. There is, however, a closely related class
of models which is obtained by including a lower-order term in the equation. These
models have the form

d
Tij Aijkt(T) Ovkd-- + gij(T),

*Received by the editors May 1, 1989; accepted for publication November 20, 1989. This re-
search was completed while the author was visiting the Centre for Mathematical Analysis, Australian
National University. Financial support was provided by the Centre and by National Science Founda-
tion grant DMS-8796241.

fDepartment of Mathematics and Interdisciplinary Center for Applied Mathematics, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061-0123.
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where we have adopted the summation convention. Models of the form (3) are widely
used in polymer rheology. Although they are not a realistic description of real poly-
mers, they have some qualitative merits, and, due to their relative simplicity, they are
popular for numerical simulations. We refer to [8] and [11] for some specific examples
of such models; there are many others in the literature. For the purpose of illustration,
we cite the Johnson-Segalman model:

dT 1 +a
dt 2

1 a
(TVv + (Vv)TT) + AT(VvT + T(Vv)T) + 2

,(Vv + (Vv)r).

Here A and # are positive constants, and a is a constant which lies between 1 and -1.
We seek solutions of (1)-(3) for t > 0 and x E f, where f is a bounded domain

in IR3. We impose the boundary condition

(4) v(x, t)= O, x Of,

and initial conditions

(5) v(x, O) vo(x), T(x, 0) T0(x).

The principles of continuum mechanics impose certain restrictions on the coeffi-
cients Aijkl (see [16]). Frame-indifference requires that

(6) Aijkl(T) 1/2[SikTtj 5itTkj TikStj + TitSkj] + Bijkl(T),

where Bijt is symmetric in k and (and of course also in and j). Moreover, with D
denoting the symmetric part of the velocity gradient, the function (D, T) H B(T)D+
g(T) must be isotropic (we shall, however, not use this fact). We shall assume that

(7) Bijkl Bklij.

The analogous symmetry condition in elasticity follows from the existence of an elastic
energy; in the context of hypoelasticity, however, the physical meaning of (7) is not
obvious, in particular, (7) does not follow from thermodynamics. We set

(8)

so that

(9) Aijkl Til6kj if-Cijkl,

and we observe that Cijkt also satisfies the symmetry condition

(10) Ck Ckuj.

As in elasticity, a strong ellipticity condition is essential for the well-posedness of the
initial value problem. We require that

(11) Ciia(T)iCki >_ (T)[12[/]2 V, r/e IR3,
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(S1)
(s2)
(S3)
(S4)
(E)

(C1)

where (T) > 0. It would suffice to require (11) only for , r/with . 0; however,
we can then make it true for all ,y by adding a multiple of 5ijhkl to Cijkl; for
divergence-free v, this causes no change in (3).

Well-posedness for elastodynamics has been shown only recently. Hughes, Kato
and Marsden [7] consider the initial value problem on all of space for a compressible
elastic medium. Subsequently, the Dirichlet initial-boundary value problem has been
treated by Kato [9], Chen and von Wahl [2], and Dafermos and Hrusa [3]. For in-
compressible elastic materials, the initial value problem has been solved by Schochet
[13] and Ebin and Saxton [4]; the Dirichlet initial-boundary value problem has been
treated by Hrusa and Renardy [6]. The proofs in the present paper will to some extent
rely on ideas used in [6].

We make the following assumptions of smoothness, ellipticity, and compatibility:
The domain t C IR3 is bounded and 0f is of class C5.
The functions Aijkl and gij are of class C4.
v0 H4(), To H4(t).

4 Wk H4-kFor some T > 0, we have f e k=0 ([0, T]; ()).
The symmetry condition (10) holds and there is a continuous function a, defined
in a neighborhood of the range of To and taking values in IR+, such that (11)
holds.
div v0 0 and v0 0 on
The initial values of ), iJ and 03v/Ot3, as determined from the equations, vanish
on 0t.
Here the initial value of ,) is obtained by applying the Hodge projection (i.e., the

orthogonM projection in L2(gt) onto the subspace of divergence-free vector fields with
vanishing normal component on OFt, see e.g., [15]) to equation (1). This eliminates
p and everything else is given at t 0. Similarly, we find the initial values of i) and
03riOt3 by differentiating (1) with respect to time and applying the Hodge projection
to the differentiated equations.

THEOREM. Assume that (S1)-($4), (E), and (C1)-(C2) hold. Then there is a
T’ E (0, T] such that problem (1)-(5) has a unique solution with the regularity

4 3

v e N Ck([0’ T’]; H4-k(f)); T e N Ck([0’ T’]; H3-k(gt)).
k=0 k=O

Remarks.
1. It may appear strange that we require To H4(t), while the solution T only

lies in H3(Ft). However, the assumption To H4(t) is merely a convenient way of
guaranteeing that the initial values of Ov/Ot, k 1,2, 3, 4, lie in Ha-(gt). This
latter feature is reproduced by the solution.

2. A similar result with a much easier proof can be established for compressible
hypoelastic materials. In that case, the initial value of the density must also be
prescribed.

3. If more regularity of the data and additional compatibility conditions are
assumed, then more regularity of the solution is obtained.

4. It is possible to replace the condition v 0 on 0gt by an inhomogeneous
Dirichlet condition, as long as the prescribed velocity is tangential to 0Ft. If it is not,
then the imposition of boundary conditions leading to a well-posed problem becomes
a very tricky issue. For a discussion of inflow boundary conditions in the context of
steady flows of viscoelastic fluids see [12].
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2. Construction of solution. In this section, we define the iteration scheme
which is used to construct a solution. First, we apply the operator d/dt + (Vv)T to
the equation of motion (1) (the matrix Vv is defined such that the first index refers
to the components of v and superscript T denotes the transposed matrix), and we
substitute the right-hand side of (3) for dT/dt. This yields the following equation:

(12)
p +(v.V v

Oq 02vk
Ox--- + Aijkl(T)

OxjOx

+ hi(v, Vv, ), T, VT, f, Vf, ]).

Here we have set q (O/Ot + (v. V))p, and

(3)

Ov [ O ] Ov OT Ov OThi=-px/ - +(v’V) vj Ox Oxk Ox Oxk

xjgij(T)0 ( oxjO A Ovk [ O 1
We note that because of (2) and (9) we have

02Vk 02Vk
Cijkl(14) Aijk

OxjOxl OxjOx

We construct our solution by the following iteration scheme. For given vn, we
determine T from the initial value problem

(15)
0 ] Ov+ v) +

T(x, 0) T0(x).

Then vn+l is determined from

(16)

div Vn+l O,

Here Vl is the initial value of ), defined as explained above. While the solution of
(15) is relatively easy, the construction of solutions to (16) is quite complicated; it
will involve an "inner" iteration an a Galerkin approximation. A rough outline of the
procedure is sketched at the end of this section, and details are given in 3 and 4.
Our eventual task is to show that the mapping E vn vn+l is a contraction in an
appropriate complete metric space. The fixed point of the contraction is the solution
we seek.

Let Z(M, T) be the set of all functions v Q [0, T] ]R3 with the following
properties:

4

(17)1 v e N Wk’([0’ T’]; H4-k(f)),
k--O
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(17)2

(17)3 div v 0,

(17)4 vloa O,

03V
(17)5 V(x,O) Vo(X), i)(x,O) Vl(X), )(X, 0) V2(X), -(X, 0) V3(X).

Here I[" [Ik, denotes the norm in Wk,c([O,T’];H()); later we shall also use the
notation [1" [Ik,,p for the norm in Wk,p([O,T’]; H()). The functions vl, v2, and v3
are the (known) initial values of ), ) and 03v/Ot3; they lie in H3(), H2(Ft), and
Hl(t), respectively. On Z(M,T’), we define the metric

(18) d(v, -I1 ’ - ’llo,a + IIv - 11 ,2 + IIv- 311:,1 + IIv-  lla,o.

LEMMA 1. If M is chosen large enough, Z(M,T’) is not empty. Moreover, the
metric d is complete on Z M, T’

Proof. It is easy to see that Z(M, T’) is complete, and we shall only give the
proof that it is not empty. For this, we have to construct a function v which satisfies
(17)1 and (17)3-(17)5. Let a e H4(t) be a vector field such that on OFt we have

Oa Oa
(19) a 0, 0- 0, On2 0, (A curl a)r (PAvl)r.

Here P is the Hodge projection, and the subscript T denotes the components tangential
to OFt. The existence of an a satisfying (19) follows from the trace theorem [10]. We
now construct v in three parts: v vo(x) + (x, t) + v*(x, t). We make satisfy the
initial conditions

?)(X, 0) O, (X, 0) Vl(X) curl a(x),
0a(20)

0) 0)

With -A pA denoting the Stokes operator, we have v3 E D(A1/2), v2 D(A), and
vl -curl a D(A3/2). The trace theorem [10] yields the existence of fi satisfying (20)
and

4

(21) e N Ck([O,T’]; D(A2-k/2))"
k=O

This implies in particular that ) satisfies (17)1, (17)3, and (17)4. Next, we construct
v* as curl a*, where a* is required to satisfy the initial conditions

03
(22) a*(x, O) O, h*(x, O) a(x), a*(x, O) O, -a*(x, O) O.

It follows from (19) that a e D(B), where B is the biharmonic operator with Dirichlet
boundary conditions. The trace theorem implies the existence of an a* satisfying (22)
and

5

(23) a* e N C([0’ T’]; D(B(-k)/4)).
k=0
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This implies that v* satisfies (17)1, (17)3, and (17)4. E]

To show that is a contraction on Z(M,T’), we need appropriate estimates
for the solutions of (15) and (16). These estimates will involve bounds of the form
(M, T’, ,/,... ), where we may be compelled to choose M large, while , , can
be kept within prescribed bounds. It is then important that the size of for large M
can be controlled by choosing T’ small. This motivates the following definition.

DEFINITION. A continuous function (M, T’, a, ,... ]R+ x ]R+ x IR+...
]R+ is called controllable if there are continuous functions T(M,a,,...) and
w(a,,...) such that - > 0 and (M,T’,a,,...)

_
w(a,l,...) as long as T _<

’(/, c, , ).
In the following, we regard the body force f and the initial conditions as given,

and hence the dependence of estimates on these quantities will be suppressed.
The solution of (15) is routine. Any of the methods commonly used to solve

hyperbolic problems (characteristics, semigroups, Galerkin) is applicable. Note that
after extending vn and To to all of ]R3 we may regard (15) as an initial value problem
posed on all of space. Without proof, we state the following lemma.

LEMMA 2. Let vn E Z(M,T) be given and assume that T is sufficiently small
relative to M. Then (15) has a unique solution

3

Tn e N Ck([0’ T’]; H3-k()).
k-0

Moreover, Tn satisfies a bound of the form

(24) IlTllo,a + IITII,a / ][Tn[]a, + ][T,[]a,o _< (M, T’),

where is controllable. If v, are two functions in Z(M, T), then the corresponding
solutions of (15) satisfy an estimate of the form

(25) lIT- 110,2 + lIT- 11, + lIT- 112,0
<_ (M, T’)[]lv 0[lo,3 -4-[Iv 0111,2 + ]Iv 0112,1 + Ilv Oll3,0].

For any M, the function (M, T’) tends to zero as T’ ---+ O.
we now turn to equation (16). To simplify notation, we suppress the index n; we

write v for vn and w for vn+l. Moreover, d/dt shall denote O/Ot + (v. V). Problem
(16) is then of the form

(26)
d2wi Oq - Cijkl(x, t) 02wk

P dt2 Ox---, OxjOxl
+ hi,

divw=0, wlo O, w(x,O) vo(x), +(x, o) ,(x).

LEMMA 3. Let v, h, and C be given such that div v O, v[o 0 and C satisfies
(10), (11) with a positive lower bound /.for , in (11). Moreover, assume that bounds
of the following kind hold:

(27)1 Ilvllo, / Ilvll:,a / [Ivll, / Ilvlla, + Ilvll,o M,
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(27)3 IICIIo, + IICIl, + IICIl:, + IICIl,o <_ M,

(27) IICIIo,: + IICIl, + IICIl,o <_ K,

(27)5 Ilhllo, + Ilhll, + Ilhll,o _< K,

Finally, assume that the initial values of ib and 03w/Ot3, as determined by (26), are
compatible with the boundary condition wlo O. Then (26) has a solution

4

w E N Ck([0’ T’];
k--0

and we have

(28) Ilwllo,4 + Iiw111,3 + I111,. + Ilwll, + Ilwl14,o < (M,T’,K,’),

where is controllable.
It follows in a straightforward manner from Lemmas 2 and 3 that E maps

Z(M,T) into itself if we choose M large enough and T small enough. Note that
in evaluating [O/Ot + (vn. V)]h(v, Vvn, in, Tn, VIm, f, Vf, ]), we may substitute
the right-hand side of (15) for [O/Ot + (vn. V)]T. In order to establish that E is a
contraction, we need the next lemma.

LEMMA 4. Consider (26) and a second equation

(29)
p + (. v) Ox +( ) + ’OxjOx
divO=0, OIo=0, d(x,O) vo(x), v(x,O) vl(x).

Assume that the assumptions of Lemma 3 also hold for (29) (with the same constants
M, K and "). Moreover, assume that for t 0 we have

(=C h=h, h=h.(30) v=, )=v, i)=, C=(,

Then we have an estimate of the form

(31)



1376 MICHAEL RENARDY

The function (M, T, K, /) tends to zero as T O.
It is now an immediate consequence of Lemmas 2 and 4 that E is a contraction

if T is chosen small enough.
Even though (26) is a linear equation, the scheme we shall use to construct solu-

tions is quite involved. The Galerkin approach (with divergence-free basis functions)
is naturally suited to problems like (26); however, we seek solutions of a fairly high
level of regularity, and we shall therefore use the Galerkin method not on (26) itself,
but on an equation obtained after taking several derivatives of (26). To this purpose,
we first define an iteration scheme, which will be described in detail in 3. We define a
new variable z, which is essentially d2w/dt2, and take two material time derivatives of
(26). This will lead to a "hyperbolic" second-order equation for z, which is of the same
form as (26), and an elliptic equation arising from the original equation (26), by which
w can be reconstructed from z. The iteration is constructed by alternating between
these two problems. A technical complication arises, because in some terms involving
b, which appear in the equation resulting from differentiating the incompressibility
condition, we need an approximation which has a higher temporal regularity than
the iterates bn. This is achieved by taking bn and a second approximation to b,
obtained essentially by time integration of zn, and applying to the pair a projection
operator from a suitable pair of Hilbert spaces onto the diagonal. This yields a new
approximation to b, which combines the regularity properties of both the original
ones.

In 4, we discuss the solution of the "hyperbolic" part of the iteration from 3.
We use the Galerkin method, but we first take one more material time derivative of
the equation. That is, the variable approximated by the Galerkin scheme is not z but
dz/dt, and we shall have to introduce an auxiliary elliptic problem to determine z
itself. Once the construction of solutions to equation (26) is accomplished, the proof
of Lemmas 3 and 4 follows rather easily as a consequence of the construction scheme.
The proof of the lemmas is completed at the end of 4.

3. Iterative solution of equation (26). We shall now define a procedure to
construct solutions of equation (26). We make the assumptions of Lemma 3, and
M, T, K, and q, have the same meanings which they have there. In (26), we set
z d2w/dt2 Aw, where A is a positive constant to be chosen below. We can then
write (26) in the form

(32)
Oq C2Wk

pzi Ox + Cij(x, t)
OxiOxt

divw=0, wlon O.

Apwi + hi,

We shall regard (32) as an elliptic problem from which we determine w for a given z.
An equation for z is obtained by applying the operator d/dt + (Vv)T twice to equation
(26). By doing this, we find an equation of the form

(33)

d2 zi
P dt2

0 Oz
Oxi

+ Cjkl
OxjOx

pz

+ G(z, Vz, , w, Vw, V2w, Vw, @, V@, V2@, v, Vv, V2v, ,
h, Vh, V2h, h, Vh, , C, VC, V2C, (, V(, ).

Here we have set d2q/dt2. From (26), we can find initial conditions for z and k,

(34) z(x, O) zo(x), k(x, O) zl (x),
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where Ilz0112 + IIzll can be bounded in terms of K and A. The boundary condition
for z is

(35) z 0 on

Moreover, after some algebra, we find

(36)
div z div [2(@. V)v + (). V)w + {[(v. V)w]. V}v + v div [(w. V)v]]

=" div H(v, Vv, ), Vw, @).

We apply the operation d/dt to (36) and obtain an equation of the form

(37)
dz [dHdiv -=div +(z. Vv)-(H.V)v

Vv V) +) w Vw Vw b,V z).=’divH(v, Vv,

We note that H (and hence [-/) vanishes on 0t.
The solution is now constructed in an iterative fashion. With zn given, we obtain

wn by solving the elliptic problem

(38)
Oqn 2 n0 wkpz Ox--- +COxOx

divwn=0, wnloa=O.

Apw. + hi,

Then we find zn+l from the problem

d2z+1
P dt2

(39)

div

z+(x, o) zo(x),

Here Cn is an approximation to @ which is in general different from @n and will be
defined below. In order for the iteration to converge, we may have to restrict to a time
interval [0, T*] with T* < T’; since (26) is linear, we can always continue the solution.

We seek our solution in the function space X(L, T*), defined as the set of all
functions z such that

2

(40)1 z e N Wk’([0’ T*]; H2-k(gt)),
k--0

(40)e Ilzllo, + [[ZI[1,1 --Ilzll=,o < L,

(40)3 z[oa O,
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(40)4 z(X, O) zo(x), k(x, 0) zl (x).

if L is chosen large enough, X(L, T*) is not empty. For given z E X(L,T*), we can
solve the problem (32).

LEMMA 5. Let > 0 be sufficiently large; how large depends only on K and
Then, for every z X(L,T*), equation (32) has a unique solution w such that

2

(41)1 w e N Wk’([0’ T*]; Ha-k(2)),
k--O

I111o, + I1,11, + I111., <_ (K,’y)L //3(K,

(41)3 w(x, O) vo(x), go(x, O) vl(x).

The proof of Lemma 5 employs standard techniques of elliptic theory and no
details are provided. First a weak solution (in Hi(g/)) is constructed using variational
techniques. Following the lines of Giaquinta and Modica [5], it can be shown that
the weak solution is actually in H2(gt). Higher regularity follows from the results of
Agmon, Douglis, and Nirenberg [1].

We now describe the construction of Cn in (39). From the definition of z, we
obtain

(42) z fi) + 2(v. V) + (/. V)w + (v. V)(v. V)w-

or, after integration,

(43)
(O(X, t) Vl (X) -" Z(X, T)- 2(V" V))(X, 7") --(/" V)W(X, T)

-(v. V)(v. V)w(x, -) + Aw(x, T) dT.

However, the iterates zn, wn cannot be expected to satisfy this identity. If zn is
in X(L,T*), then Lemma 5 guarantees that gon e L([O,T*];H3(2) N H(2))
WI,([0, T*]; H2(2) f H(gt)), while the iterates corresponding to the expression on
the right-hand side of (43) lie in WI, ([0, T*]; H2(t)fH())NW2,([O, T*]; H(t)).
Thus one of the two approximations for b has more spatial regularity, the other has
more temporal regularity. The function Cn is chosen such that it combines both spatial
and temporal regularity.

Let X be a function such that

2

(44)1 X e N Wk’([0’ T*]; H3-k(gt) r"l H(Ft)),
k=0

(44)2 x(x, 0) (x), 2(, 0) (x),

where

(44)3 w. zo 2(v. V)v (+. V)v0 (v. V)(v. V)vo + vo
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is the initial value of . We set

(45)

(x, t) (x, t) x(x, t),

fl,(x, t) vl (x) + zn(x, -) 2(v. V)zbn(x, T) --(i. V)wn(x,

-(v" V)(v-V)w’(x, T) + Awn(x, T) dT- X(X, t).

Let

(46)

X {u e L([0, T*]; H3(ft) fq

f3 Wl,([0, T*]; H2(ft) f3 H(ft)) u(x, 0) 0},
Y {u e W,([0, T*]; H2(f) fq H(gt))

NW2,([0, T*]; Ho(gt)) u(x, 0) =/t(x, 0) 0},

k=O

We shall construct a continuous linear mapping YI X Y Z with the following
properties:

(i) II(u, u) u for every u e X f3 Y.
(ii) The norm of II has a bound which is independent of T* as T* 0.

We define ’ as

(47) Cn X + I(,

We now describe the construction of the operator II. Let c be in either X or Y.
Then we define a temporally periodic extension Elc as follows:

(48)

(x, t)
E(x, t) 2a(x, T*) a(x, 2T* t)

Ea(x, -t)
Ec(x, t + 4T*) Ea(x, t).

if t e [0, T*],
if t e [T*, 2T*],
if t e [-2T*, 0].

We note that the temporal average of Ela is c(x, T*). Let E2 be an extension operator
which maps Hk(f) to Hk(IR3) for k 1, 2, 3. We can choose E2 independent of k.

Let Hpk(]R; V) denote the space of all 4T*-periodic functions ]R --. V with Hk-

regularity, and let P be the orthogonal projection from Lp2(IR; H2(IR3)) Hp(IR;
HI(]R3)) onto the diagonal Lp2(IR; H2(]R3)) CI Hp(IR; HI(IR3)). The following proper-
ties of P are easily checked:

(i) P is continuous from (L(IR; H3(lR3))NHp(lR; H2(lR3))) (Hp (lR; H2(IR3)) f3

Hp2(lR; HI(]R3))) onto 1"1=0 Hpk(lR; H3-k(]R3))
(ii) If a and fl are even functions of time, then so is P(a, fl).
(iii) If a and fl are constant (in time), then so is P(c, fl).
(iv) If c and fl have zero temporal average, then so does P(c, fl).

Hence the temporal average of P(c, ) depends only on those of c and ft.
Let T be the operator of evaluation at t 0. By the trace theorem, T is contin-

uous

2

(49)1 Hp(IR; H3-c(lR3))-* H5/2(IRa).
k=0
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Moreover, the restriction of T to functions of zero average has a norm which is bounded
independently of T* as T* - 0. Let E3 be a right inverse of T which maps

(49)2 Hh/2(IR3) {u e Ha(JR3 x [0, T*]) /(x, 0) 0}.

Let R be the operator of restriction to x [0, T*] and let Q’HI() H]() be the
solution operator (f u) for the problem

(50) Au Af, u]o O.

We define

(51) II(a,/) QR(Id E3T)P(E2EIa, E2E/3).

It is easy to verify that H has the properties (i) and (ii) above.
For later use, we also note the following lemma.
LEMMA 6. There is a constant C, independent of T* as T* O, such that

(52)

The proof follows easily from the correponding property of P: For a E Lp2(IR;
H3(IR3)) N Hp(IR; H2(IR3)) and/ e H(IR; H2(]R3)) 3 Hp2(]R; H(]R3)), we have

(53)

This latter inequality can be verified using the explicit construction of P in terms
of Fourier analysis. If

/’f() d,

()
eikt/2T* /]R ()ei’z d,

k

then

(55) P(a, )

_
eik’t/2T* /R3 /k()ei’z d,

k

where

(56) () (1 / I:l)a(:)+ (1 + (k2r2/4T*2))k()
2 + Il2 + (k2r2/4T*2)

4. Galerkin approximation. We now consider equation (39), which we restate
as follows"

d2z 0 02z Apz + Gi,P--- Ox +COxOx
dz(57) div - div H,

zlo 0, z(, 0) zo(x), (, o) z(x).
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We make the following assumptions:
(sl)

3

v e N Wk’([0’ T*]; ga-k(Ft)),
k--0

(s2)

(s3)

(s4)

3

C e N Wk’([0’ T*]; H3-k(t)),
k--O

G e C([0, T*]; L2(Ft)),

"-- II 0,0,1 -K"dG

dG
d---- e LI([0, T*]; L2(gt)),

2

e N Wk’l([O’T*];H2-k(t))’
k=0

(s5) z0 E H2(K), zl E H(fl); since the initial data never change during the iteration
procedure, the dependence on their norms will not be indicated in the estimates.

(e) C satisfies the symmetry condition (10) and strong ellipticity condition (11), with
bounded from below by 7.

(cl) zo and z vanish on
(c2) div (z + (v. V)zo) div H(., 0).
(c3) / vanishes on 0.

LEMMA 7. Assume that (sl)-(s5), (e), and (cl)-(c3) hold. Then (57) has a unique
2 Ck H2_ksolutionz e k=o ([0, T*]; (gt)), andllzll2,o+llzll,l+llzllo,2 < a(M,T* g,/),

where a is controllable.
Proof. Without loss of generality, we shall assume H 0; with u denoting the

solution of the problem

(58)
du I, u(x, O) 0
dt

we may consider z- u instead of z. We apply the operator d/dt + (Vv)T to (57), set
dz/dt- y, d/dt- w, and obtain

d2yi Ovm dym Ow 02yk dCijkl 02zk
P--- + P Oxi dt --OX-- -" Cijkl

OXjOXl
Apyi + d OxjOxl

(59)

divy=0, Y[of=O,
dy
d-(x, 0) 2(x),

Ov, Oz
OxOx Ox,

Ov, Oz+ --x C’j OxOx
0) (v.
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where 52 is the appropriate initial value determined from (57).
Our task is now to solve (59) for y, where we think of z as being determined in

terms of y by the elliptic problem

(6o)

dyi 0 02zk
Apzi / G,P- Ox + COk OxOx

div z =-div ((z. V)v), div z(.,0)= div z0 z[oe O.

This takes a proof that by solving (59) and (60) we really obtain a solution of (57).
PROPOSITION 8. Let y E 1 Wk,([O,T*];Hl-k(t)) and z L([0 T*];k=0

H2()) C W1,1([0, T*]; HI(/)) be such that (59) and (60) hold. Then dz/dt y.
Proof. We apply the operator d/dt + (Vv)T to equation (60). By comparing with

(59), we find that := dz/dt y satisfies the system

(6) O(d) 02rlO=
Oxi - co + Co OxOx

div r/= 0, r]oa 0.

APTi,

It is immediate from this that 0. [

To solve (59), (60), we use a Galerkin approximation. Let V be the space of all
divergence-free vector fields in H0(gt), and let {i]i e IN} be a basis for Y. We define
a time-dependent basis of V as follows"

(62) di
dt

V)v 0, i(x, O) i(x).

We seek an approximation to y of the form

N

(63) yN(x, t) E n(t)n(x’ t).
n=l

For given yN, let zN be the corresponding solution of (60). We solve the following
approximate version of (59). For n 1, 2,.-., N, we require that

(64)

P dt=
dCot Oz

dt OxjOx

02yOVm dyNm
Cijkz + ApYiN+ P Oxi dt Oxj

O:v. Ozr- Cijkl
OXjOXl OXm

OVm
Cmjkl "+-

Oxi OxOxl xi dt

(Vrn (2kN OVm 02z
OXj OXlOXm OXl OXjOXm

oxi
G dx O,

and we impose the initial conditions

(65)
v (x, o)
dYg

(x, 0)- (yg (X 0). V)v(x 0) P0N (52 -(51" V)v)(x, 0).
dt

Here pN is the orthogonal projection in V onto the span of 1, 2,..., N, and PoN is
the orthogonal projection in L2(). We note that the combination dyN/dt (yN. V)v
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Nis equal to n=l &n(t) (X, t), and hence (65) prescribes initial conditions for an and
&n. The problem (64), (65) is therefore an initial value problem for a linear system of
second-order ODE’s, and existence and uniqueness of solutions are trivial.

To obtain an estimate uniform in N, we observe that Cu in (64) can be replaced
by any linear combination of the Ca, and we choose the special linear combination
dyN/dt_ (yN. V)v. We then integrate with respect to time. This yields, after some
integrations by parts, an energy equation of the form

"1/ pl dyN 2 OYZoxl OycOxj 12 dxEN(t) :-- --] +Cijkt

=Eg(0)+]ot]arr dx dt.

From this energy equation, we find uniform bounds for the norm of yY in L([0, T*];
V) V WI,([0, T*]; L2(t)). We can extract a weakly-, convergent subsequence, and it
is straightforward to show that the limit is a solution of (59), (60) (cf. [10, p. 268] for
a similar argument). It also follows from (59) that y E W2,([0, T*]; V’), from (60), we
get z WI,([O,T*];H](Ft)), and hence Proposition 8 is applicable. Altogether, this

2 Wk T* H2-kproves the existence of a solution to (57), which lies in k=o ’([0, ]; ())"
Uniqueness follows from a straightforward estimate; multiply (57) by dz/dt and inte-
grate with respect to space and time (we omit the details). The bound on the norm
claimed in Lemma 7 also follows from the energy estimate (66); the controllability of
the function a arises from the fact that derivatives of C appear only under the time
integral in (66).

2 Ck H2_kIt remains to be shown that we actually have z k=o ([0, T*]; ()).
H_From the regularity already established, it follows that z

(weak continuity). The strong continuity then follows if we can show that the energy
function E(t), defined as in (66), is continuous (see [14]). By considering the limit
N -- x) in (66), we find that

(67)

while weak continuity implies

limsup E(t) <_ E(0),
t--,0+

(68) E(0) _< lim inf E(t).
t--*0+

Hence E is continuous from the right at t 0. There is nothing particular about
t 0; we may just as well impose initial conditions at any other time and use the
same method as above to construct the solution from these new initial data. Therefore
E is continuous from the right for all t. Since equation (57) can also be solved backward
in time, E is also continuous from the left. V1

From Lemmas 5 and 7, it is easy to conclude that, for appropriately chosen L
and T*, the mapping (I) :zn zn+ defined by (38), (39) maps X(L,T*) into itself.
It is also easy to see that (I) is a contraction if T* is chosen small enough. Let z be
the limit of the iteration and let w be related to z by (38). In order to complete the
proof of Lemma 3, it remains to be shown that we really have z d2w/dt2 Aw. Let
denote the difference rl := z- d2w/dt2 + Aw. We apply the operation d/dt + (Vv)T

twice to equation (38) and compare with (39). This yields

02/k(69) 0 Cijk
OxjOx
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By retracing the steps leading to (36), (37), and comparing with the second equation
of (39), we find

(70)

ddt div-div /2(. V)v-3([(v. V)(- b)]. Vlv / 2(( )V))

+ (). V)( b) + v div [( b). V]v

+ 2(. v)[( )V]v 2{ [((- ). V)v]. V}v},
div (x, 0) 0.

Finally, it is clear that r/- 0 on OFt. Using Lemma 6, we can estimate I1- bllo,3,2 +
I1 b111,2,2 in terms of Ila fl111,2, where, according to (45),

(71) a(x, t) fl(x, t) (x, -) d-.

After integrating (70) with respect to time and using this estimate, it is clear that

To prove Lemma 4, we subtract (29) from (26), which results in

(72)

0 2

+ Iv.
( 02 (2?)k-Ox---(q__ -,4) + Cijk

OxjOx
(wk k) + (Cij dijk)

OOx
(o ))]

div (w ) 0, (w )loa 0,

(, 0) (x, 0) 0, (, 0) (x, 0) 0.

We apply the operation O/Ot + (v. V) + (Tv)T twice to the first equation of (72),
multiply by n3(w ), where L is the operator w H Ow/Ot + (v. V)w (w. V)v, and
integrate with respect to space and time. Lemma 4 then follows from the resulting
energy estimate. We omit the details of the calculation.
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TRAVELING WAVE SOLUTIONS OF THE STEFAN
AND THE ABLATION PROBLEMS*

RICCARDO RICCI?

Abstract. The problem ofthe stability oftraveling wave solutions of the ablation and the Stefan problems
is considered in the presence of convection. It is proved that under reasonable assumptions on the initial
datum the solution has a traveling wave as an asymptotic limit, and the phase shift is computed.

Key words. Stefan problem, traveling waves, asymptotic behavior
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1. Introduction. In this paper we consider the melting of a solid under the effect
of an energy flux H. We suppose that the liquid phase is immediately removed from
the vicinity of the melting front, for instance, by vaporization. This process, which is
also known as ablation [4], [2], can be modeled as a one-phase Stefan problem
modifying the heat balance equation on the melting front to take into account the heat
flux entering the solid. In one space dimension, assuming that the solid occupies the
space at the right ofthe free boundary x s(t) and indicating by T(x, t) the temperature,
we have

=0 inx>s(t), t>O,(1.1) co
Ot Ox

OT
(1.2) K (s(t) t) pLY(t) H, > O.

OX

The second equation is the energy balance at the free boundary and expresses the
fact that the heat input H equals the rate of heat flow into the solid plus the rate of
heat absorption by the melting. This condition can be seen to hold whether or not the
solid actually melts. In the first case we assume thermal equilibrium at the melting
front so that

ds
(1.3) T(s(t), t)= T where (t)>0,
where T indicates the melting temperature.

If the temperature at x s(t) is less than the melting temperature, then the front
does not move and (1.3) reads simply

(1 3’)
as
d (t) 0 where T(s(t), t) < T.

in this case (1.2) is just a Neumann condition for the heat equation in x > s.
A first detailed investigation of the ablation problem can be found in an old paper

by Landau [8]. In this work the author considers both the case of a semi-infinite solid
and that of a slab of finite thickness. No mathematical proof of existence or uniqueness
of the solution of this problem is given but some useful integral relations between T
and s are established, and some special solutions are given explicitly. In paicular,

* Received by the editors December 5, 1988" accepted for publication (in revised form) December 6, 1989.
t Istituto di Matematica, Facolt di Ingegneria dell’Universit di Ancona, Via Brecce Bianche, 60100
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Landau shows that the problem has a traveling wave solution. This is recovered
immediately and its expression is

(1.4) T(x, t)= To+(Tm-To)exp(-vCP (x-Vt)], x> Vt, t>0,
\

with

H
(1.5) V=

p[L+ c( T, To)]

(here c, p, , L, T, and H are positive constants).
The above expressions show that the speed of the wave is determined by the limit

of the temperature for x- +, here To. Moreover, the speed does not depend on the
thermal conductivity , which only influences the form of the temperature profile near
the melting front.

Of course, any space or time translation (x - x + Xo, t- + to) gives a new wave
solution of our equations.

A rigorous mathematical analysis of the problem in a slab of finite thickness can
be found in [6]. Here the authors prove the existence and the uniqueness of the solution.
Conditions are also given under which the free boundary switches a finite number of
time between 0 and < 0. More results on the regularity of the boundary can be
found in [7].

In this paper we are concerned with the problem of the stability of the traveling
wave solutions (1.4) in the semi-infinite solid. We give a condition on the initial datum
under which the solution is asymptotic to a traveling wave. This condition applies, in
particular, to the case To(x)=-const. In the paper by Landau [8] the convergence to
the traveling wave is assumed and the author is able to compute the phase shift of the
limiting wave by an integral relation. Here we prove that the free boundary does
converge to a traveling wave front, and we give an estimate of the difference. The
approach to the problem is completely different from that of Landau. The first step is
to transform the ablation problem into a Stefan problem (i.e., with Stefan free boundary
condition) for a heat equation with convection. This is made by means of the transfor-
mation

(1.6) = x-vt, u(, t)=-(T(x, t)- Tm) o-(t)= s(t)-vt,

with v H/pL, which transforms the ablation problem into

Ou
---v-K =0, x > o’(t), t>0,(1.7)
Ot

(1.8) u(r( t), t) O, t>O,

Ou
(o-(t), t) -hd’(t), > O.(1.9) K 0--

Now u is positive and we can consider problem (1.7)-(1.8) as a Stefan problem
for the temperature of a liquid phase in the presence of a convection term. This problem
admits traveling wave solutions for any v 0, given by tr(t)=- Wt, and

(1.10) u(, t)-
hW { ( v- W ) }v- W

exp ------ (sc + Wt) 1

where W and Uo= lime_,+o u(sc) are related by W= VUo/(h +Uo).
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This solution is mathematically correct for any v but is bounded at sc + only
for v > 0. This is in fact the case for the transformed problem where v H/pL. The
wave now moves toward the left but with a speed less (in modulus) than the convection
flow v. Using (1.6) to return to the original variables, we recover the melting wave (1.4).

Problem (1.7)-(1.9) was also proposed by Paveri-Fontana as a limiting case for
a model of the enclosed atomizer in analytical chemistry [9]. For this model he also
considered the case of negative value of v. In this case no bounded wave solution
exists, and the candidate asymptotic state is u 0 with a fixed free boundary, s(t)-= b.

2. Statement of the problem and results. Here we take x -: so that the equations
read

(2.1) ut + vux Kux O, x < s( t), > O,

(2.2) s(0) =0,

(2.3) u(x, t)= Uo(X), x < O,

(2.4) u(s( t), t) O, t>0,

(2.5) Kux(s(t), t) -h(t), > 0,

where v , , h > 0, and Uo(X) _-> 0.
Unless Uo(X)=-0, we have u(x, t)> 0 and the Vyborny-Friedman boundary point

principle [5], [10] ensures that u(s(t), t) < 0 for any > 0. Consequently,

(2.6) (t)> 0, t>0.

The above inequality holds whatever is the sign of v.
When v > 0, taking

Uo(X)=Uo{1-exp( vh

(X+u)

the solution of (2.1)-(2.5) is the traveling wave

:(h + uo)
(X-- Wt) x < Wt, > O,

with speed

(2.8) w
h+u

and free boundary x Wt.
Note here that the speed of the free boundary is less than the speed of the

convection drift and does not depend on the thermal diffusivity n. The factor u/(h +
uo) depends on the value of lim__ Uo(X), and on the latent heat. If equations
(2.1)-(2.5) originate from an ablation problem, then the corresponding solution in the
original frame of reference is a backward traveling wave with speed hv/(h +u).

The problem has a natural invariance with respect to space and time translations.
In particular, if we change (2.2) into s(0)= b and x into x+b, then the function
Uw.b(X, t)= Uw(X--b, t) is a traveling wave solution as well.

For v 0, (2.1)-(2.5) admit a similarity solution corresponding to the initial datum
uo 1 10]. No special bounded solution is known by us for v < 0, except for the trivial
one u 0, s const.
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The main result of this paper is the following asymptotic estimate for the free
boundary.

THEOREM. Let v > 0 and suppose that Uo(X) is a bounded function satisfying
(i) limx_,_ Uo(X) u, 0 < uoo <
(ii) x[uo- Uo(X)] L(-oe, 0).

Then there exists a constant C such that

C vuoe
(2.9) Is(t) Wt bl< W-

1 + 1/4’ h q-Hoe"

The phase shift b is given by

(2.10) b KU___+
AV

1 IO (Uo(X)_u)dx"
A+u

Moreover, if the difference uo-u(x) decays exponentially at -00, then the difference
s( t)- Wt- b decays exponentially in time as well

A similar result holds for v negative. In this case the asymptotic state is u 0 and
the free boundary has a finite limit as t-->

3. Proof of the theorem. We make use of a smoothing procedure which transforms
the original problem into a quasi-variational problem in a fixed domain (see 1 ], 11 ]).

The transformed problem is referred to as the oxygen-consumption problem [3].
We look for a function s(t) defined for > 0 and for a function c(x, t) defined in

x < s(t), > 0, such that

(3.1) ct + vc) Kc),x + h O, x < s( t), > O,

(3.2) c(x, O) Co(X), x < 0 s(O),

(3.3) c(s( t), t) Cx(S( t), t) O, > O,

where the initial datum Co is the solution of the ordinary differential equation

c"
V c, ’ Uo(X)

x<O,
(3.4) K

co(O)=c(O)=O,

and Uo is the initial datum for u in (2.3).
The function u(x, t)= c,(x, t), together with the free boundary s(t), gives the

solution of the Stefan problem (2.1)-(2.5).
The problem may be restated eliminating any direct reference to the free boundary.

If we extend the solution of (3.1)-(3.3) on the right ofthe free boundary to be identically
zero, the function c(x, t) so defined in + is the unique nonnegative solution of

(3.5) ct+VCx-KCxx+hH(c)=O in NxN+,
(3.6) c(x, t)- Co(X) in

where Co is the solution of (3.4) for x < 0 and it is extended to vanish identically for
x > 0, and

1, n>O,
(3.7) H(r/)

0, /_-<0.
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Here the free boundary x s(t) is recovered a posteriori from c(x, t) as s(t)--
sup {x " c(x, t) > 0}. On x s(t) we have c ex c, 0 but

(3.8) lim cxx =-.
xts(t) K

We will use the function c to establish some results on the asymptotic behavior
of s(t). The major advantage of this formulation of the problem is the possibility of
comparing the solutions of (3.5) corresponding to different initial values.

The solution of (3.4) for a given Uo(X) is given by

(3.9)

c(x, O)
A + uo x+-(1-e(/,) +--1 e(/y e-(/eg() d dy

+

where g(x) Uo(X) u, and Is]+ max {0, s}. Note that c(x, 0) 0 for x > 0.
In the case of a traveling wave u,(x, t), the transformed c is a traveling wave

of (3.5)-(3.6), namely,

(3.10) C,b()
I +u + 1 exp

v v h K h+u +

with x- Wt- b, and W given by (2.8).
We are now in position to prove the theorem.
LMMA. Suppose that Uo(X) satisfies assumptions (i) and (ii) of the theorem. en

by taking b as in (2.10), the difference c(x, 0)-cw,(x, O) belongs to L().
Proof We have c cw, 0 for x > max {0, b} and

c(x, O) cw,(x, O) -cw,(x, 0), 0 < x < b, if b > O, or

c(x,O)-cw,(x,O)=c(x,O), b<x<O, ifb<O, and

h+u Kc(x,O)-cw,(x,O)-A+u (e(/_l)_b+_
v v v h

1-exp (x-b)
1+u

where

(3.11)

+ r(x), for x < min {0, b},

r(x) e(/)y e-(/’ ) d dy,

and

(3.12) roo= lim r(x).

First note that roo is finite because hypotheses (i) and (ii) of the theorem imply that
g L(R-). In fact, exchanging the order of integration in (3.11), we have

ior(x) (/)(’-)ge () d-- g() d

(note that x < 0 and > x in the first integral) and then
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Now to prove that c Cw,b LI(), we must verify that r(x) too belongs to LI(-).
First we rewrite r(x) too as

Ix’ e(/(x-eg() dr(x)-roo
(3.13)

--’ ffg() d+ lim - f_ e-(’/")(o+)g() d.
1.) Q->oo 1) Q

The first term in (3.13) is integrable since too is finite (see (3.11)). The third term
is dominated by the second one (if g is positive, if not, simply consider Igl). So it
remains to prove that

f g() de LI(-).

This is true if x. g(x) is integrable in (-c, 0), i.e., under hypothesis (ii).
With our assumptions on the initial datum Uo(X), and with the phase b given by

(2.10), we have, for x-o

(3.14) 16(x, 0)[ It(x, O)- Cw,b(X, 0)1 <= const. (e Cx + iro r(x)l)

so the difference ofthe two solutions for 0 belongs to LI(). Moreover, the difference
satisfies the linear nonhomogeneous parabolic equation

(3.15) t3t + V6x- tt3xx A(H(Cw,b)- H(c)) f(x, t).

The nonhomogeneous term in (3.15) is different from zero only where one and
only one of the two solutions of (3.5) vanishes, i.e., in

(3.16) N {(x, t): 0= c(x, t) Cw,b(X, t)< It(X, t)--Cw,b(X,

Moreover, in N we always have

(3.17)

which implies that

(3.18)

where e is the solution of

6(x, t). f(x, t) < O,

](x,t)le(x,t),

(3.19) e, + vex- texx O,

The function e (x, t) is given by

(3.20) e(x, ) 2,/--i
e

from which we get an estimate for ,
1

(3.21) 16(x, t)l =< const.
1 +-

0) 0)1.

uniformly in x .
Finally, from (3.21) we can deduce an estimate for the difference of the two free

boundaries. In fact, from the jump relation (3.8) for the second derivative cxx on the
free boundary it follows that both Cw,b(X, t) and c(x, t) behave like parabolae in the
vicinity of their free boundaries.
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Now suppose for instance that s(t)< Wt 4-b for a given large t. Then at x--s(t)
we have 6(s(t),t)=Cw,b( S( t), t) < const. 1/(l/x/-i). Since the solutions c’s are
monotone decreasing functions and CW,b(X, t)--(A/K)(/b)E/o(/b)3>
(A/2K)(:+b)2 for <<0, =x-Wt, then for sufficiently large we have
(A/2)(s(t)- Wt + b)2< Cw.b(S(t), t)< const. 1/(1 +x/7), so that a constant exists such
that

1
(3.22) Is(t) Wt bl <-- const.

1 + 1/4"

The same conclusion holds if Wt + b < s( t).
A far better estimate holds if the difference 6(x, 0) decays exponentially as x

i.e., if the difference ro-r(x) behaves as does e vx for some positive y. So now we
assume that

(3.23) It(x, 0)]-<const. e with a min { vA

( +u),

We consider the problem in the moving frame of reference with speed W, where
the traveling wave is at rest (and the free boundary of our solution has a finite limit).
By the same argument used above we control the difference 6 by a solution e(y, t) of

(3.24) et / ) W)Ey IEyy O, y x Wt, e(y, 0) => const, ea.
For e(y, t) we can now choose the explicit wave type solution of (3.24), namely,

(3.25) e(y, t)= const, e<y-t’),

where a and/3 can be chosen to satisfy

(3.26) 0<a<a and fl=v-W-a>O.
Then the difference 6 decays exponentially in any compact subset, in particular,

in a fixed neighborhood of the limit of the free boundary (the phase b). Recalling
again (3.8), we get

(3.27) [s(t) Wt- b[ <= const, e-t/2.

Remark. A similar analysis can be done in the case where v is negative. Now the
asymptotic state for suitable initial data is a trivial solution of the problem with u---0
and s(t)-= const. Again we can prove convergence in the L norm of the function c’s
solutions of problem (3.1)-(3.4), and then we can deduce the estimate for the conver-
gence of the free boundaries.

Acknowledgment. The author is greatly indebted to Stefano L. Paveri-Fontana for
suggesting this problem and for various discussions.
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ASYMPTOTIC ANALYSIS FOR A STIFF VARIATIONAL PROBLEM
ARISING IN MECHANICS*

GABRIEL NGUETSENG’

Abstract. A new approach in the theory of homogenization is carried out on the variational boundary
value problem of the stiff type that governs the small vibrations of a periodic mixture of an elastic solid
and a slightly viscous fluid. A convergence theorem is proved, which gives the behaviour of the solution
and points out the role of the connectedness of phases in the mechanics of mixtures.

Key words, homogenization, convergence, periodic, mixtures of fluids and solids
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1. Preliminaries.
1.1. Introduction. The recent developments of the theory of homogenization have

considerably formed the knowledge of the periodic heterogeneous media. Besides the
works [2] and [18] in which the methods are initiated and a great variety of problems
are studied, many papers have been written in recent years on various aspects of
homogenization because of their outstanding importance in physical applications.
Without pretensions of an exhaustive bibliography, we refer the reader to Cioranescu
and Murat [3], Cioranescu and Saint-Jean Paulin [4], Tartar [23], for perforated
domains; Tartar [22], Ene and Sanchez-Palencia [6], Conca [5], for specific problems
in fluid mechanics.

There is another field of particular interest in physical applications, namely, that
dealing with mixtures in mechanics. Studies can be found, for example, in Levy [13],
Fleury [7], and Nguetseng [15] (see also Sanchez-Palencia [18, Chap. 8]). From the
mathematical point of view this field has not yet been extensively studied. In many
situations the validation of the formal analysis, that is, the convergence of the
homogenization process, remains an open question.

The study of periodic mixtures of elastic solids and compressible viscous fluids
reveals that very different behaviours occur according to whether or not the total fluid
region is connected, and according to the orders of magnitude of the elasticity and
viscosity coefficients. From Sanchez-Hubert [20] we know that, whether or not the
total fluid part is connected, if the elasticity coefficients together with the viscosity
coefficients are O(1) (with respect to e, the period of the structure), then the limit of
the (perturbed) displacement vector does not depend on the local variables. Here, the
convergence of the homogenization process is proved after the energy method [2].

The very complex situation, which we study here, is that in which the elasticity
coefficients are O(1), whereas the viscosity coefficients are e 2O( 1 ). Under these assump-
tions, the formal analysis in [13] (see also [17] and [18, Chap. 8]) leads to the following
proposition. If the fluid cell (that part of the fluid lying in the period of reference) is
strictly contained in the period of reference (see Fig. 1)mwhich implies that the total
fluid part is not connectedmthe formal limit of the displacement in the mixture does
not depend on the local variables. If, however, it "touches" each face of the basic
period and moreover the corresponding total fluid part is connected (the model
represented in Fig. 2 falls under this framework), the formal limit of the displacement
depends on the local variables. Thus the problem is a member of a specific family of

Received by the editors August 2, 1988; accepted for publication (in revised form) December 1, 1989.
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FIG. FIG. 2

unusual homogenization problems referred to as singular homogenization problems
[16]. In both cases the convergence of the homogenization process remains open. As
was mentioned in 16], the energy method is not flexible enough to handle the present
situation.

Our main result is the proof of convergence in the above situation. More precisely,
for each model considered above, we rigorously prove the convergence of "the problem
in e" to the homogenized problem, and validate the preceding formal proposition.

1.2. The mathematical problem. We start with some basic notation. Let the three-
dimensional Euclidean space 3 of the variables Y--(Yl, Y2, Y3) be regarded as a
periodic set with period of reference Y ]- 1/2[3, In what follows, Y is decomposed
as

(1.1) Y- YU YUF,
where Ys and Yy are connected op,en sets in R and F is the smooth surface that
separates them. We will denote by Ys (respectively, ) the Y-periodic continuation
of Y (respectively, Yy), that is, the union of all the (Y U (Y f’)0 Y))+ k, k ranging
over Z (and an analogous formula for ) where is the closure of Ys in R3 and
0 Y the boundary of the cube Y.

In the sequel two models are considered:
(i) Yy is a smooth open set with its closure contained in Y (Fig. 1).
(ii) Yy is made of three tubes with same radius R (with R sufficiently small

compared to 1/2) and same length 1, whose axes coincide with the coordinate axes,
respectively. Moreover, the intersection of the tubes is smoothed down so that the
interface F is sufficiently smooth (Fig. 2). Note that the origin of the space 3 is the
symmetry center of Y.

In both cases the Y-periodic continuation Y (respectively, Y) of Y (respectively,
Y) is an open subset of 3 with smooth boundary " (the Y-periodic continuation of
F). In the case (i) Yy is not connected, whereas Y is. In the case (ii) both Yy and Y
are connected.

Now in the space 3 ofthe variables x (xl, x2, x3) we consider a smooth bounded
open set 1) (with boundary O) and we set

(1.2)

where e (0 < e < 1) is a sequence tending to zero.
Furthermore, we introduce the following notation based on vector functions such

as v (v(x)) and w (wi(y))

l (Ov’ Ov
(1.3) Eii v

\Ox.i
+ Ox
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1 (w__ Ow )(1.4) e( w) =- \ Oy +Oy,
Correspondingly, divy denotes the divergence operator with respect to y, while divx
(or simply div, when there is no danger of confusion) denotes the same operator with
respect to x.

Finally, if V is a vector space (because of the use of the Laplace transform in the
sequel, all the vector spaces are considered over the complex field C), the vector space
of the same name written in boldface represents the corresponding product space
V3-- Vx Vx V.

We are now in a position to state the mathematical problem. The summation
convention is used throughout the rest of this section.

Let aijkh (1 -< i, j, k, h _-<3) and r/, /x be real numbers subject to the following
conditions:

(1.5) aijkh ajikh aijhk akhij,

(1.6) aOkhkhij>--Coi (c>O) V/j E R, /j ji,

2
(1.7) /x>0,

x 3
with 0 < a < 1.

Next, we define the Y-periodic functions (i.e., periodic with period 1 in each
coordinate)"

Cokh(Y) aijkh in Ys, 3"06kh in

bijkh(Y) 0 in Ys, n6ijfkh "- d lik6jh "[- 6ih6jk in

(6o is the Kronecker symbol)

p(y)=p in Y, pf in

where p, pY are positive constants, and 3’ cPy, Co> 0 (the physical definition of
those constants is given in the sequel).

Now we introduce the sequence e (0< e < 1) and, with the standard notation

(1.8) w(x) w() for w--w(y),

we define, for u (u i) and v= (v) in Hi(D), the forms:

OU k 0)
b(u, v)= b Ox Ox

dx,

Finally, for a givenf (fi) in Loc(0, +oo; L2(fl)),f independent of e and satisfying

(1.9) Ilf(t)ll Kemt
L2([’) (K>0, mEN) for almost all
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we consider, for fixed e, the variational initial value problem (see [18, Chap. 8]):

(1.10) Find ue, function of with values in H(12) such that

pe t.2e - dx + e:b c
a 0 \--,v + (u,v)= fidx

for all v= (v) in H(O),

u(O) =-Z- (o) o.
Remark 1. The sesquilinear forms b and c can be written explicitly as follows:

be(u, v)= | (r/div u div v+21xEij(u)Eij(v)) dx,

auk 3vi faC e( tl, V) aijkh & + y div u div v &,

where we recall that, by virtue of (1.5), the following holds:

auk avi
1.1 ! aijkh aXh aXj

dx fc aijkh Ekh U Eij V dx.

For fixed e, problem (1.10) is the variational formulation of the initial boundary
value problem that governs the small vibrations (in the framework of the linearized
theory of small perturbations) of a solid-fluid mixture, the geometric structure of which
is e Y-periodic. The constants aijkh are the elasticity coefficients of the solid, which is
a homogeneous body (but this property is not essential), with the classical symmetry
and positivity conditions, (1.5) and (1.6), respectively. The viscosity coefficients of the
fluid are/ze

2 and r/e 2. They satisfy (1.7), whose physical justification is to be found
in [12]. The positive numbers pS, pf are the densities of the mass of the solid and the
fluid, respectively, in the reference state at rest; and Co is the velocity of sound.

In the perturbed state, the partial differential equations governing the motion of
the mixture are written in the bounded open set f for the displacement vector u, with
respect to the reference state (the elasticity equations are written in f, while the fluid
dynamic equations are written in f), with homogeneous Dirichlet boundary condition
and initial data, and homogeneous transmission conditions for the continuity of
displacement and stress at the interface between fY and f. The vector function f is
a given force, independent of e. See 13] and 18] for further details.

Conditions (1.6) and (1.7) ensure the existence and uniqueness in problem (1.10)
for fixed e (see, e.g., [18, Chap. 8]). The proof utilizes the Laplace transform (see [8],
[9], [21]), the functionf= (f), and the unknown ue (u )e being considered as defined
for -< <+ with supports in [0, +o[. Note that although none of the sesquilinear
forms b and c is coercive (on H(f)), the form Abe+ c is coercive on H(f) for
all h e C, Re h >0.

Existence and uniqueness in (1.10) can also be obtained after the fashion of [20]
by semigroups.

The corresponding homogenization problem is analysed formally in [13], [18,
Chap. 8] by means of the classical method using multiple-scale asymptotic expansions.
It remains to prove the convergence of the preceding homogenization process. This
we accomplish by an adaptation of the idea in [16] and use of an appropriate "next
order approximation theorem" analogous to Theorem 3 in the above paper. The Laplace
transform will prove very useful in the sequel. Denoting by 3 (function of the variable
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A) the Laplace transform of a function v(t), problem (1.10) becomes for fixed A,
Re A > Ao> 0 (Ao large enough):

(1.12) Find at H(I)) such that

2 pei, v’ dx + Ae2b(, v)+ c(, v) ?.i’- dx

for all v (v’) in H(),

where the argument, , in (A) and f(A), is omitted.
Our further analysis will be based on (1.12) (the "stationary version") which is

more convenient. Under this form it is apparent that problem (1.10), as e $ 0, is a
perturbation problem of the stiff type [14].

This paper is organized as follows. In 2 we prove a convergence theorem in view
of the study of homogenization problems (in the framework of periodic structures) on
variable domains (e.g., 12). Although this theorem is invoked in a particular context,
it can be used in some other fields in homogenization (for periodic structures) dealing
with variable domains (perforated materials, fluid flow in porous media...; see the
references in 1.1). To this end, the theorem is presented in as general a form as possible.

Section 3 deals with the actual analysis of the problem, both of the models (i)
and (ii) (relative to Fig. 1 and Fig. 2, respectively) being considered. They are studied
simultaneously (our approach offers this possibility). However, the results specific to
each case are pointed out in the sequel.

In 4 we derive the homogenized problem and show the uniqueness of its solution.
Next we prove the convergence, as e $ 0, of u (the solution of (1.10)) to the preceding
solution.

Finally, the Appendix is devoted to an extension result. Indeed, in order to have
good estimates in certain homogenization problems dealing with variable domains it
is often essential to suitably extend any function, say, of class H on Ys, to a function
of the same class on the whole period of reference Y. For the model represented in
Fig. 1, a suitable extension operator is available (see, e.g., [4], [5]). The cases in which
the inclusion (e.g., Yy) is not strictly contained in Y (and, in particular, the case of
Fig. 2) are, in general, unresolved.

2. A general convergence result.
2.1. Notation and preliminaries. In the Euclidean space Nu (N _-> 2) ofthe variables

Ny (y, , yu) we consider an open set Yo contained in the cube Y ]-, + 1/2[ and
subject to the following conditions:

(2.1) For any j I _-<j _-< N) the sets OYof-l{y;yj=-1/2} and OYof’l{y;yj=1/2} (OYo
denotes the boundary of Yo) are of nonzero measures (with respect to the
(N-1)-dimensional measure). Moreover, they are symmetrical with respect
to the plane {y; yj 0};

(2.2) Yo contains a cylinder Qj of length 1, whose axis is parallel to the yj-axis
(j 1,..., N);

(2.3) If Yo Y we denote by F the separation surface between Yo and the interidr
of Y\ Yo, and we assume that F is smooth.

Remark 2. There is no condition concerning the intersection of the cylinders Qj
(l_-<j=< N).



ASYMPTOTIC ANALYSIS FOR A STIFF PROBLEM 1399

Remark 3. The above conditions correspond to very practical situations. For
example, Yo Y, Yo Y\K where K is the closure of a smooth bounded open set
strictly contained in Y (e.g., Fig. 1), Yo Ys (respectively, Yy) in Fig. 2.

In the sequel Yo (respectively, Q) denotes the Y-.periodic continuation of Yo
(respectively, Q) (see 1 for this definition). Note that Yo is a connected open set in
RN with smooth boundary . On the other hand, ( is a union of infinite cylinders
contained in I7"o (with same radius, and with axes parallel to the y-axis) and periodically
distributed in the space.

It is essential to observe that the open sets Qj possess the useful property of
"primitive preserving with respect to yj" (1---j _-< N); that is, e.g., for j 1" a function
w in @(1) (the usual space of C functions with compact supports in 01) possesses
a primitive with respect to Yl in @(Q1) if and only if it satisfies

I+oow(t,y’)dt=O franyy’=(Y,’’’,Y)"_

Some function spaces. We will denote by"
Cp the space of Y-periodic Coo functions on R,
p(Yo) (Yo Y) the space of functions w C, with support in I7"o and for

which there is some r > 0 (r depending on w) such that w(y) 0
for all y "o, d(y,) r (where designates the boundary
of o and d the Euclidean metric),

2Lp(Yo) the space of w Lo(o), w Y-periodic (which is a Hilbe space with
the Le(Yo)-norm),

L(Yo) for i= 1,..., N (which is aH(Yo) the space of w Lp( Yo), Ow/Oy
Hilbe space with the H(Yo)-norm),

Hp(Yo)/C the space of wGnp(Yo) Yo wdy=O; on which the H(Yo)-norm is
equivalent to the norm

Ilwll g’<
i:1 L2(Yo)

2In the case Yo we will write L (respectively, H) in place of Lp(Y) (respec-
tively, H(Y)).

2.2. Statement of the theorem. In the space R of the variables x (Xl, , XN)
we consider a smooth bounded open set . Next, we introduce e (0 < e < 1), destined
to tend to zero, and we define o= eYo, where Yo satisfies (2.1)-(2.3). But in what
follows we suppose Yo # Y (the case Yo Y was studied in 16]; see Remark 5 below).

THEOREM 1. Let v HI(). Assume there exists a constant c>0 (c independent
of e) such that

c for all e,

(2.5) 2 & N c for all e.

en we can extract a subsequence from e (still denoted by e for simplicity) such that,
as e O, we have

(2.6) v o in L2(O)-weak,
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w Ux- (x) + (x, w()(x) ax(2,8)
Oxi go Yi Y

for i= l, N, Vw Lp,

(the set of all restrictions to of continuous functions on with compact supports),
where Vo L(, L), Vo(X, y) u(x) + Ur(X, y) with u HI(), Ur(X y) 0 almost
everywherein Yoforalmostallx , Ul L2(; H( Yo)/C), o(X) r Vo(X, y) dy (mean
value of Vo(X, )).

Moreover, if v H() (i.e., v 0 on 0) then u H().
We should recall the fundamental convergence result [16] on which the proof of

Theorem 1 will be based.
LEMMA 1. Let v L() ( is any bounded open set in ) such that

v L2(a) <= c for all e.

Then we can extract a subsequence from e such that, as e , 0
vwd? dx--> Vo(X, y)w(y)dp(x) dx dy Vw e Lp,

xY

where Vom L2([I; LZp).
We will also need the following lemma.

2LEMMA 2. Let f= (fi) E Lp(Yo). Assume that

(2.9) fw dy=O for all w=(w)Eflp(Yo),
i:1 Yo

en there exists a unique function q H( Yo)/C such that

divy w 0.

Oq
(2.10)

Oy
__fi for i= l, N.

Lemma 2 is well known in its nonperiodic version (whose proof can be seen in
[24, pp. 14, 15]). The proof in the present version is quite similar to the latter, by. use
of Propositions 1.1 and 1.2 from [24, pp. 14, 15] and the above property of Qj of
"primitive preserving with respect to yj" (see 2.1).

2.3. Proof of Theorem 1. The proof of Theorem 1 proceeds in four steps:
(i) First, by Lemma 1, (2.7) follows immediately from (2.4). At the same time

we have, by weak compactness, v -> zo in La(fl)-weak, with zo o, which proves (2.6).
(ii) From now on, e denotes the above subsequence. Define z L2(12), 1 < <-- N,

such that

(2.11) zvdx= vdx v 6 L2(I).ax
Again by Lemma 1 we deduce from (2.5) that

(2.12) Izwchdx->Iz(x,y)w(y)dp(x)dxdy
XYo

2[W Lp,

where z L2(; L) with z(x, =0 outside Yo for almost all x in .
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Next, we show that the function Vo in (2.7) can be decomposed as stated above.
Take in (2.11) test functions of the form v= ew%h with we 9p(Yo), e 9(f). We
have easily that

e z,w6dx v 6dx-e vw--dx.
Ox

Hence, letting e $0 and recalling (2.7) and (2.12) gives

Y
Vo(X, y) Yi (y)(x) dx dy 0 Yw e 9p(Yo),

Therefore, for almost all x e f we have OVo/Oyi (x,.)= 0 in Yo, i= 1,. ., N. That is,
in sum, there exists u e L2(-) such that Vo(X, y) u(x) for almost all y e Yo. The desired
decomposition of Vo follows at once from defining ur as Ur VO- U, provided, of course,
that u e Hi(O).

To end this step, let us show that u e HI(). Choosing in (2.11) test functions of
the form v= w, e 9(12) and we 9p(Yo) with Ow/Oyi =0 for some fixed (note
that by (2.2) such w’s exist), we easily arrive at

z w dx=- v dx.
OX

By (2.7) (where henceforth Vo u + Ur) it follows that

f (f zi(x,y)w(y)dy)ch(x)ax=(-fou’c’,x) f w(y)dy.
Yo OX Yo

Hence, choosing w so that ro w dy 1, we have

(OiXi’ )= fo (f zi(x’y)w(Y)dy)(1)dx Vche 9(f),

l<=i<-N ((,) denoting the usual duality between 9’ and 9), which shows that
U e HI(]).

(iii) In what follows, e designates the subsequence extracted in step (ii). The
next point is to cheek that there exists u in L2(; H(Yo)/C) such that

0A (X) -(2.13) zi(x’ Y) =Ox (x, y) for i= 1," ", N.

But, based on Lemma 2, it is easy to see that this proceeds exactly as in [16, proof of
Thm. 3].

(iv) The last point is to show that v e H() implies u e H(12). For arbitrarily
fixed i, let we 9p(Yo) with Ow/Oy=O and JVo wdy= 1. Let Ce 9() (the subspace of
Yf(f) made up of C functions). Take v=w in (2.11). Noting that v vanishes
outside 12, an elementary integration by parts on the right of (2.11) yields

zw dx vw dx,
Oxi

where e designates the subsequence involved in step (iii). Letting e $ 0 and using (2.12)
and (2.13) leads to

Oxi
p dx u dx (1<_- i_<-N)

which shows that u 0 on 012. The proof is complete.
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Remark 4. The subsequence e involved in Theorem 1 is precisely the one we
extracted in step (ii) above.

Remark 5. Assume that IIvll,, <--c for all e. Then by extraction of a suitable
subsequence we have [16]

v- u in Hl(O)-weak,

w dx- (x)
OXi Y

y)) w(y)cb(x) dx dy

- c(fi),

where U L2(-; H(Y)/C).
3. Analysis of the problem. As mentioned in 1, two distinct local structures

(relative to Figs. 1 and 2, respectively) are considered in this work, so that our study
actually deals with two homogenization problems associated with the variational
problem (1.10) (or (1.12)). Nevertheless, both models are studied simultaneously, with
mention being made of the specific results in each case.

3.1. Preliminary results. We start with some estimates. In what follows, c denotes
various constants independent of variable quantities (such as e, t,.. "). First, let
z(t) e-rtu(t) (u the solution of (1.10)), where r is a fixed real number. Then taking
v=Oz/Ot(t) in (1.10) and using routine estimating techniques leads to

Ilz(t)ll 2 2b cLZ(f) + e (z(t),z(t))+ (z(t),z(t))

--< C e-rS f( s)ll =,(. ds

for almost all 0 < < +, for all e, and all T> 0. Therefore, assuming that r is large
enough and using (1.9) gives

IIz(t)ll = =L2(a) b (z(t),z(t))+c(z(t),z(t))<=c

for almost all 0 < <+ and for all e.

Hence, referring to the explicit definition of the form c (Remark 1) and using
(1.6) we obtain

(3.1) IIz(t)[[ 2 2 <

for all e and almost all > 0.
We now investigate the consequences of the above estimate. We introduce the

well-known Hilbert space (see, e.g., [24])

Eo(f) {w; w L2(12), div w L2(O) and w.n 0 on 0f}

(n representing the outer unit normal to Oil), equipped with the norm [[wllEm)
(llwl12 =

Clearly we have, for almost all t>0, z(t) Eo(12). Moreover by virtue of (3.1)
the sequence (z) remains bounded in the space L(0, +; Eo(O)). It follows, by
extraction of a subsequence:

(3.2) z --> Zo in L(0, +; Eo(O))-weak star.

On letting Uo(t)= Zo(t) ert we deduce that

(3.3) a(A)-> o(A) in Eo(O)-weak for any A c C, Re A > Ao> r,

(3.4) u --> Uo in L(0, T; Eo(12))-weak star for any T> 0.
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Now, choosing in (1.12) v= (A) (with Re A > Ao>0) yields

(3.5) c (a, a)<=c

(3.6) e2b(, ) <-_ c

where, for the sake of simplicity, we write in place of (A). Thanks to the propey
b(v, v)+ c(v, v) > c[Ivll 2ua for all v H(O) and all e > 0, it follows from (3.5) and
(3.6) that

(3.7) 11 a II.’.> c

On the other hand, from (3.3) we obtain

(3.8) ]]div e L2(a)

To complete these estimates, let us give a crucial lemma.
LEMMA 3. ere is some eo such that

dx N c for all O < e < eo.
,= Ox

Proo The propeies (1.6) and (3.5) give Ia: E()E0(} dxN c (the summation
convention is used), and the lemma follows immediately by Theorem A (in the
Appendix) combined with Korn’s inequality [10].

We are now able to obtain some specific convergence results needed in the sequel.
Unless otherwise specified, the summation convention is used throughout the rest of
this section and also in 4. Also, the complex number I (associated with the Laplace
transform) is fixed (with Re I > Io> 0, Io large enough) and therefore is omitted.

LEMMA 4. We can extract a subsequence e such that

ux ((xx&,
xY

and

(3.10) e dx - (x, y)t(y)qb(x) dx dy, 1 <-_ k, h 3,
OXh Y Oyh

where

(3.11) Wo (wok) L2(O; H),
(3.12) divy Wo 0.

Moreover,

(3.13)

2VLp,

ao(X) I Wo(X, y) dy
Y

(Uo is the function in (3.4)).

Proof Property (3.9) is straightforward by Lemma 1, the sequence (a)>o being
bounded in L2(I)). Property (3.10) results from (3.7) by application of the results in
Remark 5 and use of (3.9). Equation (3.12) derives immediately from (3.8) and (3.10).
As for (3.13), it suffices to use (3.3) and (3.9).
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LEMMA 5. Let e be the subsequence involved in Lemma 4. Then, as e , O, we have

’I aa(w’)
e bokhOxh OXj

where tXijkh l 6,k6jh + 6jk6,h).

f
JaxYf Oyh

OW
(x, y) y, (y)4,(x) dx dy

Vw (w’) e Hp, V e

Proof. The desired property follows at once from (3.10) by the choice
bijkh(OWi/Oyj) (summation over 1 <- i, j_-<3) with w e Hp. l-]

LEMMA 6. A subsequence can be extracted from the one in Lemma 4 such that

(3.14) fa Ok
dp I’ [Ouk Ouk

Ox--- 0 dx ->
x Y, I_-Xh (X) +Oyh (X, y) (y)(X) dx dy,

l<=k, h<-3, VbGLp,
where u (u k) E H(O), Ul (Ulk) E L2(f; Hp(Ys)/C3).

Moreover the limit Wo in Lemma 4 decomposes as follows"
(3.15) Wo(X, y) u(x) + Ur(X, y)

with ur E L2(f; H), ur(x, y) 0 for y E Ys (x fixed), divy Ur O.
The above results follow immediately from Lemma 3 by application of Theorem

1 and use of Lemma 4.
We end these preliminaries with the study of the behaviour of the pressure p in

the fluid part 2Y. We put

(3.16) /3 =-y div a in 12Y (y defined in 1).

We have fiGLZ(-fe) with []/3[[L2(a{)_-<c for all e>0. Next, we define DhEL2(a)
(1 _--< k, h _-< 3) such that

I’ Io(3.17) Dkeh v dx
oak tkhvdx--- fivdx VvEL2(I))

12 OXh 33’
(tkh is the Kronecker symbol). The sequence okh) >0 remains in a bounded set of
L2(12). Denoting by Okh its weak limit in the sense of Lemma 1, it is easy to verify
(by Lemma 6) that

ou____ ouDkh(x,Y)=ox
h

(X)+(x,y) for (x,y)eax
Oyh

Finally, on letting po(X, y)= --yDkk(x, y) (summation over 1 _--< k<_-3) for(x, y)ea x
we easily obtain (by combination of the preceding relation and (3.15)).the following
lemma.

LEMMA 7. As e ,0 (e a subsequence from the one in Lemma 6) we have for all
2d/ E Lp and all ch E

(3.18) [ d/q) dx -> [ po(x,y)d)(y)ck(x)dxdy, poe L-(12; L(Yf)).
Ja JaxYf

Moreover,

(3.19)
divy ul(’, y) dy div u + div I u(’, y) dy

+- Po( Y) dy(I Yyl meas Y).
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Remark 6. In the sequel, e represents the subsequence involved in Lemma 7.
Observe that Lemmas 4-7 hold simultaneously for that subsequence.

3.2. Derivation of the local problems. The aim in this section is to derive the
problems for ul(x, y) and ur(x, y), respectively.

The local problem for u. We adapt the idea in [16, 6]. We choose in (1.12) the
v’s of the form v eweS; w Hip, b (l)). Next we pass to the limit by Lemma 6
(with d/= aijkh(OWi/Oyj)) and by Lemma 7 (with $=divy w) and we obtain the local
problem for ul:

aijkh (X)+ (X,
(3.20) y I_OXh Oyh

OWi
y) y (y) dy po(x, y) divy w(y) dy 0

[w Hp.

Immediately we have that Po does not depend on y. In other words, poe
With this in mind, an elementary operation and use of the extension operator Tp (see
the Appendix) show that we may replace, in (3.20), np by H(Ys)/C Hence, the
local problem for ul takes the more precise form (where x is fixed):

Ul(X, ") H,(Ys)/C3,

OU k

(3.21) a(u,(x, ), w)=
Oxh

Vw e Hp( Y)/C3,

Owi
(X) aijkh dy-po(x) divy w dy

Y Ys

where a(,) represents the real sesquilinear form given by

Ovk Ow
(3.22) a(t, W) aijkh dy.

gs Oyh Oyj

It is easy to see that u(x,.) is the unique solution of the variational problem
(3.21)" It suffices to check that the form a(,) is coercive on H( Y)/C3, i.e., there exists
c > 0 such that

(3.23) a(w, w)>-cllwlly)/c VwHlp(y)/C3.

But this results from (1.5), (1.6), and Theorem B (in the Appendix) combined with
the following elementary inequality:

Iy eij(W)eij(w) dY-- y Oyj Oyj
dy VweHp.

The next point is to calculate u in terms of u and Po. To this end, we define
Cvector functions (independent of x) X, X Hp( Y)/ (1 =< i, j -< 3) by

(3.24) a(x, w) I divy w dy lw H,( Y)/C
Y

and

(3.25)
owk

a(xi w) aikh dy Vw Hp( Ys)/C3,
y Oyh
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respectively. By virtue of (3.23) the preceding functions are uniquely determined.
Moreover, they are actually real-valued vector functions, i.e., X(Y), X(Y)e 3.

Then, by virtue of uniqueness in (3.21) we have Lemma 8.
LEMMA 8. The function Ul is given by

Ou k

(3.26) Ul(X, y)= -Xh (x)xhk(Y)--P(X)X(Y)"

In the sequel we will put

(3.27) /3 divX dy, /3 div X dy (note that/3 a(x, X) > 0).
Iq Y

For further needs it is useful to see that (3.26) permits us to express po(x) in terms
of u(x) and at(x)= . u(x, y) dy. Indeed, substitution of (3.26) into (3.19) yields

ouk--II div u-div a,(3.28) 6-1Po kh
OXh

where

+/3 H (porosity)

(we recall the general notation ]ffl measure of ff c N3).

The local problem for u,. In what follows, we set

1.W {w e ap, w 0 on Y, and divy w 0}.

and we have Ur e L2(f; W) (see Lemma 6). NowW is a closed vector subspace of Hp

take in (1.12) the v’s of the form v=w, we W, and Ce @(12). Then, letting e$0
and using Lemmas 4, 5, and 7 leads to the local problem for Ur:

A2pf fyf
ui(x, )wi dy +A Iyf (x, dyOuir

(3.30)

f’(x)-ApXu’(x)-(x) w dy
Y

Let us take the oppounity to give a propey in connection with the local
topological structure.

LEMMA 9. For the model represented by Fig. 1 we have u O.
Proof By an elementary calculation using the Stokes formula we have

(3.31) w’dy=O (i=1,2,3) Vw=(w’)w,
Y

and the desired propey follows by substitution into (3.30).

4. The homogenize problem an the convergence theorem. Our goal in this section
is to derive the boundary value problem for Wo, the weak limit (in the sense of Lemma
1) of , next, to prove its uniqueness, and finally, to establish the convergence of u
to Uo (thus far, this holds only for a subsequence; see (3.4)).
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4.1. Derivation of the macroscopic equation. The procedure (see [16]) consists of
fixing v in (1.12), with v(f), and concentrating on passing to the limit as e $0.
With Lemmas 1, 4, 6, and 7, we are in a position to do so. We easily arrive at

A2 fa (ui + pfti,.)vi dx-II Iapo div v dx

(4.1) + aijkh
\ --9 + dx dy

Ys Oyh ] OXj

where the following notation is used

[ w(y) dy for w
Y

We now write (4.1) in a more appropriate form. For 1 i, j 3, we introduce:

(4.3) p the vector function whose components are Yk (k 1, 2, 3),

(4.4) qkh a(x-p, X-P),
where a(,) (respectively, X) is defined in (3.22) (respectively, (3.25)). Then, following
[2], an elementary calculation gives

y
aijh -OXh +] d qijh +OXh

Substituting this into (4.1) and using the fact that N() is dense in H() we obtain
the so-called macroscopic equation:

X (u’+ pfa’)v’ & + qOkh
OXh OXj

&

(4.5) +
a

kh oxhOU--H div u-div a flJ Ox
H div v &

In what follows, it is crucial to note that the coefficients qijkh are real and they
possess the classical propeies of symmetry and ellipticity"

(4.6) qijkh qjikh qihk qkhi,

(4.7) qkhkhijCoO (C>0) VijN, = (1Ni, jN3).

The latter propey is easily obtained after the classical fashion of [2].

4.2. The limit problem for the model represented by Fig. 1. Let us first resume the
preceding analysis. In 3.1 we found a function Uo L(N; Eo(O)) with Uo(t)= 0 for
<0, and a subsequence e (from the sequence involved in (1.10)) such that (3.3) and

(3.4) hold as e 0. In 3.2 we found that for each A there exists a function u(A) e H(O)
such that o(A) u(A). So, for the present model, o is actually a function of A with
values in H(O).
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Now, we deduce from (4.5) and the above results (and, in particular, Lemma 9)
that for any A (Re A > Ao) o(A) is a solution of the following variational problem
(where, for simplicity, A is omitted):

(4.8) Find ao Ho(f) such that

puo dx + Q(uo, v)= f’v’ dx

where

Q v, w)= qikh
OX’---h 0---2 dx

ovk
II div v -div w dx.+ h

OXh OX
The sesquilinear form Q is coercive on H() by viue of (4.7), so that o(I) is
uniquely determined by problem (4.8). Therefore, the sequence e in (3.3) and (3.4)
may be replaced by the whole sequence from which it was extracted.

Finally, here is our convergence theorem for the model represented by Fig. 1.
THEOREM 2. Let u be the solution of (1.10) for the model represented by Fig. 1.

en for any fixed T> 0 we have u Uo in L(O, T; Eo())-weak star as e 0, where

Uo is the unique distribution in ’(; H(O)) L(; Eo(O)) with support in [0, +[,
having a Laplace transform o(A), which is (for Re A > Ao> 0, Ao large enough) the
unique solution of (4.8).

Proof We need only show that o is the Laplace transform of a distribution in
’(; H(O)) with suppo in [0, +[. This will be the fact if we verify that:

(i) o is holomorphic of {A C; Re A > Ao} into H(O), and
(ii) Ilaoll<. is bounded by a polynomial in
Pa (i) is obtained by a classical criterion in [11, p. 365] combined with an

elementary operation in (4.8) that takes into account two facts" on the one hand, o
and f are holomorphic with values in L2(O); on the other hand, L2(O) (identified with
its antidual) is dense in E(O) (antidual of Eo(O)) and also in H-(O).

Paa (ii) is straightforward by taking v= o(A) in (4.8) and effecting a routine
estimate after the fashion of, e.g., [18, p. 162]. The proof is complete.

Remark 7. The evolution homogenized problem is as follows:

(4.9) Find Uo, a function of 0< <+ with values in H(O) such that

o ux+(Uo, v)= f’v’ x0t

o(0=(0 =0.

Existence and uniqueness in (4.9) can be proved, for example, by use of the theory
of semigroups (for suciently regular f). Fuhermore, (4.8) proves to be the Laplace
transform" of (4.9), so that the limit uo in Theorem 2 can be directly characterized
by (4.9).

4.3. Te lt rle fr te oel reresee y Fg. . In the present situation
relative to Fig. 2, Lemma 9 is no longer true (indeed, (3.31) does not hold): we have,
in general, u 0. Therefore, in opposition to the preceding situation, (4.5) is not by
itself the desired limit problem. As we will see in the sequel, the limit (or homogenized)
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problem is obtained by combining (3.30) and (4.5). In what follows we use the notation
ff,(x) Iv w(x, y) dy, w L-(12; Lp).

We first put (3.30) in a suitable form: After substituting (3.28) into (3.30) we take
test functions w of the form w Vr(X, for fixed x, Vr @(f; W), and we integrate
over f to obtain

A2Pf fyf
(4.10)

Vr dx VV )("; W).

Now, observe that ar Eo(f). This suggests the introduction ofthe following space:

H(f; W)-- {w; w e L2(f; W), div ff e L2(2) and ff e Eo(f)}.
We provide H(f; W) with the norm

Ilwll. -(llwll 2=m; w)+ Ildiv ff m))1/,
which makes it a Hilbert space.

We have ur e H(f; W), and our intention is to extend (4.10) to all Vr in H(f; W).
For this purpose we need the following lemma, whose proof is quite an adaptation of
the procedure leading to the analogous result for N(f) and Eo(f) (see [24, p. 12]).

LEMMA 10. @(; W) is dense in the space H(f; W).
So, thanks to the above lemma we can replace in (4.10) the set @(f; W) by the

space H(O; W).
At the present time, let us consider (4.5). Observing that the first integral of the

left-hand side can take the form

(1-H)pS la uivi dx+pf lar (uil- Uir)vi dx dy,

we finally combine (4.5) with (4.10) (where @(f; W) is replaced by H(f; W)) to obtain

(4.11)

(ui""Uir)(Vi’at-1)ir) dxdy+ X2(1-II)p fo l’liI)i dx

Jafi(v’+ gir) dx Vv H(f), Vvr H(f; W).

The limit problem for Wo u + ur is thus obtained.
We now prove the unique,ness of Wo. It suffices to verify that the co.uple (u, ur) is

unique. Or, equivalently, that f 0 implies u 0 and Ur O. SO assume f 0 in (4.11).
Next, choose v ti and vr Or. By division of both sides by A and taking the real
parts, we easily arrive at

ollk oui OU OUr dx dy < 0 for Re A > Aoqijkh
OXh OXj

dx + ix
w Oy Oy
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Hence, it follows that Ilull 2.o> + u 2t(a; w) =< 0 (use (4.7) for u, and an inequality of
Poincar6’s type for Ur) and uniqueness in (4.11) follows.

From all that we easily obtain the following convergence theorem.
THEOREM 3. For each A C, Re A > Ao>0 (Ao large enough), let (u(A), Ur(A))

H(12) H(f; W) be uniquely defined by the variational problem (4.11). Let u be the
solution of (1.10) for the periodic local structure represented by Fig. 2. Then for each
T> 0 we have, as e $ 0:

(4.12) u Uo in L(O, T; Eo(f))-weak star,

where Uo is the unique function in Llc(I; Eo(f)) with support in [0, +[ and having a
Laplace transform to(A) given by

ao(X, u(x, + at(x, ), Re A > Ao,

with r(x, h v Ur(X, y, h dy.
Remark 8. In the preceding situation relative to Fig. 1 we have indicated the

homogenized problem in the evolution form (4.9). Similarly, it is possible here to give
the evolution version of the homogenized problem (4.11).

Let Yt’ L2([) X L2([’; W), /"-- H(fl) x H(fl; W). Elements in Yt’ are denoted
by w (w, wr) with w L2(I)), w L2([-; W), and the scalar product in a’ is denoted
by (.,.). Now, for v (v, v) and w (w, w) in//" we put

Owi
II div w- div ]r dx,

Oxj

(this definition being valid for v, w
Next, we introduce F Ll=oc(O, +oo; j/’) such that

(F(t),w)= fafi(t)(-7+--) dx Vw=(w, Wr)/t.
Finally, let z be defined by the following problem:

(4.13) Find z, a function of 0< <+ with values in "tr, such that

(Lz"(t), v) + R(z’(t), v) + Q(z(t), v) (F(t), v) Vv

z(0) =,:(0) =0,

where the prime denotes the derivation in the sense of @’(0, +o;-//’) (see [19] for
existence and uniqueness in (4.13)). Then problem (4.11) turns out to be the "Laplace
transform" of (4.13), and we have (A)= (u(A), Ur(A)) (the couple in Theorem 3).

Appendix. Extension results.
AI. Statement of the results. With the notation introduced in 1 (see also 2), let

Z=al2fle", V={veH’(f); v=00nZ}, fl={Xm3", d(x, fi)<l},
where d designates the Euclidean metric aad (1 the closure of f in 3.
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THEOREM A. For each e < eo (eo is a suitable constant) there exists an extension

operator T (V,H(I)) (i.e., T is continuous linear and Tu-u on s for all
u V) such that

I Eii(Tu)Eo(Tu) dx <= c I Eii(u)E(u) dx

where the constant c does not depend on e.
THEOREM B. There exists an (extension) operator Tp (H(Ys),H) such that

TpW--w almost everywhere in Ysfor all w np(Y) and

eij( Tpw)eij(Tpw) dy <-_ c eij(w)eij(w) dy Vw Hp(Ys).
Y Ys

The above theorems are proved in [5] for the periodic structure represented by
Fig. 1. We need only study the case of Fig. 2. In fact, technically, the difference between
the case of Fig. 1 and that of Fig. 2 lies in the construction of a "local extension," i.e.,
a suitable (see definition below) extension p(HI(y), Hi(y)). Afterwards, the
procedure (derivation of Tp and T from p) is quite standard and is not worth repeating
here (the interested reader is referred to [5]). Thus, we merely prove the existence of
a local extension in the case of Fig. 2 (see Lemma B below).

A2. Local extension. Some notation is needed. Let us fix b, b > 0, such that each
of the following sets is a cylinder (see Fig. 2):

{y Yf;b<yi(1/2}, {y Yf;-1/2<Yi(-b}, i=1,2,3.

Next, fix a > 0 (a small enough) and denote by P1 (respectively, P2, P3) the set of
points (yl,r, O) (respectively, (O, y2, r), (r, 0, y3)) such that ]r-Rl<a, 0<0<27r,
b < ]Yi] < 1/2 for i= 1 (respectively, i= 2, i= 3), (R was introduced in 1).

On the other hand, let

Qi= y;R-a< _, y <R+a, b<lyil< (i=1,2,3),
j=l,ji

Q QI\{y; y2 >- o, Y3 0}, Q’2 Q2\{y; Y3 >- O, Yl 0},

Q; Q3\{y; Yl O, Y2 0},

Pi, (resp., P,s) the set of points in P such that R < r < R + a (resp., R a < r < R),
Qi, (resp., Q,s) the set of those points in Q for which

R< y <R+a resp., R-a< y <R
j=l,ji j=l,j#i

It should be noted that, since a is small enough, we have Qi, Qf’I Ys and
Q,,f Oi ("1 Yj.

f3 Q, Q’i,f Q’ 0 Qi,f.Finally, set Q,s Q
We now introduce the functions G P -.-> Q 1, 2, 3),

GI(yl, r, 0) (Yl, Y2 r cos 0, Y3 r sin 0),

G2(0, Y2, r) (Yl r sin 0, Y2, Y3 r cos 0),

G3(r, 0, Y3) (Yl r cos 0, Y2 r sin 0, Y3).

In other words, we associate with each yi-axis the cylindrical coordinates "around"
that axis.
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For each i, G is a Cl-ditteomorphism of P onto Q[ with Jac Gi e (L(P))9,
Jac G-1 e (L(Q))9 (Jac denotes the Jacobian matrix), G(Pi.s) Q,s, and
G,(P,.) Q,s.

Let us prove the following lemma.
LEMMA A (Extension near the boundary of Y). For each there exists a operator

Pie (Hl(Qi,s), HI(Qi)) uch that piu U almost everywhere in Qi, for all u e H(Qi,s).
Proof We give the proof, e.g., for 3. First of all, we define an extension operator

in the system of the local coordinates (r, 0, Y3). For we H(P3,) we put

O, y3)__w(r, O, y3) if R<r<R+a,
w*( r,

w(2R-r, O, y3) ifR-a<r<R.

Next, for ueH(Q,), define p3U=(U G3)* G-1, where (uo G3)(y)=u(G3(y)).
Clearly, we have just defined a continuous linear operator P3 of HI(Q.s) into HI(Q)
such that p3u u almost everywhere in Q, for all u e H(Q,s). Since the set {y; Yl -->
0, Y2 0} is of zero measure (with respect to the Lebesgue measure dy), the proof is
complete if we verify that P3 sends HI(Q3.) into Hi(Q3). But this follows from the
fact that p3u e H(Q3) for all u e @(03,s), and use of the density of (03,s) in H(Q3,s)
(indeed, the set Q3,s possesses the segment property [1]). lq

We are now in a position to construct the very local extension.
The following definition is fundamental to a correct understanding of our purpose.
DEFINITION. A mapping p of HI(ys) into HI(y) is said to preserve periodicity

if for any u in Hi(Y) that takes equal values on opposite faces of Y, the function
pu also takes equal values on opposite faces of Y (we recall that we are dealing with
the case of Fig. 2).

LEMMAB. There exists an (extension) operator pe(Hl(Y), Hi(y)) that
preserves periodicity and satisfies the condition pu u almost everywhere in Y for
all u e HI(Ys).

Proof To begin with, we introduce a C Y-periodic function p on 3, with
0_-< ff _-< 1 and

1 for yeYf, d(y,F)<-a/3,
O(Y)=

0 for ye , d(y,F)>=2a/3

(F is defined in 1; d is the Euclidean metric on R3).
Next, for u e Hi(Y) we define

q(u)
f u in Y,
Op,(ulo,.s) in YyFl{y;b<Jy,]<1/2}, i=1,2,3,

where actually p(u[ o,.s) is prolongated by zero in that part of Yy f’) {y; b < lye] < 1/2) where
it is not defined.

Now, we set Y)= Yy fq (U ,=1 {y; b < ly, < 1/2}) and Y’= Y\( Yy\ Y}). Then evidently
q e (HI(Y), Hi(Y’)) and q(u) u almost everywhere in Y for all u e Hi(Y). Thus
the problem reduces to the construction of a continuous linear operator of HI(Y’)
into Hi(Y). Observe that the set Yy\Y is strictly contained in Y. Unfortunately, its
interior is not smooth enough and thus we are not in the classical framework of Fig.
1. However, an easy operation can bring us to that classical situation. Indeed, let m/
(respectively, m_) be the point in Yy whose ith coordinate (in the canonical basis of
R3) is b (respectively, -b) and the others are zero (i 1, 2, 3). On the other hand, let
B B(0, R) denote the open ball in 3 centred at the origin, with radius R. Then set
n+ {y e B + m+, y > b}, B

_
{y e B + m_, y < -b}. Since R is small enough com-

pared to 1/2 (see 1) and moreover the number b can be chosen so that b + R < 1/2, the
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above sets are contained in Y. Moreover, they are parts of Y). Finally, define
D--(Yf\ Y))[.J [[..J 3i=1 (B/+ U B/_)], which is an open set of class C 1, with closure con-
tained in Y, and (Y\D)c Y’. Then it is an easy task (see, e.g., [1]) to construct
p’E (HI(y\/), Hi(y)) such that p’u u almost everywhere in Y\/) for all u E

HI(y\/)). Denoting by the restriction operator w-> Wly\o), we finally define the
desired operator p as

pu =p’((qu)) for U Hl(ys).

The proof is complete. ]

Remark. We need not insist upon the fact that the operator p preserves periodicity.
The nice operators Pi (i= 1, 2, 3) in Lemma A (see, in particular, the mapping w-> w*
and its analogues relative to i= 1, 2) and q in Lemma B (see the appropriate function
) were specially constructed for that purpose.
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FINITE-TIME BLOWUP FOR A PARTICULAR PARABOLIC SYSTEM*
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Abstract. The problem of blowup in finite time is considered for an initial boundary value problem for
a two-dimensional parabolic system. This system models exothermic chemical reactions taking place within
a porous medium, assuming one diffusing reactant and the usual Frank-Kamenetskii approximation to the
classical Arrhenius rate law.

Key words, blowup, parabolic systems, self-similar solutions
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1. Introduction. Let 12 c n be a bounded domain with smooth boundary 012. For
the initial boundary value problem

ut--Atl--f(x t, U), X12, t>0,

(s)
u(x, O) Uo(X), x a,

OU
+txu(x, t) O, x 012, > O,
On

it is well known that classical solutions may cease to exist by becoming unbounded
in some norm as a finite maximal time T is approached [1], [5], [8]. This phenomenon
is called blowup. For a large class of nonlinearities, an active area of research has
been to determine and characterize how solutions of (S) blow up.

For parabolic systems of the form

ut- AU =f(u, v),

pvt Av g(u, v),
x12, t>O,

(C) u(x, O) Uo(X), v(x, O) Vo(X), x e a,

Ou Ov
+lu O, + vv O, x 012, > O,
On On

where p > 0,/x, v [0, ], considerably less is known as to when solutions exist globally
or cease to exist in finite time [4], [7], [10].

Iff(u, v) utv and g(u, v) -ut3v with/3 => 1, then Hollis, Martin, and Pierre [7]
have shown that solutions of (C) exist globally. Iff(u)= A e and g(v)= B eor, A,
B, c,/3 positive, then Friedman and Giga [6] have extended the known results [5] for
a single scalar equation to such systems to show single-point finite-time blowup in the
one-dimensional symmetric spatial case with

* Received by the editors March 27, 1989; accepted for publication (in revised form) November 22,
1989. This research was partially supported by U.S. Army Research Office contract DAAL 03-88-K0111 and
by U.K. Science and Engineering Council grant GR/D/73096.

" Department of Mathematics, University of Colorado, Boulder, Colorado 80309.
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United

Kingdom.
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The purpose of this paper is to investigate the blowup in finite time of solutions
of special forms of the initial boundary value problem:

u,-Au=A(1-v)f(u),

pvt-Av=aA(1-v)f(u),

(E) u(x, O)= Uo(X), v(x, O)= Vo(X),

Ou Ov+ la,u O, + vv O.
On On

Problem (E) arises as an approximating model for an exothermic chemical reaction
taking place within a porous medium, assuming one diffusing reactant and the usual
Frank-Kamenetskii approximation f(u)- e to the classical Arrhenius rate law. The
variables u and v are chosen so that physically the scaled temperature of the reaction
process above ambient is u and the scaled concentration is 1- v.

In [4], Burnell, Lacey, and Wake have investigated the steady states of system
(E) with f(u) e". If k v= or if v<,/ >0, then steady-state solutions exist for
all A > 0. If v , 0 </. <, then for spatial dimensions n 1, 2, or 3 there exists a
critical value A* > 0 such that no steady-state solution exists for A > A* and steady-state
solutions do exist for 0 < A < A*. For v c and/ -0, no steady-state solution exists
for any h > 0-= h *.

For h > h*, we might conjecture that solutions to (E) do not exist globally and
hence blow up in finite time in some sense. In fact, it seems plausible that for h > h*,
the heat produced by the incoming reactant cannot be diffused through the boundary
sufficiently quickly so that the solution to (E) becomes unbounded in finite or infinite
time.

The purpose of this paper is to prove that the solution (u(x, t), v(x, t)) of (E)
blows up in finite time T in the very special case of one spatial variable n with
=0, v= (so Neumann boundary condition for u and Dirichlet for v), f(u)=e u,

p= 1, and h*=0.
In a forthcoming paper, we will consider generalizations to higher spatial

dimensions n > 1, v o, 0 </ < c, f(u) e u, and h > h * > 0.

2. Preliminaries anti statement of theorem. Consider the parabolic system

(1) u,-u=(1-v) eu, vt-Vx=(1-v) e

on x [0, az), where (0, 1) with the initial boundary conditions

u(x, o)= Uo(X), v(x, o)= Vo(X),

(2) O----U-U(x,t)=O, v(x, t) O, x O, > O
On

with

(3) Auo(X)+A(1-Vo(X))e"oX>--O, Uo(X)>=O, Vo(X)-->_0, Auo-Avo>--O
where Uo(X), Vo(X) are symmetric on 1).

Although we are taking a A 1, other positive values can be taken in a similar
way. We use (3) to give monotone solutions, but we can use these to show blowup for
more general initial data by comparison with smaller monotone increasing solutions
(in the u, h formulation given below).
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(4)

with

(5)

By setting h u- v, we have

u,-u,,=(l+h-u) e u, h hx 0

Set

u(x, o)= Uo(X), h(x, O)= Uo(X)- Vo(X),

0U(x,t)=0, h(x,t)=u(x,t), xe0a,
On

Hw wt Wx,

7r {(x, t): 0<x < 1, 0< <

The following facts [1], [6] are known:
1. There exists a unique classical solution (u, v) of (1)-(2) on r for some or>0.

Equivalently, there exists a unique classical solution (u,h) of (4)-(5) on 7r, or>0.
Let T-=sup {r: (u, v) exists on 7r}.

2. u(x, t) >= O, v(x, t) >= O on
3. u,(x, t) > 0 on r for some e > 0.
By property 3 and the maximum principle, h, > 0 on 7r. Then noting that (u,, h,)

satisfies

h, h, u, u+ u h) euut eht,

Ut(x,O)O, ht(x,O)>=O,
(6)

Ou----t(x, t)=0, ht(x, t)=ut(x, t)>-O on 0Ilx(0, e),
On

we can again apply the maximum principle to u, and h, to assert ut >= 0 and h, => 0 on
and hence on 7rr.
4. Ut(X t) >= 0, ht(x, t) >-_ 0 on 7r7-.
5. If T +c, then u (x, t)/+, h (x, t)/+ for all x as --> +.
In the following sections, we will prove a sequence of results that lead to the

principal theorem of this paper.
THZORZM 2.1. The solution (u(x, t), v(x, t)) of the initial boundary value problem

(1), (2) blows up in finite time T < in the sense that

lim_ [sup u(x, t)+sup v(x, t)] =+.t- T

3. Idea of the proof and shifting the problem. Assume that T-/. This means
the solution (u, h) of the initial boundary value problem (4), (5) exists globally and
we have no finite-time blowup. From property 5 above we have that

u(x,t)-, h(x,t)- as t-/o for allx

For each natural number N, define

T--inf{t0: u(x,s) N, h(x,s) N for all xf, s t}.

Then { TN} is a sequence of positive real numbers such that

O T T/,

u(x, TN) - N, h(x, TN) - N for all x



1418 J. BEBERNES AND A. LACEY

Then

TI -- E TN+ TN T--+oo
N=I

by our assumption and hence N--1 (TN+I- TN) diverges.
Our goal in this and the following sections is to shift the problem in such a way

as to allow us to construct a sequence {rN} with the property that

E 7"N < 00, TN+I- Tr <---- rN.
N

This clearly contradicts T +oo. We conclude finite-time blowup.
We now begin to shift the problem by translating the dependent variables by N

and then translating the time by Tn.
For each positive integer N, let (un, hN) be the unique solution of

(7N) Ut- Uxx (1 + h- u) eu+N,
with

ht h,cx 0

u(x, O) =O-- h(x, O), x f,

(8N) 0____U(x,t)=0, u(x,t)=h(x,t), x6Oa, t>O.
On

The solution (UN, hs) satisfies properties 1-5 with ’N denoting the right-hand endpoint
of maximal interval of existence.

THEOREM 3.1. For N eN, let (uN, hu) be the solution of (7N)-(8). Let (u, h) be
the solution of (4), (5). Then

UN(X, t) <= UN(X, t) + N <= u(x, + TN),

hN(x, t) <= hN(x, t) + N <= h(x, + TN)

on

Proof. Let (al, a2)= (uN+ N, hN+ N), where (uN, hN) is the solution of (7),
(8N). Then (al, a2) solves (4) with initial boundary conditions

(9)

oI(X, O)= o2(x, O)= N

Since (u(x, + T), h(x, + T)) solves (4) with initial boundary conditions

OU(X, + TN)
u(x,t+Tu)=h(x,t+Tu), =0, xe01,

(10) On

u(x, TN)

(u(x, t+ TN), h(x, t+ T)) is an upper solution for (4) and (9). Thus,

UN(X, t) <-- UN(X, t) + N <-- u(x, + TN),

hN(X, t) <-- hN(X t) + N <- h(x, + TN)



FINITE-TIME BLOWUP FOR A PARTICULAR PARABOLIC SYSTEM 1419

COROLLARY. N +013 and uN(x, t)
This follows from the definition of UN and hu and a comparison with u and h.
Let ts=--inf{t>O: hs(X,S)> 1 for all x12, s> t}; then

hu(x, tN) >_-- I for allxO,

TN+I <-- TN -I- tN
We will now begin to get upper-bound estimates on tu.

4. Construction of lower solutions. As before, let 12 (0, 1) and let F (0, ) be
a half line in E containing 12.

THEOREM 4.1. For a given NN, let (u, h) be the solution of (7N), (8N) on 7ro
and let (, h) be the solution of (7 N), (8 N) on F x (0, eo); then

l(X, t)<=u(x, t)

f(x, t)<=h(x, t)
for (x, t) "rr.

Proof. We proceed by proving a sequence of lemmas.
LEMMA 1. Given f( t), f increasing on [0, c) with f(O)= O, let h(x, t) and h(x, t)

be solutions of
zt Zxx, z(x, O) O, z(x, t) f( t),

(11)
xo (xor)

on 7r and F x (0, ), respectively. Then

h(x,t)>-h(x,t)
LEMMA 2. Let ho(x, t)=-O, Uo(X, t)=-0; then the solutions Ul(X, t) and tl(X, t) of

(151)

(161)

(141)
Next consider

u,--Uxx=eN(lnt-hl(Ul)--Ul) eul

Ou
u(x, o) =o, (x, t)=o,

On

ut-Uxx=eN(l+l(al)-al) eal,

u(x, 0) 0, n (x, t) :0.

on

rx (0, o),

OU
(12) U Uxx e N, O, u(x, O) 0

On

on 7r and F x (0, o), respectively, satisfy

Ul(X t)__>-- al(X t) on ro.

For

(131) ht-hx=O, h(x, 0)=0, h(x,t)=u,(x,t)
let hi(u1) and h(u) denote the solutions of (131) on "rr and F(0, ), respectively.
Then, by Lemma 1, using the fact that Ul(0, t)= Ul(-F1 t)=f(t) by symmetry,

h,(u,) >= hl(Ul) on

and by a standard comparison theorem

]I(Ul) /l(al) on

By the maximum principle,

h-hl_>-Ul-Ul on
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Let u2(x, t) be the solution of the standard modification of (151) needed for the
monotone method, and let t2(x, t) be the solution of a similar modification of (161)
on F x (0, c) (see Pao [10] or [11]). Then UE(X, t) -> Ul(X, t) on r and t2(x, t) ->_ tl(X, t)
on F x (0, ). By (141)

u(x, t)>- (x, t) on r.

We now proceed inductively, considering (13k), (14k), (15k), and (16k) to get
Lemma 3.

LEMMA 3. (a) hk(Uk)>--k((lk) on r with

hk (Uk) hk-1 (tlk-1) On and hk (ik) hk-l(lk-1) OH F x (0, (x)).

(b) Uk - k on r with

Uk - uk-1 on cr and k - k-1 on F x O, c).

We now use a standard monotone argument to prove that Uk-* U, k -’> , hk --> h,
h’kO/, where (u,h) and (,/) are solutions of (7N)-(SN) on r and Fx(0, o),
respectively, with

u(x, t)>--(x, t), h(x, t)>-h(x, t) on r.

This completes the proof of Theorem 4.1.
For a given Nt, let ((x, t), h(x, t)) be the solution of (7), (8N) on F(0,

Set

then

solve

X e-N/2y e-NT";

(y, r)= a(x(y), t(z)), ITI(y, 7")= ft(x(y), t(’));

(17v) /)- yy (1 +- ) e t /-), -/-yy 0,

/-)(y, 0)= (y, 0)= 0,

(18v) /-(y,’)= /)(y,z), =au 0, year, >-_o.
On

Set f(z)= H(O, )= U(O, z); then

f(eUt) (0, t)= ft(O, t),

(19N) /(x, t)= -2k(x, t-’)f(ez) dz

where

1 _x2/4tk(x,t)=e
is the heat kernel. We now proceed to obtain reasonably sharp lower bounds on f(z),
which we begin to do by constructing lower solutions for (17), (18) as follows. Consider

0 0 0 0 --’0(20) w- Wyy (1 w), z- Zyy
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with

w(y, O)= z(y, O)= O,

(2) w(0, )=0, (w+ z)
(0, )=0.

On

We first observe that this system is essentially decoupled. This allows us to prove the
following theorem.

THEOREM 4.2. The solution w(y, 7") of
o o 1 w,W. Wyy

(22)
w(y, O) O, w(O, 7") 0

satisfies"
(a) 0-< w(y, 7") <= 1 e -y on (0, CO) (0, CO),
(b) w(y, 7")>=0, -(Ow/On)(O, 7")<= 1,
(c) w y, 7")/l-e-y as 7" - CO.

Proof We simply note that a(y, 7")= 0 is a lower solution for (22) and that the
steady-state solution/3 (y) 1 e-y of

(23) -uyy 1 u, u(0) 0

is an upper solution for (22). Hence (a) follows.
Conclusion (b) follows by observing that v(y, 7")=- w(y, 7"+ h) is an upper solution

of (22) on 7r. Thus (w(y, 7"+h)-w(y, 7"))/h > 0, from which we have w(y, 7")>=0.
Conclusion (c) follows by standard arguments (see, for example, [3] or [8]).
COROLLARY. For any c (O, 1), there exists 7"e>0 such that -(Ow/On)(O, 7")> c

for 7"> 7" and hence (Oz/On)(O, 7")> c for 7"> 7".
For 7"> 7", let s(y, 7")=c(7"-7"c)1/2g(y/(7"-7") 1/2) be the self-similar solution of

z-Zyy=O with (Os/On)(O, 7")= c, s(y, 0)=0.
THEOREM 4.3. For any L < CO, c2 > 0 with c2 < cg(O) 2c/v/--,

(24) z(y, 7") >= c27"
1/2 as 7" CO if 0 <= y <= L.

Proof From the maximum principle, z(y, 7")>-s(y, 7"). Taking O<c2<cg(O),
where g(0)= 2/-, then for any fixed y,

s(y, 7") c( 7"- 7")1/2g(0) cg(0)7"1/2> C27"
1/2

for 7" - CO. Thus, for any given L> 0, z(y, 7") _-> s(L, 7") > c2(7"1/2) as 7" - CO for 0 =< y =< L.
THEOREM 4.4. The solution (w, z) of (20), (21) has theproperty that (w+ z, z)

is a lower solution for (17), (18). Thus O>=w+z and I2I>=z on F(0, CO).
Proof The result is immediate since (w+ z, z) satisfies

0 0 0Z,. + Zyy

(.Z0 "JI- wO),r + (Z0 " WO)yy 1 w <--_ (1 + z (w + z)) ew+Z

with (O/On)(z+ w)(0, 7")=0, (z+ w)(y, 0)=0, z(y, 0)=0.
By Theorem 4.4, we have that

f(7") =/-(0, 7") --> z(0, 7")

and by (24)

Z0(0, 7") C27"
1/2

for 7" sufficiently large.
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We have, using (19N),

/(x, t) ](x, t)=-2c2 kx(x, t-s) eN/2s 1/2 ds

where/(x, t)is the solution to/, =/,x,/(0, t)= c2 eN/2t 1/2,/(x, 0)=0, and is monotone
decreasing in x. Then for 0 =< x =< 1,

h(x, t) >- h(1, t) -2/-- (t S) -3/2 exp
4(t s)

s as

S1/2(1--S) -3/2 exp N -(4K(1-s)) -1 ds,-2x/-

_-> 1 taking K/N

for K > 1/2 and N large since the dominant contribution of the integral for N >> 1 comes
near s=0, where 1/2-1/4K(1-s)=(K-1/2)/2K. It follows that h(x,t)>-I for t>-tn,
where tn _-< 7.N K/N for some K -> .

The upper bound K/N is not sufficiently sharp to give finite-time blowup. We
can, however, improve the estimate by finding sharper lower solutions. To do this, we
consider

,) eZo(y,r)W Wyy (1 w
(25) (0, L) x (0,

--"0Z. Zyy

with

(26)

w’(0, 7.)--0, w’(L, 7-)= w(L, 7-),

w’(y, O) O, y (0, L),

z’(y, O) O, y > O,

OZ’
(0, r), ’>0.

On On

THEOREM 4.5. The solution (w’, z’) of (25), (26) has the property that (w’+ z’, z’)
is a lower solution for (17), (18) on (0, L)x (0,

Proof We simply observe that (w’+ z’, z’) satisfies

0,Z. Zyy

(’+ w’),-(z’+ w’),, w’ ’)-wyy (1 w e

<=(l+z’-(w’+z’))ez’+w’

since w’(y, 7-) >- w(y, 7-) >- 0 and hence z’(y, 7.) >- z(y, 7.) on (0, L) x (0, oo). Clearly,
z’(y,O)=(z’+w’)(y,O)--O for ye(O,L), z’(O, 7-)=z’(O, 7-)+w’(0,7-), and (O/On)
(z’+w’)(O, 7.)= 0. Thus H(y, 7.)>=z’(y, r)and U(y, 7.)>-(z’+w’)(y, 7.)on (0, L)x (0, oo).
The conclusion is immediate.

5. Completion of the proof. Using the lower solution (z’+ w’, z’) of (17), (18) just
constructed, we can now get an improved lower bound on z’(y, 7.).

THEOREM 5.1. For y (0, L), 0 < L < L, and 7. sufficiently large, the solution w’, z’)
of (25), (26) satisfies
(27) 2’(y, 7-) c37-1/2 e c4r/2.
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Proof By (24), there exists K >0 such that z(y, r)>_-C2 7"1/2 for 0=<y=< L and
-_-> K. This in turn implies that the solution (w’(y, r), z’(y, r)) of (25), (26) has the
property that w’(y, r) satisfies

> eC2-1/2w- Wyy-- (1- w’)

>-- eC2J’/2(1 w’) for " >-- J >- K

with w’(0, ’)= 0, w’(L, ’)= w(L, ’), and w’(y, O)= O.
Consider

(28)

and rescale, letting

then

satisfies

O. Oyy e c2J’/2(1 0),

O(y, J) O, 0(0, ’) 0

S eC2Jt/2( r--J), z ee2J1/2/2y’

O(z, s)= O(y, z)

Os-Ozz=(1-O),
(29)

0(, 0) =0, 0(0, s) =0.

As in Theorem 4.3, given c3 (0, 1), there exists re3> 0 such that

Oz(O, s) > c3 for s >-_ re3,

and hence

Oy(O, T) > C eCJ1//- for ’" >’ trc3 e-Czj’/2-[ J.

Since w’(y, ’) is an upper solution for (28),

Wy(O, "r) >= c e czJ1/2/2 for >- c e-c2J’/+ J.

Using the same idea as in the proof of Theorem 4.3, from

eCzj1/2/2 > c2J1/2-zy(y, ’) > Ca for " J + c e

we have

z’(y, ’) >- K’c3 eCJ//(- j)l/Z for 0 _-< y _-< L.

In particular, taking " 2J,
T1/2z’(y, ’) >= K’3J1/2 ec/))jl/ (2-1/23K’)’rl/2 e(2 3/2c2)

for ’/2 J => K’> K, where K’ is chosen to ensure J >- c e-c2l/. Thus,

(27) z’(y, ) >= c3’/9 ec4l/,

redefining c3.
This lower-bound estimate (27) for z’(y, ) can now be used to get an improved

upper bound for tN.
By Theorem 4.5,

f(-) H(0, ’) => z’(0, ’),



1424 J. BEBERNES AND A. LACEY

and by (27),

Z’(0, 7") ’ C37"
1/2 e c4r/2 7" > 2K’

Thus iq(0, 7")=f(7")>_-z’(0, 7")>= c37.1/2 ec4’/ and hence

(30) (0, t)=f(eNt)>--3 eN/etl/2 ec4eN/t/, >- 2K’ e-N.
The solution /(x, t) of the problem

(31) h,-hxx=O, h(O,t)=f(eNt), h(x, 0)=0

can be represented as before"

(19N)

where

/(x, t)= -2k,(x, t-s)f(eNs) ds

k(x, t)= 1/ e-x2/4t.

By Theorem 4.1 and (19N),

(32)

for x>0

h(x, t)>- f(x, t)= -2kx(x, t-s)f(eNs) as

From (30) and (32), we have

h(x’t)>--h(x’t)=-’ K,e
-N(t-s)-3/2exp 4(t--s

eN/Zsl/exp(c4eN/2sl/2) ds

C3 (@ fl 1/2( --3/2h(1, t)=expkz/j( s l-s)
2K’ e-N)/

exp(c4eS/(ts)l/--)ds4(-s)t

for x[0, 1], where solves h=, (0, t)=c3t/ e/ exp (c4 eS/t/), (x, 0)=0
and hence is monotone decreasing in x.

In paicular, we may take A e-/3 for some positive A. Ceainly the require-
ment that > 2K’ e-s is satisfied for large enough N. Then

(1 1/2( __3/2 N/3A1/2 1/2
eN/3c3 e/e s l-s) exp c4 e sh(x, t)

2K’e-2N/3)/A 4A(1 s)
ds.

The dominant contribution to this integral is from near s S, where the argument
of exponential I e/3[c4A1/sl/2-(1/4A(1- s))] takes its maximum value. Now I is
maximal if

i.e., A and S are related by

1 11/2S-1/2-- c4A 4A( 1 S)’

2c4A3/2=
S1/2

(l-S)2

or

(33) A (2c4)-2/3S1/3(1 S) -4/3, 0<S<I.
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In this case,

1 ] eN/3I c4A1/2S1/2-4A(1 S)

2 -4/3c/3S-/3( 1 S)-2/3(3S 1 e N/3.

Thus, taking A to be given by (33) for some S (1/2, 1) we see that the argument
of the integral near s S is itself exponentially large, O(eN/3), and h(x, t) must exceed
1 for >- A e-N/3.

In particular, for N sufficiently large, /(x, t)_-> 1 and h(x, t)- hs(x t) -> 1 for
_--> ’/’S with "I"s A e-N/3. Hence,

hN(X, tS) >= 1

for all x , where tN <= "t"s A e-N/3.
But "1"s A e-N/3 implies 7"s ( (30, which in turn implies T < o. This contradicts

our original assumption and completes the proof of Theorem 2.1.
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A DIRICHLET PROBLEM EXHIBITING GLOBAL BIFURCATION WITH
SYMMETRY BREAKING*

CHRISTOPH POSPIECH"

Abstract. A theorem is applied to a semilinear boundary value problem in order to establish the existence
of both a branch of radially symmetric solutions and branches with less symmetry bifurcating from this set.
The latter branches are proved to satisfy a Rabinowitz-type alternative.

Key words, global bifurcation, symmetry breaking, nonlinear functional analysis, index theory, fixed
point theorems, partial differential equations
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Introduction. Bifurcation problems frequently arise in all areas of science and
engineering. One example is elasticity theory and structural mechanics, where there
are usually symmetries inherent to the problems. Here it is easier to look for the
symmetric solutions first, while the solutions having less symmetry may be found when
they bifurcate from the previous ones. In this paper we restrict our attention to a partial
differential equation (PDE) serving as a model problem for the more complicated
equations in structural mechanics.

The main theorem presented in 1 of this article is a generalisation of a result of
Rabinowitz [10] adapted to the needs of the following sections. In particular we had
to pose fairly mild assumptions on the primary branch calling for a revised version of
the proof of Rabinowitz, which is therefore included. We also draw the connection to
local bifurcation theory by formulating a corollary, which generalises in a straightfor-
ward way the well-known local bifurcation theorem of Crandall and Rabinowitz [5,
Thm. 1, p. 323] and the local bifurcation results of Cicogna [3, Thm. 2, p. 790] and
Vanderbauwhede, [16, p. 205]. Thus it is not surprising that we get bifurcation. The
main point is that any local bifurcation obtained by application ofany ofthe above results
already is global in the sense that it satisfies a Rabinowitz-type alternative. No extra

assumption is needed except that the nonlinear map Fsatisfies the compactness assumption
below.

In 2 the general bifurcation theorem is applied to establish the existence of a
branch of radially symmetric solutions for a semilinear PDE with Dirichlet boundary
conditions. We consider only nonlinearities with linear growth at infinity having a
single zero. Here the branch of radially symmetric solutions can be proven to follow
a slalom course around some flags set up by the radially symmetric solutions of the
corresponding Neumann problem. Along the branch the type of solution changes from
positive (or negative) solutions to Mexican hat shaped (one nodal line), and then the
solutions successively take up nodal lines without reaching a bound for their number.
Previously, existence was known only for that part of the branch containing positive
(or negative) solutions [4], [8], [13]. Our method, however, has the disadvantage of
yielding a branch of solutions, which is only known to be a closed connected set, not
necessarily a smooth curve.

* Received by the editors December 27, 1988" accepted for publication (in revised form) November 20,
1989. This article was part of the author’s doctoral dissertation at Ruprecht-Karls-Universitit, Heidelberg,
1988.

IBM Scientific Center, Tiergartenstrasse 15, D-6900, Heidelberg, Federal Republic of Germany.
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In the final section this closed connected set, being the output of the abstract
bifurcation theorem, is fed into the theorem again to prove bifurcation of less symmetric
solutions. The existence ofthese bifurcations depends on a condition that is independent
of the nonlinearity and can be calculated explicitly. (Some tables are appended at the
end of this paper.) The bifurcating branches satisfy a Rabinowitz-type alternative.

Smoller and Wasserman [14] have already found a bifurcation from that part of
the branch containing positive solutions. This bifurcation was later proven to be global
by Cerami [1]. By table-lookup we also can assure bifurcation from that part of the
branch containing positive or Mexican hat shaped solutions. But since the symmetries
along the bifurcating branches differ in both cases and since the solutions found by
Smoller are the only ones bifurcating at this point, we must have found a bifurcation
different from Smoller’s. Smoller also proved that his bifurcation point is the only one
for positive solutions. Thus ours cannot be a positive solution, rather it must be Mexican
hat shaped. Further table-lookup reveals many additional bifurcations from solutions
with several nodal lines.

We also give a closer look at Smoller’s bifurcation. Both Smoller and Cerami used
a transversality condition to establish their results. We will prove that the transversality
condition is automatically satisfied and can be dropped.

1. An abstract bifurcation theorem.
1.1. Setup and results.
General assumptions. In this paper we will use the following notation:
(1) X, Y denote Banach spaces. G denotes some group operating on both X and

Y by bounded linear operators, i.e., there are group homomorphisms G- B(X, X)
and G- B(Y, Y). For simplicity we will write gx instead of [q(g)](x), where q is
one of the group homomorphisms above.

(2) There is some nonlinear mapping F :R X Y of the following form:

F(A, u)= Bu +(A, u),

where B B(X, Y) is a bounded linear operator with inverse B-I B(Y, X), and
C(R x X, Y) is continuous and compact. If there is a compact equivariant embed-

ding ’X Y, we can replace by (Id, ), where C(E x Y, Y) no longer
needs to be compact.

(3) Both B and are equivariant (i.e., B(gu) gBu and (A, gu) g(A, u) for
all g G, h , uX).

Definitions. The term symmetry is used as a synonym for the isotropy subgroup

a := {g algu u}

of some element u c X (respectively, u c Y). Given some subgroup H_ G, the space
of minimum symmetry H is given by the closed subspace

XH {u XIH c_ G,}- {u Xlhu u for all h H},

which is sometimes also called isotropy subspace of H. Because of the equivariance of
F we have F( x XH)

_
yH. Thus we can define the restriction

FH := FIRx : x xH yH.

A zero (,, u) of F" is called
H-regular, if the (Fr6chet-) derivative DFH is onto in a neighbourhood of (h, u)

and depends continuously on (h, u).

This is just enough to apply the implicit function theorem.
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Interior point of some subset M of zeros of FH, if, in a neighbourhood of (A, u)
in XH, all zeros of Fu are contained in M.

Special boundary point of some subset M of zeros of FH, if, in a neighbourhood
of (A, u) in XH, the zeros of FH are given by some curve t-(A + ot, u(t)), c {+/-1}
satisfying

u(O)-u,

(A+at, u(t))6M if t-<0,

(h+at, u(t))cM if t>0.

Definition (of the H-index). For every isolated zero u of FH(A,’) and every
isolating neighbourhood U(u)

_
Xn we define the H-index of (A, u) to be the following:

ill(A, U):= deg ((B-lo F)H (A,.)ltu), 0).

The expression on the right-hand side denotes the Leray-Schauder degree (with respect
to zero) of (B-1 F) (A,-) Idx, +(B- @)n (A,") restricted to the neighbourhood
U(u). This does not depend on the choice of U(u) (Eisenack and Fenske [6, p. 119]).

The main theorem presented now is a generalisation of a result of Rabinowitz
[10] to the situation where some symmetry group is present and bifurcation from a
closed bounded set of solutions is considered. We care for the symmetry by picking
a subgroup anal restricting the problem to the invariant subspace corresponding to that
subgroup. The general form of primary branch is needed because in 3 we apply this
theorem to prove bifurcation from a closed connected set of radially symmetric
solutions, the existence of which was established in 2 by the same theorem. Thus
this branch of radially symmetric solutions may be almost arbitrarily wild. In this
respect the theorem also generalises results of Schaaf [11, Thm. 2.3, p. 13] and Cicogna
[2]. See Fig. 1 for a general bifurcation diagram.

THEOREM 1.1. (a) Suppose we have the following:
(1) 1 denotes a closed bounded set of zeros (A, u) of FH, where A is taken from

some interval a, b] c .
(2) All zeros lying above the interval boundaries-are special boundary points of1.
(3) Finally, the H-indices taken over zeros lying above the left and right interval

boundary, respectively, add up to different sums:

(1) Z iH(a,u) Y, iH(b,u).
(a,u)l (b,u)

Then, above the interval interior, ’1 intersects some continuum c of zeros of FH. The
bifurcating branch c either is unbounded (as a subset of x X) or constitutes a continu-
ation of1 across the above-mentioned special boundary point.

(b) Suppose further that 1 is part of a closed set o ofzeros offI-I, which contains
every special boundary point (a, u), b, u) 51 of1 as interior point. Moreover, these
special boundary points are the only elements of the intersection of1 and the closure of
/0\1. Then, by passing to a subset, the continuum c satisfies the following:

c and o share no interior point (of o),
c intersects 1,
c is unbounded (as a subset of x X) or intersects 0o\1.

That is, those zeros (A, u), where A a or A b.
That is, in a small neighbourhood of the special boundary point, every zero of FH either is in c or

in
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In the above theorem the primary branch 51 may be almost arbitrarily wild. If,
however, this branch is a curve (at least locally), the other assumptions can be
substantially simplified. This is formulated as a corollary, which generalises in a
straightforward way the well-known local bifurcation theorem of Crandall and
Rabinowitz [5, Thm. 1, p. 323] and the local bifurcation results of Cicogna [3, Thm.
2, p. 790] and Vanderbauwhede [16, p. 205]. Thus it is not surprising that we get
bifurcation. The main point is that any local bifurcation obtained by application of any
of the above results already is global in the sense that it satisfies a Rabinowitz-type
alternative. No extra assumption is needed except that the nonlinear map F satisfies the
general assumptions above. In particular the Leray-Schauder degree arguments being
adopted here rely on information about the algebraic multiplicities of eigenvalues,
while in the following we only make assumptions on the kernel, i.e., on the geometric
multiplicity of the eigenvalue 0. The main part of the proof will be Lemma 1.7, which
bridges this gap--without assuming (semi-)simplicity for the eigenvalue 0.

COROLLARY 1.2. Let 6Fo be a closed set of zeros of FH and assume that sufficiently
close to some point (Ao, Uo) 6eo the map FH is C2 and the set 6Fo can be parametrized
by a C curve t-(A(t), u(t)) with (A(0), u(0))=(Ao, Uo) and with tangent vector
3 := (A ’(0), u’(O) ). Assume further that

(1) . has a complement Wn in the kernel of DFu(Ao, Uo),
ker DFn (Ao, Uo)= " 03 WH,

and Wn has odd dimension.
(2) (Transversality.) For all w wH\{0} we have

D2Fn (Ao, Uo)(, w) im DFn (Ao, Uo).
Then the following statements hold"

(1) In a sufficiently small neighbourhood of (Ao, Uo) all zeros ofFn except (Ao, Uo)
are H-regular and thus are interior points ofo.

(2) There is a continuum ( of zeros of FH such that
( and bo share no interior point of 6eo,
( contains (Ao, Uo),
( is unbounded or intersects with 6Fo in a zero different from (Ao, Uo).

a b
FIG. 1. A general bifurcation diagram.
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Similar to the paper of Crandall and Rabinowitz [5] we can reduce this general
result to the case of the curve being parametrized over A by choosing an appropriate
transformation. This time, however, this transformation should be defined globally
and should take care of the symmetry. To achieve this, let b ( x X)* be a functional
on E x X with (b, )= 1 and (b, WH) --O. We now introduce the spaces . := E x XH

and ’:=Ex yH, and a new curve parameter p := p( t) := (qb, (h t), u( t))). We then
define

by

F(p, , u):= (p-(6, (z, u)), F(z, u))

(, Su) + (p -(6, (, u)), ,(, u)).

This ap satisfies the general assumptions above, provided G operates trivially on X
and Y, respectively. F also vanishes by construction along the curve/9 (A (p), u (/9)).
So the corollary above can be obtained by applying the following to (p, t) F(p, h, u).

COROLLARY 1.3. Let 6Fo be a closed set of zeros ofFH and assume that sufficiently
close to some point (ho, Uo)6 6eo the map FH is C2 and the set o can be parametrized
by a C curve h - (h, u (h )). Assume further that LH (h ), defined by

LH (A):= D,Fn (A, u(A)) B(X", yn),

satisfies the following:
(1) The kernel WI-I := ker LH (Ao) of LH (Ao) has odd dimension.
(2) (Transversality.) For all 0 w WH we have

D,LH (Ao)W im LH (Ao).

Then the statements of the previous corollary hold.

1.2. Proofs of the abstract results. For the rest of the section 6e is assumed to
satisfy (a)(1) and (a)(2) of Theorem 1.1.

DEFINITION. For every special boundary point (A, u) of 91 lying above the
boundaries of the interval we can find an open neighbourhood U(A, u)

_
E x XH, such

that the zeros of Fn in U(A, u) form a continuous curve t(A +at, u(t)), where
a {+/-1}.

We keep these neighbourhoods for the rest of this section and denote their
union by

U:= U U(,X,u).
A{a,b}

U is the subset of U containing the elements with A ]a, b[.
LEMMA 1.4. Suppose there is a neighbourhood V

_
x xH Oral\ U, such that every

zero of Fn lying on the boundary 0 V of V is already contained in (]. Then we have

Z iH(a,u)= . i,(b,u).
(a,u) (b,u) /l

Proof. Choose h, A2 as suggested in Fig. 2, such that ’_ ]h, h2[ x XH. By
assumption there are neither zeros (h, u) of FH on the boundary 0V of V for
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a b
FIG. 2. The open sets V and U.

A E[A1, a]U [b, A2] nor on the boundary O(UU V) (o u\ v) u (o v\ u) of UU V for
A E [a, hi. So the assertion follows by homotopy invariance of the Leray-Schauder
degree of (B- F)H (A,.). [-]

The following lemma of Whyburn [18, Cor. 9.3] is quoted without proof.
LEMMA 1.5. IfA and B are disjoint closed subsets of a compact metric space such

that no component ofK intersects both A and B, there exists a separation K KA U
where KA and Ks are disjoint compact sets containing A and B, respectively.

COROLLARY 1.6. Let X be a compact metric space, N be a closed, connected subset,
and V

_
X be a subset satisfying N f-I V N\ V. Then the closure ofevery component

ofN fq V meets the boundary 0 V of V. Similarly, the closure of every component of N\ V
meets the boundary 0 V of V.

A similar corollary can be found in Whyburn [18, Lemma 10.1], so we again skip
the proof.

Proof of Theorem 1.1. Since we will apply the Whyburn alternative (Lemma 1.5),
we need a compact metric space with which to work. We therefore construct the
Alexandroff compactification oq= (FH)-(0)U {oo} of the zero set of FH. Because of
H being compact, this zero set is locally compact. Thus the compactification exists,
is second countable, and therefore metrizable.

(a) Let A := 5\ U and B consist of oo and the special boundary points of o that
lie above the interval boundaries. We will prove that some component, of K := 9\ U
meets both A and B.

Suppose this is not so. Since both A and B are closed in 9 and thus in K, the
Whyburn alternative asserts the existence of a separation K KA U Ks, where KA A
and Ks B are disjoint compact subsets of K. Take

gi := 1/2 dist (Ks\{o}, K) > O,

where "dist" refers to the norm in xH.4 Then V := Us(KA) meets all requirements

If KB\{eo} O, take 6 1.
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of Lemma 1.4 and a contradiction to assumption (a)(3) on the nonequality of index
sums follows immediately.

(b) Let :2 be the component of K \U just obtained. Applying Corollary 1.6
to the metric space K, the connected set 2, and A

_
K, we find that the closure of

every component of 2\A meets the boundary 0A of A (closure and boundary are
taken with respect to K). The boundary OA does not contain any interior point of o.
Otherwise, if all zeros of Fs in some neighbourhood (x), x OA were contained in
o, we would have (x)f o\1- after passing to a subset. Thus (x)f K

_
A,

which contradicts x OA.
Now let 1 be the closure of one of those components of 2\A that meet B. We

repeat the above argument with

_
being replaced by 1 and A being replaced by

A :-(o\1)U B. Again the~ closure (with respect to K) of every component of
meets the boundary aA of A, which does not contain any interior point ofo. Otherwise,
if all zeros of Fu in some neighbourhood (x), x OA were contained in o, we
would have (x) f A after passing to a subset. Thus (x) t K

_
A, which contra-

dicts x 0A.
To get the bifurcating branch , we select a component of I\A intersecting A

and take its closure with respect to x xH. By construction : is either unbounded or
closed in K. In the latter case contains a point in o\1, because all zeros in
are interior points of eo.

The following lemma is the key ingredient of the proof of Corollary 1.3. It bridges
the gap between the assumptions to be made for local and global bifurcation theory.

LEMMA 1.7. Given a C 1-function A - L(A) B(X, X) with L(A Id compact for
every A and ker L(Ao)# {0}, let F C be a positively oriented Jordan curve that
separates the eigenvalue 0 from the rest of the spectrum of L(Ao). Define

detr,(L(A)) for small

to be the product ofthe eigenvalues (counted with algebraic multiplicity) that are enclosed
by F1.

Then A ->detr,(L(A)) is a real cl-function (for IA- Aol small) satisfying

detv,(L(A)) c. (A Ao) + o((A Ao)m),

where m dim ker L(Ao) and c 0 if and only if

L’(Ao)W : im L(Ao) for all 0 w ker L(Ao).

Proof We define the projection PI(A) by

1
P,(A) :=

2ri Ir (L(A )-’ d{ B(X, X).

The restriction of L(A) to the finite-dimensional space im PI(A) has a spectrum
consisting only of those eigenvalues of L(A) that are enclosed by F1 (Kato [7, Thm.
6.17, p. 178]). Let el,..., e, be a basis of im P(Ao), such that e,..., em span the
kernel of L(Ao) and their exterior product satisfies e ^.-.^ e,- 1. Now we define
/j(h):= T-I(A)L(A) T(h)ej, where

T(A) := PI(A )PI(AO) + (1- PI(A ))(1- PI(Ao)) B(X, X).

Because of T(Ao)- Idx the map T(A) is an isomorphism on X for small IA- Ao] that
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takes Bild Pl(ho) onto Bild PI(A). Thus we get

detr,(L(h)) det (L(A)limP,(A))

j=l

j=l

j=l j=rn+l

:( L’(Ao)ej^ /
j=l j=m+l

---:

The last equation follows from

/j(Ao) L’(Ao)ej + L(Ao)T’(Ao)ej,

( lo)m "qt- O((t I0) m)

L(Ao)ej)(Z Zo)" + o((Z Zo)’).

since the exterior product vanishes, provided its factors are linearly dependent. For
the same reason we have c # 0, if and only if L’(Ao)W im L(Ao) for all nontrivial
w ker L(ho). l-1

Proof of Corollary 1.3. We construct a set 6el
_

5eo and check that it meets the
requirements of Theorem 1.1. Without loss of generality we can assume that X- Y
and B Idx, because replacing F by B-F neither affects the result nor the assumptions
of Corollary 1.3.

Remember that in some neighbourhood [a, b] x W
_

x XH of (ho, Uo) the set

5o can be parametrized by a Cl-curve o(h) (h, u(h)). We choose 51 :- o([a, b]) to
be the image of the compact interval [a, b]. If [a, b] is chosen small enough, every
point of this image is H-regular except for (ho, Uo), since Lemma 1.7 implies that

detr,(Ln (h)) c. (h ho) + o((h ho) ") # 0 for h # ho, [h ho[ small.

It mainly remains to compare the H-indices at the special boundary points p(a)
and o(b) of 6el. For ho # h [a, b] the H-index of (h, u(h)) is given by

(2) ill(A, u(h)) sign LH(A) (-1),

F R(> sprLn(Ao))

/
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: It

r

Fla. 3. The indicate the spectrum ofLn (Ao).
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where fl is the number of real negative eigenvalues of LH(A) counted with their
algebraic multiplicity (Eisenack and Fenske [6, Thm. 5.4.4, No. 12, p. 120 and definition
A.l.14, p. 221]). Since LH (A) is a map on real Banach spaces, eigenvalues with nonzero
imaginary part always exist in conjugacy pairs (with equal algebraic multiplicity). So
these eigenvalues do not contribute to the degree and we can write

ill(A, tt) (--1) dimim P2(A) sign detr,(LH (h))
(3)

=(-1)dimim p(x sign (c). sign (h- ho)’,

where the projection P:(A) is defined by

P2(A)
27ri

(L(A) ,)-1 d"

and the positively oriented Jordan curve F2 C is chosen according to Fig. 3. Since
the spaces im P2(A) and im P2(Ao) are isomorphic for every A [a, b] (Kato [7, Lemma
4.10, p. 34 and footnote on p. 33]), the first factor on the right-hand side of equation
(3) is independent of A [a, b]. So, up to some constant +/-1, the H-index of (A, u(A))
is just sign (A- ,ko) and thus changes sign at Ao, because m dim Kern LH (Ao) is
odd by assumption. [3

2. A radial slalom course.
2.1. Preparation of the course. We now apply Theorem 1.1 to the elliptic PDE

(4) Au +f(u) 0 in BR(0),

where BR(0)c R denotes a ball of dimension n => 2 with radius R and center 0. The
problem has an inherent O(n)-symmetry, since the domain R(0) is invariant under
rotations and reflections. The investigation of radially symmetric solutions reduces the
PDE to an ordinary differential equation (ODE) boundary value problem. For this
reduced problem we consider both Dirichlet and Neumann boundary conditions, since
the solutions of the Neumann problem turn out to be the key in understanding the
Dirichlet problem.

Artificially introducing some initial value we arrive at the following initial value
problem:

n-1
u"+u’+f(u)=O inR+

() r
u(0) =p.

General assumptions, f is assumed to be admissible, which means the following:
(1) f has precisely one zero, which is regular.
(2) f is continuously differentiable and satisfies

(6) lim f’(u) lim f’(u) =: a > 0.

Applying l’HSpital’s rule we derive

f(u)
(7) lim =a.

Notation. Since f grows linearly at infinity we would like to include the solution
u(r, p) of (5) for p +. We therefore define an angular variable t9 arctan p and
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consider the solution w(r, O):= cos O. u(r, tan O) of the initial value problem

(8) r
w"+w’+cosO. =0 in+

COS "t9

w(0) sin O.

By Oo we denote the solution of f(tan Oo)= 0 satisfying [Oo[ < r/2.
DEFINITION. Given some real function J, the positive zeros of which are discrete,

the kth zero of J will be denoted by [J]k .
THEOREM 2.1 (Neumann problem). Apart from the trivial solution

{(r, Oo+ mzr)[r>-O, m 7/}
the zeros of Wr(r, O) can be parametrized by continuous functions

R(O) := [w(., O)1.
All of these functions have period r and are therefore bounded.

THEOREM 2.2 (Dirichlet problem). The zeros of w(r, O) are periodic in 0 with
period or. Depending on the sign of the zero Oo off tan one of the following holds:

Oo> 0: w(r, O) has a component Co of zeros satisfying the following.
o meets (0, zr) and is unbounded in r.
The component Co is a subset of x ]Oo, Oo + 7r[.
Being unbounded in r the component o must intersect the graphs of the
functions Rk describing the Neumann solutions. The crossing points satisfy

sign (cos O) (-1) k+l.
Thus o traces a slalom course around the "flags" (Rk(er/2), zr/2).
o intersects 0 r/2 in r [J]k/X/-d, where J denotes the Besselfunetion
of order u := n 2)/ 2.

Oo < 0: Almost as in the previous case, but now the slalom course starts at (0, O)
and the crossing condition has changed to

sign(cos O) (-1) k.
Thus the flags are passed by in the opposite way.

Oo =0: The solution set consists of infinitely many branches bifurcating from the
trivial solution

{(r, mTr)lr>=O, m Z}
at k=[J]k//f’(O), where v:=(n-2)/2. These branches can be param-
etrized by continuous functions

rk(O) := [W(’,
satisfying rk(rr/2) [J,]k/x/-d. All of these functions have period 7r and are

therefore bounded.
Remark. Although the assumption on the admissibility of f is used only in the

proof of Lemma 2.3 below, the above statements are false without it.
w(r, O) and the zeros of w and wr are shown in Fig. 4 and Fig. 5.

2.2. Zigzagging around some technical details.
Remark. If f is continuous then the function g(q, w)=qf(w/q) can be con-

tinuously extended for q 0, if and only if (7) holds. In this case the extension has
the form

g(q, u)= {qf(u/q)au if q#O,
if q=O.
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g defined this way is even locally Lipschitz because of condition (6). So by [13, p. 157]
we have local existence and uniqueness of solutions for the initial value problem (8).
The solution is bounded and exists for r arbitrarily large [9, p. 29].

LEMMA 2.3. Let g be admissible and let its zero be denoted by c. Moreover, let
w(r, p) be the solution of the initial value problem

n-1
w"+ w’+g(w)=O in R+

(9) r

w(O) =p.

Then w w(., p) is either constant w =-c or there are infinitely many discrete solutions
to the equation w(r)= c, which interlace with the critical points of w.

Proof We define the angular variable

q := arctan
rn-1 Wr
WC

arccot n--1r W

This is well defined outside of

M:--{rOlw(r,p)--c, Wr(r,p)=O},

--l-which is both closed and relatively open in Ro. The latter follows from the local
uniqueness for solutions of (9). Thus M either coincides with -, which induces w c,
or is empty.

2O

5 3
2

0 1 .x
FIG. 4. w(r,O) for 0.71046=Oo<O<Oo+?r and 0<r<20.0. We used the nonlinearity f(u)=

u- arccot u and n 3.
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2O

15

r 10

1.0 1.5 2.0 2.5 3.0 3.5
theta

FIG. 5. The zeros of w(r, O) (solid line) and of Wr(r, O) (dotted lines).

In the latter case we take the derivative of tan (r) and get

q’(r) (rn-1 Wr)r(W--C)--rn-l(Wr)2

cos2 q(r) (w-c)-
r,_ g(w) -,+1r tan p(r),

W--C

and thus

’(r) -r"-1 g(w) cos q(r)- r-"+1 sin2 (r) < O.

The last inequality holds because the expression g(w)/(w-c) exceeds a positive
constant e > 0, which in turn follows from the admissibility of g via

g(w) g(w)
lim lim a > 0,
w+c W C w-,+c W

g(w)
lim=gw(c)>O.

This already implies the interlacing of the solutions of w(r)= c with the critical points
of w, because (r) being strictly decreasing hits the negative multiples of 7r/2 in
decreasing order. An even multiple corresponds to a zero of Wr, an odd multiple to a
solution of w( r) c.

We still must show that there are infinitely many solutions to the equation w(r) c.
We do this by comparison with the Bessel function J of order v (n-2)/2, which is
known to have infinitely many zeros.
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Suppose that w(r)-c does not change sign between two consecutive zeros a, b
of the solution v(r) := r-J(rv/-{) of

n-1
V"+V’+" v=O.

Replacing v by -v, if necessary, we can assume that v(w c) >= 0 in ]a, b[. Then we have

0<
g(w) e) v (w- c)r"-’ dr

(v’(w- c)- w’v)]r"-’ dr

[r v’(w-c)-w’V)]rdr

b"-’v’(b)(w(b)-c))-a"-’v’(a)(w(a)-c))

This obviously is a contradiction and w-c must change sign in ]a, b[.
COROLLARY 2.4. Either both w(r, O)=-sin Oo and wr(r, O)=-0 are constant, which

forces 0 0o, or the zeros of wr(., O) and w(., U)-tan o cos are discrete, simple,
and interlace.

Proof Lemma 2.3 implies that w(., ) either equals or oscillates around the value
c := tan Oo. cos O. For constant w the initial condition leads to c w(0, )--sin
which implies --o. In the other case the zeros of w and w-c are discrete and
interlace. This already proves the simplicity of the zeros of w-c. As another con-

sequence, Wr and f(w/cos ) cannot have common zeros. For any zero of Wr the
differential equation therefore leads to

Wrr --COS Of(coWs o) # 0,

which excludes common zeros of W and Wrr. Thus the zeros of w are simple.
COROLLARY 2.5. Suppose, (r, O) is a common solution ofw(r, ) =0 and Wr(r, )

O. If r is the kth positive zero of w(., O) and if Oo < 0 < Oo+ 7r, then satisfies

(10) sign (cos O.f(O))=(-1) k.

Proof According to Corollary 2.4 w(., ) oscillates around the value c:=
tan Oo" cos , which must be nonzero to allow for common zeros of w and Wr. This
excludes o 0 and O 7r/2(r). Using the differential equation, we arrive at

(11) -w,.,.(r, O)= g(cos O, 0) cos O.f(O).

Due to the oscillation any two consecutive zeros of Wr differ in sign Wr,. Computing
this sign for r 0, we find

--Wr,.(O, O)= g(COS O, sin O)= cos O" f(tan O)> 0,

provided O ]Oo, Oo+Tr[ and O# 7r/2. For the kth positive zero we therefore get
-sign wr(r,O)=(-1) k. In conjunction with equation (11) this completes the
proof.
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LEMMA 2.6. Let Oo O. Then every component c of zeros of w(r, O) is contained
in a strip x Oo + km o+ k + 1)7r[ for some k 7/.

Proof. Let k e 7/and let

@k:= {(r, 0) c[O-<_ Oo+kvr or 0->_ Oo+(k+l)vr}.

This set is closed by construction. It is also open in , because (r, Oo+kTr), (r,
Oo+(k+l)vr) cD k. Thus it is either empty or coincides with . The latter must
be true for at least one k 7/.

2.3. Arriving at the proof.
Proofof 2.1. According to Corollary 2.4 we can apply the implicit function theorem

to obtain parametrizations Rk(O) for the zeros of Wr(r, 0), provided 0 Oo(Tr). For
the remaining values of 0 the branches described by Rk intersect with the trivial
solution {(r, Oo+ mTr)lr >- 0, m 7}. To deal with these bifurcations we apply the above
argument to the function

u (r, tan O) tan Oo
if O Oo(zr),

v(r, O) := tan O tan Oo
uv(r tan Oo) if O Oo(zr).

Note that up solves the differential equation

n-1
up"+ u’p +f’(tan Oo)Up 0 in +,

r

where j(u):=f’(tan Oo)U is an admissible function. Thus Corollary 2.4 implies that up
has infinitely many simple zeros and the implicit function theorem yields the desired
parametrization over O.

Because of the uniqueness of the solutions of the initial value problem (8) we
have w(r, 0 + zr) -w(r, 0). This implies the periodicity of the zero set of wr and thus
the periodicity of the functions Rk(O).

LEMMA 2.7. Let Oo 0 hold. Then there is a continuum o of zeros of w(r, O)
satisfying the following:

+cgo lies in the strip o x ]Oo, Oo+ 7r[.
ego contains (0, 7r) or (0, 0), depending on the sign of 0o.
co is unbounded.

Proof Looking first for the zeros satisfying r=0 we get 0= w(0, O)= sin O and
thus O= kzr for some k7/. Since the zero should be contained in the interval
]Oo, 0o+ or[ this reduces to O 0 or O zr depending on the sign of Oo.

We extend w continuously for negative r using w(r, O) w(-r, O) and apply
Theorem 1.1 to F w, G H {1}, and h r. In this context the above zero is H-regular
and the zeros nearby lie on a curve O(r),
to be the part of the curve satisfying r >= 0. By construction no element of 5el lies above
b, but one point of 5e lies above a. This point is a special boundary point having
index in(0, ker)= +1. Theorem 1.1 now establishes the existence of some continuum
ego intersecting with the curve O(r) in some point with r > 0.

This continuum must be unbounded by Theorem 1.1, if we exclude a second
intersection of ff’ with ego. To do this, note that the set

@ := {(r,

is both closed and open in Co, the first by construction. To see the openness, let
(0, O) 9. By Lemma 2.6 this point must coincide with the special boundary point of
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1. According to Theorem 1.1 all zeros of w in some neighbourhood of this point are
either in l or in o. The latter must satisfy r_-< 0 and are thus contained in

Since o 9, we have @- because o is connected. This excludes a second
intersection and this completes the proof.

Proof of Theorem 2.2.
Case Oo O. We replace the continuum rgo found in the previous lemma by its

topological component, which we also denote by rgo. Then the first two requirements
of Theorem 2.2 are already satisfied, the latter by Lemma 2.6. It mainly remains to
prove that this component intersects with the graphs of the functions Rk and crosses
the line O- r/2 between any two consecutive of those intersections. If the first were
not the case the set

:= {(r, O) olr<-R(O)}

would be both open and closed in Co. If the line O r/2 were not crossed this would
hold for the set

:= {(r, O)e Colr<-R,(O)}

U{(r, O)e olr<-_R+(O) and sign (cos O.f(0)) (-1)}.
In both cases a contradiction to the connectedness of o would result. Note that in
the second argument we already used the crossing condition as established in Corollary
2.5. Finally, to pinpoint the places where o crosses the line O r/2 we note that
w(r, r/2) is essentially a Bessel function. More precisely, J(rx/-):= rw(r, r/2) with
, := (n-2)/2 is a bounded solution of the differential equation

J"+- + 1- J=0 in
r

and must coincide with the Bessel function J (up to some constant factor).
Case Oo 0. As with the proof of Theorem 2.1 we get the functions r(O) by

application of the implicit function theorem to w, if O 0, or to

u(r, tanO)
if tanO0,

v(r, O):= tan O

up(r,O) if tan O=0

in the other case. The zeros of w and v(., 0) are simple by Corollary 2.4. Because of
the uniqueness of the solutions of the initial value problem (8) we have w(r, 0 + r)=
-w(r, 0). This implies the periodicity of the zero set of w and thus the periodicity of
the functions rk (0).

3. Bifurcation by remote control.
3.1. Designing the remote control. Because of Theorem 2.2 there is a component

ego of radially symmetric solutions (O, R, u) of the boundary value problem

Au +f(u) 0 in R(0),

(12) U 0 in O[R(O),

U(0) tan O,

which follows a slalom course around the "flags" (Rk(/2), r/2). The functions Rk(O)
describe the solutions of the corresponding Neumann problem (Theorem 2.1). The
value O r/2 was introduced by rescaling. Naively, solutions (r/2, R, u) are solutions
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of problem (12) satisfying u(0)= o. Surprisingly, these solutions provide information
about bifurcations with symmetry breaking taking place somewhere else.

THEOREM 3.1. For all admissible f satisfying f(O) 0 the following hold:
(1) If the line 7r/2 is taken away, the slalom course qo established in Theorem

2.2 disconnects into countably many components. Except for the component that hits the
line r=0, each of these components connect two consecutive elements (rk, 7r/2),
(rk+l, 7r/2) in the intersection of o with the line = 7r/2. This pair ofpoints uniquely
determines the component, the closure (with respect to R2) of which we denote by k. The
values riv/-d=[J]i are given by the zeros of the Besselfunction J of order 9= (n-2)/2.

(2) Suppose that the set

Nk := {[J]k < R < [J]+,IJ+(R)--0 for 0<--_ K .}
has odd cardinality. Then there is a continuum of solutions (O, R, u) ofproblem (12)
having minimum symmetry O(n- 1) and satisfying the following.

a starts in k.
(b) q contains only points (O,R, u) with R>0 and 9 7r/2(Tr), i.e., only "true"

solutions ofproblem (12).
(c) does not contain any interior point of

bo := {(9, R, u)l(9 + mr, R, u) qo for some m Z}.
(d) c is unbounded in R or Ilul[c or intersects with 9o outside (k"
(3) Now suppose that the set

S*k := {[J]k < g <[J]k+llJ,+(R)=O for 0-< K-- 0(2)}
has odd cardinality. Then there is a continuum c of solutions (tg, R, u) ofproblem (12)
having minimum symmetry O(n-1)7/2 and satisfying (a)-(d) in (2) above.

The cardinalities of the sets Nk and Nk* do not depend on the nonlinearity f and
can be easily computed. A few of them are listed in the Appendix. Note that in almost
all cases at least one of the cardinalities Nk and Nk* is odd, thereby guaranteeing
bifurcation with symmetry breaking. In particular, N* is odd for every space dimension
that is listed in the Appendix. Thus, due to the above theorem, a continuum c of
solutions (zg, R, u) of problem (12) having minimum symmetry O(n 1) 7/_ bifurcates
somewhere from c

Recall that Smoller and Wasserman [14] already found a bifurcation from
which was later proven to be global by Cerami [1]. But the local analysis shows that
solutions sufficiently near to Smoller’s bifurcation point either belong to c or have a
symmetry conjugate to O(n-1). Since the above branch has minimum symmetry
O(n 1) 7/2, we have found a bifurcation different from that of Smoller. Smoller also
proved (his main argument is contained in Lemma 3.7 below) that his bifurcation
point is the only one for positive solutions. Thus ours cannot be a positive solution
of problem (12). So it has to be Mexican hat shaped, because this is the only other
type of solution living on

To establish their results, both Smoller and Cerami use a transversality condition.
We will now prove that is automatically satisfied and can be dropped. We will
reformulate their result as a theorem in our settingwhich then is a consequence of
Corollary 1.2but to save space we drop the complete description of the situation
near the bifurcation point--which needs local arguments such as the Lyapunov-
Schmidt reduction.

THEOREM 3.2. Letfbe twice continuously differentiable and admissible withf(O) O.
Let (R, zg) denote an intersection of the slalom course co established in Theorem 2.2
with the graph of the function R(tg). Besides we assume wo(R, tgl)# 0.
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Then there is a continuum c ofsolutions (0, R, u) ofproblem (12) having minimum
symmetry O(n- 1) and satisfying the following.

(1) starts in (R1, O1).
(2) contains only points (O,R, u) with R>0 and 0 7r/2(cr), i.e., only "true"

solutions ofproblem (12).
(3) does not contain any interior point of

5o := {(O, R, u)[(O + mTr, R, u) Co for some m 7/}.

(4) % is unbounded in R or I]ullc2 or intersects with fro in a point different from
(R1, O1).

Note that having a solution of problem (12) with small symmetry we get a whole
bunch of them by considering conjugate symmetries. In detail, let be the bifurcating
continuum found in Theorem 3.1 and let H

_
O(n- 1) be the prescribed minimum

symmetry. Then [y] y is also a continuum of solutions of problem (12) for every
left coset y] O(n)/H. y] is unbounded if and only if is. y]qg and intersect
with 5e0 in identical points. The symmetry of some point 3’(O, R, u) 3’] is conjugate
to the symmetry of (O, R, u) .

3.2. Some technical details. Given the function spaces

X :-- W2’P(I(0)) [’ W’P(I(0)),
Y := Lv(B,(0)),

where 2-nip > l, we define F :R2 X-->R Y in the following way:

F(O, R, u)(x):= (u(0)- sin O, Au(x) + R2g(cos O, u(x))),

where

w)=qf(w/q) ifq0,
g(q,

aw if q 0,

and f is assumed to be admissible. F is equivariant with respect to the group O(n)
operating on X and Y, respectively, by

[yu](x):=u(y-lx) for all y O(n), u Y.

The spaces X and Y are chosen to satisfy the following:
(1) Both A: X Y and, consequently,

B:= " x X-> x Y
0

have a bounded inverse (Simader [12, Thm. 10.10, p. 184] or Zeidler [19, Thm. 6.8a,
p. 259]).

(2) The map u--> u(0) from X to is continuous.
(3) The map G:x C(BI(0))-> Y defined via G(q, u)(x) := g( q, u(x)) is con-

tinuous. Iff ck(R), then G is k times continuously (Fr6chet-) differentiable for q # 0.
(4) Both the embedding :X---> C((0)) and, consequently, the map

F(O, R, u)- B(R, u) (u(O)- R-sin O, R2G(cos O,

are compact.
The function spaces and in particular the condition 2-n/p > 1 are chosen to make
the proof of the following lemma work. This lemma is the key ingredient to the proof
of the continuous dependence of the partial derivative Dn,,F(O, R, u) on (O, R, u) in
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the neighbourhood of some zero (7r/2, Ro, Uo) of F. This being granted we are able
to apply the implicit function theorem.

LEMMA 3.3. Let 2-n/p > 1 and let zero be a regular value of

Uo x := w,(l(0)) w,((0) c1((0)).

Then D,G(q, ru) is continuous in a neighbourhood of (0, Uo).
Proof Let (qi, ui) be a sequence converging to (0, u) in X. Then we have the

following:

IlG,(q, u)w-G,(O, u)wll Ig,(q, ui(x))w(x)-a. w(x)lp dx
(o)

<f f’(rix)) P

(o)

The sequence ru converges to ru pointwise in C. So the expression under the integral
tends to zero for all x with ru(x) O. By the Lebesgue dominated convergence theorem
the integral and so the operator norm of G,(q, ru) G,(O, ru) 0provided the zeros
of ru have measure zero.

If ][u- Uo[[ w, is sufficiently small, so is the distance []u- Uo[[c’ C[lu- Uo][ w,,
with respect to the C-norm. Thus zero is not only a regular value of Uo, but also of
u. Then the zero set of u is a manifold of dimension n- 1 having (n-dimensional)
Lebesgue measure 0.

LEMMA 3.4. e, eigenvalues of the Laplace operator on the sphere S-1 are -( +
n- 2), where 0 Z. In every eigenspace there is (up to constant multiples) precisely
one eigenfunction having minimum symmetry O(n- 1). is eigenfunction is of the form
P(x/llxll), where P denotes a polynomial of degree . is polynomial is an even

function if is even, and an odd function otherwise.

Proof Let be an eigenfunction of the spherical Laplacian for the eigenvalue
h. Fuhermore, let o S"-1 be a point on the sphere satisfying (o) 0 and let
TO(n-1)- be the symmetry of o. Then

(’) := o 7-(’)d=fo (7-’) d
(n-l) (n-l)

is an O(n- 1) invariant eigenvector for the eigenvalue Z. This eigenvector does not
vanish because y-’o) (o) # 0.

For n > 2 the eigenfunction being invariant under O(n- 1) only depends on
the "latitude" :=arccos (x,/lxll)[O, ] of the sphere S"-. Making the ansatz

() P(cos ), where P is a polynomial with degree P , for x [- 1, 1 this
polynomial is a bounded solution of the equation

1 x)P(x) (n 1)xP(x) zP(x) o.

We can compute the coefficients a of P recursively using the formula

(a+(+n-= p+ 1)(p+2)+ if0N p<-l.

We immediately get I -( + n-2) and =0 for all p (2). Thus the polynomial
either is an even or odd function and there isup to a constant multiple--only one
such polynomial P.
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The functions K(q) PK (cos q) are pairwise orthogonal with respect to the scalar
product

(u, v): u()v(q) sin"-2(q) dq9

and constitute a basis of L2([0 "n’]) (with the above scalar product) due to the
Weierstrass approximation theorem. This way we get all eigenfunctions that are
invariant under O(n 1).

The statements of the lemma, in particular (q) PK (cos o), also hold for n 2,
but the proof must be different. As above, we choose q := arccos (x2/llxl[) [0, 2zr],
but now we have an explicit formula

(o) Re(c e

Because of the invariance under O(1) we have cI)(q)= (-q), which induces Im c 0.
Thus (q) is a homogeneous polynomial of degree K in cos q and sin q. There are
only even powers of sin q, and we can replace sin2 q by 1-cos2 o. We obtain a
polynomial P (cos o) as desired.

THEOREM 3.5. (1) (7r/2, R, u) is a zero of F if and only if u is an eigenvector of
-A for the eigenvalue aR2 satisfying u(O)= 1. All these solutions are radially symmetric
and Rx/-d is a zero of the Bessel function J, where u n- 2)/2.

(2) All solutions sufficiently near to one of the above are radially symmetric and lie
on a continuous curve parametrized by O.

(3) Let H=O(n-1). Then we have iH(Tr/2, R, u)=(--1)t, where

/3 # {0 < r < R/-dlJ+, (r) 0 for some 0 <= 7/}.

(4) Let H=O(n-1)Z2. Then we have in(Tr/2, R, u)=(-1)t, where

#{O<r<Rv/-dlJ+(r)=O for some 0<= =0(2)}.

Proof (1) For any zero (O, R, u) of F with O r/2 the function u by construction
is an eigenfunction of -A for the eigenvalue A aR2 satisfying u(0)= 1. Passing to
polar coordinates (r, :) Sn-l, we can expand u in a series

u(r, )= aK(r)(),
=0

where denotes an eigenfunction of the spherical Laplacian for the eigenvalue
-( + n -2) and J+(rx/-):= raK(r) is a bounded solution of the Bessel differential
equation and therefore must coincide (up to constant multiple) with the Bessel function
of order u + . Since u satisfies Dirichlet boundary conditions, we obtain J,/(x/--)=
J/(Rx/-d) =0. For arbitrary integers K, /z->0, J+ and J+, cannot have common
zeros. This leads to

u(r,)=a(r)()

for some n >= 0. Since u(0) 1, this implies aK (0) 0 and constant, Due to Lemma
3.4 this can only happen for 0. Since is O(n)-invariant, so is u.

(2) VUo(x)=a(llxll)" x/llxll does not vanish for any zero of Uo(x)-ao(llx[[).
Thus zero is a regular value of Uo, which implies the continuity of Dn.uF(O, R, u) by

See Watson [17, p. 485] for Siegel’s proof of the conjecture of Bourget.
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Lemma 3.3. In order to compute the kernel of L DR.uF(Tr/2, R, Uo) we start with the
equation

0- L(S, v) (v(0), Av+ aREv+ 2aRSu).

Using the L2 scalar product (,) this leads to

-2aRS(u, u)= (Av+ aR2v, u)

=(v, Au+aR2u)=O,
which in turn implies S =0 and v(x)= .Uo(X). Because of v(0)=0 we get ?=0. The
kernel therefore is trivial and applying the implicit function theorem to F we can
parametrize the zeros of F by O. We can also apply the implicit function theorem to
Fn and we get a second curve of zeros of F with symmetry O(n). By the uniqueness
part of the implicit function theorem these two curves must coincide wherever they
both exist.

(3) and (4). To compute the spectrum of B-1L B-1DR.,F(.a/2, R, u) we expand
an average solution (S, v) x X

_
x L_(BI(0)) of the equation

O= B(B-’L-ia,)(S, v)

L(S, v)-Ia,B(S, v)

(v(0)-/xS, (1 -/x)Av + aR2v+2aRSu)
in a series v Yi=>o oeiu of eigenfunctions for eigenvalues A of-A. The numbering of
the eigenvalues is chosen to satisfy Uo u, Ao aR2. Inserting this in the above equation
we get

a,(-A,(1-1x)+aR-)=O for i>0,

aoaR21x + 2aRS 0 for 0.

At most one a with > 0 can be nonzero. If this is the case, we obtain an eigenvalue

aR2

i.,i 1-
Ai

for the eigenvector

2ui(O) )1) Og. lt ..11_ OI, oUo Ol U 2 l’lO
Rlzi +2

For the computation of S and ao we have used the equations

oeoaR2t, + 2aRS O,

a,u,(0) + ao v,(0)=

If c 0 vanishes for all > 0, the eigenvector has the form v aoUo. S and/z can
be obtained from the following equations"

oeoaR2tz + 2aRS O, I.,S ao,

which leads to

I + ix// R.
To compute the indices we must determine the algebraic multiplicity of all negative

real eigenvalues of (B-1 L) H. We will show that all relevant eigenvalues are semisimple,
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but treat only the case H {1}" If there is no generalized eigenvector, it cannot have
any prescribed symmetry. Let/xj 1- aR2/Aj be an eigenvalue with generalized eigen-
vector (B-1L -/zj)2(, )= 0. We again expand t; in a series i>_-o iui. Put this into

(L- Btx)(S, ) B(S, v),

and obtain

(L-Btx)(S, v)=0,

d,(-A,(1-tx)+aRa)=O for i>0and ij,

t,(-Ai(1-1zj)+ aRa)=-Ao for i=j,

(2aR2u(O)) for O.doaR2tx +2aR RIx2 + 2

Considering the equation for =j we immediately get a 0. Then (S, ) already is an
eigenvector in the usual sense and the eigenvalue is semisimple.

Prescribing minimum symmetry O(n-1) we find by part (a) of the proof and
Lemma 3.4 that for every there is precisely one K such that

Vi(X)--- ciP(x,/llxll) a(llxll)-e2 / 2
ao(llxl])

Here P denotes a polynomial of degree K, which is an even function for K even and
an odd function otherwise and ra(r)=: J/(rx/-) up to constant multiple is the
Bessel function of order u + K.

In the case where H O(n- 1), all eigenspaces are one-dimensional. To calculate
in we therefore only have to count real negative eigenvalues /x--1- aR2/A. This
number just coincides with the number of zeros 0 < < Rv/-d of the Bessel function
J+K. This proves part (c).

O(n- 1) x 7/2 also contains the reflection at the plane xn 0. Thus only eigenfunc-
tions with P even are invariant. This implies even--and the proof of part (d) is
complete.

3.3. Assembly of the proof parts.
Remark. Let (O, R, u) R2x X be a zero of F. Then u is contained in the set

u 2 := {u C2"(ll(O))lu =0 on OB,(0)}.

If moreover R >0 and O zr/2(zr), then if(x):= (cos o)-lu(x/R) is a classical solution
of the Dirichlet problem (12).

Remark. To reduce the proof of Theorem 3.1 to an application of Theorem 1.1
we must identify the zeros of w(r, O) with certain zeros of F. To do this we define the
continuous map

7/V: R2
__

N2 x W2,p([,(0)) via kV(R, O):= (O, R, 7/Vo(n, a)),

where

o(n, a)(x):= w(nllxll, o).

LEMMA 3.6. /" maps the zeros of w homeomorphically onto the zeros of F(n.
A zero (R, O) of w is regular if and only if 7(R, O) is O(n)-regular (in the sense of

1). More precisely, if 0 7r/2, every element in the kernel of DF((74/’(R, )) is a
linear combination of

7o(R, O) and 7/’R(R, 0).
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Proof We only prove the second claim and restrict to the case O 7r/2, since the
other case was treated by Theorem 3.5. If (p, $, v) is an arbitrary element in the kernel,
then

(t): v(t)-pwo(R" t, O)+Stwr(R" t, O)

solves the initial value problem

n-1
t"+ t’+ R2gu(cos O, w(R. t, 0))=0,

(0) ’(0) 0.

By uniqueness [13, p. 157] we get -=0, which induces

(p, S, v)= pTg’o(R, 0)+ SWR(R, 0).

Because of the Dirichlet boundary condition, p and S must satisfy the following
relation:

0= v(1)= pwo(R, 0)+ Swr(R, 0).

Thus dim Kern F(")(W(R, O))= dim Kern Vw(r, O)>= 1.

Proof of Theorem 3.1(1). For k e 7/we consider the cells

{(R, O)lRk_l(O) < R < Rk+l(O) and sign (cos O" f(O)) (--1)k},
where R-k :=--Rk and Ro -= 0. Let qgk be the closure of the intersection of the branch
Co as in Theorem 2.2 with cell k > 0. o intersects the boundary of cell k only in two
points (rk, 7r/2), (rk+l, zr/2), because the zeros ri/x/-d and the critical points Ri/x/-d of
the Bessel function J interlace and every zero of F with O 7r/2 is--by Theorem
3.5(1)mrelated to a zero of J in the way described. Next we define the "projection"
onto cell k to be

O) Co if this point lies in cell k,
.’.k(r, O):-- (rk, r/2) if not and r < Rk(O),

(rk+, 7r/2) if not and r> Rk(O).

By Theorem 3.5(2) all these projections are continuous maps on Co. Their images k
therefore are connected and contain the two boundary points as desired. Finally,
CCk\{(rk, zr/2), (rk+, zr/2)} is contained in some component of o\RX {7r/2}. Being
the intersection of o with the open cell k, it is both open and closed in this component
and thus has to coincide with it. This way we get all components, because the closures
of all cells cover the plane

(2) and (3). Choose 5e := //((k) 00 as in Theorem 3.1 and

[Oo, 7r/2] if sign (Oo) (--1) k+l
[a, b]:=

[zr/2, Oo+ zr] if sign (Oo) (-1) k

and apply Theorem 1.1. The assumptions are satisfied:
(1) 5el is compact, being the image of the compact set qgk under /4/’. k is compact,

because it is closed and contained in a bounded cell.
(2) Only the two zeros ]/I/’(rk, 7r/2) and //’(rk+l, 7r/2) lie above the interval

boundaries. Due to Theorem 3.5(2) they are special boundary points of bel.
(3) Again by Theorem 3.5(2) these special boundary points are interior points of

o. Moreover egg lies in cell k, Co\ (k outside the cell. Thus 01 and 5o\5el connect
only on the boundary of the cell, i.e., in one of the two special boundary points of 1.
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(4) The H-index sum for O r/2 is

iHW(rk, 7r/2)+ i,Tg’(rk+l, rr/2): iHTg’(rk, 7r/2)(1 + (--1)t),
where/3 by Theorem 3.5 exceeds the cardinality of both Nk and N*, respectively, by
1, because/3 also counts the kth zero of J. If the cardinality of one of these sets is
odd, the H-index sum is nontrivial and thus different from the H-index sum for the
other interval boundary.

By Theorem 1.1 we get the existence of a bifurcating branch c of zeros of F",
which satisfies a Rabinowitz type alternative and shares no interior point with
As a consequence it is contained in one of the following sets"

Y{,, := {(O, R, u)IR>O and mTr+ r/2 < O < (m+ l)Tr+ Tr/2}.

This holds, since the intersection Y{,, f3 is both closed and open in , the latter
because points on the boundary of Y{,, are interior points of oWo and cannot be contained
in . Thus we get

Due to the remarks preceding this proof,

_
Y{,, implies that points on are

classical solutions of problem (12). Finally, because of the continuity of the embedding
C2(B1(0)) W2’p(B(0)), the C2-norm is unbounded, if the W2"P-norm is. This com-
pletes the proof.

LEMMA 3.7. If tt#(R, O) is not an interior point of go, then we have R >= R(O). If
equality and furthermore if wo(R, O) 0 holds, then the kernel of DF(n-(Tg’(R, ))
is spanned by

7T’R(R, O) and 7g’(R, o)(llxll).
OX,,

Proof Elements in Oo with O-= 7r/2 are interior points by Theorem 3.5. So we
can restrict to the case O 7r/2. Already knowing the radially symmetric elements in
the kernel of DF by Lemma 3.6, we subtract from any other element (p, S, u)
Kern DF( ff’(R, O)) in the kernel its "symmetric part" (p, S, v) Kern DF(")(O, R, w),
where

The difference u-v solves the differential equation

A(u-v)+RZg,(cos O, w(R’))(u-v)=O.

Passing to polar coordinates (r, )Nx S"- we expand (u-v) in a series

(u-v)(r, C)= 2 a(r)4p,().

Here denote eigenfunctions ofthe spherical Laplacian for the eigenvalue --K(K + n
2) and the functions a(r):=((u-v)(r, ), (sc))(s-, 0<r<l are solutions of a
singular Sturm-Liouville problem, which is proved in [15, pp. 418-420] to have (up
to constant multiple) a unique solution and satisfies a Sturm-Liouville-type comparison
principle. As a consequence we have a(s)= const. Rwr(R" s,
satisfies the same equation as a does. Moreover, if a(1)= 0 for some > 1, then a
must have a zero in the interior of the interval [0, 1], which implies R(O)<R.

If R(O)> R, all elements in the kernel therefore are radially symmetric and the
dimension of the kernel is 1 by Lemma 3.6. The implicit function theorem applies and
W(R, O) is an interior point of
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If RI(O)= R and wo(R, O)#0, then by Lemma 3.6 the symmetric part of the
kernel is spanned by WR(R, O), whereasmusing Lemma 3.4the generator for the
nonsymmetric part is given by

const, al(llx[[)l(:)= wr(R" [Ixl], O)[ix[ -Ox,
Proof of Theorem 3.2(1). In analogy to the proof of Theorem 3.1 this proof is an

application of Corollary 1.2 in 1. We only have to check the assumptions for
Corollary 1.2.

Due to Lemma 3.6 the implicit function theorem can be applied to F(") to obtain
a local parametrization R -(O(R), R, u(R)) of the zeros of F(" with tangent vector
WR(R1, O1). Lemma 3.7 now yields the desired splitting of the kernel

ker DFH(7/V(R1, O1)) = t/VR(R1, 01)@" //Vxn(R1, O1).

It remains to check the transversality condition. In order to increase the clarity
of the following calculations we introduce the following notation:

G(R, x):-R2gu(COS O(R), w(Rllxl[ O(R))),

Xnu(R, x):= Ox.7/Vo(R, O(R))(x) R [-[ wr(Rllxl[ O(R)).

Using this notation, we get

D-FI4 (tg’(R,, 01))(kVu(R1, O1), //Vxn (R1,0)) (0, GR(R1)u(R1)).

Suppose there is a (p, S, v) N2x X with

(0, G(R1)u(R1)) DF(PU(R1, O1))(p, S,

then integrating over y O(n) yields

DF(t,f(el, O1))(p, S, )= DF(t,f(el, O1))(p, S, I yv dy)
(n)

(0, fo TG(R1)u(R1)dT)(n)

O, G(R1)[- wr(Ulllxll 11)
(n)

O

--lx dy)

(0, G(R1)u(R1)) DF(PU(R1, O1))((fl S v)-(p, S /.))

(v(0)-(0), (A+G(R,))(v-)).

Using the L2 scalar product results in

Ia GR(R1)u2(R1) dx= ;a ((A-k-G(R1))(o-))u(R1) dx
(o) (o)

[ (v-)(Au(R,)+G(R,)u(R1)) dx=O,
(o)

since I ’y--lx dy =0 is an O(n)-invariant element ofNn. Thus (p, S, ) lies in the kernel
of DF(’ and we have
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since Wx.(R1, 01)(x)= (0, 0, u(Rl,x))ker DFI-I(7,t/’(R1, 01)). On the other hand, tak-
ing the derivative of Ia(o) (Au + Gu)u dx with respect to R at R1, we arrive at

Ia Gnu2 dx IB (Au + Gu)un dx- IB (Aun + Gun)u dx
(o) (o) (o)

=o

un" u--un’-SZ_ u do)
(0) (0)

=0
=0

R31[Wrr(R" 0’)]2 fo 2x. dw>O.
B(o)

This is a contradiction.

Appendix. By Theorem 3.1 we get bifurcation from the subset k---0 of the
component o established in Theorem 2.2, if one of the following sets has odd
cardinality:

Nk:={[J,]k <R <[J,]k+IIJ,+K(R)=O for some 0_-< K 7/},

Nk* := {[J]k < R <[J]+,IJ+(R) =0 for some 0 -< K -= 0(2)}.

We present these cardinalities in Tables 1-5 for several values of the space dimension
n, which results in order u=(n-2)/2 for the Bessel function primarily considered.

TABLE
n =2, u=0

Zeros [J]k Absolute error Igl ]N*I

2.404825 5.064483E-07 2
5.520079 1.357311E-06 4 2
8.653714 2.926365E-05 7 3
11.791553 3.997591E -05 10 5
14.930917 5.292858E-05 11 5
18.071055 8.392533E -05 15 8
21.211600 1.947945E-04 17 7
24.352527 2.237075E-04 17 9
27.493476 2.529771E -04 23 12
30.634589 2.836580E-04 23 10

TABLE 2
n=3, u=0.5

Zeros [J]k Absolute error Igkl Im*l

3.141590 6.001238E-06 2
6.283191 1.291279E-05 5 2
9.424749 7.858169E-05 6 3
12.566098 7.284342E-04 10 5
15.708351 9.147864E -04 11 5
18.849543 1.128309E-03 15 8
21.991100 1.449951E -03 18 8
25.132608 2.075585E-03 19 10
28.274045 3.378452E -03 21 10
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TABLE 3
n 4, v 1.0

Zeros [J]k Absolute error INI IN*I

3.831691 3.010758E-05 2
7.015613 5.812487E-05 5 2
10.173414 1.977336E-04 6 3
13.323294 1.202979E -03 10 5
16.471210 1.494357E-03
19.615840 1.824869E -03 ? 9

22.760020 2.297772E-03 18 8
25.903509 3.146578E-03 19 10
29.047116 3.529324E-03 21 10

TABLE 4
n=5, v=l.5

Zeros [J]k Absolute error INkl IN*I

4.493361 9.678365E-05 2
7.725331 1.742361E -04 5 2
10.904028 4.432954E -04 7 4
14.066321 5.729008E -04 9 4
17.220750 7.128862E -04 13 6
20.371277 9.078495E-04 13 7
23.519371 1.286108E -03 18 8
26.665856 2.121918E-03 19 10
29.811983 2.373509E -03 23 10

TABLE 5
n=6, v=2.0

Zeros [J]k Absolute error INI

5.135503 2.380439E-04 2
8.417431 4.075584E -04 5 2
11.619694 8.814832E -04 7 4
14.796154 1.124353E -03 10 4
17.959812 1.382462E -03 13 7
21.116963 1.714914E-03 6
24.270010 2.278524E-03 8
27.420746 2.574711E -03 21 11
30.569185 2.872035E-03 21 9

The zeros were computed using a scheme of Cayley and Raleigh [17, p. 502]. The
scheme produces upper and lower bounds for the product ofthe first K zeros. Comparing
this result for k and k-1 upper and lower bounds can be derived for the kth zero.
Sometimes these bounds were not good enough to reliably compare the zeros of two
different Bessel functions. If this was the case all table entries affected by this com-
parison were marked with a question mark.
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BIFURCATIONS OF RELATIVE EQUILIBRIA*

MARTIN KRUPA

Abstract. This paper discusses the dynamics and bifurcation theory of equivariant dynamical systems
near relative equilibria, that is, group orbits invariant under the flow of an equivariant vector field. The
theory developed here applies, in particular, to secondary steady-state bifurcations from invariant equilibria.
Let F be a compact group of symmetries of R and let x0 be in R n. Suppose that f is a smooth F-equivariant
vector field and E the isotropy group of x0. It is shown that there exists a E-equivariant vector field fN,
defined on the space normal to X at x0, and that the local asymptotic dynamics off are closely related to
the local asymptotic dynamics of fN. Next those bifurcations of X are studied which occur when an
eigenvalue of (dfrv)x crosses the imaginary axis. Properties of the vector field f imply that branches of
equilibria and periodic orbits offN correspond to trajectories off which are dense in tori. Field [Equivariant
dynamical systems, Trans. Amer. Math. Soc., 259 (1980), pp. 185-205] found bounds on the dimensions of
these tori. Some of his results are extended. This theory is applied to the following specific problems:

(1) Bifurcations of systems with 0(2) symmetry.
(2) Bifurcations of steady-state solutions of the Kuramoto-Sivashinsky equation.
(3) Secondary bifurcations in the planar B6nard problem.

Key words, bifurcation, symmetry, relative equilibria

AMS(MOS) subject classifications. 58F14, 58F27, 34C35

Introduction. In this work we discuss the dynamics and bifurcation theory of
equivariant dynamical systems near group orbits invariant under the action of the flow.
Such group orbits are called relative equilibria. The simplest example of a relative
equilibrium is a group orbit of equilibria. A group orbit of equilibria can be character-
ized as a relative equilibrium on which the flow is trivial. The symmetry groups we
consider are compact and have positive dimension, so, in particular, they must contain
a subgroup isomorphic to SO(2). For such groups the flow trajectories on the relative
equilibria can be nontrivial. A well-known example of such nontrivial trajectories on
relative equilibria are rotating waves, that is, solutions given by x(t)= O(t)Xo, where
O(t) parametrizes SO(2).

A special case of a relative equilibrium is an invariant equilibrium, that is, an
equilibrium invariant under all the symmetries of the system. Such equilibria often
arise in applications, and their bifurcations have been extensively studied. Often
bifurcations of invariant equilibria are characterized by symmetry breaking; that is,
the invariant equilibrium bifurcates to branches of equilibria no longer invariant under
the action of the symmetry group. In other words, nontrivial relative equilibria often
occur as a result of bifurcations of invariant equilibria. In this context bifurcations of
relative equilibria correspond to secondary bifurcations from an invariant equilibrium.

Let X be a group orbit of equilibria of an equivariant vector field f. If X has
positive dimensions, then the conditions determining whenf can undergo a bifurcation
near X are quite different than in the case of an invariant equilibrium. In particular,
no element of X can be hyperbolic, since the directions along the group orbit must
be neutrally stable. More precisely, for any x X the tangent space TxX is contained
in the kernel of the derivative (df)x. It follows that X will be normally hyperbolic if

* Received by the editors July 19, 1989; accepted for publication (in revised form) December 1, 1989.
This research was supported in part by National Science Foundation/Defense Advanced Research Projects
Agency grant DMS-8700897 and NASA Ames grant NAG-2-432.

t Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota
55455.
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(df)x has no purely imaginary eigenvalues and the algebraic multiplicity of zero as
an eigenvalue of (df)x equals the dimension of TX. A bifurcation of X will occur if
(df), has an eigenvalue on the imaginary axis whose (generalized) eigenvector is not
contained in the tangent space of X.

An interesting phenomenon has been observed in examples of bifurcations of
relative equilibria" an orbit of equilibria can lose stability by having an eigenvalue
passing through zero and bifurcate to a group orbit consisting of nontrivial flow
trajectories. The flow on the new relative equilibria is a slow drift given by the action
of a curve of group elements. Several authors, who studied bifurcations of relative
equilibria, found that the resulting dynamics could be described in terms of dynamics
related to standard bifurcations modulated by a drift along the group orbit. The
following articles focused on bifurcations of relative equilibria where this feature has
been observed. Chossat [1986] has shown that the bifurcation of standing waves in
the problem of degenerate Hopfbifurcation with 0(2) symmetry leads to quasi-periodic
motion on a group invariant two-dimensional torus. Iooss [1986] has shown that a
Hopf-Hopf mode interaction in the Taylor-Couette problem (O(2) SO(2) symmetry)
leads to a three-frequency flow. Danglemayr [1986] has found a rotating wave in the
problem of steady-state mode interaction with 0(2) symmetry. Chossat and Golubitsky
1988] have studied a related problem of Hopf bifurcation of a group orbit of standing
waves and have discovered that this bifurcation leads to a three-frequency motion,
with one of the frequencies given by the drift along the orbit. In their paper Chossat
and Golubitsky have formulated the following theorem: the flow near a relative
equilibrium can be decomposed into the flow in the direction along the orbit and the
flow in the direction normal to the orbit. The precise statement and the proof of this
theorem is the starting point of this work.

Section 1 of the paper contains some background information on Lie group theory.
The remaining part of the paper is divided into two parts. The first part, 2-5, is
devoted to the theoretical aspects of the problem. The second part, 6-8, focuses on
specific group actions and specific dynamical systems and is designed to show the
application of the ideas developed in the first part. The reader more interested in the
second part of the paper will only need to know the definitions and the statements of
theorems contained in the first part. The following is a brief description of the topics
discussed in each of the sections.

In 2 we give a precise description ofhow the previously mentioned decomposition
of the vector field can be accomplished. We show that near relative equilibria the
vector field can be written as a sum of equivariant components: one tangent to the
group orbits and the other normal to the original orbit X (Theorem 2.1). As a
consequence of this decomposition each bounded solution near a relative equilibrium
is contained in the group orbit of a solution of the normal vector field fN (Theorem
2.2). In the remainder of 2 we show that the asymptotic dynamics of f can be
determined by the asymptotic dynamics of the normal vector field modulo drifts along
the orbit. Some results of 2, including an alternative proof of Theorem 2.1, can be
found in Vanderbauwhede, Krupa, and Golubitsky [1989].

The results of 2 imply that bifurcations of f can be analyzed in two steps. The
first step is to describe bifurcations of the normal vector field fN and the second step
is to find the corresponding drifts along group orbits. Let x be in X. In 3 we argue
that generic bifurcations of fN can be described as bifurcations of a generic Z-
equivariant vector field, where Z is the isotropy subgroup of x.

Suppose that f describes a family of vector fields, rather than a single vector field.
In 4 we study bifurcations of relative equilibria occurring when an eigenvalue of
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(dfN)x passes through zero. We analyze the case when a relative equilibrium X
bifurcates to another relative equilibrium Y. Let y Y, let E be the isotropy subgroup
of y and N(E) the normalizer of E. Field [1980] proves a theorem stating that the
flow on Y is given by a linear flow on a torus whose dimension is bounded by, and
generically equal to, rank (N(E)/E) (rank (N(E)/E) equals the dimension of a maximal
torus in N(E)/E). The main theorem of 4 (Theorem 4.1’) states that there exists a
generic set of perturbations of f whose elements have the following property: for all
except countably many values of the parameter the dimension of the flow on Y is
maximal.

In 5 we study Hopf bifurcations of relative equilibria, that is, bifurcations
occurring when an eigenvalue of (dfN)x passes through a nonzero point on the
imaginary axis. We apply the standard Hopf bifurcation theorems to find periodic
solutions of the normal component fn. Let Y be a periodic orbit of fn and let E be
the isotropy subgroup of the elements of Y. Field [1980] shows that the corresponding
trajectories of f are dense in tori whose dimension is bounded by rank (N(E)/E)+ 1.
Let be the group consisting of all the symmetries that leave Y invariant. In Theorem
5.1 we derive a new bound, given by rank (N(E)/E)+ 1 and show that this bound is
attained for a generic vector field. Next, in Theorem 5.2, we consider a family of vector
fields f, such that fn has a Hopf bifurcation and show that there exists a generic set
of perturbations of f whose elements are such that for all except countably many
values of the parameter the dimension of the flow on the manifolds F Y is maximal.

In 6 we present a classification of generic secondary steady-state and Hopf
bifurcations with symmetry group 0(2). In this context bifurcations of the normal
vector field correspond to steady-state and Hopf bifurcations with Ok symmetry. Using
the results of 3 and 4 we determine for which bifurcations of the vector field fn the
bifurcating solutions of the full vector field f generically have nontrivial drift along
group orbits.

In 7 we analyze bifurcations of the zero solution of the Kuramoto-Shivashinsky
equation, which has 0(2) symmetry. We summarize the results of a computer-assisted
study done by Kevrekedis, Nicolaenco, and Scovel 1988] and compare their numerical
results with the predictions of 0(2) bifurcations, as described in 6.

In 8 we classify the possible generic steady-state bifurcations in the planar B6nard
problem. The generic primary bifurcations in the B6nard problem are to two types of
equilibria: hexagons (with symmetry D6) and rolls (with symmetry O(2)0)Z2). We
consider secondary steady-state bifurcations of hexagons and rolls and show that the
resulting trajectories are either equilibria or rotating waves.

1. Preliminaries. Let F be a compact Lie group. We consider a smooth linear
action of F on R n. With no loss of generality we can assume that this action is orthogonal
and hence identify F with a subgroup of O(n) (see Bredon [1972, I, 3.5]). Let X be
a compact and F-invariant submanifold of R n. For x X let N be the set of vectors
normal to X. Note that N is a vector subspace of R n, since it passes through zero.
Let N(X) be the bundle with base space X and fibers N; N(X) is called the normal
bundle of X. The bundle N(X) is smooth (see Guillemin and Pollack [1974, p. 71]).
The action of F on N(X) is defined by the formula y(x, v) (yx, yv). To see that this
action is well defined observe that the orthogonality of the action of F implies that
yN, N,x. Let/3 N(X) R" be defined as/3((x, u)) x + u. It is easy to see that the
map /3 is F-equivariant and a local diffeomorphism. It follows that an invariant
neighborhood of X in R" can be identified, via the map/3, with a neighborhood of
the zero section in N(X). For x X let N {(x, v): v N}. Note that N c N(X)
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and the image of Nx under fl is in Nx. Given a F-equivariant vector field f" R" - Rlet fl*f be defined by *f(y)=[d(y]-lf((y)), y N(X). The map fl*f is called
the pullback of f to N(X). Let x R" and X Fx. It follows that studying local
dynamics off near x is equivalent to studying the dynamics of its pullback to N(X).

For x R" (or N(X)) let

;x {F: rx= x}
be the isotropy subgroup of x.

The homogeneous space F/Z is not, in general, a group, but it has the structure
of a smooth manifold and the quotient map r:y- yZ is a surjection (see Bredon
[1972, p. 302]). The map yEx- ,/x is a ditteomorphism between F/Ex and the orbit
Fx of x (see Bredon [1972; VI, 1.2]). Fix x R" and let Z Ex. Suppose that there
exists a neighborhood U of eE in F/; and a map r: U-* F such that rr(u)= u for
all u e U. The map r is called a local cross section of r (for a more general definition
see Bredon [1972, p. 39]). We now construct a local cross section of r. Let A be a
submanifold of F transverse to Z at e with e e E and dim E + dim A dim F. Note that
a neighborhood /] of e in A is diffeomorphic to a neighborhood of eE in F/E and
this diffeomorphism is given by r U. Let r-(r] )-1. Clearly, the map r is a local
cross section of r.

Let tr be a cross section of r defined on a neighborhood U of eZ in F/E. A
simple argument shows that the map b :or(U) x N,- R" defined as b(u, y) r(u)y
is a local diffeomorphism. Let N, be a disc of radius e around x and let e be chosen
so that b" tr(U) x N, is a diffeomorphism. Let V FN,. 0rthogonality of the action
implies that N and N, are E-invariant. Let X Fx. We chose e so that the set V
is equivariantly diffeomorphic to a neighborhood of the zero section in N(X). Observe
that if y N then it is clear that Eyc Ex. Hence if y N, then y C x" We have the
following proposition.

PROPOSITION 1.1. Every smooth and Ex-equivariant vector field g" N- R has a

unique smooth and F-equivariant extension f: V - R.
Proof. We define f by requiring that f(yy)= yg(y) for ,/e F, y N2. To see that

f is well defined let YlY Y2Y, Y N, ),, ),: F. Then ),-l),:y y, so y-ly2 Ey c 5;
and g(y]-ly2y) g(y), implying Ylg(Y) Y:g(Y). Hence f is well defined.

Let U, r, and th be as defined prior to the statement of Proposition 1.1. Let
&(U). Then fl th id x h d-. It follows that f is smooth on /). Smoothness

of f on V follows from equivariance and smoothness of the action.

2. Dynamics near relative equilibria. Let F be a Lie subgroup of O(n) acting
orthogonally on R and let f: R" - R be a C smooth F-equivariant vector field. Fix
x0 in R" and let X denote the group orbit of Xo. We say that the set X is a relative
equilibrium of f if X is invariant under the flow of f. The subject of this work is to
study bifurcations of relative equilibria. In this section we develop a systematic way
of analyzing dynamics near a relative equilibrium X. We first describe our results,
deferring the proofs to the end of the section.

We begin by defining the concepts of a tangent vector field and a normal vector
field. Let g:R R. We say that g is a tangent vector field if g(u) is tangent to the
group orbit of x for all x in R". For x in X let Nx be the space of vectors normal to
X at x. We say that g is a normal vector field if for every x in X the space N, is
invariant under the flow of g. Note that a normal vector field does not have to be
normal to group orbits other than X.

This section contains two main theorems. The first theorem states that near the
group orbit X the vector field f can be written as a sum of a smooth F-equivariant
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normal vector field fN and a smooth F-equivariant tangent vector field f-. We refer to
this theorem as the decomposition theorem. The second theorem states that near X
the dynamics off can be described as dynamics offN modulated by drifts along group
orbits.

The decomposition theorem is a consequence of a technical lemma. The lemma
states that near X there exists a smooth, F-invariant bundle K whose fibers are tangent
to group orbits and whose restriction to X is the tangent bundle of X. Before stating
the lemma we discuss the concept of the normal bundle of X. We observe that a
F-invariant neighborhood of X can be identified with a neighborhood of the zero
section in the normal bundle of X. We conclude that the dynamics of f can be
understood in terms of the dynamics of the pullback off to the normal bundle. In the
proof of the decomposition theorem we identify f with its pullback to the normal
bundle.

Following the proof of the decomposition theorem we discuss the most important
implications of the two main theorems. We remark that F-equivariance of fu implies
that the dynamics offu is completely determined by its dynamics on the invariant set

Nxo. We also describe a way of finding a global center manifold near a relative
equilibrium X. When X is an orbit of equilibria we show that the global center manifold
is the union of local center manifolds constructed for each normal space Nx.

Next we discuss a method of explicit computation of fu. We present the general
form of "coordinates along group orbits" and "in the direction normal to the orbit."
Such coordinates have been used to study specific examples of bifurcations of relative
equilibria.

We begin by assuming that X Fxo is the group orbit of Xo, but not necessarily
a relative equilibrium of f The following theorem is the first of the two main results
of this section.

THEOREM 2.1. There exists a F-invariant neighborhood U of X in R", a smooth
and F-equivariant normal vectorfieldfu, and a smooth and F-equivariant tangent vector

field fT such that

f(u) =f-(u)+fN(u)

for all u in U.
Let g denote the restriction of fN to the space Nxo. Let U be the neighborhood

defined in Theorem 2.1 and suppose that u(t) is a trajectory off contained in U for
all t-> 0. We now state the second of the two main theorems of this section.

THEOREM 2.2. There exists a smooth curve ofgroup elements y( t) and a trajectory
y( t) of the vector field g such that y( t)y( t) u( t) for all >-_ O.

Let rI. N(X)- X be the bundle projection, that is, H((x, v))= x. The following
lemma is the main technical result necessary to prove Theorem 2.1.

LEMMA 2.3. There exists a smooth F-invariant subbundle K of TN(X) such that

for all y N(X)
(i) gy c TyFy
(ii) Ky O) Nn(y)-- R".
Note that we cannot define Ky as TyFy since the dimension of group orbits may

increase near Xo (the fact that it cannot decrease is a consequence of the inclusion
,,y c rI(y) for y Nny>). In fact, proving Lemma 2.3 is the main technical difficulty of
this section. We defer the proof to the end of the section. The proof of Theorem 2.2
is also deferred, since it relies on the proof of Lemma 2.3. The proof of Theorem 2.1
is a simple consequence of Lemma 2.3. In the proof we assume that f is a vector field
on N(X); that is, f" N(X) TN(X).
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Proofof Theorem 2.1. Suppose y N(X). Let P: TN(X) - TN(X) be defined by
P(y, v)= Pyv, where Py is a projection with ker Py Ky and Im Py Nri(y). The map P
is smooth since the spaces ker Py and Im Py vary smoothly with y. Equivariance of P
follows from invariance of K and equivariance of H. Let fN(Y)= P(Y, f(Y)), fr(Y)=
f(y)-fN(y). As required fu is a normal vector field, fr is a tangent vector field, and
they are both smooth and F-equivariant.

We now discuss some implications of the two main theorems. Recall that orthogon-
ality of the action implies that Nxo is Exo-invariant. Let g be the vector field defined
following the statement of Theorem 2.1; that is, g is the restriction offN to the space
Nxo. Since fu is F-equivariant it follows that g is Exo-equivariant. Let k codim X.
Note that dim Nxo k. It follows that in order to understand the dynamics of f near
X we need to carry out two steps:

(a) Analyze the dynamics of the k-dimensional Exo-equivariant vector field g.
(b) Find the drift along group orbits 3’(t).
Suppose that X is a relative equilibrium; in this case every x in X is an equilibrium

of fN. In particular, the point Xo is an equilibrium of g. Let m be a positive integer.
The equivariant center manifold theorem (cf. Ruelle [1973, Thm. 1.2]) implies that
near Xo the vector field g has a C smooth Exo-invariant center manifold. Let Mxo
denote such a center manifold. Let M FMxo. The smoothness of the action and

:xo-invariance of Mxo together imply that M is C smooth. Theorem 2.2 also implies
that all trajectories off contained in a sufficiently small neighborhood of X approach
M as time goes to infinity. We say that M is the center manifold of the relative
equilibrium X for the vector field f

When X consists of equilibria it is natural to ask whether the global center manifold
M is a local center manifold for every element of X. We answer this question in
the affirmative by verifying that for all x in X the tangent space to M at x equals the
center subspace of (df)x. Let E be the restriction of the tangent bundle of M to the
relative equilibrium X. The bundle E is called the center bundle of X. We have
the following proposition.

PROPOSITION 2.4. Let x be in X. The fiber of the center bundle E at x is the center

subspace of df)x.
Proof We first prove that TxX is contained in ker (df)x. Any vector u TxX can

be written as (d/ds)y(s)x[=o. We use the chain rule and the fact that f(y(s)x)=O
to obtain

(df)xu=(df)x
d

y(s)xls=o =-sf(Y(s)x)[s=o=O.
Hence zero is an eigenvalue of (df)x with multiplicity greater than or equal dim X.
Let v Nx. Theorem 2.1 implies that df)xv dfN )xV + dfr)xV. We show that dfN )xV
Nx and (dfr)xve TxX. This implies that (df)x can be written in the form:

(dfN)x/"

The proposition follows from equation (2.1), since (2.1) implies that all nonzero
eigenvalues of (df)x are also eigenvalues of (dfN)x.

We now prove that (2.1) is valid. The vector field fN is F-equivariant and
fN(X) 0. The argument presented at the beginning of this proof implies that TxX c
ker (dfN)x. Since f--fN +fr it follows that TxX ker (dfr)x. Recall from the proof of
Theorem 2.1 that fN(y) Pyf(y), where Py is a projection with ker (Py)= TyFy and
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Im (Py)= Nn(y). Hence by the chain rule

(2.2) (dfN)x (dyPyf(X))x + Px(df)x.

But f(x) 0, so

(2.3) (dfN)x Px(df).
It follows that (dfr)(Nx)C TX and (dfu)x(N)c Nx. Equation (2.1) now follows.

In many applications a bifurcation of a group orbit of equilibria X occurs when
(df)xo maps a vector v e N to ToX. The vector v then becomes a generalized nullvector
of (df)o. We have the following proposition.

PROPOSITION 2.5. The vector v is a null vector of (dfu)o.

Proof Proposition 2.5 follows from identity (2.3).
In applications we need to explicitly compute the vector field fu. This can be

done by changing variables to coordinates in the normal space Nxo and a complementary
set of coordinates "along group orbits." Such coordinates have been used by Chossat
[1986], Iooss [1986], Danglemayr [1986], and others to study bifurcations of relative
equilibria. In the form presented here they were suggested by Chossat and can be
found in Moutrane [1988]. In our presentation we assume that f is a vector field on
the normal bundle N(X); that is, f: N(X) TN(X). For a Lie group A, let (A)
denote the Lie algebra of A. Let exp:(F)-F be the exponential mapping. Let
V c W(F) be the orthogonal complement of (Exo) in (F) (the space V will be
defined more precisely in the proof of Lemma 2.3). Let O: V x Nxo- N(X) be given
by 0(:, y)= (exp )(y). The linear map (d0)(O,o) is an isomorphism, and hence 0 is a
local diffeomorphism. Let h 0% Note that for every y N(X) the fiber of the tangent
bundle TyN(X) can be written as TyN(X)= V Nn(y). The vector field h is defined
on V x No and has the following property.

PROPOSITION 2.6. If h is written in the form h (hi, h2), with hi V and h2
then h2(O, y)=fu(y) for all y Nxo.

The proof of Proposition 2.6 relies on the proof of Lemma 2.3 and therefore will
be given at the end of the section.

Proof of Lemma 2.3. Let (F) denote the Lie algebra of F and let exp: oY(F)- F
be the exponential mapping. We begin by recalling two concepts related to the Lie
algebra (F). The action of (F) on N(X) is defined by

dy - (exp t)y[,=o for sc (F), y N(X).

The adjoint action of F on (F) is defined by

d
Ad, S r(exp t)r-’l t----0 for ,/e F, e (F).

Note that

(2.4) %Cy=AdrsCyy for ,F, sc(F), yN(X).

Recall that k codim X. We prove that finding the bundle K is equivalent to finding
a bundle E over N(X) whose fibers are k-dimensional subspaces of L(F) having the
following property:

(2.5) E,vy Adv Ey for y F.

Suppose that the bundle E has been found. Then we define the fiber Ky of the bundle
K as the set of all images of y under the action of elements of Ey; that is,

Ky {y e ly}.
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If v Ky then (2.4) implies that yv Kvy. Hence K is F-invariant. We now prove that
K is a smooth bundle. For y N(X) let y :F- N(X) be defined by y(y) yy, 3’ F.
For : (F) we have

y= dy(e).
It follows that Ky- dty(e)Ey. Smoothness of K now follows from smoothness of E
and from smooth dependence of y on y. The definition of the action of (F) implies
that the fibers Ky are tangent to group orbits.

It remains to prove the existence of the bundle E. Suppose ((,)) is an inner product
on (F) invariant with respect to the adjoint action. Such an inner product always
exists for a finite-dimensional action of a compact Lie group (see, for example,
Golubitsky, Stewart, and Schaeffer [1988, Prop. XI, 1.3]). Let V be the orthogonal
complement of ?(Exo) taken with respect to ((, >); that is, V-(Exo)+/-. Let E be the
bundle over N(X) with Ey Adv V, y yNo. To see that E is well defined suppose
that yy-y2Y, Y No. From the properties of the normal bundle it follows that
3"17; Eo. It follows that Adv,v, V V or Adv, V Adv2 V, implying that Ev,y Ev2y.
Also Ey is defined for all y N(X) since N(X)= vr 3’No. Equation (2.4) is auto-
matically satisfied for the fibers of E.

For smoothness of E let U be a neighborhood of eEx in F/E and let or: U- F
be a local cross section of zr. Let b U x Nxo N(X) be given as b(u, y) cr(u)(xo, y).
The map b is a local diffeomorphism near (eEo, 0). It follows that the map :U x

Nxo x V- E given by XF(u, y, :) (tr(u)y, Ad(u) ) is a local bundle diffeomorphism.
This shows smoothness of E near (x0,.0), To show smoothness near (yXo, 0) we use
the map y and the relation (2.4).

Proof of Theorem 2.2. Suppose u(0)--Uo. Let 3’0 be the element of F such that
Uo 3’oNo. Let Yo 3’Uo and let y(t) be the integral curve of fN with y(0)= Yo- Let
denote differentiation with respect to t. To prove the theorem we need to find a curve

y(t) with 3/(0)= 3’0 and such that

(2.6) (3"(t)y(t))" -f(3’(t)y(t)).

The idea of the proof is to reduce (2.6) to an initial value problem on F. We observe
that the left-hand side of (2.6) can be written as

d
d--- 3"( + s)y( t)l :o/ 3’( t)3)(t).

By assumption y(t)=fN(y(t)). It follows that (2.6) can be rewritten as

d
(2.7) ss 3’(t + s)y(t)] s=o 3’(t)fr(y(t)).

Let V be the subspace of (F) defined in the proof of Lemma 2.3. It follows
from the proof of Lemma 2.3 and from the construction of the vector field f- that
there exists a curve (t) of elements of V such that f(y(t))= (t)y(t). Equation (2.7)
can now be rewritten as

d
(2.8) d--- 3"(t + s)y( t)[ s=o 3’( t)( t)y(t).

Consider the initial value problem"

(2.9) 3’(t)(t), 3’(0) 3’0.

By standard theory of ordinary differential equations, (2.9) has a unique solution 3"(t).
It is clear that if 3’(t) is a solution of (2.9) then 3"(t)y(t) satisfies (2.8). The theorem
now follows.
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ProofofProposition 2.6. Let y Nxo. The proof of Lemma 2.3 and the construction

offT imply that there exists a unique :o V such that fT(y) d/dt (exp to)ylt=o. Note
(dO) (o.y)(:o, 0) implyingthat d/dt (exp tsCo)yl,=o

(2.10a)

Also 0[)Q,o= id. Hence

(2.lOb)

(dO)(o.y)(o, 0)=f(y).

(d0)(o.y)(0, fN(Y))=fN(Y).

Combining (2.10a) and (2.10b) we obtain (dO)(o,y)(o, fN(y))=fu(y)+f.(y)=f(y).
Also since y N we have O*f(y)=(d0) -1(O,y)f(Y). Hence h2(0, y)=f(y).

3. Bifurcations of the normal vector field. Let F" R" R - R" be a family of vector
fields and assume that F(Xo) ToX; that is, X is a relative equilibrium. The results
of 2 imply that the dynamics of F can be described as follows: the trajectory of F
with initial condition Yo is contained in the group orbit of the trajectory of Fu with
the same initial condition. We will utilize this property of the dynamics and divide
the bifurcation analysis into two steps. The first step will be to analyze bifurcations
of the normal vector field. Then, given a bifurcating solution of the normal vector
field, say y(t), we will study the dynamics of F on the set Y {3’y(t): 3’ F, R}.
Note that Y is F-invariant and, by Theorem 2.2, it is invariant under the flow of F.
This program will be carried out for two kinds of trajectories of Fu--equilibria and
periodic orbits.

In this section we discuss the first part of the bifurcation analysis, that is, bifurca-
tions of the normal vector field. Suppose that dim No= k. We prove that generic
bifurcations of FN can be described in terms of generic bifurcations of Eo-equivariant
vector fields on Rk. More specifically, we show that a property generic in the class of
smooth, Zxo-equivariant vector fields on Rk is also generic in the class of normal vector
fields on Nxo. Let G(., A) be the restriction of the vector field Fu(., A) to Nxo. Let
g= G(., 0). Suppose that (dg), has an eigenvalue on the imaginary axis and let E
be the center subspace of (dg),o. Suppose that G has a steady-state bifurcation; that
is, (dg), has a zero eigenvalue. Then we have the following proposition.

PROPOSITION 3.1. Generically the space E equals the nullspace of (dg), and the
action of ’,o on E is irreducible.

Proposition 3.1 follows from Proposition 1.1 and standard results in equivariant
bifurcation theory (see, for example, Golubitsky, Stewart, and Schaeffer 1988, Prop.
XII, 3.4]).

Suppose that W is a subspace of R k. We say that the action of ,,o on W is
F-simple if it is irreducible but not absolutely irreducible or if there exists a space V
such that W V V and the action of Exo on V is absolutely irreducible.

Suppose now that G has a Hopf bifurcation; that is, (dg)xo has a purely imaginary
eigenvalue ito. The following proposition gives a characterization of the space E.

PROPOSITION 3.2. Generically the space E is the generalized eigenspace of ito for
(dg),, and the action of ’o on E is F-simple.

Proposition 3.2 follows from Proposition 1.1 and standard results in bifurcation
theory (see, for example, Golubitsky, Stewart, and Schaetter [1988, Prop. XVI, 1.4]).

A center manifold reduction coupled with a change of coordinates allows us to
reduce the original bifurcation problem for G to a bifurcation problem posed on E x R.
We divide the analysis into two cases:

(i) The action of Zxo on E is trivial.
(ii) The action of o on E is nontrivial.
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Case (i) is much simpler and can be analyzed simultaneously for all groups F. In
particular no symmetry breaking takes place. The following proposition summarizes
the bifurcation analysis for this case.

PROPOSITION 3.3. Suppose that the action of 2;,o on E is trivial. If (dg)xo has a
zero eigenvalue, then generically G has a limit point bifurcation. If dg),o has a purely
imaginary eigenvalue ion, then generically iw is a simple eigenvalue of (dg),o and G has
a Hopf bifurcation to a unique periodic solution.

The proof of Proposition 3.3 follows from standard results in bifurcation theory.
In the remainder of this work, unless otherwise stated, we will assume that the action
of 2;o on E is nontrivial.

Let y--y(A) be a branch of equilibria of G and Y Y(A) a branch of periodic
orbits of G. Let 2; be the isotropy subgroup of y and E y the group of symmetries
mapping Y into itself. In 4 and 5 we show that the trajectories of F on Fy are
dense in tori whose dimension is bounded by rank (N(Y)/2;) (the dimension of a
maximal torus in N(2;)/2;) and the trajectories on F Y are dense in tori whose dimension
is bounded by rank (N(2;y)/Ey)+ 1. Generically these tori are of maximal dimension.
In the context of Proposition 3.3, this maximal dimension equals rank (N(Zo)/Exo)
for trajectories on Fy and rank (N(:,o)/:xo)+ 1 for trajectories on F Y.

4. Steady-state bifurcations. Let Xo be in R" and let X Fxo. Suppose that F R
R -> R is a smooth family of equivariant vector fields and X is a relative equilibrium
of F for all values of A. Theorem 2.1 guarantees that F can be decomposed as
F FN + F-, where FN is a family of normal vector fields and FT is a family of tangent
vector fields. Let G(., A) denote the restriction of Fu(., A) to the normal space No.
Note that Xo is an equilibrium of G for all values of A. We call Xo the trivial equilibrium
of G. We say that the family F has a steady-state bifurcation near X, if there exists a
branch of nontrivial equilibria of G emanating from Xo. Note that such a bifurcation
will generically occur if (dG)<o,O has a zero eigenvalue and the action of the isotropy
subgroup 2;o on the center subspace of (dG)<o,O) is nontrivial.

Suppose that F has a steady-state bifurcation. Let y(A), 0 -< A < Ao, be a bifurcating
branch of nontrivial equilibria of G. We assume that all the equilibria y(A) have the
same isotropy subgroup 2;. We also assume that the map A - y(A) is smooth on the
open interval (0, Ao). Let Y(A) denote the group orbits of the equilibria y(A). Theorem
2.2 guarantees that the sets Y(A) are invariant under the flow of F. The goal of this
section is to analyze that flow of F on the sets Y(A).

Let z(e, t) be the trajectory of F with initial condition y(A). Equivariance of F
implies that each trajectory on Y(e) is given as yz(A, t), for some yF. Hence, to
understand the dynamics on Y it suffices to analyze the structure of z(A, t). Let
denote the normalizer of 2;. Our analysis is based on the following observations:

(a) The trajectory z(A, t) is contained in N(2;)y(A).
(b) There exists an integer k => 0 such that z(A, t) can be described as k-frequency

drift along the group orbit Y. More precisely, there exists a k-torus ql-c F such that
z(e, t) is dense in q]-y.

Field [1980, Prop. B1] has proved that the number of independent frequencies of
the drift is bounded by the dimension of a maximal torus in N(2;)/2;. The result of
Field can be easily deduced from properties (a) and (b).

We now state the main result of this section.
THEOREM 4.1. For a genericfamily F the dimension ofthe drift along the orbit Y(A

equals the dimension ofa maximal torus in N(2;)/2; for all except countably many values
of A.
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Theorem 4.1 is an extension of Proposition B1 in Field [1980]. Dancer [1980]
also obtained results relevant to the problem discussed in this section. Suppose that f
is a smooth F-equivariant vector field and y is an equilibrium off Let Z be the isotropy
subgroup of y. In the proposition on p. 88 Dancer proved that if dim N(Z)> dim Z
then generically all equilibria of f which are sufficiently near y lie in the group orbit
of y. Property (b) is a generalization of this result.

In the latter part of this section we state a more precise version of Theorem 4.1.
In order to do this we need to review some concepts and results from Lie group
theory.

Before we can prove Theorem 4.1 we need to analyze the flow on a relative
equilibrium of a single vector field f Let Y be a relative equilibrium off and suppose
that Z is the isotropy subgroup of some y Y. We prove that a trajectory on Y is dense
in a k-dimensional torus and that generically k equals the dimension of a maximal
torus in N(E)/Y.

In Proposition 4.6 we prove an important technical result stating that the set of
all images of a point y in R under a smooth F-equivariant map is Fix (Ey). This result
is stated without proof in Lemma A of Field [1980].

Proposition 4.10, which is stated following the proof of Theorem 4.1’ describes
what happens when the drift fails to be of maximal dimension. The proposition asserts
that for a generic family the dimension of the drift can only decrease by 1. Field
[1988] proves that if the dimension of a maximal torus in N(Z)/Z equals 1, then for
a generic family F the set Y(A) contains no equilibria. This result does not follow
from Theorem 4.1.

In order to state a more precise version of Theorem 4.1 we need to review the
concepts of maximal tori and rank of a Lie group. Let A be a Lie group. We say that
a Lie subgroup ql- of A is a torus if qF is compact, Abelian, and connected. A torus is
called maximal if it is not properly contained in any other torus. The following is the
main result on maximal tori.

THEOREM 4.2. In a Lie group A any two maximal tori are conjugate, and every
element of A is contained in a maximal torus.

The proof of Theorem 4.2 can be found in Br6cker and tom Dieck [1985, Thm.
(1.6), p. 159].

Theorem 4.2 implies that all maximal tori are ofthe same dimension. The dimension
of maximal tori in A is called the rank of A.

Let rank A and let : &g(A). We say that generates a maximal torus in A if
the set {exp tsc: t R} is dense in a torus of dimension I. We have the following
proposition.

PROPOSITION 4.3. The set of (A) which generates a maximal torus is residual
(an intersection of open and dense sets).

Proof Let ql- be a maximal torus in A. We identify ql- with RI/z and (ql-) with
R (see Bracket and tom Dieck [1985, Cot. I, eq. (3.7)]). Let

P"= {: (ql-): : (1, :2,""", SOl) and Y mj 0}

and let

E’ [_J Ad Pm.

Since the group A is compact, it follows that the image of (A) under the exponential
mapping is the connected component of the identity in A (see Br/Scker and tom Dieck
1985, Thm. IV, eq. (2.2)]). Hence, by Theorem 4.2, each sr (A) has the form Ad :,
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: (-). Since exp Ad tr exp o"-1 it follows that " generates a maximal torus if
and only if does. Also : generates a maximal torus if it is in the complement of the
sets E for all m Z1. The sets E" are nowhere dense (see the proof of Theorem 4.1’),
so the complement of their union is a residual set.

Throughout we assume the following conditions on the family of vector fields F:

(S 1) The orbit X is a trivial relative equilibrium of F. In other words, Fc(A, Xo) 0
for all values of h.

($2) There exists ho> 0 and a branch of relative equilibria of F, parametrized as
y(h), 0<h <ho. The mapping h y(h) is smooth on (0, ho). The points y(h)
have isotropy E.

Let C(R"x R, R") denote the space of smooth families of equivariant tangent
vector fields on R". For a family F satisfying ($1) and ($2) let Y(A)= Fy(h). We now
state Theorem 4.1 more precisely.

THEOREM 4.1’. Suppose that afamily ofvectorfields Fsatisfies (S1) and ($2). Then
(i) Trajectories on the manifolds Y(A) are dense in tori of dimension bounded by

rank (N(E)/Z).
(ii) There exists a residual set c C(R x R, R) such thatfor every H there

exists a countable set Io C (0, ho) such that for every h (0, ho)\Io trajectories of F+ H
on the manifolds Y(A) are dense in tori of dimension equal to rank (N(,)/E).

Note that Theorem 4.1’ is more general than Theorem 4.1" we assume that y(h)
is a branch of relative equilibria of F rather than a branch of equilibria of F. This
assumption does not increase the complexity of the proof.

Before proving Theorem 4.1’ we analyze the following simpler situation. Suppose
that g" R" - R" is a F-equivariant vector field with the following properties"

(VS1) The orbit X is a relative equilibrium of g.
(VS2) There exists Yo R", Yo X such that Y Fyo is a relative equilibrium of g.

The problem of finding the dynamics on Y has been solved by Field [1980]. Here
we briefly present his results. We start with the following proposition.

PROPOSITION 4.4. Suppose that g(Yo)= v. Let (F) be such that Yo Y. Then
y(t) exp (t)yo is the integral curve of g with y(O)= Yo.

Proof.
d

y(’) - exp t:)yol

d
exp (r:) exp ((t-

d
exp rsc) ss exp (s:)Yol =o.

By definition (d/ds) exp (s:)yol=o :yo. Hence

y(r) exp (rsc):yo exp (r)g(yo)

g(exp (r:)yo)= g(y(z)).

For h" R" - R" let Ilhl[--supxO [h(x)l. The following theorem gives a complete
description of dynamics on relative equilibria of a vector field g.

THEOREM 4.5 (Field [1980, Prop. B1]). Suppose that g" R" -. R" is an equivariant
vector field satisfying (VS1) and (VS2) and let , be the isotropy subgroup of Yo. Then
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(i) Every flow trajectory contained in Y has the form z(t)=exp (t)y, for some

: ?(N(Z)).
(ii) The dimension of the toms --cl (exp (t:)yo: R) is less than or equal to

rank (N(Z)/Z).
(iii) For every e 0 there exists a vector field h, such that h e, Y is a relative

equilibrium of h, and the dimension of the closure of trajectories of g + h on Y equals
rank (N(Z)/Z).

To prove Theorem 4.5 we need to answer the following question. What are the
possible images of the vector Yo under F-equivariant vector fields? Suppose that V is
the space of all possible images of y under F-equivariant vector fields; that is,

V- {h(y), h:R - R is a F-equivariant vector field).

If h is a F-equivariant vector field, then it follows that h(yo) is fixed by all elements
in Eyo. Hence Vc Fix (Eyo). The following proposition shows that the other containment
also occurs.

PROPOSITION 4.6..’.The space V is equal to the fixed-point space of Zyo; that is,

V Fix (Zyo).

Proof Let Y Fyo and let Zyo- Suppose that v Fix (E). We first show that
there exists a smooth and F-equivariant vector field g:R"-R" such that g(Yo)= v.
Let N(Y) be the normal bundle of Y. Recall that N(Y) can be identified with an
invariant neighborhood U of Y in R". It follows that TN(Y) can be identified with
R". We define a vector field h:Nyo-TN(Y) by h(z)= v. Clearly, h is smooth and
E-equivariant. By Proposition 1.1 we can extend h to a smooth, F-equivariant vector
field gl on N(Y). The properties of the normal bundle N(Y) imply that the vector
field gl can be identified with a vector field g2 defined on U. Let c" R"- R be a
smooth, invariant function such that a(yo)= 1 and a(x)=0 for all x U. Let g be
defined as follows:

g(x)= {(x)g2(x)
if xC_U.

if xU,

Clearly, g is smooth, F-equivariant, and g(Yo)= v.
Remark 4.7. The vector field h described in Theorem 4.5(iii) can be chosen so

that g + h is a polynomial vector field. The existence of such h can be shown using
the equivariant version of the Stone-Weierstrass approximation theorem (see Poenaru
[1976, proof of Prop. 1, p. 20]).

The final ingredient necessary to prove Theorem 4.5 is given by the following
elementary lemma.

LEMMA 4.8. The following equality holds for any y R":

TyYf) Fix (Ey) {:y: (N(,y))).

Proof Let : (F), y R. Then y Fix (Zy) if and only if exp :y Fix (Zy).
This implies that r exp :y-exp :y for all trZy. It follows that there exists
(N(Z)) such that /y- :y. The lemma now follows.

Proof of Theorem 4.5. The theorem is an easy consequence of Proposition 4.4,
Proposition 4.6, and Lemma 4.8.

In the remainder of this section we prove Theorem 4.1’. Let F be a family of
vector fields satisfying ($1) and ($2). We begin by defining a map which assigns to
each HC(R"xR, R") a curve : in (N(E)/E) such that (F+ H)(y(A),A)=
:(A)y(A) for each A in some interval I. Recall that TyYTIFixE={y: : (N(E))}.
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Let V. be the set ofy R with isotropy group E. For y V the space {:y: (N(E))}
is isomorphic to (N(E)/E). Let .." TyY fq Fix E -* (N(E)/E) denote this isomorph-
ism. It is clear that E changes smoothly as y is being varied in Vs. Let I be a subinterval
of (0, ho). The map (R)" C(R R, R") Coo(I, (N(E)/E)) is defined as

O(H)(A) E((F + H)(y(A), )).

We prove Theorem 4.1’ by showing that for a residual set of H C(R x R, R) the
curve O(H) is transverse to all the sets E (see Proposition 4.3). Before presenting
the proof we review some concepts related to the Whitney Coo topology. For a more
complete treatment of this topic see Golubitsky and Guillemin [1974]. Let Z, W be
smooth manifolds. For a positive integer q let Jq(Z, W) denote the space of q-jets of
smooth maps from Z to W. We describe a neighborhood basis of a map f in the
Whitney C topology on Coo(Z, W). Let q be a positive integer and let dq be a metric
on Jq(z, W) compatible with its topology (such a metric exists by (I, 5.9) in Golubitsky
and Guillemin [1974]). Let 6" Z--> R/ be a continuous function. Let

Uq,6 {g Coo(Z, W)" dq(jqf(x), jqg(x)) < 6(x) for all x Z}.

The collection of the sets Uq, for all choices of q and 6 forms a neighborhood basis
of f in the Whitney Coo topology.

Suppose that Z is an open subset of Rp for some p, and W is a vector space.
Then the above-mentioned metrics dq can be chosen as follows. Suppose s dim W.
We identify W with R. For a positive integer q and g Jq(z, W) let

Ottg(x)
Ilgllq(x)+lxl/lg(x)l/ E

l___lol=<q OX

Here a denotes a p-vector of nonnegative integers. We define dq on Jq(Z, W) as

dq(Crl, or2) Ilgl-

where (rl, cr_ Jq(z, W) and gl, g2 are such that (r =jqgl(x) and cr2=jqg2(x). It is
easy to see that dq agrees with the topology on Jq(Z, W).

Let I be the interval used in the definition of the map O. Then we have Lemma 4.9.
LEMMA 4.9. If I c (0, A0) then 0 is continuous in the Whitney Coo topology.
Proof. Let C(I) {(y(A), A)" A I}. In this proof we use the metrics dq described

prior to the statement of Lemma 4.9. The map O can be written as

O(H)=oHIC(I).

Hence O is a composition of two maps: a map O1 given as

O(H)=HIC(I)

and a map O2 defined as

The map O does not, in general, have to be continuous, but it is continuous if
I c (0, Ao). This follows, since I (0, Ao) implies that for any given q all the partial
derivatives of the function A - y(A) are bounded on I. Hence continuity of O1 can
be established through repeated application of the chain rule. The map O2 is continuous
by (II, 3.5) in Golubitsky and Guillemin [1974].

Proof of Theorem 4.1’. Part (i) of the theorem follows from Theorem 4.5.
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We now prove part (ii). Suppose that is the rank of N(E)/E. Let - be a maximal
torus in N(E)/E. As in the proof of Proposition 4.3 we identify ql- with RI/z and
(ql-) with R I. Recall the definitions of the sets E" and P" (see the proof of Proposition
4.3). In the proof of Proposition 4.3 we show that the sets E" have the following
property: a vector c (N(E)/E) generates a maximal torus if and only if : is in the
complement of E" for all m in ZI.

The sets E may not be manifolds, but we show that each E" is a finite union
of manifolds. Let : P" and let A be the isotropy subgroup of sc with respect to the
adjoint action of N(E)/E on (N(E)/E). Let [.,. denote the bracket in (N(E)/E).
It is known (see Br6cker and tom Dieck [1985, I, eq. (2.12)]) that

d
(4.1) r/, ’] - Adexpn 1 =o for all r/, sr (N(E)/Z).

The containment P’=(7) implies that [, r/]=0 for all r/P". Let O()=
nx)/ Ad: be the orbit of . Let U be a small neighborhood of eA in (N(E)/E)/A

and let or" U N(E)/E be a local cross section. Equation (4.1) implies that TO()
P"={0}. It follows that the map " U P"-(N(E)/E), given by q(u,
Ad,) r/, is a local diffeomorphism near (e, ).

Let Em(A) be the set of all elements of E" whose isotropy subgroup (with respect
to the adjoint action) is conjugate to A, and let P"(A) P" f3 E(A). Note that P"(A)
is an open subset of P’fq Fix (A). For every : P" the corresponding map is a
local diffeomorphism near (e, so). It follows that E"(A) is a smooth manifold.

Note that the number of the sets E m(A) is finite. This follows from the fact that
N(E)/E, being a compact group, has a finite number of conjugacy classes of isotropy
subgroups. Clearly, Em= Em(A).

The theorem follows from the following assertion:

(.) For every m Z,/x (0, Ao), there exists an interval I containing/x and a set
’(I) c C(R X R, R") with the following properties:
(1) g "(I) is residual in the C Whitney topology.
(2) O(H) is transverse to all the sets E’(A) at each h I.

We first show that the theorem follows from (,). To see this let I7’, I’, be a
sequence of intervals such that i1 I7’ (0, ho) and g’(IT’) satisfies the properties
(1) and (2). Let f3 i=l,j=l J(I{). It follows that for every H g the curve (R)(H)
is transverse to all the sets E at every h (0, ho). It is clear that satisfies the property
required in the statement of Theorem 4.1’.

We now prove (,). Fix rnZ1, a subgroup A c N(E)/E and /x(0, ho). Let
IcIoc(0, ho) be intervals with /xI and Ioc(0, ho). Let ‘fo be the set of
C(Io, (N(E)/E)) such that sc is transverse to E"(A) at each h 6 I. By standard
transversality arguments (see Golubitsky and Guillemin [1974, (II, 4.5)]) the set -fro
is open and dense in the Whitney C topology. We assume that Io is the interval used
in the definition of the map O. Let ‘f O-l‘fo It follows from Lemma 4.9 that ‘f is
an intersection of open sets. We now show that ‘f is dense. Fix H C(R x R, Rn).
We construct a sequence of families {Hi} converging to H and such that each Hi
Let {sci } be a sequence of elements of C(Io, (N(E)/E)) such that each curve 19(H) +
is in ‘fo and the curves :i converge to the zero curve as i- c. Such a sequence exists,
since ‘fo is dense in C(Io, (N(E)/E)). To show the existence of the sequence {Hi}
it suffices to prove that for every 1 C(Io, (N(E)/E)) there exists a family H, such
that 19(Hn)(A)= rt(A) for all A I and such that for every positive integer q the size
of partial derivatives of Hn of order less than or equal to q can be estimated by the
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size of partial derivatives of r/ of order less than or equal to q. We now give a more
precise description of this estimate. Let be a smooth curve of elements of 3f(N(E))
which projects to 7 in (N(,)/E). Suppose that a is an n-vector of positive integers
and/3 a positive integer. Then there exists a constant C, depending only on m, and
such that

(4.2)
Ot"l+H,(z, A)

< C
O(X

Oz Oh t Oh t

for all (z, A) VxIo. Moreover, Hn(z, A)-0 for (z, A) VXIo.
We now construct Hn. Let Yo y(/x) and Y Fyo. Recall that N(Y) is equivariantly

diffeomorphic to an invariant neighborhood of Y in R". Let V be such a neighborhood.
In the sequel we identify V with N(Y). By shrinking the interval I we can assume
that y(h) V for all h I. We can assume that y(h)e Ny for all )t I. Otherwise, we
could replace the curve y(h) by a curve )(h)= y(h)y(h) with y(h)e N(E)/E. We can
now define H(z, A) as (h)z is z Ny and extend this definition by equivariance (see
the proof of Proposition 4.6). Let Uo be a small neighborhood of e; in F/E and let
r be a local cross section of r (see 1). Let 4" UoX No be defined as &(u, y) r(u)y
(here No denotes a disc of radius e around Yo in Nyo). Recall that for e small enough
& is a ditteomorphism. Let U 4( Uox No). We can express every point z e Uo in
local coordinates as o’(u)y, y Nyo, u U. Then, for every z U, H(z, h) r(u)(h)z.
It is clear from this expression and from the smoothness of the action of F that (4.2)
holds for all z U. From compactness of Y it follows that the bound (4.2) holds on
a neighborhood V1 of Y in R" with possibly a different constant C. With no loss of
generality we can assume that V V1. Let W be an invariant neighborhood of Yo such
that Wc V and suppose that I is chosen so that y(h) W for all h I. Let h" R" x R - Rbe a smooth F-invariant cutoff function vanishing on the complement of V x Io and
equal to 1 on U x I. Let Hn (z, h h (z, h H(z, h ). It is clear that Hn is globally defined
and satisfies (4.2).

We complete the proof of (*) by defining Y3"(I) as the intersection of the sets s4
for all choices of A.

For ml, m2 Z let E ml’m2 E", E’% Note that if m and m2 are not collinear
then the sets E m’m2 have codimension 2 in (N(,)/E). The union ofthese sets consists
of the elements t’ (N(E)/,) which generate a torus of dimension no less than
rank (N(E)/E) 1. In the proof of Theorem 4.1’ we could, instead of the sets E m, use
the sets E m,’". Then, for every H , the curve O(H) would be transverse to all
E m’m2 at each X (0, Xo). This would imply that if ml and m2 were not collinear then
E rn’m2 and O(H) would not intersect. This property implies the following proposition.

PROPOSITION 4.10. Suppose that F satisfies (S1) and ($2). Then there exists a
residual set B C(R" x R, R) such that ifH B then the dimension of the trajectories
of F+ H on the sets Y is greater than or equal to rank (N(E)/E)- 1.

5. Hopf bifurcations. Let Xo be in R" and let X FXo. Suppose that F" R" x R -> R"
is a smooth family of equivariant vector fields and X is a relative equilibrium of F
for all values of X. By Theorem 2.1 F Fu + FT, where F is a family of normal vector
fields and FT is a family of tangent vector fields. Let G be the family defined at the
beginning of 4; that is, G(., A) is the restriction of Fu(., A) to the normal space
No. Recall that x0 is the trivial equilibrium of G. We say that the family F has a Hopf
bifurcation near X, if there exists a branch of nontrivial periodic orbits of G emanating
from Xo. Note that such a bifurcation will generically occur if (dG)txo,O) has a purely
imaginary eigenvalue.
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Suppose that F has a Hopf bifurcation. Let Y(A), ho> h > 0, be a branch of
periodic orbits of G and let y(h) denote the initial conditions for the trajectories Y(A).
We assume that all the points y(h) have the same isotropy subgroup E. Let E y() be
the group of symmetries of the set Y(A); that is,

Zg(x)-{creZxo: rY(A)- Y(A)}.

We assume that all the sets Y(A) have the same group of.symmetries y.
Let Z(A) denote the group orbits of the sets Y(A). Theorem 2.2 guarantees that

the sets Z(A) are invariant under the flow of F. The goal of this section is to analyze
that flow of F on the sets Z(A). Our analysis is based on the following result: every
trajectory of F on Z is dense in a (k + 1)-dimensional torus, with k frequencies given
by the drift along group orbits and the additional frequency corresponding to the
motion along the periodic orbit Y. This result was obtained by Field [1980, Prop. B2].
Field also showed that the number of the drift frequencies is bounded by
rank (N(E)/E).

This section contains two main results. The first of these results is a modification
of the theorem of Field. We assume that f is a smooth F-equivariant vector field, X
is a relative equilibrium off, and Y is a periodic orbit offIv. Let Z F Y. The theorem
states that the trajectories on Z are dense in tori of dimension k+ 1, with k_<

rank N(Ey)/Ey. For some choices of f rank (N(Ey)/E,r)<rank (N(E)/E). This is
illustrated in Example 5.3.

Our second main result (Theorem 5.2) deals with the dynamics of the family of
vector fields F on the sets Z(A). The theorem states that, given a generic family of
vector fields F, there exists a countable set Lo C (0, Ao) such that if A Lo then the
trajectories on Z(A) are dense in tori of maximal dimension. In Proposition 5.7 we
strengthen this result by showing that generically the dimension of trajectories on Z(A
drops only by 1.

We now state the first of the two main theorems. Let f: R"- R be a smooth,
F-equivariant vector field with the following properties"

(VH1)
(VH2)

The orbit X is a relative equilibrium offi
The vector field fry has a periodic orbit Y {y(t): [0, T]}, where T is
the period of Y.

Let E y denote the group of symmetries of Y and let Z F Y. We have Theorem 5.1.
THEOREM 5.1. All trajectories on the set Z are dense in (k + 1)-dimensional tori,

where k-<_rank N(,y)/Y-,y. For every e >0 there exists a smooth and F-equivariant
vectorfield h such that Ilhll <= , h satisfies (VH1) and (VH2), and such that the trajectories

off+ h on the set Z are dense in tori of dimension equal to rank N(,y)/y q- 1.
We now state the second main theorem. Let F:Rn--> R be a smooth family of

F-equivariant vector fields with the following properties:

(H1)
(H2)

The orbit X is a relative equilibrium of F for all values of A e R.
There exists ao> 0 and a branch of periodic orbits of FN, parametrized as
(A, Y(A)), 0 < A < Ao, with initial conditions ya. All the elements ya have the
same isotropy subgroups and all the sets Y(A) have the same group of
symmetries E y. The map a - y is smooth on the interval (0, Ao).

For a family of vector fields satisfying (H1) and (H2), let Z(A)- FY(A). We have the
following theorem.
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THEOREM 5.2. IfF is a family of vector fields satisfying (H1) and (H2) then there
exists a set c C(R x R, R) with the following properties"

(i) For every H there exists a countable set Io C (0, Ao) such that for every
A 6 (0, ,ko)\Io trajectories of F+ H on the manifolds Z(A) are dense in tori of maximal
dimension.

(ii) The set is residual in the Whitney C topology.
We now present an example of a vector field f for which rank (N(,)/,)>

rank N(Ey)/Ev.
Example 5.3. Let F" R" x R R" be a smooth family of vector fields equivariant

under the action of 0(2). Let K 0(2)\S0(2). Suppose that the invariant equilibrium
x =0 bifurcates to a branch of equilibria x(A) with Ex( {e, K}. Consider a secondary
Hopf bifurcation occurring along the branch x(A). In other words, suppose that
(dFs)(xo,ao) has, for some Ao, a pair of purely imaginary eigenvalues iw. Let V be
the real eigenspace of ito. We assume that V is two-dimensional and that the action
of on V is nontrivial. Then, by the standard Hopf bifurcation theorem, FN has a
branch of periodic solutions with period T and such that y (t + (T/2)) y (t). By
Theorem 2.2 the trajectory of F corresponding to y (t) is z (t) 7(t)Y (t), where
y(t) SO(2) and y(0)= e. Let t denote the flow of F. Then

x t) TY(0) T/2(T/2Y (0)) T/2( y( T/2)Y (0)).

Equivariance of T/2 implies that

T/2(Y( T/2)y (0)) (y( T/2)K)2y (0) y (0) x (0).

It follows that x (t) must be a periodic solution. Note that E {e}, so N(Z)/E 0(2),
but Zr {e, }, so N(Ey)/Ey is discrete. Hence rank (N(E)/E) > rank (N(Zy)/Zy).

In the remainder of the section we prove Theorems 5.1 and 5.2. In the proof of
Theorem 5.1 we will use two lemmas and some background information from Lie
group theory. We begin by stating and proving the first of the lemmas. Note that
E c E y c N(E). Let A ,y/,. We have the following lemma.

LEMMA 5.3. The group A is finite and cyclic or A is isomorphic to S.
Proof Let Yo be the initial condition of the periodic orbit Y. We assume, with no

loss of generality, that the period of the solution y(t) is 1. We identify S with R/Z.
Note that Y is diffeomorphic to S via the map t- y(t). Let p:A- S be defined by
the identity

y(p(t)) 6yo, 6cA.

Clearly, # is smooth and well defined. Note that the action of A on Y is free, so p
must be injective. Equivariance off implies that p is a Lie group homomorphism. It
follows that #(A) (which is isomorphic to A) is a Lie subgroup of S and therefore
must be isomorphic to either S or Zl for some I.

We now review some of the concepts from Lie group theory, which will be used
in the proof of Theorem 5.1. For a Lie group H let Ho denote the connected component
of the identity in H. We say that a subgroup K of a compact Lie group H is topologically
cyclic if there exists t$ e K such that K cl { t" n is an integer}. The element 6 is called
the generator of K. We say that K is a Caftan subgroup of H if K is topologically
cyclic and N(K)/K is discrete. In the proof of Theorem 5.1 we will use the following
two propositions.

PROPOSITION 5.4. Each element h H is contained in a Cartan subgroup K of H
such that K/Ko is generated by hKo.
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PROPOSITION 5.5. IfK is a Cartan subgroup ofH generated by z, then any h Hoz
is conjugate to an element of Koz via conjugation by an element of Ho.

The statements and the proofs of Propositions 5.4 and 5.5 can be found in Br6cker
and tom Dieck [1985, IV, eqs. (4.2) and (4.3)].

If K is a Cartan subgroup and K a topologically cyclic group, then K/K1 must
be discrete. Proposition 5.4 implies that each topologically cyclic group is contained
in a Cartan subgroup. It follows that a Cartan subgroup can be defined as a topologically
cyclic group of maximal dimension.

Let K be a topologically cyclic subgroup of H. Then Ko must be a torus in Ho
and K/Ko must be finite and cyclic. It follows that K is isomorphic to KoX ZI, for
some (see Br/Scker and tom Dieck [1985, I, eq. (4.14)]).

Letf be a smooth F-equivariant vector field satisfying (VH1) and (VH2). Theorem
2.2 guarantees that the trajectory off with initial condition y(0) has the form y(t)y(t),
where y(t) (N(,)/,)o. We assume that A is finite and cyclic with generator 6o (see
Lemma 5.3) and let To be defined by the identity y(To)= 6oYo. To prove Theorem 5.1
we need to prove the following lemma.

LEMMA 5.6. Suppose that y( To)= Yo and that ")11 (N(,)/,)o. Then there exist a
smooth, F-equivariant tangent vector field h and a curve yl( t) such that"

(i) 1(0)-- e.
(ii) ,’(To) Yl.
(iii) yl(t)y(t) is the trajectory off+ h.
Proofi Let s(t) y(t)-1 (t). Note that fT(y(t)) (t)y(t). Let r 3’, yl and let

sr exp-1 r. Let r/(t) be a smooth function such that /(0) 0, r/(To) 1, and

d d- r/(0) - r/(To) O, j 1, 2, .
Let Yl(t) exp r/(t)sr) T(t). We define a curve (t) s(t) + r)( t)y(t) -1 sty(t). Let 1(t)
(t) s(t). Note that

dJ dJ
(5.1) (0)=-;7 (To)=0, j=l,2,....

We extend the definition of s1 to all of R by requiring that s(t + To) Ada s(t), where
6 is as defined in Lemma 5.3. Equation (5.1) implies that this extension is smooth. Let
h(y(t)) l(t)y(t). Let Z F Y. We extend h to Z by equivariance. Let N(Z) be the
normal bundle of Z. Recall that N(Z) can be identified with a F-invariant neighborhood
of Z. We extend h to N(Z) by letting h(w)= h(z) for we Nz. We use an invariant
cutoff function to extend the definition of h to all of R n. A simple computation shows
that yl(t)y(t) is a trajectory off+h. It is also clear that ]]hl]0 as tr approaches e.

Proof of Theorem 5.1. Let A be as defined prior to the statement of Lemma 5.3;
that is, A E y/E. Lemma 5.3 implies that A is either finite and cyclic or isomorphic
to S. We divide the analysis in two cases:

(1) A is isomorphic to S1.
(2) A is finite and cyclic.
Case (1). It follows from the proof of Lemma 5.3 that Z is a relative equilibrium

off Therefore the dynamics on Z is described by Theorem 4.5. Hence the trajectories
on Z are dense in tori of maximal dimension equal to rank N(Z)/E. We now show
that rank N(Z)/E=rank N(Ey)/Ey+ 1. Note that A is a torus of dimension 1 con-
tained in N(E)/Z. Hence there is a maximal torus 31- in N(E)/Y, such that
Clearly, c N(Ey)/E. It follows that /A is a maximal torus in N(Zy)/Ey, which
proves the required equality.
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Case (2). Let z(t) be a trajectory on Z. By Theorem 2.2 z(t)= 7(t)y(t), y(t)e F.
Since Ey(,)= we can assume that y(t)e N(E)/,. Let To be the number defined prior
to the statement of Lemma 5.6 and let yo 3’(To)6o. Clearly, z(To)= YoYo. Let q]-=

cl {z(t):te R} and let

S cl {yok" k is an integer}.

Observe that Syo c . Let t be the flow of f. We have

,yoYo ,roYo dP,+roYo z( + To).

It follows that ,Syo Z for all e R. Let us define the action of F x R on R" as

(5.2) (t, y)w=,yw where (t,y)eFxR, we

It follows that (S x R)yo. Let Ao be the isotropy subgroup of Yo with respect to
the action defined by (5.2). It is clear that (Sx R)/Ao is compact, connected, and
Abelian. Hence (S x R)/Ao is isomorphic to a torus. This implies that ql- is diffeomorphic
to a torus. Note that S is topologically cyclic and 3’o is its generator. Hence the
dimension of S is less than or equal to the dimension of a Cartan subgroup containing
3’o. Note that 3’o and 6o lie in the same component of the identity in N(E)/Z, which
we denote by S(6o). Let K be a Cartan subgroup generated by an element yl e S(o).
Proposition 5.5 implies that dim S -<_ dim K and dim ql- -< dim K + 1.

We now prove that for a small perturbation off the dimension of the closure of
a trajectory on Z equals dim K + 1. Suppose that yl e S(6o) generates a Cartan sub-
group. By Lemma 5.6 there exists a vector field h satisfying (VH1) and (VH2) and
such that if if(t)--(t)y(t) is the trajectory of f+ h with initial condition Yo then
(To)go y. Clearly, the dimension of the closure of if(t) equals dim K + 1.

To conclude the proofwe need to show that dim K rank N(Ey)/Zy. By Proposi-
tion 5.4 we can choose K so that A c K. The definition of A and the fact that A is
discrete imply that rank (N(Zy)/Z)=rank (N(,y)/,y). Let N(A) denote the nor-
malizer of A in N(,)/,. Note that N(A)= N(Zy)/Z. Clearly, K c N(A). We show
that rank N(A)=dim K. Suppose that b e N(A)o and let To be the torus generated
by b. Let bo b6o and let K be the topologically cyclic subgroup generated by bo.
Since 4 e N(A) we have 4A4-= A, which implies that

(5.3) b6o 6’b for some m.

Note that continuity implies that rn is independent of b. It follows that for any positive
integer j we must have bo 6b for some s (depending on j but independent of b).
Since bo is the generator of/ it follows that for some we must have b/o e/o C N(A)o.
By continuity we must have 4oe N(A)o for all be N(A)o. Now (5.3) implies that
3b e N(A)o for some s (independent of 4 e N(A)o). It follows that for some b the
torus generated by 6ch is a maximal torus in N(A). It follows that dim To-<dim
dim K. The inequality dim K >_-rank N(A) follows from the fact that Ko is a connected
Abelian subgroup of a compact Lie group; hence it is contained in a maximal torus.
It follows that rank N(A)=> dim K.

Let F be a family of vector fields satisfying (H1) and (H2). Suppose that /X is
finite and cyclic and let To be as defined prior to the statement of Lemma 5.6. Let
xx(t) be the trajectory of F(., h) with initial condition y. By Theorem 2.2 x(t)=
y(t)y(t) (y(t) is the periodic orbit of F(., h)). Let y(h)= y(To). The proof of
Theorem 5.2 is based on the following assertion: a generic F- gives rise to a generic
curve y. Given H satisfying (H1) and (H2) let y(t)y(t) be the trajectory of H(., A).
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We now define a map tO which assigns to every family of vector fields satisfying (H1)
and (H2) the corresponding curve ),(h). Let I c (0, ho) be an open interval and let

O(H)(A ,u(To), X e I.

Let S(6o) be the connected component of N(E)/E containing 60. Note that tO(H) is
an element of C(I, S(6o)).

Proof of Theorem 5.2. The proof is analogous to the proof of Theorem 4.1’(ii).
We will therefore only outline the proofand omit the technical details. IfA is isomorphic
to S then F satisfies the assumptions of Theorem 4.1’ with y(A)= y being the curve
of relative equilibria. Hence the theorem follows from Theorem 4.1’ and part (2) of
the proof of Theorem 5.1.

Suppose that A is finite and cyclic. Let Q c S(6o) be the set of elements which
does not generate a Cartan subgroup. We show that Q is a countable union of
submanifolds of S(6o), each of codimension greater than or equal to 1. Let K be a
Cartan subgroup containing 6o and generated by an element of S(6o). The existence
of K follows from Proposition 5.4. Recall that K is isomorphic to Ko Zt with Ko x { 1 }
corresponding to oKo (we identify ZI with {0, 1, 2,..., l-1}). In Ko we define the
sets pm (see the proof of Proposition 4.3). It follows that oKo CI Q is the union of the
sets Pm x {1}. Let E be the union of all conjugacy classes of P x { 1} by the elements
of (N(E)/E)o. Proposition 5.5 implies that Q is the union of the sets E. Consider
the action of (N(E)/E)o on N(E)/E defined as conjugation by a group element. As
in the proof of Theorem 4.1’ we can partition E into manifolds Era(A), consisting
of all elements of E whose isotropy with respect to this action is conjugate to A.

The remaining part of the proof is analogous to the proof of Theorem 4.1’. The
main objective is to show that there exists a residual subset C(R x R, R) such
that if H then for all choices of m and A the curve tO(H) is transverse to E(A)
at every A (0, Ao). This is done by showing that for some fixed m and A there exists
a residual set (A), whose elements are transverse to E(A), and then taking the
intersection of the sets (A).

We now fix m and A and regard tO as a mapping from C(R"R,R) to
C(I, S(o)). To show existence of (A) we need to prove the following properties
of O"

(1) If the interval I is such that ! (0, Ao), then tO is continuous in the Whitney
C topology.

(2) For each/ (0, Ao) there exists an interval I such that/ I and I c (0, Ao)
and a residual set c C(Rx R, Rn) such that if H then tO(H) is transverse to
E (A) at all A I.

Property (1) follows from standard theorems on smooth dependence of solutions
of ordinary differential equations on parameters (also see the proof of Theorem 2.2).

We now indicate how to prove property (2). We choose an interval Io such that
Io and Io c (0, ho). Given some interval I Io we define o as the set of elements

of C(Io, S(6o)) which are transverse to Era(A) at all A I. Standard transversality
theory implies that o is residual in the Whitney C topology on C(Io, S(6o)). Let

to-l(o). The property (1) implies that is an intersection of open sets. If I is
small enough then 5g is dense in the Whitney C topology on C(R"x R, R n). To
see this, suppose that y C(Io, S(6o)) is a small perturbation of the curve tO(F).
Then there exists a small perturbation H of the family F such that tO(F + H) y. The
proof of the existence of H is a straightforward generalization of Lemma 5.6.

The methods used in the proof of Theorem 5.2 can be easily generalized to prove
the following proposition.
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PROPOSITION 5.7. Suppose that F satisfies (H1) and (H2). Then there exists a
residual set N c C(R" x R, R") such that if H e N then the dimension of the trajec-
tories of F+ H on the sets Y is greater than or equal to rank (N(Ey)/Ey).

6. Bifurcations of relative equilibria with 0(2) symmetry. In this section we discuss
bifurcation problems with symmetry group 0(2). Let 4- denote semidirect product.
Recall that 0(2)= SO(2)q-Z:(), where Z2(K)= {1, K}, K is an orientation reversing
element of O(2), and SO(2) is the subgroup of 0(2) consisting of orientation preserving
rotations. We assume that 0(2) acts on R" and that F" R" x R --> R" is a smooth and
equivariant family of vector fields. We restrict our attention to bifurcations of group
orbits of equilibria whose isotropy subgroups are either Z2(K) or Dk, k >_-2. Here Dk
denotes the group of symmetries of a regular k-gon. The groups Z2() or Dk occur
as maximal isotropy subgroups for the various irreducible representations of 0(2);
hence the bifurcations we study can occur as secondary bifurcations from an invariant
equilibrium.

Let Ro denote the rotation of the plane by the angle 0. The groups Dk are generated
by the reflection and the rotation R2=/k. Let Zk denote the cyclic group generated
by R2/k. We have Dk "-Zk -Jr-Z2(K ). In the sequel we use D1 to denote Z2(I) and Z1
to denote the trivial subgroup 1.

Fix Xo R n, let X O(2)Xo, and let Exo be the isotropy subgroup of Xo. We assume
that ,o Dk, k => 1, and that X is a relative equilibrium of F. Let G be as defined in

3; that is, G is the restriction of FN to the normal space Nxo. Let g G(., 0); and
let E be the center subspace of (dg),o. In this section we analyze steady-state and
Hopf bifurcations of F near X. More precisely, we consider the following situations:

(a) (dg), has a zero eigenvalue.
(b) (dg)xo has a purely imaginary eigenvalue iw.
Let Y{(,xo)= {tr Z,o: try v for all v E} be the kernel of the action of xo on

E. We assume that the action of Exo on E is nontrivial; that is, Y{’(Yxo) is properly
contained in Exo. We now state the two main results of this section: a steady-state
bifurcation theorem and a Hopf bifurcation theorem. We begin with the steady-state
bifurcation theorem. Suppose that (dg)xo has a zero eigenvalue. We make a generic
assumption that E is the nullspace of (dg)xo and that the action Of Yxo on E is absolutely
irreducible. The following theorem describes all the generic types of bifurcating
solutions and gives the number of distinct nonconjugate branches.

THEOREM 6.1. All the generic types of bifurcating solutions of F are listed in
Table 6.1.

We now state the Hopf bifurcation theorem. Suppose that (dg)xo has a purely
imaginary eigenvalue ito. We make a generic assumption that E is the eigenspace of
ito and that the action of Exo on E is F-simple. The following theorem describes all
the generic types of bifurcating solutions and gives the number of distinct nonconjugate
branches.

TIqEOREM 6.2. All the generic types of bifurcating solutions of F are listed in
Table 6.2.

TABLE 6.1

Kernel of isotropy Type of solution Number of branches

Zk rotating wave
D,., k 2m steady state

Zl. I k, < k steady state 2
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TABLE 6.2

Kernel of isotropy Type of solution Number of branches

Z periodic orbit
Din, k 2m periodic orbit
Zl, 1/k, < k periodic orbit 2

two-torus

In the remainder of this section we prove Theorems 6.1 and 6.2. We begin by
classifying all the possible kernels of the action of Exo on E. We prove the following
lemma.

LEMMA 6.3. One of the following statements must hold"
(i) Y{(Exo) Zl, <- k, divides k, k/2.
(ii) k 2m and Y{(E,,o) is isomorphic to Din.
Proof Note that 9’{(Eo) is normal in Zo. Hence finding all the possible groups

Y{(Zxo) is equivalent to classifying the normal subgroups of Eo.
We consider two cases: Y{(E,,o)C SO(2) and Y{(Eo) SO(2). Suppose that

Yd(Exo)C SO(2). Then Y{(Exo) is a subgroup of Zk. Hence Yd(E,,o)=ZI l<-k,
divides k.

Suppose now that Yf(Eo) SO(2). Let ’Yf(Eo) srSO(2). Since Yf(Exo) is
normal in E,, we have Ra=/k R2=/k R-2=/k Yf(E,,o). Hence Ra,/k Yf(E,o). If
k =2m then it follows that Yf(E,,o) is generated by R4/k and " and therefore is
isomorphic to D,,. Otherwise k+ 1 is divisible by 2 and (R4,,/k) k+1)/2= Rzrr/k. This
implies that Y{(Exo) Dk Eo, which is a contradiction.

The case Yf(Eo)= Z, k/2 cannot occur, since then E,,o/Yf(E,,o) would be
isomorphic to D2 and every irreducible action of O2 has a nontrivial kernel.

Proof of Theorem 6.1. We begin by describing the bifurcation problem for the
family G. We assume that the center manifold reduction has been carried out; that is,
G is a family of Exo-equivariant vector fields on E. Recall that Y{(Eo) is normal in

Eo. Let r" Eo- Eo/Y{(Yxo) be the natural projection. We define the action of -(Eo)
on E by ’(r)v =-o-v, v E, r Eo. Note that this action is well defined, since ker r

Y{(Eo). It follows that G is Eo-equivariant if and only if it is r(Exo)-equivariant. We
replace the action of Exo by the action of r(Eo).

As indicated in Table 6.1 we divide the analysis into three cases:
(1) Y{(Eo) II, < k, divides k.
(2) Y{(Exo)= Zk.
(3) k 2m and 9’{’(o) is isomorphic to D,.
Case (1). Let m k I. Since < k it follows that m >= 2. Clearly, r(Zxo) is isomor-

phic to Dm. Since the action of r(,o) is faithful it follows that dim E > 1. This implies
that dim E =2, since all the irreducible representations of Dm are one- or two-
dimensional. Also m-> 3, since any irreducible representation of O2 has a nontrivial
kernel. It follows that the action of r(o) is isomorphic to the standard action of
on C. According to Table XIII, 5.2 in Golubitsky, Stewart, and Schaetter [1988] a
generic family G has two branches of steady-state solutions yl(A) and Y2(A). Let
Y1 O(2)y and Y2 O(2)y2. We now show that the sets Y1 and Y2 consist of equilibria
of F. The results of Golubitsky, Stewart, and Schaetter also imply that the isotropy
subgroups of yl and Y2 with respect to the action of D, are two-element groups, each
generated by an element not contained in Zm. Let y, and Ey denote the isotropy
subgroups of y and Y2 in Eo. It follows that yl SO(2) and y2 SO(2). Hence the



1476 MARTIN KRUPA

normalizers of Zy, and Xy: are discrete. Theorem 4.1 implies that the group orbits Y1
and Y2 consist of equilibria of F.

Case (2). Note that ’(Exo) is isomorphic to Z2. Hence dim E 1. Since the action
of Z2 is nontrivial it follows that Z2 acts on E as minus identity. Hence generically G
undergoes a pitchfork bifurcation; that is, G has a unique (up to conjugacy) branch
of equilibria y(A) with trivial isotropy. For more information on Z2-equivariant
bifurcation, see Golubitsky and Schaeffer [1985, Chap. XVI].

Let Y O(2)y. We show that generically the trajectories of F on Y are rotating
waves. Let y be the isotropy subgroup of y in Xo. It follows that y {(Xo Zk.

We conclude that N(,y) 0(2). By Theorem 4.1 generically the trajectories of F(., A)
on Y(A) are given by drift along circles.

Case (3). As in Case (2) z(Xxo) is isomorphic to Z2. Hence G has a branch of
equilibria y(h ), whose isotropy subgroup in Z2 is trivial. Let Ey be the isotropy subgroup
ofy inX Since Ey ffLr(Xo and ’’(Exo) is isomorphic to D,, it follows that Ey Z SO(2)
and that N(,y) is discrete. By Theorem 4.1 the orbit Y O(2)y consists of equilibria
ofF.

Before proving Theorem 6.2 we give some background on Hopf bifurcation from
an invariant equilibrium. The results we review will be used in the analysis of bifurca-
tions of the family G. Let F c O(n) be a Lie group acting on R and suppose that this
action is nontrivial. Let H" R x R --> R be a family of smooth, F-equivariant vector
fields. Let h H(., 0) and suppose that (dh)o has a purely imaginary eigenvalue toi.
Suppose that the center manifold reduction has been carried out; that is, R is the
real part of the sum of the eigenspaces of +toi. We make a generic assumption that
the action of F on R is F-simple. Then the group {exp (Lt): t R} is isomorphic
to S1. We define the action of S on R" as

(y, O)x y exp (LO)x where (3,, O) F x S and x e R".

The following theorem is the equivariant Hopf bifurcation theorem (see Golubitsky
and Stewart [1985, Thm. 5.1] or Golubitsky, Stewart, and Schaeffer [1988,
Thm. XVI, 4.1 ]):

THEOREM 6.4. Suppose that A is a maximal isotropy subgroup of F x S and
dim Fix (A) 2. Then H has a branch of small amplitude periodic solutions xa such
that trx + O) x (t) for every pair (tr, O) A.

Suppose that x (t) is a branch of periodic solutions described in the statement
of Theorem 6.4. Let X(A)= {x(t): R}. Recall the definition of the group of sym-
metries of the set X, denoted by Ex, as the set of all tr F such that trx x for all
x R n. Clearly, Ex is obtained by projecting A onto the first component of F x S"
that is,

X,x {r e F: (r, O) e A for some 0 e S}.

We refer to the group A as the group of spatial-temporal symmetries of the periodic
orbit X.

We will now describe generic Hopf bifurcations in two cases: F Z2 and F Dk,
k >_-3. Assume that F Z2. We have the following proposition.

PROPOSITION 6.5. Generically, the family H has a branch of periodic orbits Y(A)
with .y() 22.

Proof. The irreducible representations of Z2 are absolutely irreducible and one-
dimensional. Hence a F-simple representation of Z2 will be two-dimensional and will
have the form R R. The action on each of the copies of R will be given as reflection
with respect to the origin. Let " be the nontrivial element in Z2. Then, for (x, y) R
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st(x, y) (-x, -y). Also

and exp (Lt) is a rotation by angle t. It is easy to see that Z2(r, 7r)= {(0, 0), (, 7r)} is
a maximal isotropy subgroup of Z2 x S1. It follows from Theorem 6.4 that H has a
branch of periodic orbits Y(A) with Ey(a Z2. Using normal form theory we can
show that generically this branch is unique.

We now discuss the case where F Dk, k >-3. We assume that the action of Dk
on R" is faithful. Let : 27r/k. We define the following subgroups of Dk x $1:

Zk= k
"m=0,1,...,k

z2() {(0, 0), (, 0)},

z2(,. ) {(0, 0), (., )},

z2(, :)= {(o, o), (, :)},

and when k is even

z {(o, o), (. )}.

We have the following theorem.
THEOREM 6.6. Generically, thefamily Hhas three branches ofperiodic orbits" Y1 (h ),

Y_(A ), and Ya(A ). The groups ofspatial-temporal symmetries Of Yl(h ), YE(A ), and Ya(A
are given r.espectively by"

(a) Zk, Z2(K), and Z2(K, 7r) if k is odd.
(b) Zk, Z2()Z2, and Z2(, 7r)Z2 ifk=-2(mod4).
(c) Zk, Z2()Z2, and Z2(, :)Z2 if k=- O (mod 4).
Theorem 6.6 is a consequence of Theorem XVIII, 3.1 in Golubitsky, Stewart, and

Schaetfer 1988].
We now present the proof of Theorem 6.2.
Proof of Theorem 6.2. We begin by describing the bifurcation problem for the

family G. We assume that the center manifold reduction has been carried out; that is,
G is a family of Exo-equivariant vector fields on E. Recall that z is the natural projection
from Exo onto E,o/Y{(E,o). As in the proof of Theorem 6.1 we replace the action of
E by the action of ’(Eo). We consider three cases:

(1) Y{’(Eo) ZI, < k, divides k.
(2) Y/(Exo)= Z.
(3) k 2m and Y{(o) is isomorphic to D,,.
Case (1). Let m 1/k. We have r(o)= D,. Since the action of r(o) on E is

faithful it follows that m >= 3. The action of r(o) on E is F-simple, so we are in
position to apply Theorem 6.6. Hence G has three branches of solutions YI(A), Y2(A),
and Y3(A) whose groups of spatial-temporal symmetries in D,, are as indicated in
Theorem 6.6. Let r,, r, and r be the groups of symmetries of these trajectories
inside of xo. Observe that r, Z and the groups r2 and r, are not contained in
SO(2). It follows that N(r)= 0(2) and the normalizers of the groups r2 and r,
are discrete. Let Z,(A) 0(2) Y(A), Z2(X) 0(2) Y2(A), and Z3(A) 0(2) Y3(A).
Theorem 5.2 implies that generically the trajectories of F on Z are dense in two-
dimensional tori and the trajectories of F on Z2 and Z3 are periodic orbits.
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Case (2). We have ’(Exo)= Z2. By Proposition 6.5 G has a unique branch of
periodic orbits Y()t). Let sr be the nontrivial element in Z2. It follows from the proof
of Proposition 6.5 that (st, 7r) is a spatial-temporal symmetry of Y. Let Zy denote the
group of symmetries of Y inside ofZ,o. We have ’()= sr, so Eye SO(2) and N(Zy)
is discrete. Let Z 0(2) Y. It follows that the flow of F on Z consists of periodic orbits.

Case (3). We have ’(E,o)= Z2. By Proposition 6.5 G has a unique branch of
periodic orbits Y(A). Since Y{’(Z,,o) SO(2) it follows that Ey SO(2) and N(Zy) is
discrete. Let Z 0(2)Y. It follows that the flow of F on Z consists of periodic
orbits.

7. The Kuramoto-Sivashinsky equation. The Kuramoto-Sivashinsky equation is
used to model several physical and chemical phenomena, for example, flame propaga-
tion and some aspects of the dynamics of the Belousov-Zhabotynski reaction. The
following is the Kuramoto-Shivashinsky equation in one space variable:

2(7.1) u, + 4u,,xx + a(u,, +u) O.

In this section we study a bifurcation problem derived from (7.1). Equation (7.1) is
equivariant with respect to translations and reflections in the space variable. An
approach often used in such situations is to impose periodic boundary conditions with
period L> 0. Then L becomes an additional parameter in the problem. The space
variable x can be rescaled so that the boundary conditions become 27r periodic. As a
result we obtain the following boundary value problem:

2(7.2) v,+4v,,,,,,,,+x(v,,+-v,)=O, v(x+27r, t)=v(x, t)

where the period L has been absorbed into the parameter c. The boundary value
problem (7.2) is O(2)-equivariant. Hence the theory developed in 6 will apply to
bifurcations of relative equilibria of (7.2).

An interesting aspect of the bifurcation analysis of the Kuramoto-Sivashinsky
equation is that we can easily find primary branches of solutions with isotropy Dk,
for all k >_-2. This is a consequence of the following observation. Suppose that u is a
steady-state solution of (7.2). If we extend u by periodicity to the interval [0, 2kTr]
and rescale the space variable by k, then the so-obtained function is an equilibrium
solution of (7.2) for a different value of the parameter c. The new equilibrium is called
a replicated solution. Note that this solution is 27r/k periodic, which implies that its
isotropy subgroup contains Zk. It is easy to see that u 0 is an equilibrium of (7.2).
This equilibrium is stable for a near zero. As ce is increased the solution u 0 loses
stability and bifurcates to a branch of solutions with isotropy group Z(). Hence for
each k-> 2 there exists a branch of replicated equilibria with symmetry Dk.

We might expect that the secondary branches of solutions bifurcating along the
replicated branches would be replications of the secondary branches bifurcating from
the primary branch. According to the analysis of 6, however, secondary bifurcations
from the replicated branches can be different from secondary bifurcations from the
branch with symmetry Z2(). In particular, we expect the branch with isotropy Zz(K)
to bifurcate to a rotating wave, and the branches with isotropy Dk to bifurcate to group
orbits of equilibria. Kevrekedis, Nicolaenco, and Scovel [1988] carried out a computer-
assisted study of secondary and tertiary bifurcations from the branches with isotropy
groups Zz(K), O2, and D3. Their results fit the predictions of Theorems 6.1 and 6.2;
in particular, the first bifurcation along the branch of the equilibria with isotropy group
Z() is to a rotating wave, and the first bifurcations along the branches of equilibria
with isotropy groups D2 and D3 are to orbits of equilibria. In this section we discuss
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the results of Kevrekedis, Nicolaenco, and Scovel and compare them with the predic-
tions of Theorems 6.1 and 6.2.

The numerical results of Kevrekedis, Nicolaenco, and Scovel also indicate
existence of quasi-periodic solutions and dynamics related to homoclinic and hetero-
clinic connections. None of these arise as a result of the bifurcations discussed in 6.
Armbruster, Guckenheimer, and Holmes 1987] analyzed the 0(2) equivariant problem
of interaction of two steady-state modes, one with isotropy group Z2(K) and the other
with isotropy group D2. The dynamics they found was much like the dynamics found
by Kevrekedis, Nicolaenco, and Scovel near the Z2(K) and D2 branches.

Let us now give a more detailed description of the bifurcation problem derived
from the Kuramoto-Sivashinsky equation. We start by modifying the coordinates in
(7.2) so that the solutions are bounded (see Kevrekedis et al. [1988]):

re(t)= v(x, t) dx.

We use (7.2) and the fact that the integrals [.o v dx and Vx dx vanish to show that

io 2( t) -- vx dx.

We now modify the coordinates by letting u(x, t)= v(x, t)- m(t). We obtain

u, +4Uxxxx+ a(ux +1/2u2) m(t) =0,
(7.3)

u(x, t) u(x + 27r, t).

Let us now describe the symmetries of (7.2) and (7.3). Let X be a space of four
times differentiable functions u(x, t), 2r periodic in the space variable x. The 0(2)
action on X is generated by

Ou(x, t) u(x + O, t), 0 SO(2),

u(x,t)=u(-x,t).

It is easy to see that (7.2) and (7.3) are equivariant with respect to this action.
Let us now explain in more detail how we obtain the replicated steady-state

solutions. The ideas we present can be found in Kevrekedis, Nicolaenco, and Scovel.
Consider the steady-state problem corresponding to (7.3):

(7.4) 4u,x+a Ux,+-u + udx=O.
0

We assert the following. Suppose u(x) is a steady-state solution of (7.3) with
a Co and let k be a positive integer. Then w(x)= u(kx) is a solution of (7.3) with
a 4k2ao. To prove the assertion we apply the left-hand side of (7.3) to w and use
the fact that u is a solution.

Note that u 0 is a trivial solution of (7.2). To determine the stability of zero we
write (7.2) as

u, F(u)

where

F(u) -4Uxxx + a(uxx +U2x) + th( t).

Then

dFI ,=oh -4hxx + ahx.
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It is easy to see that the functions e2"trikx, where k is an integer, form a complete
set of eigenvectors of (dF)u=o and the corresponding eigenvalues are (2r)2k2(4k2- a).
The first instability occurs at k- 1 and a 4. As a crosses 4, a branch of equilibria
with isotropy group Z2() bifurcates from the trivial solution. We will refer to it as
the unimodal branch. This branch is replicated for a 4k2. These replicated branches
will be referred to as the k-modal branches. Kevrekedis, Nicolaenco, and Scovel
describe some secondary and tertiary bifurcations discovered in their numerical studies
of the Kuramoto-Sivashinsky equation. If we believe that those bifurcations are generic
in the sense discussed in 6, then each one of them must match one of the cases
described in Theorems 6.1 and 6.2. In what follows we summarize the findings of
Kevrekedis, Nicolaenco, and Scovel and relate them to the results of Theorems 6.1
and 6.2. The bifurcation diagram based on the results of Kevrekedis, Nicolaenco, and
Scovel is given in Fig. 7.1. The solid lines represent branches of asymptotically stable
solutions and the dotted ones represent branches of unstable solutions.

11 H2 11

’ /BT I
R I

u/ /

4 16 36
FIG. 7.1. Secondary and tertiary bifurcation of the Kuramoto-Shivashinsky equation.

Let U be the branch of equilibria with isotropy Z2(K), B the branch of equilibria
with isotropy D2, and T the branch of equilibria with isotropy D3. We discuss the
secondary bifurcations found by Kevrekedis, Nicolaenco, and Scovel along each of
these branches. We first consider steady-state bifurcations.

(1) Steady-state bifurcations from the branch U. At a 13.005 the computations
of Kevrekedis, Nicolaenco, and Scovel reveal that a real eigenvalue passes through
zero. In this case Theorem 6.1 predicts a bifurcation to a rotating wave. The numerical
experiments confirm the existence of a rotating wave. Moreover, Kevrekedis,
Nicolaenco, and Scovel give an analytical proof of the existence of the rotating wave,
based on the ideas of Iooss [1986].

(2) Steady-state bifurcations from the branch B.
(a) The first bifurcation on the branch B occurs at a- 16.1399. Theorem 6.1

predicts a bifurcation to a unique branch of orbits of equilibria with isotropy group
isomorphic to Z2 (provided that the kernel of the action of D2 on the nullspace is not
contained in SO(2)). This is in agreement with the computations, which show that the
branch U merges with the branch B.

(b) An analogous bifurcation is observed for a =22.559. The isotropy group
bifurcating branch is Zz(K). We label this branch BT since it later joins with the
trimodal branch.

(3) Steady-state bifurcationsfrom the branch T. At a 36.235 two real eigenvalues
of the branch T pass through zero. According to Theorem 6.1 there are two branches
of equilibria bifurcating of the branch T. The isotropy of these equilibria is Z2(). The
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numerical results are in complete agreement with this prediction. One of the bifurcating
branches is the branch BT. Kevrekedis, Nicolaenco, and Scovel refer to the other
branch as a continuation of BT and also label it BT. For this reason we label this
branch as BT’.

(4) Steady-state bifurcations from the branch BT. Kevrekedis, Nicolaenco, and
Scovel also find a bifurcation point related to a zero eigenvalue on the branch BT.
They conjecture that the corresponding bifurcation is to a rotating wave. Theorem 6.1
also predicts a bifurcation to a rotating wave and hence supports the conjecture.

Kevrekedis, Nicolaenco, and Scovel discuss three Hopfbifurcation points, marked
in Fig. 7.1 as H1, H2, and H3. The following are the predictions of the nature of these
bifurcations derived from Theorem 6.2.

The Hopf bifurcation point 1. Point H1 corresponds to a Hopf bifurcation from
the branch of rotating waves R. The group of symmetries of the branch of rotating
waves is SO(2). Theorem 6.2 implies that generically the bifurcating trajectories are
dense in two-tori. This agrees with the predictions of Kevrekedis, Nicolaenco, and
Scovel 1988, closing remarks of 5a], who conclude from the structure ofthe dynamics
that a doubly periodic solution is likely to exist.

The Hopfbifurcation point 2. Point H2 corresponds to a Hopfbifurcation occurring
along the branch B. The isotropy group of the equilibria on the branch B is D2.
Theorem 6.2 implies that this Hopf bifurcation leads to a periodic flow. The numerical
results of Kevrekedis, Nicolaenco, and Scovel indicate that the bifurcating solutions
are periodic.

The Hopfbifurcation point 3. Point H3 corresponds to Hopf bifurcation occurring
along the branch BT. Let E be the isotropy group of the equilibria on that branch. We
have previously remarked that E Z2() or E Z2(, r). It follows from Theorem 6.2
that the bifurcating solutions must be periodic orbits. Kevrekedis, Nicolaenco, and
Scovel do not comment on the dynamics related to this bifurcation.

8. The B6nard problem. In this section we analyze secondary steady-state bifurca-
tions of a dynamical system equivariant with respect to the group F D6 +-[]-2, where
1-2 is a two-dimensional torus and 96 is the group of symmetries of a regular hexagon.
A bifurcation problem with this symmetry arises in the analysis of the mathematical
model of convection between two infinite planes. This problem is called the planar
B6nard problem. We now briefly describe the symmetries of the model and the
derivation of the bifurcation problem with symmetry group F. Detailed information
on this topic and the analysis of primary bifurcations can be found in Buzano and
Golubitsky [1983] or in Golubitsky, Stewart, and Schaeffer [1988, Case Study 4].

Let x, y be the coordinates in a horizontal plane and z the coordinate in the
vertical direction. The model of convection is equivariant with respect to translations,
reflections, and rotations in the xy plane. The group generated by these transformations
is called the group of Euclidian motions in the plane and is denoted by E2. Let w be
in R2 and let Tw denote translation by w. The group of translations in the plane is
isomorphic to R2 with the isomorphism defined by the assignment w- Tw. The
group E2 can be thought of as the semidirect product 0(2)+ R2 with multiplication
defined by

(8.1) (crl, Tw)(cr2, Tw2)--(grlo’2, Tw+lW2), (3"1, 0"2 O(2), W1, w26 R2.

Let e R2 be an arbitrary vector and let f be obtained by rotating e by r/3. The
hexagonal lattice H6 is given as

H6 {ne + mf: for all pairs of integers n and m}.
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Note that H6 is a subgroup of R2. The solutions of the convection problem have the
form u(t, x, y, z). We restrict our attention to those that are periodic in both directions
of the lattice. Let

= {u(t, x, y, z): u(t, (x, y, z)+(e, 0))= u(t, (x, y, z)+(f, 0))= u(t, x, y, z)}.

Clearly, the only elements of 0(2) that leave invariant are the elements of 06. Also
the action of H6 on T is trivial. Hence the group of symmetries of the convection
problem restricted to is given by F with q]-2= RZ/H6"

Multiplication in F is induced by multiplication in E2. Let D6 act on R2 by the
standard action. Let 1 denote the identity in D6, zero the identity in q]-2, and e the
identity in F. For p R2 let p’ denote the image of p under the natural projection
R2o 2. For 0- 06 we define 0-. p’= (o-p)’. Multiplication in F is given as follows:

(8.2) (01, Pl)(o2, P) (0102, Pl -" 0"1"

Here 0"10"2 is the product of 0-1 and 0"2 in D6 and pl + 0-1 "P is the sum of vectors in q1-2.
The B6nard problem has an invariant equilibrium (the pure conduction state).

There exists a region in the parameter space where this equilibrium is stable. The
known primary bifurcations are to two types of equilibria with maximal isotropy
subgroups. These subgroups are D6 and D2-i-S (--Z2@O(2)). The equilibria with
isotropy 06 are called hexagons, and the equilibria with isotropy Z2@ 0(2) are called
rolls. In what follows we describe the kinds of steady-state bifurcations each one of
these solutions can undergo.

From now on we consider an abstract F-equivariant bifurcation problem. We
assume that F:R" R" x R (for some n) is a smooth F-equivariant family of vector
fields and that F has a branch of equilibria with isotropy group 06 (which we refer
to as hexagons) and a branch of solutions with isotropy group Z2@ 0(2) (which we
refer to as rolls). We analyze the generic bifurcations of these solutions.

(A) Bifurcations of hexagons. Suppose X Fxo is a group orbit of hexagons. Let
G be the restriction of FN to the normal space Xo + Nxo and let g G(., 0). We assume
that (dg)x has a zero eigenvalue. Let E be the center subspace of (dg)o. We make a
generic assumption that E is the nullspace of (dg) and that the action of 96 on E
is absolutely irreducible. Our bifurcation analysis will depend on the action of 96 on
E. Let ’{(D6) be the kernel of the action of 96 on E. We assume that the bifurcation
is symmetry breaking, that is, Yg’(D6) is a proper subgroup of 96. According to Lemma
6.3, either Y{(D6)--Zm, m 1, 2, 6, or ,{’(D6) is isomorphic to D3. The following
proposition gives a classification of generic bifurcations of hexagons.

PROPOSITION 8.1. All generic types of bifurcating solutions of F are listed in
Table 8.1.

We now state and prove a lemma necessary to prove Proposition 8.1. Suppose
that is a subgroup of 06 and let N() denote the normalizer of in F. Let Fix ()

TABLE 8.1

Kernel of isotropy Type of solution Number of half branches

Z or D steady state
Z steady state 2

trivial periodic orbit 2
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denote the fixed-point space of 5; taken with respect to the standard action of D6

on R2. We have the following lemma.
LEMMA 8.2. dim N(5;) dim Fix (5;).
Proof Let Fo denote the connected component of the identity in F. Since F is a

compact group it suffices to show that the normalizer of 5; in Fo has the same dimension
as Fix (5;). The group Fo consists of elements of form (1, p’), p’ 72. Suppose that
(or, 0) is in 5;. The element (1, p’) is in N(5;) if (1,-p’)(cr, 0)(1, p’) is in 5;. We have

(8.3) (1, -p’)(cr, 0)(1, p’) (or, or. p’-p’).

If (8.1) holds then we must have cr.p’-p’=0, which is equivalent to (rp-p)’=0.
The proof now follows.

Proof of Proposition 8.1. Let 7.:D6- D6/Yf(D6) be the natural projection. In the
analysis of bifurcations of the family G we replace the action of D6 by the action of
7.(D6). As indicated in Table 8.1 we divide the analysis into three cases:

(1) Y{(D6) Z6 or Y[(D6) is isomorphic to D3.
(2) (D6)-- Z2

(3) 7{’(D6) is trivial.
Case (1). Observe that 7"(06) is isomorphic to Z2. In this case a generic family

G has a unique branch of equilibria y(h), whose isotropy subgroup in 06 is trivial
(see the proof of Theorem 6.1). The isotropy group of y(h) in 7.(06) is trivial. Let 5;y
be the isotropy group of y(h) in D6. It follows that Ey is ’{’(O6). The group Y{(O6)
contains a nontrivial rotation. It follows that the fixed-point space of {(O6) with
respect to the standard action of D6 on R

2 is trivial. By Lemma 8.2 dim N(E)= 0. Let
Y(A) Fy(h). By Theorem 4.1 the set Y(A) consists of equilibria of F.

Case (2). Observe that 7.(D6) is isomorphic to D3. It follows from Table XIII,
5.1 in Golubitsky, Stewart, and Schaeffer [1988] that a generic family G has two half
branches of equilibria y(h), yz(A). Let Ey, and 5;y: denote the isotropy subgroups of
y and y2 in D6. Both of these groups must contain ’{(O6). Since fir(D6) contains the
rotation by r it follows that the fixed-point spaces of Ey, and Ey are trivial. Lemma
8.2 implies that the normalizers of these groups are discrete. Let Y(A)=Fy(A),
Yz(A Fy:(h ). Theorem 4.1 implies that the sets Y(h) and Yz(A consist of equilibria
of F.

Case (3). According to Table XIII, 5.2 in Golubitsky, Stewart, and Schaeffer
[1988], a generic family G has two half branches of equilibria y(A), y2(A), with
5;y, {1, } and 5;ya= {1, r}. Here denotes the reflection through the x-axis and r
denotes the reflection through the y-axis. Clearly, these groups have one-dimensional
fixed-point spaces, hence, by Lemma 8.2, their normalizers are one-dimensional. Let
YI(A)--Fy(A), Y2(A)= Fy2(A). Theorem 4.1 implies that generically the trajectories
of the flow of F on the sets Y(A) and Y2(A) are rotating waves.

(B) Bifurcations of rolls. Suppose X Fxo is a group orbit of rolls. Let G be the
restriction of FN to the normal space N and let g G(., 0). We assume that (dg)
has an eigenvalue on the imaginary axis. Let 5; denote the isotropy subgroup of rolls.
Let E be the center subspace of (dg)o. We make a generic assumption that the action
of 5; on E is irreducible. We will show that this implies that the action of 5; on E is
absolutely irreducible. This implies that (dg) must have a zero eigenvalue and hence
the bifurcation we consider is a steady-state bifurcation.

The group 5; is generated by translations along the y-axis, reflection through the
y-axis and rotation by r (see Golubitsky, Stewart, and Schaeffer [1988, p. 154]). The
projection of the y-axis into the torus 72 is a circle which we denote by S1. Let :
correspond to the element of D6 which acts on R as rotation by r, and let " denote
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the element of D6 which acts as reflection through the y-axis. The element sr commutes
with the elements of S and the element : anticommutes with the elements of S1. It
follows that Zr is isomorphic to Z2q)O(2), with S corresponding to SO(2), sc corre-
sponding to a reflection in 0(2), and sr corresponding to the nontrivial element of Z2.
The irreducible representations of Z2q) 0(2) are given by the irreducible representations
of O(2), with " acting as identity or as minus identity. Since the irreducible representa-
tions of 0(2) are absolutely irreducible it follows that (dg)xolE =-0.

We now divide that analysis into two cases:
(1) S acts trivially on E.
(2) S acts nontrivially on E.
Case (1). In the analysis of bifurcations of G we can replace the action of Er on

E by the action of D2 {1, :, sr, sc’}. The space E must be one-dimensional and the
kernel of the action of D2 must be one of the groups:

(8.4) Z:z(’) {1, ’}, Z2() {1, :}, Z2(scsr) {1, :’}.

It follows that in the analysis of bifurcations of G the action of D2 can be replaced
by the action of a group isomorphic to Z2. Hence a generic family G has a unique
branch of equilibria y(A) and the isotropy group of y(A) in DE is equal to one of the
groups listed in (8.4). Let Ey be the isotropy subgroup ofy(A in Er. We have Ey (S
or Xy (S 1, ) or Ey---(S 1, :ff). In other words, Ey is generated by the elements of S
and , sr, or :sr. Let Y(A)= Fy(h). We have the following proposition.

PROPOSITION 8.3. If ,y--(S1, ) then the trajectories offlow of F on Y(A) are
rotating waves. Otherwise, Y(A consists of equilibria.

Proof. We prove that if Ey=(S,:sr) then dim N(Ey)=2 and otherwise
dim N(Ey)= 1. The proposition will then follow from Theorem 4.1.

By compactness of F it suffices to show that the normalizer of Ey in Fo has the
indicated dimension. Recall that Fo consists of the elements of F of the form (1, p’),
p, 2. Suppose that (o-, 0)Ey, tr D2. The identity (8.3) implies that

(8.5) or. p’-p’ S1.

Recall that S is the image of the y-axis under the natural projection R2- qy2. Hence
(8.5) implies that crp p (0, q), q R.

Suppose that p (pa, p). The element :sr acts on R2 as reflection through the
x-axis; that is, :’(p, P2)=(P,-P2). It follows that sCsrp-p (0,-2p2). Hence (8.4)
holds for all p’ in S. It follows that if Ey (S1, sc’), then dim N(Ey) 2.

The element : acts on R2 as rotation by 7r; that is, sc(pl, P2) (--P, --P2). It follows
that sop -p (-2pl, -2p). Hence (8.5) holds if p’ S1. It follows that if Ey
then dim N(Ey) 1.

The element r acts on R as reflection through the x-axis, that is, ’(pl,p)=
(-Pl, P2). It follows that ’p-p (-2pl, 0). Hence (8.5) holds if p’ S. It follows that
if Ey (S1, ’), then dim N(Ey)= 1.

Case (2). We show that if S acts nontrivially, then generically the flow on the
bifurcating relative equilibria is trivial. Namely, we prove the following proposition.

PROPOSITION 8.4. A generic family F has a unique branch of bifurcating relative
equilibria Y(A ). The flow on the sets Y(A is trivial.

Proof We first consider bifurcations of the family G. Let Yg’(Er) be the kernel of
the action of Er on E. We show that Y{(Er) must be nontrivial. If sr acts on E as
identity, then (’, 0) 3’((Er), which implies the assertion. Suppose that sr acts on E as
minus identity. Let Po be the element of S acting on E as rotation by 7r. Then
(’, Po) Yg’(Er), SO 3’((Zr) is nontrivial.
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Since the action of S is nontrivial it follows that the action of : on E is a reflection.
Hence :7r(Er) is generated by a cyclic subgroup of S and either (’, 0) or (’, Po). It
follows that Er/:7{(Er) is isomorphic to 0(2). In the analysis of the bifurcations of G
we replace the action of Er on E by the action of Er/3’’(E) on E. By standard results
on O(2)-equivariant bifurcation G has a unique branch of equilibria y(h) and Ey
contains a reflection. Since " acts as reflection we can assume (by possibly replacing
y(h) by a conjugate branch) that (’, 0) Ey.

We now prove that the normalizer of y in Fo is discrete. As we argued earlier,
this implies that the normalizer of y in F is discrete. The group y is generated by
(’, 0) and the elements of ’t(Er). Suppose that (1, p’) N(Ey), p (Pl, P2). Recall that
sc acts on R2 as rotation by 7r; that is, sc(pl, P2) (-Pl, -P2). The identity (8.3) implies
that r. p’-p, Ey. Also p-p (-2pl,-2p2) =-2p’. It follows that 2p’ must be in
7f(Er) f’) S 1, which, by assumption is a discrete group. It follows that N(Ey) is discrete
and by Theorem 4.1 the relative equilibria Y(A)= Fy(h) consist of equilibria of F.
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MATHEMATICAL ANALYSIS OF THE GUIDED MODES OF AN
OPTICAL FIBER*
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Abstract. A mathematical formulation for the guided modes of an optical fiber is derived from Maxwell’s
equations: this formulation leads to an eigenvalue problem for a family of self-adjoint noncompact operators.
The main spectral properties of these operators are established. Then the min-max principle provides an

expression of the nonlinear dispersion relation, which connects the propagation constants of guided modes
to the frequency. Various existence results are finally proved and a complete description of the dispersion
curves (monotonicity, asymptotic behavior, existence of cutoff values) is carried out.

Key words, spectral analysis, guided modes, optical fiber
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0. Introduction. During the past 15 years, optical telecommunications and then
integrated optics have undergone considerable development, which revived interest in
the study of dielectrical guides.

Classically, the wave propagation in a cylindrical guide is based on the determina-
tion of the eigenmodes of the structure: these are electromagnetic waves of the form
(X) ei(t-z), where x denotes the vector of transverse coordinates and z the longi-
tudinal coordinate. The guided modes are of particular interest: they propagate without
attenuation (/3 real) and the wave amplitude decays exponentially as the distance to
the core of the guide increases.

The guided modes of a circular step-index fiber are well known (cf. [16], [17]).
Indeed, in that case, the dispersion relation between the propagation constant/3 and
the pulsation o can be given explicitly by means of Bessel functions. The generic
aspect of the dispersion curves for a circular step-index fiber is shown in Fig. 1.

Actually, in practice, there is a wide range of dielectrical guides (step-index fibers
of arbitrary geometry, graded-index fibers, two cores fibers,...) which cannot be
treated analytically. Up until now, these cases have been studied by means of numerical
computations (see, for example, [13], [18], [28], [29]). Only the one-dimensional
problem of the planar waveguide has been considered in various theoretical studies
(cf. [9], [27]).

In this work, we present a mathematical analysis of guided modes, for optical
fibers having an arbitrary index profile in the core region.

Physical assumptions, equations, and notation are presented in 1.
Then the first step consists in choosing between many mathematical formulations,

resulting from Maxwell’s equations. A previous study (cf. [3]) led us to a formulation
on the magnetic field H, which we describe in 2.

This formulation leads to an eigenvalue problem of the form CtH w2H, where

C is an unbounded self-adjoint operator, with noncompact resolvent. Section 3 is
concerned with a general study of the spectrum of the operator Ct. By deriving bounds
for the eigenvalues, we establish a necessary condition for the existence of guided
modes: the refraction index somewhere in the core region must be greater than the

* Received by the editors November 24, 1986; accepted for publication (in revised form) August 2, 1989.
t Institut Frangais du P6trole, 1-4 avenue du Bois-Pr6au, BP 311, 92506 Rueil Malmaison Cedex, France.
$ Groupe Hydrodynamique Navale, E.N.S.T.A. Centre de l’Yvette, Chemin de la Humire, 91120

Palaiseau, France.
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2

Dispersion curves

FIG. 1. Dispersion curves of a circular step-index fiber.

cladding index. Then after determining the essential spectrum, corresponding to a
continuum of radiation modes, we apply the min-max principle to get an expression
of the dispersion relation.

In 4, we study the eigenvalues to(/3) as functions of/3. A complete description
of the dispersion curves (regularity, monotonicity, asymptotic behavior) is carried out
and some existence results are derived. First we exhibit a category of index profiles
such that the fiber supports at least two guided modes for every value ofthe propagation
constant/3. In the general case, we prove that the number of guided modes tends to
infinity as/3 increases. This number varies at some special values of/3 which are called
the cutoff values.

These cutoff values are studied in 5. We prove that they are solutions of a
nonlinear eigenvalue problem, set in a weighted Sobolev space, and that they form a
sequence tending to infinity. For a given value of the propagation constant 3, the fiber
therefore admits at most a finite number of guided modes.

The results contained in this paper were announced in [2] and are part of the
doctoral thesis [4] of A. S. Bonnet.

1. Modelling and notation.
1.1. The physical model. An optical fiber is a cylindrical structure which consists

of a core of a dielectric material, surrounded by a cladding of another dielectric material
(cf. Fig. 2). When the refractive index of the cladding is less than that of the core, the
fiber is a waveguide. Electromagnetic waves can be propagated along the fiber without
becoming deformed, their energy remaining confined in the core region.

We use a quite classical model (cf. [11], [16], [17], [20], [24], [25]): the fiber is
assumed to be infinitely extended along its axis, denoted by Ox3, and perfectly
cylindrical (see [26] for the scattering theory of a deformed optical waveguide).

We suppose moreover that the cladding is infinitely extended in the transverse
plane (O, xl, x2). This assumption is justified because the radius of the core is, in
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FIG. 2

practice, very small compared to the radius of the cladding, and because the guided
modes have exponentially decaying fields in the cladding.

The fiber is completely determined by its index profile n, which is a bounded,
positive function of the couple of transverse coordinates x (xl, x2). In the following,
we just assume: n L(2) and inf {n(x); x 2} > 0. Except for Proposition 3.1, it is
not necessary for the index profile to be more regular.

In the following, the fiber cladding is supposed to be homogeneous (see [4] and
[5] for some generalizations). More precisely, we suppose that there is a refractive
index noo and a bounded domain 12 such that n(x) noo if x 12. We say that 11 is the
core region, the exterior domain 2/11 is the cladding, and noo is the refractive index
of the cladding. We will also denote by Da a disk of centre O and radius a which
contains the core region 11.

Some particular categories of fibers which are used in practice will be mentioned
as references:

(a) A fiber whose index profile n is piecewise constant is called a step-index fiber.
A step-index fiber is said to be circular (respectively, elliptic) if there is a circular
(respectively, elliptic) domain 11 such that the index profile is constant in 11 and outside
11.

(b) A fiber is called a graded-index fiber when its index profile n belongs to cg2(2).
1.2. The equations for the guided modes. The cylindrical geometry of the fiber

suggests that we look for particular solutions of the Maxwell equations

(1.1) Rot H con --Ot’ Rot : -/z0
0

which can be written as

(1.2) ( -_)(Xl,X2, X3, t)=(E) i(kct-x)
H

(xl, x2) e
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where E is the electric field, H the magnetic field, Co the velocity of light in the vacuum,
and e0 and/Zo the dielectric permittivity and the magnetic permeability of the vacuum,
respectively. The variables k and/3 are called, respectively, the wavenumber and the
propagation constant.

Such a solution (E, H,/3, k) is said to be a guided mode if, moreover,

(/3, k) e 2, (E, H) (0, 0) and (E, H) e [L2(2)] x [L2([2)]3.
For fields of the form (1.2), system (1.1) becomes

(1.3) Rott H ieocokn2E, Rot E =-itxocokH.
The index/3 associated with Rot operator means that the derivation with respect to

x3 is replaced by the multiplication by (-i/3).
We are interested in the description of the set of all pairs (/3, k) in 2 such that

system (1.3) has nontrivial square integrable solutions. Our aim is therefore to establish
and study the dispersion relation between/3 and k.

Note that for every fixed/3, we get a two-dimensional eigenvalue problem where
the wavenumber k is the eigenvalue and the electromagnetic field (E, H) the associated
eigenvector.

Suppose that (E, H,/3, k) is a guided mode. Then we can easily show that
(E,-H, fl,-k), (E’,H’,-fl, k), and (E’,-H’,-/3,-k) are guided modes as well,
where E’ and H’ denote the symmetrics of E and H with respect to the transverse
plane (O, Xl, x2). Thus we can restrict ourselves in the following to the pairs (/3, k) of
positive real numbers.

We first need to introduce some notation.

1.3. Notation. Denote by (2) the space of indefinitely differentiable complex-
valued functions which have compact support in 2, and by @,(E2) the space of
complex-valued distributions on 2o

Let q t(2) and

We define

and for fle

rot F-
OX OX2

DivF
OF1 OF2
=+-i#F,
OX OX2

OX2rot
0
OXl

F=
F2’

div F F,O____,. OF2
OX OX2

Rot F

--+ i/
8x2

-iflF1 _OF3
OXl

OF OF,
OX OX2
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Grade q

0X

0q

Ox2
-i

The following identities hold:

rot (rot F) AF+ grad (div F),

Rote (Rote F) -AF +/32F + Grade (Dive F).

The inner product and norm in [L2(Na)] (j 1, 2, 3) will be denoted, without
distinction, by (.,.) and[. [2.

2. The choice of the variational formulation.
2.1. Classical formulations. Many mathematical formulations have already been

established for problems of electromagnetics (cf. [3] and [7]). We briefly recall some
of them, dwelling on the reasons which have motivated our choice.

At first, note that we can derive from system (1.3) some equivalent equations by
eliminating either E or H.

LEMMA 2.1. Let (E, H) be a solution of system (1.3). Then

(2.1) Rote (Rot E)= kanaE,

(2.2) Div (n2E) 0,

(2.3) (1Rote -7 Rote H k2H,

(2.4) Dive H 0.

Proof Equations (2.1) and (2.3) are obtained by applying the operator Rote to
(1.3). Equations (2.2) and (2.4) are deduced from (2.1) and (2.3) using the following
identity:

(2.5) Dive (Rote F)=0 VFE [(2)]3.

By (2.2), the electric field E does not belong to the space [Hl(2)] if the index
profile n is not regular. Hence, a formulation on the magnetic field is more convenient:
indeed, H belongs to the space [H(a)] for every index profile (see 2.2).

Using (2.4), it is possible to eliminate the longitudinal component H3 in system
(2.3). The derived formulation involves only H and Ha as unknowns, but is no longer
symmetrical. For that reason, we prefer keeping the three unknowns H1, Ha, and H3.

The natural variational formulation associated with (2.3) uses the following bilinear
form:

b(fl; H, H,)= Ia 1
H’-7 Rote H. Rote dx,

which is not elliptic on the space [HI(N2)]3, but on the subspace

{H E [H1([2)]3; Dive H=0}.
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This space depends on/3, which is an unknown and may vary. To obviate this difficulty,
a modification used for solving Maxwell’s equations in bounded domains (cf. [14]) is
to introduce the following equation:

(2.6) Rot -7 Rot H s Grad (Div H) k2H,

where s is some arbitrary positive real.
Every solution of (2.3) satisfies (2.6). The converse will be established in the next

section. Moreover, the bilinear form associated with (2.6) is elliptic on (Hl([2))3.

2.2. A formulation for the magnetic field. Let us denote by V the Sobolev space
(Hl(2)) equipped with the usual norm IIFIIv=[[Fl+lgrad FI]/, and by V(/3) the
space of all square integrable fields F, such that Rot F and Div F are also square
integrable. Equipped with the norm I[FII v= [IFl+lRot FI+ IDiv FI] 1/, V() is
a Hilbert space (cf. [7]).

We first prove that the magnetic field belongs to V.
LEMMA 2.2. (i) Let (E, H) be the solution of system (3.1). Then (E, H)

(LZ(:))3 (L(E:))3 if and only ifH V(fl ).
(ii) For every F in V

(2.7) f2 {lRott3 Fl2 + ]Divt Fl2} dx f2 {]grad Fl2 + 2lFl2} dx.

(iii) Hilbert spaces V and V(fl) are isomorphic.
Proof Assertion (i) is a trivial consequence of (2.3) and (2.4).
(ii) For every F in [@(R2)]3:

fa2 [Rott3 Fl2 dx Iu2 Rott3 (Rott3 F) Pdx

f {-AF +/32F + Grad (Div F)}. dx

f[l2 {Igrad FI2 + 21F12 -]Div F[2} dx.

Since (@(R2))3 is dense in V, this equality holds for every F in V..
(iii) By [7], the space ((2))3 is also dense in V(/3). Hence assertion (iii) is a

consequence of identity (2.7).
Remarks 2.1. (1) Identity (2.7) is analogous to the following classical one:

(2.8) f2 {]rot FI2+ Idiv dx.

(2) Note that the functional space V neither depends on /3 nor on the index
profile n.

We can now establish the following theorem.
THEOREM 2.1. The following assertions are equivalent:
(i) (E, H) is a nontrivial solution of (1.3) and E, H G [L2([2)]3.
(ii) H is a nontrivial solution of (2.6) and H V.
Proof By Lemmas 2.1 and 2.2, (ii) is a consequence of (i). Conversely, let H be

a solution of (2.6). We first need to prove that H satisfies (2.3). By taking the divergence



ANALYSIS OF THE GUIDED MODES OF AN OPTICAL FIBER 1493

of (2.6), we get

s Dive (Grade q k2q9,

where q Dive H. Thus q satisfies -sAq (k2-/32s)q and q L(R:). Consequently,
q must vanish everywhere and (2.3) holds.

Moreover, by (2.7), the wavenumber k cannot be equal to zero since H does not
vanish identically. Therefore we can set

1

ieocokn2
Rote H,

and (E, H) is a nontrivial solution of (1.3). [3

In order to choose the value of s, we note that in the outside region, with refractive
index no, equation (2.6) becomes

(2.9) n2 AH +_-5- H + s Grade (Dive H) kH.

2By taking s= 1/n, we get uncoupled Helmholtz equations in this domain. The
convenience of this choice will be confirmed in the following section.

2.3. Variational formulation. To conclude this section, let us prove that equation
(2.9) leads to a variational formulation with a V-elliptic bilinear form.

Hereafter, we set

(2.10) c(; H’ H’)= IR {- 1 H’}H. Rote H’ +__-T Dive H Dive dx.

By Theorem 2.1, we can now consider the following problem:

(2.11)

Find all pairs of reals (/3, k) such that there
exists H satisfying

HV, HO,
(2.12)

c(fl; H, H’)= k2(H, H’) VH’E K

The following lemma is a straightforward consequence of identity (2.7).
LEMMA 2.3. The form c( is Hermitian and satisfies, for every H V

(2.13) c(fl H, H)>-_z {Igrad HI-+/32[HIz} dx,
+

(2.14) c(fl H, H) <-_ {[grad HI +/3=IHI} dx,

where n+ and n_ are defined by

(2.15) n+=supn(x) and n_=inf n(x).
XR X[]

In particular, c(fl is V-elliptic for nonzero values of.
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3. Derivation of the dispersion relation. The problem (), defined by (2.11), can
be written equivalently as follows:

(3.1) ()
Find all pairs (/3, k) (+)2 such that there
exists H satisfying

HD(C3), H#O, C3H=k2H,

where we denote by Co the unbounded operator of (L2(R2))3, with domain D(Co),
associated with the form c(/3). In other words, k2 is an eigenvalue of Co and H an
associated eigenfield.

We therefore must study the spectrum er(/3) of Co and especially the set of its
eigenvalues %(fl).

In this section we first derive a lower bound for er(/3) and an upper bound for
O-p(fl). The essential spectrum O’ess(fl) is then determined. The dispersion relation
between/3 and k is finally derived by using the min-max principle.

3.1. Lower and upper bounds for the eigenvalues. Using Lemma 2.3, we first estab-
lish Lemma 3.1.

LEMMA 3.1. For every nonnegative real , the operator Co is self-adjoint. Moreover,
(i) r(/3) c [2/n2+, +oo[,
(ii) Crp(/3) c ]/32/n 2+, +oo[,

where n/ is defined by (2.15).
Proof. The self-adjointness of C and inclusion (i) are consequences of (2.13) (cf.

[23]).
Suppose now that c(/3; H, H)=(/n+)2IHI2 for some H in V. It therefore follows

from (2.13) that

IR [grad HI2 0,dx

which implies that H is constant. Since H belongs to [L2(R2)]3, it must then vanish
everywhere. Consequently, (/3/n+)2 cannot be an eigenvalue of C.

Remark 3.1. By the previous lemma, every solution (/3, k) of () must satisfy

This means that the guided wave always propagates faster than a plane wave in an
homogeneous medium of index n+.

To derive an upper bound for the eigenvalues, the following additional hypothesis
is required:

(3.2) There exists a finite collection {f,..., f,} of open regular subsets of N
such that

N2= U fi and nle2(fi) forj=l,...,m.
j=l

In other words, the index profile is supposed to be piecewise regular. This hypothesis
is sufficient but probably not necessary. However, assumption (3.2) is satisfied by all
fibers used in practice (step-index fibers, graded-index fibers, two-fiber couplers).

PO,OSnON 3.1. Assume that the index profile n satisfies (3.2). Then o-p()c
I-co, 132/,].
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Proof (1) Let H V and h > (fl/n)2 such that CH= hH. Then H satisfies
2-AH + (hn-/32)H 0 outside the core region . Hence we deduce from the unique-

ness result proved in [21] that H vanishes in ND, where D is a disk containing
the core region .

(2) Under assumption (3.2), H must vanish identically (cf. [10, pp. 190-
192]). U

Remarks 3.2. (1) Notice that condition (3.2) has been used only for the second
pa of the proof, which requires a continuation principle.

(2) By the previous lemma, every solution (fl, k) of problem (), defined by (3.1),
must satisfy the following inequality:

k2

This means that the guided wave always propagates slower than a plane wave in a
homogeneous medium of index n.

These first results are summarized in Corollary 3.2.
COROLLARY 3.2. Assume that (3.2) holds:
(i) If n+= n or [3 =0, then O’p()---.
(ii) If n/ > n and [3 O, then %([3) c ][32/ 2 2/n+, n].
In other words, the problem (), defined by (3.1), has no solution when n/ is

equal to n. For this reason, we shall assume in the sequel that the index profile always
satisfies the "guidance condition""

n+ n ,].
3.2. The essential spectrum. The aim of this section is to establish the following

proposition.
PROPOSITION 3.2. For every nonnegative real, the essential spectrum ofC3 is given

O’ess(]) "+-O0

Remark 3.3. The essential spectrum corresponds to the continuum of propagation
constants of radiation modes. See, for example, 16] for a description of the radiation
modes of a cylindrical step-index fiber.

To prove this proposition, we shall use another version of the bilinear form c(fl).
Let us define

(3.3)

(3.4)

(3.5)

(3.6)

do(H, H’) rot H rot + _-5- div H div
ncx

+- grad H3" grad/; dx,

dl(H, H’)= -- {grad H3 --I-l" grad H;} dx,

d2(H’H’)=fR2 (2 nl-) H
d(fl; H, H’)= do(H, H’)+ fldl(H, H’)+ fl2d2(H, H’).

Then we have the following lemma.
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LEMMA 3.3. (i) The bilinear form c(fl) admits the following expression:

(3.7) c(/3; H, H’)= d(fl; H, H’)+ _-T (H, H’).

(ii) The forms do, dl, and d2 are Hermitian and continuous on V.
(iii) The form do satisfies

1 f Igrad HI(3.8) VH V, do,--,ru H)--> dx.

(iv) The forms dl and d2 are compact perturbations of do.
Proof. The decomposition (i) follows easily from the Green formula:

{grad H3" H’-H. grad H;} dx

{(div H)H;- H3(div H’)} dx.

To prove (ii), we first note that

do(H, H) _-> __-T {Igrad H3I + rt HIz + Idiv HI2} dx
n+

and then we use equality (2.8).
2Now, since 1/n(x)2- 1/no=0 outside of f, (iv) becomes a straightforward con-

sequence of the compact injection of HI(’) into L2(fl). [3

We are now ready for the proof of Proposition 3.2.
Proof ofProposition 3.2. Let us denote by De the unbounded operator associated

with the bilinear form d(/3; H,H) defined by (3.6) and by tress(D) its essential
spectrum. By (3.7), we must establish the following identity:

(3.9) tress(D) [0, +oo[.

Now the proof of (3.9) involves two parts:
First the essential spectrum of De is proved to be independent of/3. Indeed,

by the previous lemma the forms dl and d2 are compact perturbations of do. By the
Weyl theorem (cf. [23]), they do not modify the essential sp.ectrum. In other words,
tres(Dt) tress(Do) for every value of/3.

It remains to prove that tress(Do)= [0, +oo[.
By Lemma 3.1, the following inclusion holds: Cress(Do)c [0, +oe[, and we must just
establish the converse inclusion. Moreover, tress(Do) is closed. Hence we must actually
prove that ]0, +[ c o’ess(Do).

We do it by using singular sequences (cf. [23]). Let T be a strictly positive real.
Let q be some function of (2) which vanishes in f, let H( be some arbitrary
vector of Ca, and let Jo denote the Bessel function of first kind of order zero (cf. [1]).
We define a sequence (H(p) as follows:

H P -p d/ Jo x/ x H

To prove that (Hp)) is a singular sequence, we must establish the three following
statements:

(3.10a) IH(’)I>- a > o VpeN,
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(3.10b) IDoHp)- 3,Hp)I ., O,

(3.10c) for (L2(N2))3, weakly.

Assertions (3.10a) and (3.10b) can be deduced from the asymptotic behavior of
Jo (cf. 1 ]), and (3.10c) is a direct consequence of the Lebesgue dominated convergence
theorem.

3.3. The min-max principle and the dispersion relation. By Propositions 3.1 and
3.2, if (3.2) holds, all eigenvalues of C0mexcept perhaps (/3/n)2--are located below
the essential spectrum. Hence we can apply the min-max principle to get expressions
of the eigenvalues as functions of/3.

Let us define

(3.1)

/l(j)--" inf c(; H, H)
H (L2(12))

Inh=l

and if m > 1

where [H(1),

h,, (/3) sup inf
H(1),...,H(m-1)a(L2(I2))3 H[H(),’",H(m-)],,

IHI2=1

c(fl; H, H),

H’-’], {H e V; (H, Hj) =0; j= 1, m- 1}.

By the min-max principle (cf. [22]), we have, for each fixed m

(3.12) (B/ n+) < ,( <= ,x( <- ,,.( <- (#l no)

and EITHER

(i) Am()<(/n)2.

In that case, there are m eigenvalues of Co (counting them a number of times equal
to their multiplicity) below (/3/n), and A,,(/3) is the mth eigenvalue.

In that case,

OR

(ii) A,,,(B)=(B/n).
/m( /rn+l( /m+2(j (//no)2

and there are at most (m- 1) eigenvalues of Co (counting multiplicity) below (B/noo).
Note particularly that if (3.2) holds all eigenvalues of Comexcept perhaps

(]3/no)2mhave finite multiplicity and are isolated points of (/3).
It is now clear that the min-max principle provides an expression of the dispersion

relation between the wavenumber k and the propagation constant ]3 as follows.
THEOREM 3.1. The solutions (fl, k) of problem (), defined by (3.1), such that

k < /no are the roots of the dispersion relation:

(3.13)
A.,(fl k2,
A,,, (fl < (fl / no)2,

Remarks 3.4. (1) The min-max principle does not allow us to take into account
the solutions (/3, k) of problem () such that k- fl/noo. These solutions are different
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from the others: indeed the associated field does not decrease exponentially at infinity
(it satisfies AH 0 outside the core region). From a physical viewpoint, the correspond-
ing mode is not "guided." However, the case k =/3/no will be considered in 4 for
the study of cutoff values.

(2) The min-max principle is useful for comparing eigenvalues for various indices.
Indeed, let n and n’ be two index profiles such that

(3.14) n(x) <= n’(x) a.e. in R2.

Then c(fl, n’; H, H)<-c(/3, n; H, H) for every H and every/3. Consequently,

Am(, rt’)<=Am(fl, n) ’fl>0, m= 1,2,....

This obvious consequence of the min-max principle has many practical applica-
tions. Indeed, for every index profile n, a circular step-index profile n’ can be defined
by

n’(x) n+ a.e. in Da,

n’(x) no a.e. in RZ\Da
such that (3.14) is satisfied. Since the functions A,,(/3, n’) are well known, this com-
parison principle immediately provides information about the functions/m (fl, n). ]

4. Study of the dispersion relation (3.13).
4.1. Differentiability and monotonicity results for the dispersion curves. The aim of

this section is to establish Proposition 4.1.
Prto,osi-rON4.1. (i)The functions ,,,() are continuous and almost

everywhere differentiable for +.
(ii) Suppose that

1 1
(4.2) A(n) sup )2 2

XG2 n(x no

Then the functions t ([3) are strictly increasing in for +.
This proposition is a straightforward consequence of the following lemma, which

provides an estimate for the derivatives of the functions ,,,(/3).
LEMMA 4.1. efunction

(4.3) Am() Am()--(/n)2

is continuous. It is differentiable almost everywhere and its derivative satisfies

d
() 2 +1 a(n),

where (n) is defined by (4.2).
Proof Note first that A() is the ruth max-min associated with the form

d(; H, H) defined by (3.6).
Let and ’ be two distinct positive reals and let H V such that IHI 1. Then

(4.) a(#; n, n)- a(’; n, n) (# ’)a(n, n) + (#- #’)a(n, n),

where d and d2 are defined by (3.4) and (3.5).

where

+ 1 A(n) <__-5-,
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By the Cauchy-Schwarz inequality

(4.6)

and by (2.13)

(4.7)

Idl(n, H)I 2A(n)lgrad H3I,
Ida(H, H)I<--A(n),

2Igrad H3I2 dx<-n+(d(’; H, H)+(fl’/n)).

Using (4.5)-(4.7), we obtain

d(/3; H, H) <_- d(/’; H,

(4.8)
2n+ d(fl’; H. H)+-_ .

Therefore, for every integer m

Am (/3) -< Am (/3’) q-I]3 18’lA(n)
{2n+(A.,(fl’) + (/3’/noo)2) ’/2 + (/3 + fl’)}.

By (3.12), A.(fl’) is always negative, so that we have

A.,(fl)<=A,..(fl’)+lfl-/3’,A(n){2 no
n--L+/3’+ (/3+/3’)}

and, by inverting/3 and fl’

IA,,,(/3’)- A,,,(fl)l <--I/3 -/3’12A(n) max (/3,/3’){ n++1.noo 1}.
Consequently, the function A,, (/3) is locally Lipschitz and hence almost everywhere

differentiable. By the previous inequality, its derivative satisfies (4.4). [3

Remarks 4.1. (i) Note that Lemma 4.1 cannot be improved, since, in the case of
the circular step-index fiber, the functions A,,(/3) are not everywhere differentiable. In
fact, we can show that the eigenvalues are analytic functions ofthe propagation constant
/3 (cf. [12]). However, since the analytic curves may intersect, the functions A,,(/3) are
just piecewise analytic.

(ii) By Theorem 4.1, if (4.1) holds, the functions A,,(/3) are one to one and the
dispersion relation (3.13) equivalently reads:

A nl(k2) fl,
A n k2) < kn,

Consequently, all the results concerning the direct problem, which consists in studying
the solutions k for a given value of/3, may be transposed to the inverse problem.

(iii) A simple calculation shows that if

(4.9) n+/ no < Q+ and noo/ n_ < Q-,

where Q+ is the greatest root of the equation x3-x 1 =0 and Q-= (1/(1 + Q+)+ 1) 1/2,
then the functions A,,(/3) are strictly increasing in/3 for/3 e N+.

The computation gives the following approximate values:

Q+ 1.33, Q- 1.20

and condition (4.9) is satisfied by all the fibers used in practice. [3
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4.2. Existence of eigenvalues: a sufficient condition. Let us recall that (see, e.g.,
17]) a circular or elliptic step-index fiber has, for every nonzero value of/3, at least
two guided modes.

In the circular case Al(fl)=A2(fl)<(/n)2, and in the elliptic case
A2(fl) < (fl/n), for every nonzero value of the propagation constant/3.

However, it may happen if there are some regions in Da where the index profile
n is lower than no, that the fiber supports no guided modes for small values of/3.
This is, for example, the case of the so-called "W-profiles" (cf. [11], [20]).

The following theorem provides a sufficient condition on the index profile which
ensures the existence of two guided modes for every nonzero value of/3.

THEOREM 4.1. Suppose

(4.10) fn -)dx>-_O;
then Al(fl) _--< A2(fl) < ([3/no)2 for all fl > O. Thus for every nonzero value of fl there are
two eigenvalues of Ct3 below (ill no) -.

Proof By [8] the functions Am(fl) admit the following equivalent expression:

(4.11) Am(fl)= inf sup c(fl; H,H),
Vm l/’rn H V,

IHI2--1

where V, is the set of all m-dimensional subspaces of V.
If v HI(), it results from (4.11) that

2(/3) -<- sup c(fl; H, H),
H V

where

Since the function v can be chosen arbitrarily, this implies that

+(),

where

Suppose first that (4.10) is a strict inequality and consider the following test
functions (cf. [19])"

1

vrv (x)
log Ix log N
log a- log N
0

if [x < a,

if a < Ixl < N,

if Ixl > N,
where a is the radius of a disk containing the core region II. Then, by (4.12), we have

()_<-
27r n2 log

Da
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Consequently, by taking N large enough, we see that/z (fl) is strictly negative for every
nonzero value of/3.

If (4.10) is an equality, we introduce some function w 6 H(R2) such that

wdx>O,

and we consider the following test functions:

)N ON + OW,

where a denotes a strictly positive real function. Then, by (4.12), we obtain

4r(n-lg (-)) +a2K(, w)-a2 fo (-- -) wdx

Iv,l
where K (/3, w) neither depends on a or on N. The required result follows by taking
N large enough and a small enough.

Remarks 4.2. (i) A similar result has been established for the scalar equation of
the weak-guidance approximation (cf. [6]).

(ii) The converse will be discussed in 5 (cf. Proposition 5.1).

4.3. Asymptotic behavior of the dispersion curves. Definition of the cutoff values. In
this section we prove that, for every integer m, the mth guided mode, associated with
the ruth eigenvalue A,(/3), exists for/3 large enough. Indeed, we have the following
proposition.

PROPOSITION 4.2. For every integer m there is a value fl* such that

Am(fl)<(fl/noo)2 Vfl>fl*m and Am(fl*m)--’(flm/n)2.

This value is called, by definition, the mth upper cutoff value.
This proposition can be deduced from Lemma 4.2.
LEMMA 4.2. For every integer m, we have

A,(fl) 1
lira(4.13) ,,2 2.-.+

Proof Let r/> O. By the definition of n+ there exist Xo 2 and p > 0 such that

where Do {x e R2; Ix Xol < p}.
(1) (m)We denote by/xo ",/xo the m first eigenvalues of the Laplacian operator in

Do with Dirichlet boundary conditions and by wp") the associated eigenfunctions
extended by zero out of Do and satisfying wo]2 1, i= 1,..., m.

Let Vo be the m-dimensional subspace of H(N2) spanned by wo ,..., "o
set

By (4.11), we have

A2m(fl)--< sup c(fl; H, H),
He Vp
IHI2--1
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and thus

where

X2,,(fl) 1
< (t, p)0<

/3 2 n+2

a,,(fl, p)= sup
1

[grad vl 2 dx + Iol 2 dx
Iv12--1

Finally we derive the following estimate"

’2m( 1

3 2

Iv12--1

To conclude, we just note that for every integer

12 1 (!)]./,(pl) /.Z 1(!) and w/)l[ L(oo) w, LC(D1)p p

so that, for/3 > 1/p

/2m_l(/) 1

/2 n 2
+

where K (m) is independent of/3, p, and

n 2
<- K(m)rl,

Remarks 4.3. (i) Lemma 4.2 has its own interest. It means that when/3 tends to
infinity the phase velocity of every mode tends to a limit, independent of m and equal
to Co/n+.

(ii) Other results about the asymptotic behavior of the functions Am(fl) have been
carried out in [4] and [5].

Proposition 4.2 does not ensure that Am(/3) (fl/no)2 when/3 <fl*m. That is the
reason we set Definition 4.1.

DEFINITION 4.1. For every integer m,

The value/3 is called the mth lower cutoff value.
Obviously, the following inequalities hold"

/3*m </3"+,,= /3 </3=m+,, 0<= /3=</3=,*
and we have (cf. Fig. 3) a() 2/ 2 < o 2/nfor==anda=()< nfor>.

These cutoff values will be studied in } 5.

4.4. The case n>=noo. We can improve these results in the important case where

(4.14) n(x) >- noo a.e. in E2.

Indeed, we have the following theorem.
THEOREM 4.2. If (4.14) holds, then, for every integer m, flo,, fl*m, and the number

of eigenvalues of Ct located below (/n), is monotone nondecreasing in ft.
This theorem, illustrated by Fig. 4, is a straightforward consequence of the next

lemma.
LEMMA 4.3. Assume that (4.14) holds. Then the functions A,,(fl), defined by (4.3),

are monotone nonincreasing in fl for fl +.
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FIG. 3

F]o. 4

Proof We extend to the quadratic case a technique of [22] applied to the linear
case.

By (3.12), Am(fl) is always negative, so that the following identity holds"

Am(fl) sup inf min (0, d(fl; H, H)),
IHI2=I.H(1),’",H(m-1)(L2(R2)) H[H(I),...,Hm-)]

where d (/3; H, H) is defined by (3.6). Moreover, for every fixed H, the function which
associates min (0, d(/3; H, H)) to /3 is monotone nonincreasing in /3 for /3E/ (cf.
Fig. 5). Indeed, by (4.14), we have

d(H, H)= -7-- IHI2 dx<O.

The required result follows. [q

The structure of the curves Am(/) is, in this case, similar to that of the circular
step-index fiber.
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d(

do(H.H)

I:H.H)

FIG. 5

5. Study of the cutoff equation. The cutoff values, which we introduced in 4.3,
are important features of the guided modes. They are especially useful for counting
the number of guided modes which can be propagated in the fiber for a given value
of ft. Therefore we need a characterization of these cutoff values.

After deriving some a priori estimates, we study the eigenvalue equation

c(fl; H.(/3), H’)= Am(3)(Hm(3), H’)

for/3 in a neighborhood of/3,, or/3". So we obtain the cutoff equation which is set
in a weighted Sobolev space.

Finally, we prove that the sequences (/30,,) and (/3") tend to infinity, and con-
sequently, that the number of guided modes, for a given value of fl, is finite.

5.1. A priori estimates. We first establish some a priori estimates for the
eigenfield H.

LEMMA 5.1. Let A I+ and H V such that

(5.1) c(fl; H, H) AIHI, x --< (/t/)2.

Then

(5.3)

Igrad HI -< M(.) Ja IHI dx,dx

(5.4) IN31 = dx N M(n) IHI dx,

2 2where M(n)=[A(n)n++(A(n)n++A(n)n)/e], A(n) is defined by (4.2), and 0
denotes the core region.

Proo By hypothesis, the field H satisfies

(5.5) do(H, H) ld(H, H)I + flld(H, H)[, and

(5.6) ((fl/n)2-A)lHlNfl]dl(H, H)]+Id(H, H)I.
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Moreover, by the Cauchy-Schwarz inequality

(5.7) Idl(H, H)I--<--2A(n) Igrad H3I2 dx and

Id(n, n)l_-< A(n) f Inl dx.

By inserting (5.6), (5.7), and (2.7) in (5.4) and (5.5), we obtain

(5.9)
2 Igrad HI2 dx <= fl2A(n) [HI 2 dx + 2/3 A(n)

n+

and

(5.10)

Now we set X2=’ Igrad HI dx and y2=’ IHI dx. With this notation, (5.7) reads

X2--2flA(n)n2Xy-- fl2A(n)n+ y2=<O,

which implies

2 )2 4 +2A 2 1/2}X <--{flA(n)n++(flZA(n n+ (n)n+) Y.

Inequality (5.2) is exactly the square of the previous inequality. Then we deduce
inequality (5.3) from (5.2) and (5.10). Eventually, we obtain inequality (5.4) by using
identity (2.2).

Remarks 5.1. (i) These estimates are satisfied, in particular, if A is an eigenvalue
of the operator C and H an associated eigenvector.

(ii) Inequality (5.3) provides a lower bound for the following factor:

which gives an estimation of the confinement of the field in the core region.
We can deduce from the previous lemma some results concerning the existence

of guided modes for small values of the propagation constant/3 as follows.
PROPOSITION 5.1. (i) The lower cutoff value of the third guided mode f13o is strictly

positive for every index profile.
(ii) If the index profile satisfies

(5.11)
la[ ---n dx-> -a(n n+,

where Ifl denotes the measure of f, the lower cutoff value of the first mode is strictly
positive.
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Remarks 5.2. (1) By (i), a fiber supports at most two guided modes at low
frequencies.

(2) Assertion (ii) provides a partial converse part for Theorem 4.1.

Proof. (i) Suppose that/3 =0 and consider a sequence tip tending to zero as p
tends to infinity and satisfying

(5.12) A3(flp) < (p/n)
for every p. By (3.11), we have for every value of

c(fl H, H)
(5.13) A(fl) >- inf

HI" IHI
HO

where is the subspace of V defined as follows:

V= H V; H dx= H dx=O

Consequently, by (5.12) and (5.13), there exists a sequence H(e in such that

c(fl,; Hp, Hp) < (ill n)21HPI.
By Lemma 5.1, sequence HCp can be normalized as follows:

(5.14) fn In"l2 dx 1.

By (5.2), the sequence a(p) is bounded in (H(O))2, and there exists a subsequence
converging to H, weakly in (H(O))2 and strongly in (L2(O)). The limit H satisfies

(5.15) IHI dx 1 and H1 dx H2 dx O.

Since the sequence p tends to zero, it results from (5.2) that H is constant on O. The
contradiction follows eventually from (5.15).

(ii) Suppose likewise that 0 and consider a sequence (tip), converging to zero
and satisfying Al(flp)<(p/n) for every p. As in the first paa of the proof, we can
prove that there exists a sequence (HP) of V such that

C(Bp, HP, H P) < (tip/n)=lH"I and IH"I2 & 1,

for every p, and such that sequence (Hv) converges strongly to a constant field H in
(L()). Moreover, by (5.5) and (5.6), we have

I1 dx en Igrad HPI 2(n)
+

where (n) is defined by (4.2) and the term at the right of the inequality is always
greater than (-(n)n). To conclude, we take the limit of previous inequality when
p tends to infinity.

.Z Te emg eti. Assume that >, let H() be an eigenfunction of

C associated with the eigenvalue I(), and consider the eigenvalue equation

(5.) c(; n(l, N’ a((N(, N’I.
Formally, when tends to , this equation becomes

(;, ’=0,
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where we denote by H*,, the limit, in some sense, of the family (H,, (/3))o. This equation
is precisely the so-called cutoff equation.

Now our aim is to make this formal reasoning rigorous by introducing some
appropriate functional space.

Note that the limit H*m does not generally belong to V since the energy j2 IH[ dx
is generally infinite. Indeed, for/3 >/3*m, H,,(/3) has an exponential decay at infinity
(cf. [11]):

1
H,,(fl)(x) Ixl+ K ix],/2 exp {-((/3/n)2-

but it decreases less and less when ((/3/n)2- A,,(/3)) becomes smaller. At cutoff, it
may happen that the field does not decrease outside the core region

In view of the estimates (5.1) and (5.3), we are led to consider the following
functional norm"

(5.17) [H] II-112 dx + In31 - dx + ]grad HI2 dx

We denote by W the completion of (R2) with respect to this norm. In fact, the space
W is equal to the following product space:

(5.18) W=

where W([t2) is a weighted Sobolev space (cf. [15]) defined by

W() {0; pq Lz(R) and grad q [L2(2)]2}
with p(x)= ((1 + Ix12) 1/2 log (2+ Ix12)) -1.

Now we set the following definition.
DEFINITION 5.1. We say that/3 satisfies the cutoff equation if and only if there

exists H W, H 0, such that

d(fl; H, H’)=O VH’ W,
where W is defined by (5.18) and d(fl; H, H’) by (3.6).

This terminology is justified by Theorem 5.1.
THEOREM 5.1. The cutoff values o,, and fl*,, satisfy the cutoff equation for every

integer m.
Remark 5.3. It is not proved that every solution of the cutoff equation is, con-

versely, a cutoff value. Nevertheless, this result has been established for the scalar
equation (cf. [4]).

Proof Let (tiP)p be a decreasing sequence tending to /3*m as p tends to infinity.
By the definition of/3*m, since/3p is greater than/3*m, ,m(p) is an eigenvalue of C(tp ),

and we denote by H(p) an associated eigenfield.
By Lemma 5.1 we can choose the sequence (n(P))peN such that Ia In()12 dx 1.

Moreover, by (5.1) and (5.3), the sequence (H(p)) is bounded in W. Consequently,
there exists a subsequence (H(p’)) and an element H* in W such that H(P’) H*
weakly in W and strongly in (L2())3.

We can now take the limit of (5.16) for H’e [@(2)]3 and we obtain

d (t3*; H*, H’) O,

which is valid by density for every H’ in W. Finally, H* does not vanish everywhere
since
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We have proved the lemma for/3*,,. The proof is similar for/3,,. Indeed, by the
definition of/3,,, there exists a sequence (/3p) such that tiP> m, h,(/3p) < (p/n)2

and limp_,+/3p =/30m.
The following lemma is a useful generalization of Lemma 5.1.
LEMMA 5.2. Let fl + and H W such that d (/3; H, H) 0. Then

flgrad H] dx<--2M(n) falHl dx,

I ’H3[2 dx<--M(n) f ’H[ dx.

We deduce from Lemma 5.2 the following corollary.
COROLLARY 5.3. For every solution fl of the cutoff equation, the associated eigen-

space Wo {H W; d (/3; H, H’) 0, tH’ W} is finite-dimensional.
Remark 5.4. By the previous lemma, if (fl/noo)2 is an eigenvalue of C0, it has

necessarily finite multiplicity.
Proof. Suppose that W0 is infinite-dimensional and let (H(P))p be a basis of W

By Lemma 5.2, this sequence.may be orthogonalized as follows"

(5.19) H(p)" H(q) dx tpq.

Moreover, it is bounded in W and there exists a subsequence of (H(p) which converges
strongly in (L-(f)). But this is in contradiction to (5.19).

5.3. The finite number of eigenvalues. We will now prove that the number of
solutions k of the dispersion relation (3.13), for a given value of/3, is finite. We first
establish the result for a particular category of profiles and then generalize it to arbitrary
profiles.

THEOREM 5.2. Assume that (4.14) holds. Then limm_+ fl* +c, and for each
fixed fl, Co has at most a finite number of eigenvalues below (ill n)2.

Proof. We will prove this result by contradiction. Suppose that sequence (fl) is
bounded. Since it is a nondecreasing sequence, there exists fl* such that lim,_,+ fl*
/3*.

(1) First we prove that every/3 greater than/3* satisfies the cutoff equation.
Indeed, if/3 > fl*, then/3 > fl*m for every integer m. Consequently, the operator

Co has an infinite sequence of eigenvalues (h,, (/3)) m=>l which converges to (/3/n)2

as m tends to infinity. Then, using a sequence of associated eigenfields, we can prove,
by following the demonstration of Theorem 5.1, that/3 satisfies the cutoff equation.

(2) Let (flP)p be a strictly decreasing sequence tending to /3* as p tends to
infinity. By the previous paragraph of the proof, tip satisfies the cutoff equation for
every p. Let us denote by H(p) an associated eigenfield which is assumed to satisfy
(cf. Lemma 5.2)

I. IH’I dx- .
By Lemma 5.1, there exists a subsequence, still denoted (n(P))pet, and an element

H* in W such that HP H* weakly in W and strongly in (L())3. The field H*
satisfies

(5.20) f In*l= dx= 1 and d(/3*; H*, H’)=0 VH’E W.
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(3) Let p,qN. By definition of H(p), we have d(flP’,H(P),H(q))-’O and
d (/3q; H(q), H(p)) O.

By subtracting the conjugate part of the second equation from the first one and
by dividing the result by (p-q), we get dl(H(p), H(q))-I"(p d-q)d2(n(p), H(q)) --0,
which converges to

(5.21) dl(n*, H*)+ 2fl*d2(H*, H*)=0,

as p tends to infinity. By (5.20) we have, in addition,

(5.22) do(n*, H*)+ *d,(n*, n*)+(#*)d=(H*, n*) =0.

Using (5.20)-(5.22), we eventually obtain

do(H*, H*) (fl*)2d2(H*, H*).

But we have do(H*, H*) _>- 0 and under assumption (4.14), d2(H*, H*) < 0. Event-
ually, by Proposition 5.1,/3*> 0.

Using a comparison technique, we can generalize this result as follows.
THEOREM 5.3. The sequences of cutoff values (flm) and (fl*,,) satisfy

lim /3 0
m-+oo m-/oo

and for each fixed fl, C3 has at most a finite number of eigenvalues below (ill n)2.
Proof. Assume that the index profile n does not satisfy (4.14) and let us define

the index profile of a step-index fiber by

(x)=n+ ifx

fi(x) n if x ( 2\-.
Since fi(x) -> n(x), almost everywhere x , by Remark 3.3, X,,(/3, ) <- X,,(/3, n)

for every integer m and every value of/3. Consequently, by definition ofthe cutoff values:

o () < .,,() < flo (n) < fl*(n)

Moreover, satisfies (4.14). Therefore, by Proposition 4.2 fl()=fl*(a), and by
Theorem 5.2, lim,_.+ fl*() +oo.

6. Conclusion. This work provides a relatively complete description of the disper-
sion relation of a fiber, whose index profile is arbitrary.

The results are more precise when the index is everywhere in the core greater than
the index of the cladding. In that case, we showed that the structure of the guided
modes is similar to that of a circular step-index fiber.

When the above condition is not satisfied, some points must still be investigated,
especially the existence of index profiles such that o,, </3" for some m, and, in this
case, the behavior of A,,(/3) in the interval [flo,/3*m]. The cutoff equation therefore
requires specific study.
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CORRELATIONS BETWEEN CHAOS IN A PERTURBED SINE-GORDON
EQUATION AND A TRUNCATED MODEL SYSTEM*

ALAN R. BISHOPt, RANDY FLESCH$, M. GREGORY FORESTl,
DAVID W. MCLAUGHLIN, AND EDWARD A. OVERMAN, 11

Abstract. The purpose of this paper is to present a first step toward providing coordinates and associated
dynamics for low-dimensional attractors in nearly integrable partial differential equations (pdes), in par-
ticular, where the truncated system reflects salient geometric properties of the pde. This is achieved by
correlating:

(i) Numerical results on the bifurcations to temporal chaos with spatial coherence of the damped,
periodically forced sine-Gordon equation with periodic boundary conditions;

(ii) An interpretation of the spatial and temporal bifurcation structures of this perturbed integrable
system with regard to the exact structure of the sine-Gordon phase space;

(iii) A model dynamical systems problem, which is itself a perturbed integrable Hamiltonian system,
derived from the perturbed sine-Gordon equation by a finite mode Fourier truncation in the nonlinear
SchrSdinger limit; and

(iv) The bifurcations to chaos in the truncated phase space.
In particular, a potential source of chaos in both the pde and the model ordinary differential equation

systems is focused on: the existence of homoclinic orbits in the unperturbed integrable phase space and
their continuation in the perturbed problem. The evidence presented here supports our thesis that the chaotic
attractors of the weakly perturbed periodic sine-Gordon system consists of low-dimensional metastable
attracting states together with intermediate states that are O(1) unstable and correspond to homoclinic states
in the integrable phase space. It is surmised that the chaotic dynamics on these attractors is due to the
perturbation of these homoclinic integrable configurations.

Key words, chaos, sine-Gordon equation, homoclinic orbits
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Introduction. The purpose of this paper is to present a first step toward providing
coordinates and associated dynamics for low-dimensional attractors in nearly integrable
partial differential equations (pdes). In this paper we describe

(i) Numerical results on the bifurcations of the damped, periodically forced
sine-Gordon equation with periodic boundary conditions which reveal attractors that
are spatially coherent while temporally chaotic;

(ii) An interpretation of the spatial and temporal bifurcation structures of this
perturbed integrable system with regard to the integrable structure of the sine-Gordon
phase space;

(iii) A model dynamical systems problem, which is itself a perturbed integrable
Hamiltonian system, derived from the perturbed sine-Gordon equation by a finite
mode truncation in the nonlinear Schr/Adinger limit; and

(iv) The bifurcations to chaos in the four-dimensional truncated phase space.
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In particular, we focus on a likely source of chaos in both the pde and ordinary
differential equation (ode) systems: the existence of homoclinic orbits in the unper-
turbed integrable phase space and their continuation in the perturbed problem.
In the last part of this study, we numerically correlate the homoclinic crossings in the
chaotic dynamics of the full and reduced problems.

While the present paper does succeed in revealing homoclinic structure of the
pde in a finite mode truncation, we do not claim that this four-dimensional real
truncation is sufficient for other important features. On the contrary, two more
dimensions are required to accurately cover the attractor [11], to resolve the unstable
manifolds of metastable states on the attractors [12], and to quantitatively reproduce
the pde bifurcation sequence 11].

These and similar [1], [2] experimental results provide information about
(i) The coexistence of simple coherent spatial structures and temporal chaos;
(ii) The potential for capturing the pde bifurcation sequence with truncated

modal systems; and
(iii) The potential for identifying coordinates for chaotic attractors.

These studies also provide directions for the rigorous mathematical analysis to support
the numerical work in the individual pde and ode systems, as well as to develop the
connections between the full and reduced systems. We discuss some current projects
in 6.

The outline for the remainder of the paper is as follows:
Section 1 gives numerical bifurcations of the perturbed sine-Gordon equation; 2

gives a truncated two-mode expansion in the nonlinear Schr6dinger limit; 3 gives
properties of the unperturbed modal equations; 4 gives bifurcations of the perturbed
modal equations; and 5 gives correlations between the infinite-dimensional and
reduced systems.

1. Numerical bifurcations of the perturbed sine-Gordon equation. We begin by
describing one particular experiment from our body of numerical studies (e.g., [1],
[2]) on the weakly damped, periodically forced, sine-Gordon equation

(1.1a) utt- Uxx+Sin u e[-aut+F cos (tot)],

under periodic boundary conditions

(1.1b) u x=-,t =u x=-,t for all t,

and with even spatial symmetry

u(x, t)= u(-x, t) for all t.

For the purpose of this paper we restrict attention to one bifurcation parameter e F,
the amplitude ofthe external driver. The remaining parameters are fixed in the following
way:

(i) The linear damping coefficient ea is chosen very small:

(1.1c) ece .04;

(ii) The external driving frequency to is chosen near but less than 1:

(1.1d) to 1 eo3 .87;

(iii) The spatial period L is fixed at

(1.1e) L=12;
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and
(iv) The initial condition is given as a single-hump sine-Gordon breather localized

within the period.
With this parameter specification, we observe the following (Fig. 1) long-time
asymptotic states as a function of the bifurcation parameter eF. The numerical methods
used to discretize this pde are discussed in the Appendix. These long-time states, or
"attractors," are specified by their spatial structure and temporal behavior, with the
notation: Ko denotes a spatially homogeneous component, of zero wavenumber; K
denotes a period one component of wavenumber K1 =2r/L; KoO)K1 denotes the
nonlinear superposition of the two modes, etc. Locked implies a frequency-locked
state, oscillating at the driven frequency to. Chaotic denotes a broad-banded frequency
spectrum.

This particular bifurcation sequence does not exhibit quasi periodicity prior to
chaos, which is a typical route to chaos in other parameter regimes [1], [2]. A more
exhaustive parameter study is required to resolve whether stable quasi-periodic attrac-
tors occur in this diagram. However, the model problem we present below indicates
that when a second frequency is excited at this parameter specification, the collective
quasi-periodic state is unstable and thus would not be observed numerically. This
structure is reflected in the pde chaotic dynamics in that the system intermittently
settles into weakly unstable quasi-periodic states; we illustrate this in Fig. 2, where
eF .103.

We emphasize the spatial coherence coexisting with temporal intermittent chaos,
and moreover in a parameter range very near the integrable sine-Gordon pde. Fig.
2(a) displays the evolution of the spatial structure in time, beginning at t--50,000,
long after all transients have passed. Note the intermittent jumping between two weakly
unstable spatial structures, a "breather" (localized hump) peaked either at the center
or at the ends of the interval, with an intermediate passage through a flat state.

In order to quantify this spatial structure at each timestep tn, we use a recently
developed sine-Gordon spectral code to measure the exact sine-Gordon nonlinear
mode content in the field u(x, tn). (See [2] for details.) For example, Fig. 3(a) is the
sine-Gordon spectrum for an exact Ko sine-Gordon solution, i.e., a solution of the
pendulum: u 2 sin-1 [ksn(t; k)], 0< k2 < 1, with frequency to =.87, and for a spatial
period L- 12. These spectral curves are invariant under the exact sine-Gordon flow.
The endpoints of curves of spectrum are simple periodic spectra, and are closely related
to the action variables in the action-angle linearization of periodic sine-Gordon [6].
The other marked points, denoted by/k or [] within bands of spectrum, are double
periodic spectra, and these label all closed (degenerate) degrees of freedom. In [3] we

0 .052 .059 .070 .103 .150

; eF

spatial 0 0 ]) 1 /0 0 ]) /1 0 /1 ) 2
structure

temporal frequency-locked to
behavior

chaotic

FIG. 1. The pde bifurcation diagram, corresponding to variable eF with all remaining parameters fixed in

equations (1.1).
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Oo

0 000

500
FIG. 2(a). Numerically computed solution ch u(x, t) of equation (1.1), 50,000<= _<- 50,600.

show that there is a 1:1 correspondence between pairs of fully complex (nonreal)
double points and linearized, exponentially unstable modes for a given sine-Gordon
N degree of freedom solution. Moreover, these local instabilities are reflected globally
in the isospectral set of the given solution by homoclinic components. For the example,
Fig. 3(a), the number of pairs of complex double points is given by the integer solutions
n of (2nTr/L)2 (0, k2), where k is the elliptic modulus. Since L 12 here, we find that
n 1 is the only solution. The exact Ko sine-Gordon solution, depicted in Fig. 3(a),
with frequency as in (1.1d), on the interval of length L= 12,

(i) Is linearly unstable, with order 1 growth rate;
(ii) Has homoclinic orbits on its sine-Gordon isospectral set, which are homo-

clinic as + to this circle (one-torus) of constants in the phase space of L-periodic
functions of x; and
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FIG. 2(b). Corresponding to the numerically computed solution in Fig. 2(a), th u(x, t,) (solid graph)
and qb (O/Ot)u(x, tn) (dotted graph), the sine-Gordon mode projection is numerically measured, with respect
to the complex spectral parameter A, at selected times tn. (Refer ahead to Fig. 3 for the A-spectral measurement
of three exact sine-Gordon low-mode solutions.) We note: (1) the passage of the perturbedflow from a "cross"
spectral projection to a "gap" spectral measurement; and (2) at each discrete time t,, the spatial waveforms
are predominantly nonlinear KoK sine-Gordon waveforms.

(iii) This instability saturates nonlinearly, by arbitrary variation of initial condi-
tions, to the breathers in our following examples [3].

We emphasize that these are low-amplitude spatial structures, far from the ampli-
tude 7r associated with inverted rest states of the pendulum. These homoclinic orbits
of the full pde are thus quite distinct from the separatrices in the x-independent
pendulum equation.

The next example is an exact KoO)K1 sine-Gordon solution: a breather plus
nonzero mean. These are two such exact nonlinear states (Fig. 3(b)) reflecting the two
ways that the degeneracy due to the complex double point in Fig. 3(a) can break.
These nonlinear K003 K1 states represent exact sine-Gordon solutions, with frequency
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-6 6
u(x,t.)

denotes a band of spectrum
denote simple periodic spectra
denote double periodic spectra

(a)

K plus complex pair
of double points

u(x,t,,)

i/4

(b)

"gap" state

-6 u(x, t.) 6

i/4 lA_

KoK "cross" state

(c)

FIG. 3. A schematic of the spatial structurefor three exact sine-Gordon solutions at some discrete time
u(x, t,), together with the associated 3,-spectral measurement. We remark that for exact sine-Gordon flows, the
A-spectral projection is invariant. Fig. 3(a) depicts the spectrum of an x-independent pendulum solution which
is purely oscillatory in t, with frequency to .87, on an x-interval of length L 12. This pure Ko state has one
spectral band on the circle of radius 1/4, emanating from 3, 1/4, terminating at simple periodic eigenvalues
3, e+i/16, where b measures the maximum amplitude of u. For this K solution, on an interval of length
L 12, there is one pair of complex conjugate double points which labels the modulational instability of this
x-independent solution in the K mode direction. Figures 3(b) and 3(c) depict pure KoO) Kl spatial waveforms
of sine-Gordon, so-called "breather plus nonzero mean" states. The two spectral configurations represent the
two ways the complex double points of Fig. 3(a) may break into simple periodic points, opening up order
amplitude in the K mode, and producing the two types of exact nonlinear KoKi waveforms.
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to .87 as in (1.1d), x-period L 12, and are linearly neutrally stable solutions of the
sine-Gordon equation (there are no fully complex double points). Under the unper-
turbed sine-Gordon dynamics, the spectral configurations in Figs. 3(a) and 3(b) remain
invariant.

Under a weakly perturbed flow such as (1.1), initial configurations such as in Fig.
3 will distort due to the perturbation. The endpoints ofthe spectral curves will modulate,
and moreover, the "closed" degrees of freedom will be opened. On short timescales,
the neutrally stable modes (associated with real double points) perturb only to the
order of the perturbation, whereas the O(1) unstable modes (associated to nonreal
double points) generate dramatic changes in spatial structure. Of interest here is which
modes resonate with significant amplitude on very long timescales, after all transients
have passed, and then how the dynamics of these modes proceed.

At each timestep in the perturbed flow (1.1), we measure the exact nonlinear
content in u (x, tn), tn >> 1. In this way we determine if the spatial structure is well
approximated:

(1) At a given instant t, >> 1 by a low degree of freedom exact sine-Gordon field,
and

(2) During the flow by a slow modulation through the low-dimensional nonlinear
modes, or if the mode content varies widely in a sine-Gordon projection.
Figure 2(b), corresponding to Fig. 2(a), indicates the sine-Gordon mode projection of
u (x, tn), t, >> 1, is uniformly very low-dimensional, even in this chaotic regime, and
that the energy transfer is predominantly within the nonlinear Ko and K1 modes. These
measurements quantify our spatial description of the bifurcation diagram in Fig. 1.

Remark. In the Fourier mode projection of u (x, t,), a second harmonic cos (K2x)
is required to accurately describe the weak instabilities of the (metastable) spatial
structures that comprise the chaotic attractor. We refer to [12] for this analysis, and
to 11 for a discussion of the truncated Fourier mode system that includes this second
harmonic.

The next figure, Fig. 4, is a phase-plane projection of (u, u,) at one location, x 0,
again for eF .103. Another indication of the chaotic dynamics is a broadband power
spectrum, which we omit here. (Refer to [1] and [2] for an exhaustive description of
the dynamical systems tools which we use to measure the frequency locked, quasi-
periodic, and chaotic attractors.)

We close this section with a summary description of the chaotic attractors for
(1.1). The dynamics settles into a region of phase space containing two nonlinear
Koq) K1 states (breather plus nonzero mean), with the breather localized in the center
of the interval, the other state with the breather translated by L/2 to the wings. Note
the discrete symmetry due to periodic boundary conditions and symmetric initial data.
Each state is "unstable," with weak O(e) instabilities due to the perturbation, and the
unstable flow out of each state is through a neighborhood of the fiat Ko state, landing
either back into the original Ko0)K1 mode, or into the translated Ko0)K state. The
intermediate Ko state, however, is unstable (with order 1 growth rate) even in the
unperturbed flow, where it has homoclinic orbits associated to it. This apparent random
jumping process between the two Ko0)K1 states begs to be identified as a Bernoulli
shift on two symbols. In this description the two symbols are identified with the
neighborhoods of the two Ko0)K states, whereas the perturbed homoclinic structure
is responsible for the Bernoulli shift on these symbols.

This phenomenon is the sine-Gordon low-amplitude analogue of the now classical
larger amplitude pendulum chaos: the exponentially unstable inverted state (u
which under perturbation has equal likelihood of falling into either of the two states
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WU- (IWH--)

FIG. 4. The phase plane projection of (u, ut) at x=0, for the run in Fig. 2(a), (u(0, t,), u(0, t,)),
[50,000, 50,600], with At 2.

(oscillatory or running) it separates. These two states are stable in the exact pendulum
dynamics, but develop O(e) instabilities due to the perturbation, and their perturbed
flow often passes randomly through the homoclinic configuration.

Our thesis is that the chaotic attractors of the weakly perturbed periodic sine-
Gordon system, e.g., (1.1), consist of low-dimensional metastable attracting states, e.g.,
the nonlinear Ko K1 states of Fig. 2, together with intermediate states that are O(1)
unstable and represent homoclinic configurations in the integrable phase space. The
chaotic dynamics on these attractors is, we surmise, due to these perturbed homoclinic
configurations.

The derivation and analysis of perturbed, fully nonlinear, action-angle modes,
truncated on the low-dimensional structures associated to Figs. 2 and 3, are currently
under way [5]. As a preliminary step, we develop here a simple model problem that
captures some essential qualitative features of this route to chaos in the nearly integrable
pde. This model problem is achieved through a natural finite mode truncation on the
first two Fourier mode complex amplitudes.

We refer to 11] for a higher mode truncation which is aimed at more accurately
covering the chaotic attractors.

2. A truncated finite mode expansion in the nonlinear Schr6dinger limit. For fre-
quencies near but less than 1, the weakly perturbed sine-Gordon flow (1.1) resonates
with low-amplitude "breatherlike" spatial modes, rather than kink-like modes which
can predominate for significantly lower co 10]. In this limit we easily derive a perturbed
nonlinear Schr6dinger envelope equation as follows. Seek a solution of (1.1) in the
following form (recall co =.87 1- eo3, (1.1d)):
(2.1a) u 2x/eo3 [B(X, T) e’ +complex conjugate]+ O(e),
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with

(2.1b) X ,feo3 x, T et.

Then the slowly varying envelope B(X, T) satisfies

(2.2) --iBr + Bxx + (IBI- 1)B iB +.
From (1.1) the scaled parameters become (approximately):

(2.3a) .154, Lx 12v/eo3-6.12, kx 1.025,
2eo3 Lx

and the bifurcation parameter F is now

eF
(2.3b) " eo3"3/------’8( 2.67eF.

We have achieved two things by reducing to this amplitude equation. First, we
preserve the perturbed integrable structure, since the unperturbed pde (2.2) with
c F 0 is the integrable nonlinear Schr6dinger equation. Second, we factor out one
frequency, to of the driver. Thus, steady solutions of (2.2) correspond to frequency
locked solutions of (1.12), while T-periodic flows of (2.2), incommensurate with to,

correspond to quasi-periodic perturbed sine-Gordon solutions. Chaos in one system
is chaos in the other.

We now make a further approximation and truncation based on the predominant
Ko@ K1 structure measured in Figs. 2 and 3 for the perturbed sine-Gordon flow. (A
similar truncation and an interesting numerical study appears in [9]. The primary
difference is our focus here on the role of homoclinic structures in the attractors and
the comparison with the perturbed pde.) We seek

27/"
(2.4) B(X, T)=c(T)+b(T)cos(kX), k-

Lx
Inserting this ansatz into the perturbed NLS equation (2.2) and retaining cubic terms
in the complex Fourier amplitudes c(T), b(T) yields

--iCT + (Icl = +1/21bl- 1)c +1/2(cb* + c*b)b ic + i’,
(2.5)

--ibT + (Icl = +lbl=- (1 + k))b + cb* + bc*)c ib.

Several remarks about this model four-dimensional dynamical system are appropri-
ate at this point.

Remark 1. This two-complex Fourier mode truncation is surely not expected to
yield quantitative agreement with the perturbed pde, although Fig. 3 suggests the two
mode Ko@K1 nonlinear truncations provide a very good approximation [5]. This
discrepancy in the linear versus nonlinear mode is apparent as we compare a sine-
Gordon breather K1 mode with the Fourier K mode (Fig. 5).

FIG. 5. Comparison of a nonlinear K breather mode (left) versus a linear KI Fourier mode (right).
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Thus, we view this ode system as a model problem and a preview of [5]. Moreover,
in [11] we discuss the inclusion of the K2 Fourier mode into a three-complex mode
truncation.

Remark 2. However, this ansatz is capable of modeling some of the apparent
features of the perturbed sine-Gordon structure as discussed in 1. In particular, recall
that the chaotic sine-Gordon dynamics (at eF=.103, Fig. 3) reflect a competition
between a discrete number (here two Ko03 K1) of weakly unstable structures: one with
the breather in the center, the other with the breather localized at the ends of the
interval. These pde states are, equivalently, related by a half-period translation.
Moreover, the pde flow from one state to the other is through the fiat Ko state, which
has associated homoclinic orbits in the unperturbed phase space, whereas the unper-
turbed Ko03 K1 states are neutrally stable in the absence ofthe perturbation and develop
weak instabilities at the onset of chaos.

Now consider the perturbed sine-Gordon solution u, as modeled by this two
mode ansatz:

(2.6) u 2ex/[(c(T) + b(T) cos (kX)) e’’’ + c.c.] + O(e),

with c(T), b(T) governed by (2.5). These perturbed odes (2.5) admit the symmetry
(c, b)o(c,-b), which is equivalent in u to a translation by L/2. Moreover, this
symmetry implies that b 0 is an invariant subspace, which for u in (2.6) corresponds
to the fiat intermediate structure. (The equivalences extend further as discussed in 3.)

Remark 3. The truncated ansatz (2.6), with c, b governed by (2.5), is robust enough
to capture all three spectral configurations of Fig. 3, the Ko0)K1 "gap" state, the
Ko0)K "cross" state, and the intermediate Ko state with complex double points and
associated homoclinic components, as we will see below. Therefore, this approximation
has the potential to flow between gap and cross (Ko)K1) spectral configurations by
passing through the homoclinic Ko configuration. Recall from Fig. 2(b) and Remark
2 above that this is the spectral flow of the perturbed sine-Gordon equation.

3. Properties of the unperturbed modal equations. In our studies of the perturbed
sine-Gordon equation [1], [2], [5], we consistently aim to interpret the perturbed
system by projection into the phase space of the integrable sine-Gordon equation. Our
understanding of finite-dimensional invariant sets in the exact phase space is the
foundation of our studies of the perturbed problem. Consistent with this philosophy,
we now describe properties of the unperturbed modal system:

--iCT + ([Cl: +1/21b[:- 1)c +1/2(cb* + c* b)b O,
(3.1)

-ibT- + (Icl 2 +-341 bl-(1 + k2))b + (cb* + c*b)c O.

Property 1 (integrable Hamiltonian structure). The two complex- (four real-)
dimensional system (3.1) is an integrable Hamiltonian system, with two real indepen-
dent integrals:

I-Icl/1/21bl,
(3.2)

H 1/2lcl + lbl-Icl +lbl4-1/2(1 + k)lb[- [cl2 +1/4( bc*2+ b*c:Z).

The system (3.1) can be placed in complex Hamiltonian form as follows. Let
ql =c, pl c*, q b/x/, P2 b*/v/, so that the "energy" H takes the form

H(ql q2 Pl P)=1/2q 2lp,+2qlq2PlP2+-qEP-(l+kZ)qEqz qP+g(qP+qP).
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Then Hamilton’s equations with this complex structure are

i

which are precisely equations (3.1) and their complex conjugates.
Property 2 (symmetries). The integrable odes (2.1) admit the following sym-

metries"

(3.3a) (i) (c, b)(-c, b),

(3.3b) (ii) (c, b)-(c,-b),

(3.3c) (iii) (c,b)-(ec,eb) forany bR.

The reflection symmetries (i), (ii) yield two invariant planes" c 0 and b 0. The
S symmetry (iii) yields a circle of fixed points for each nontrivial fixed point.

Property 3 (sets of fixed points). The system (3.1) has three rings of fixed points"

(3.4a) Ring 1. (c, b)=(e6, 0), b[0,27r) in the b-0 invariant subspace;

Ring2. (c, b) (O, ei" / (l + k2)), b[0,2r),

(3.4b)
in the c 0 invariant subspace;

+2k2 2
[0, 27r).(3.4c) Ring 3. (c, b) e’6

5
,2ei"

1
qb

Remark. For larger lengths L > 12, another fixed-point ring exists 11 ].
The quadrature solution of these integrable equations is most easily affected by

the polar coordinate form of (3.1).
Property 4 (polar form of the unperturbed odes). Let c= C eiv, b= Be3, O=

2(3, -/3); then (3.1) becomes

Cr + 1/2CB2 sin 0 O, Br C2B sin 0 0,
(3.5)

Or + I + 2k2) 3 C2 -- 2(I 2Cz) cos 0 0.

For completeness, we also list

3’7- + C- 1 +1/2B2(2 + cos 0) 0,

T+B+C(2+COS 0)-(l+k2)=0.

By use of the integrals I and H, it is now easy from (3.5) to effect a complete
reduction to quadrature solutions ofeach choice I Io, H Ho. These general formulas
are not the focus of this paper but will be presented elsewhere [4]. Some special cases
will be relevant here (see Property 6 below).

Property 5 (stability type for each ring of fixed points). The S symmetry, together
with the fact that the amplitudes are constant when B 0 (Ring 1), or C 0 (Ring 2),
or 0 =0 (Ring 3), produce a double linearized eigenvalue of zero for each ring. The
linearized stability ofthese fixed points is therefore straightforward to compute; we find"

Ring 1. (c, b) (e6, 0) has a double zero eigenvalue with associated eigenvectors
in the b 0 subspace, and a one-dimensional stable and unstable eigen-
space, with O(1) stable and unstable eigenvalues, +/-kx/2-k2= 1.
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Ring 2. (c, b)= (0, ei4’-(1 + k2)) has a double zero eigenvalue with correspond-
ing eigenvectors in the c 0 subspace, and two purely imaginary, complex
conjugate eigenvalues, + isf(4k4-1). These fixed points are purely center-
like.

Ring 3.

has a double zero eigenvalue with corresponding eigenvectors in the 0 0
subspace, and two purely imaginary eigenvalues +/-i471cl Ibl. These fixed
points are centers.

Property 6 (homoclinic orbits associated to fixed-point Ring 1). The unstable fixed
__1points on Ring 1, with c e ’, b 0, lie on the energy surface H , I 1. These

are the asymptotic states associated to heteroclinic orbits on this energy surface, which
correspond to the one-dimensional stable and unstable manifolds of each fixed point
on Ring 1.

Using the integrals I and H from (3.2), we find a convenient integral is

h H -(1/2I- I),

which can be manipulated to find

2h+B2(B2+k2-I)
COS 0

B2(1-1/2B2)

Using this formula, the polar equations (3.5), and the values H =-1/2, I-1, h--0
appropriate to (c e i*, b =0), we determine an effective oscillator equation for z B2:

_1 Zr + (z- 8k2)(7z- 8(2- k2)) h 0.

The familiar potential energy diagram below, (Fig. 6), with energy level h 0, exhibits
the infinite-period behavior of z=B2:O//(2-k2)O, where /, denote mono-
tonically increasing, decreasing behavior, respectively.

The remaining formulas for C, % /3 are similarly derived [4]. There are also
additional orbits homoclinic to the closed curves nested around Ring 1 in the b 0
invariant subspace (see Property 8).

Z=B

FIG. 6. Potential energy diagram for z B Ibl 2.



CHAOS IN PERTURBED SINE-GORDON AND A MODEL SYSTEM 1523

Property 7 (connection between the ode fixed points and sine-Gordon solu-
tions). In the asymptotic representation (2.6) of sine-Gordon solutions, the above fixed
points of the unperturbed odes reflect the following solutions and their stability
properties.

Ring 1. u---2ex/[c eit+ c* e-i’], which corresponds to the Ko flat pendulum
solution, frequency locked to the driver frequency w. The O(1) instability
of these fixed points in the unperturbed system reflects the O(1) instability
of the exact Ko sine-Gordon solution (recall Fig. 3(a) and the surrounding
discussion). Moreover, the orbits homoclinic to Ring 1 reflect the sine-
Gordon solutions which are homoclinic to the pendulum solution with
frequency o .87.

Ring 2. u’-.v/-{[b cos kXei’’+c.c.] corresponds to the pure K mode, with a
zero-mean (Ko) component, and with frequency of the driver. These
solutions exist for sine-Gordon, but are not observed in the perturbed
dynamics. This is presumably explained by the larger amplitude of this
Ring 2, ]bl-x//3, relative to the other Rings 1, 3. These corresponding
solutions in the perturbed pde would then be expected to show up by
varying initial conditions with a significantly larger energy, or by driving
the system harder (see 4).

Ring 3. u--- x/-[(c + b cos kX) ei’t-F c.c.] corresponds to the Ko0)K sine-Gordon
solution, consisting of the K1 breather plus nonzero mean, locked at the
frequency to. These states are observed in the perturbed dynamics.
Moreover, the unperturbed pde stability type (neutrally stable) agrees
with that of the unperturbed odes.

In summary, the fixed-point Rings 1 and 3 in the unperturbed odes reflect
remarkably well the unperturbed Ko and Ko0)K sine-Gordon solutions, and moreover
maintain a parallel linearized instability and homoclinic orbit structure of the Ko state,
as well as the neutral stability of the Ko03 K1 states.

Below ( 4) we discuss how the perturbation selects individual points from these
rings.

Property 8 (simple periodic orbits nested around the fixed-point rings). The sym-
metries of the unperturbed odes, Property 2, lead to a nesting of closed curves in the
subspaces containing Rings 1, 2, and 3. For example, in the invariant subspace b 0,
we find closed curves ]CI constant Co, which yields the one-parameter family of
periodic solutions:

c Co ei(-C)" Co constant, b O.

As Co- 1, these curves approach Ring 1 while the frequency goes to zero.
Similarly, in the C =0 invariant subspace there is a one-parameter family of

periodic solutions surrounding Ring 2:

c=O, b Boexp(i(l+k2 2-Bo)T).
In the 0 =0 subspace, which contains Ring 3, we find another one-parameter

family of closed curves corresponding to periodic solutions:

c =/B+1/2k2 exp (i(1-1/2kz--B) T),
b Bo exp (i(1-1/2kz--B)T).

Note that these nested closed curves around Rings 1 and 3 are connected at the
periodic solution b =0, c (k/x/) exp (i(1-1/2k2) T). The Floquet stability analysis of
these one-parameter families of periodic solutions yields coupled Mathieu equations,
to be discussed elsewhere.
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4. Bifurcations of the perturbed modal equations. We now discuss how the above
properties of the integrable odes (3.1) reveal themselves in the bifurcation structure
and dynamics of equations (2.5). Recall that we fix c .155, and consider the bifurca-
tions of (2.5) as the constant driver F is varied.

The following bifurcation curves (Fig. 7) were originally generated for us by Jolly
and Kevrekides using the code AUTO, and since then verified by us, while the linearized
eigenvalues and associated eigenvectors were independently computed along the curves
by Hyman using the CLAMS package.

We now discuss these bifurcation curves and the associated dynamics.
Property 1 (existence of fixed points as a function of F). Branch OABFG is a

pure Ko branch, consisting of steady states with b 0.
Branch BCD is a double KoK1 branch, consisting of fixed points (c, b) and

(c, -b), with b 0, c 0. (Recall from Remark 2 in 2 that the perturbed system (2.5)
retains the reflection symmetry (c, b) (c, b), so that all fixed points with b 0 come
in pairs with equal 12 norm.) The bifurcation point B corresponds both to the change
of stability of the Ko branch of fixed points from one to two unstable dimensions and
to the beginning of the Ko K1 branch of fixed points.

Some features of this bifurcation diagram are found either analytically or by
simple perturbation theory arguments, as we now sketch.

Property 2 (explicit parameterization ofthe entire Ko branch of fixed points). With
b =0, the fixed points of (2.5) satisfy, with c c + ic2, .155,

(c+ c- 1)cl + cc2= 0,
(4.1)

(c2 + c2 1)c cc .
If we fix n x/2 + c l_ norm of (c, 0), the equations (4.1) represent two orthogonal

L- 2 norm of the solution
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FIG. 7. Bifurcation diagram of (2.5) as " is varied.
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lines in the (c, c) plane. We then pick [" such that the two lines intersect on the circle
of radius n. This algorithm yields the inverse of the Ko curve of Fig. 7, which is a nice
function"

(4.2) [’(n) nx/c 2 +(1 n).
In this way, we analytically generate the Ko curve OABFG, and calculate the turning
points A and F by setting "(n)= 0, which verifies the numerically generated curve.

Property 3 (perturbation calculations to describe the turning points in the bifurca-
tion branches). By a classical perturbative phase-locking condition, we reproduce the
qualitative multibranch structure of Fig. 7, identify these fixed-point branches as
phase-locked fixed points from the unperturbed fixed-point Rings 1, 3, and quantita-
tively capture the turning points or "bends" in the bifurcation curves.

First we compute how the unperturbed integral I varies in the presence of the
perturbed dynamics (2.5) (recall that d and " are our rescaled small parameters)"

de[1]-2d(4.3) dT- Icl=+ Ibl=
=-2cI- 2F Re (c).

Next we seek fixed points which are perturbations of Rings 1, 2, 3 in (3.4a)-(3.4c)
evaluate (4.3) on this ansatz, and demand that dI/dT vanishes to O(c, F)--which
selects the phase(s) of Rings 1, 2, 3 that "lock(s)" to the perturbation. This procedure
yields the following nonresonance or phase-locking conditions"

Ring 1. With c=e+eAc, b=eAb, 0<e<<l, phase-locking criterion" &+
F cos =0.

Ring 2. With c eAc, b ei6(1 + k2)+ cab, phase-locking criterion: C7Io+
el" RE (Ac) 0, where RE real part ().

Ring 3. With

/1+2k2 /2-k2 +eAb,c e ’" 5
+eAc, b 2e’ 15

phase-locking criterion"

c(7,+4k) , fl+2k
+ cos 4 -0.

15 5

This perturbation analysis yields the following conclusions (recall c7 .155)"
Ring 1. cos b -c/P, so this ring does not phase lock until ’>- c7 (which precisely

yields the turning point F), and for [" > c exactly two phases are selected,
corresponding to the two branches FG and lB. (The stability of these
and other branches is discussed in the next property.)

Ring 2. If d, = O(e), there are no solutions of the nonresonance condition
(CIo 0). However, if d O(e2), " O(e), then we find a balance in this
equation. This occurs when [" O(x/), which is outside the range of our
diagram and so will not be of interest here. (Referring back to 3, Property
7, Ring 2, we now find these zero-mean solutions do not resonate with
the perturbation until the system is driven harder.)

Ring 3. The phase-locking condition yields

t 7+4k2 [ 5
cos b , 15 /1 + 2k2’

which correctly predicts the turning point C and the two emanating
branches.
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Property 4 (stability of the bifurcation branches). In the phase-locked branches
of Fig. 7, the upper branches FG and CD locally inherit the stability type of the
unperturbed Rings 1 and 3, respectively, while the lower branches FB and CB locally
pick up an additional weak unstable eigenvalue due to the perturbation. (These facts
are easily deduced perturbatively.)

The stability type of all branches in Fig. 7 is numerically computed, with the
following results. Let W,, W, denote a k-dimensional stable or unstable manifold,
respectively. Then the following diagram indicates the stability type of each branch:
(recall that in dimension four, W(Xo), WT(Xo) for hyperbolic fixed points satisfy
k + 1=4, so it suffices to list W,(Xo)):

Highlights. (1) The Ko branch FG is the phase-locked continuation branch of
Ring 1, which maintains the one-dimensional unstable manifold character of the
homoclinic orbits to Ring 1 in the unperturbed problem. The FG branch, therefore,
is the perturbed ode signature of the homoclinic pde structures described earlier in 1.

(2) The double K0@ K1 branch CD is the stable phase-locked continuation branch
of Ring 3, which corresponds in the perturbed pde to the phase-locked, stable, breather
plus nonzero mean (Ko@ K1) solutions.

(3) The point D on the Ko@KI branch corresponds to the subcritical Hopf
bifurcation. At this value of F .268, the previously stable Ko@K breather plus mean
solutions become two-dimensionally, weakly unstable due to the perturbation. As we
discuss below, just after this Hopf bifurcation the perturbed system goes chaotic.

Since this Hopf bifurcation is subcritical, the associated periodic orbits of this
bifurcation phenomenon are unstable, and these are not observed in our numerical
simulations. This fact is quite consistent with the pde bifurcation structure (Fig. 1 and
remarks just below it), where in this parameter regime we did not see quasi periodicity

L-2 norm of the solution

1.25

0.2 0. 0.4 0.5
.268 .288

.948c k bifurcation parameter Gamma
Bifurcation diagram, a 0.155 k

FIG. 8. Bifurcation diagram with stability type of each branch offixed points.
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prior to chaos. This model suggests that when the second frequency is generated by
Hopf bifurcation in the pde, it is unstable in this specific parameter regime.

Property 5 (global connections between fixed points: before and after the Hopf
bifurcation). We have numerically determined the global connections of the unstable
manifolds of fixed points at given stress parameter values F. These fixed-point connec-
tions were numerically computed in two ways, first with the package UMFUT of
Doedel. We then independently verified the connections using the ode package LSODE.
The method we use is to initialize the ode system with the coordinates of the unstable
fixed points plus a small (0(10-2- 10-3)) increment in the direction of the unstable
eigenvector(s). The orbit then converges to the indicated fixed point. The only numeri-
cally sensitive connections are saddle-saddle connections, for which we impose tighter
error bounds on the ode code and more careful resolution of the unstable manifold
direction(s) to select initial conditions for the connecting orbit. The saddle-saddle
connections are confirmed by restriction to the invariant subspace b 0, where the
connections become saddle-stable node, which are numerically stable.

The interesting and relevant connections for this discussion are those for "preceding and following the Hopf bifurcation at F .268. We indicate these schemati-
cally in Fig. 9.

ro Branch FG

Double Ko0) K1 Branch CD

ro Branch FB

Double to0) r Branch CB

K

O,xl

g-;l’"
0,1

ro Branch OA

FIG. 9. Global fixed-point connections .155 < " < .268.

These connections are quite expected from the pde. For example, the large
amplitude unstable mean (K’u) is unstable to the nearest energy stable state, which
is either the stable breather plus mean (Ko+3s) or its equal energy translate (Ko,1). Thus,

--,s+’s in the other at K o,1the unstable manifold of K’ lands in one direction at Ko,,
+;,u Along perturbations whichAnother example is the unstable breather plus mean Ko,

decrease energy, the state is unstable to the stable flat configuration (K) since there
is not enough energy to sustain the spatial structure. If energy is increased, however,

+’ which is stable.the state is unstable to the higher energy breather plus mean Ko,,
After the Hopf bifurcation F>.268, all that changes in Fig. 9 is that the stable

+/-; fixed points become two-dimensionally, weakly unstable,

Kof
after +;2,u
Hopf

g
o,1
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1,u 2,u andWe observe numerically, however, that the unstable trajectories out of Ko Ko
+,s +;2,uKS;l"u (which previously, Fig. 9, converges to Ko,1) now ttow very near to Ko.1 or

--;2,uKo,1 dominated by the O(1) attracting directions (stable dimension two), but slowly
build up the weak instabilities, leave this neighborhood, then quickly land back in a

/,,,-+;2,u -;2,u The dynamics of these odes depicts classicneighborhood of either -,o.1 or Ko,1
intermittent chaos: the "laminar" behavior is characterized by settling into a neighbor-

+;2,u --;2,uhood of Ko.1 or Ko.1 and the intermittent chaotic bursts are associated with the
flight out of the neighborhood of one and subsequent landing back into either of them.

In Fig. 10 we exhibit the time evolution for a selected orbit of the perturbed odes
(2.5) at F .275, which corresponds exactly to the eF .103 pde numerical experiments
shown in 1, Figs. 2 and 3. The initial condition of Fig. 10 is taken along the unstable

+;2. which is directly into the conjectured strange attractor. Formanifold nearby Ko,1
consistency, we also continue this numerical run to 10,000 (corresponding to
t---70,000 in the pde time units), and the run remained chaotic. The leading Lyapunov
number was computed to be 217

Motivated by our pde study in 1 and the identification ofhomoclinic Ko structures
in the chaotic dynamics, we now seek the analogue of homoclinic crossings in these
model odes. We have so far identified a parallel structure between this model problem
and the pde" the upper K’ fixed point corresponds to the Ko, order 1 unstable fiat

1,,,- ;2,ustate, associated to the unperturbed homoclinic components; the -,-o,1 fixed points
correspond to breather plus nonzero mean states, phase shifted by a half period, which
are neutrally stable in the unpe,rturbed equation, but which develop weak instabilities
due to the perturbation when F> .268.

The perturbed pde as evidenced in Figs. 2(a) and 2(b), exhibits intermittent chaos
characterized by a passage out of a "laminar" Ko@ K1 state, through the homoclinic
Ko state, and then back into another weakly unstable Ko@ K1 state. In this perturbed
ode, this behavior corresponds to the schematic loop of Fig. 11.

In summary, our numerical studies of the ode and pde clearly suggest that the
onset of observable chaos may be described by a jumping process between two weakly
unstable coherent states. (These two states are related by a discrete symmetry, (c, b)-+
(c,-b) in the ode, and in the pde by a half-period translation from a state localized
in the center or the ends of the spatial interval.) In the unperturbed ode and pde systems,
homoclinic orbits have been identified which are homoclinic in the pde to x-indepen-
dent, order 1 unstable periodic solutions while in the ode these orbits are homoclinic
to the ring of fixed points, cl--l, b 0. In each system, these orbits are homoclinic
to degenerate solutions that intermediate the unperturbed spatially localized solutions.
Moreover, in both the perturbed ode and pde systems, we have numerically correlated
the jumping process with unperturbed homoclinic crossings.

It is therefore clear to us that a Melnikov-type calculation is appropriate, centered
on the unperturbed homoclinic orbits. The goal of this analysis is to establish our
conjecture for the observable chaotic dynamics: the existence of horseshoes in the
perturbed dynamics, which rigorously identifies the jumping process in the ode and
pde as topologically conjugate to a Bernoulli shift on two symbols. (The two symbols
represent the states localized in the center and wings of the interval.)

A precise dynamical systems mechanism for the observable chaos has been
formulated in collaboration with Wiggins and Kovacic. The ode scenario is based on
existence of a four-dimensional Silnikov-like structure (Guckenheimer and Holmes
[13, 6.5], and Wiggins [14, 3.2]); the rigorous proof is in progress by Wiggins and
Kovacic and will appear in the thesis of Kovacic. The extension of this rigorous analysis
to the pde is in progress [15].
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FIG. 10. Time evolution of the odes (2.5) in the chaotic regime at =.275, corresponding to the pde
experiments ofFigs. 2 and 3 at eF .103. The initial condition for this time series is a small increment (0(10-2))
from r,,+:2,, in the unstable eigendirections, chosen so that the flow immediately finds the surmised strangeo,
attractor. We also include one graph from this time series near 10,000 time units, comparable to the pde time

series in _Fig. 2.
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run=4 4 0.01000 0.04000 0.10300 0.87000 12.00000

B2= Im (b)

9800 9820 9840 9860 9880 9900 9920 9940 9960
time

FIG. 10--continued

9980 10000

neighborhood of

FIG. 11. Schematic loop of behavior on the chaotic attractor.
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This surmised behavior creates a loop as sketched in Fig. 11. We test this conjecture
numerically in the following way.

+;2,u --;2,uStarting at Ko,1 or Ko,1 we use the computed unstable eigenvectors to locally
/g- +;2,u 1,,,- ;2,uspan W2(-,o,1 ). We then numerically shoot from these fixed points 1,o,1 along the

unstable manifold, integrate the perturbed flow, and numerically monitor the distance
to all fixed points at this value of [’. These distance functions are defined as follows
relative to the labeling in Fig. 12" DIS j distance of the computed orbit to fixed point
j, etc. These distance functions DIS 1-DIS 7 are provided below (Fig. 13) for one of
the representative unstable eigendirections out of.,o,1 which coincides with the time
evolution provided in Fig. 10.

Conclusion. The numerical evidence verifies the jumping process between neigh-
/;2,u and Ko-,]2,u with intermediate passages nearby K’" during theborhoods of Ko,1

jumps. Note that the DIS 2 and DIS 3 functions oscillate near zero as the orbit settles
/;2,u --;2,u respectively.into a neighborhood of Ko,1 or Ko,1

K’" fixed point 1

+;2,uKo,1 fixed point 2 Ko--,;1’ fixed point 3

2,uKo fixed point 4

+;1,uK o,1 ---fixed point 5 Ko-1’" fixed point 6

K--fixed point 7

FIG. 12. For .275, the seven fixed points are assigned a numerical label: is assigned to K’u, 2 is
+;2,uassigned to Ko, etc.

Moreover, in the bursts out of these "laminar" states, the orbit gets relatively close
to l=KoTM (occasionally very close) as indicated in the graph of DIS 1, whereas the
orbit is always O(1) distance from fixed points 4, 5, 6, and 7. Thus, as in the pde
simulations of 1, the perturbed ode apparently goes chaotic coincidentally with
random passages through or near the homoclinic structures ofthe unperturbed problem.

One final measurement of this thesis is the ode analogue of our sine-Gordon
spectral projection of the perturbed pde (Fig. 2(b)). The homoclinic unperturbed
fixed-point Ring 1 has the integral dependence H 1/212 -/, SO that h H (1/2I2- I) 0
on the homoclinic orbit (recall Property 6 of 3). We now seek to measure the projection
ofthe perturbed flow, relative to this unperturbed homoclinic configuration, by checking

fo zero crossings of h. The graph of h is provided along with the distance functions
in Fig. 13.

5. Correlations between the infinite-dimensional and reduced systems. So far, we
have measured homoclinic crossings in two distinct ways: in the perturbed pde by
graphing the exact sine-Gordon spectrum of u at each timestep, and in the ode by
graphing h H-(1/2I2-I) and checking for zero crossings. As a final test of this
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FIG. 13. With the labeling offixed points 1-7 as in Fig. 12 (fixed point K’", etc.), and with the orbit

c( t,), b( t,)) from Fig. 10 on the chaotic attractor, distance functions, DIS j, j 1,. , 7, are computed which

measure the orbit point’s distance to fixed point j at each timestep t,. Importantly, note the changes in vertical

scales.
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FIG. 14. The ode and pde homoclinic diagnostics are computed together from an orbit (c(t,), b(t,)) on
the chaotic attractor. The top graph is the ode diagnostic, h H-(1/2IZ-.I), which we check for zero crossings,
with several discrete times labeled. From the values (c(t,), b(t,)) at these discrete times, the approximate
perturbed sine-Gordon solution, u (x, t ), is computedfromformula (2. la). Then the corresponding sine-Gordon
spectral measurement of this approximate u is computed. We then seek the correlation between zero crossings

of the ode diagnostic h and passage through the homoclinic spectral configuration of the pde.
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homoclinic phenomenon, we combine the two measurements. We take c(T,), b(T,)
during the flow that generates h, reconstruct the perturbed sine-Gordon solution u
by the approximation, (2.1a), and then compute the sine-Gordon spectral measurement
of u. When h goes through a zero crossing, does the perturbed sine-Gordon field u
pass through a homoclinic spectral configuration? The results appear in Fig. 14.

Ci3

q: q’ .0 q) q) 0

4-.

---.-r’-’--"-i --4.
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FIG. 14---continued
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The agreement is quite good. When the odes pass from h>0 to h<0, the
sine-Gordon projection goes from a "gap" to a "cross" configuration. The agreement
is not one-to-one when the odes are very close to the exact homoclinic structure (h 0),
but this is expected due to the approximation by linear Fourier modes.

6. Concluding remarks. Based on the combination of:
(i) Our geometric understanding of the integrable sine-Gordon phase space, with

singular components homoclinic to tori, and
(ii) The numerically verified presence of these singular components in the chaotic

dynamics of the weakly perturbed system,
we are led to a research program to coordinatize these chaotic attractors and model
the dynamics with associated amplitude equations. This paper represents the simplest
example in the small amplitude limit of this general program. This two complex
amplitude truncation has already yielded excellent correlation with the homoclinic
structure that it shares with the perturbed integrable pde. Moreover, this "physically
derived" four-dimensional dynamical system is a fertile example from the pure dynami-
cal systems point of view. A Melnikov-type analysis based on the homoclinic orbits
has now been developed for this model problem [4a], [4b], and will appear in the
thesis of Kovacic.

The next step in this program is to truncate on the fully nonlinear sine-Gordon
or nonlinear Schr6dinger modes. Thus far, we have derived the averaged finite ampli-
tude modal equations for systems (1.1) and (2.2), and have explicit formulas for the
Ko0) K1 truncation relevant for the study presented here. (This analysis is discussed
in [7].) The averaged equations are equivalent to the order e rate of change for each
sine-Gordon integral in the presence of the perturbation, i.e., dH/dt eft, j Z. These
are precisely the quantities required in a Melnikov analysis in higher dimensions.

To capture the dynamics of the chaotic attractors, we must couple the rapid phases
(the angles) to the averaged equations (the actions) described above. These perturbed
action-angle equations will be reported in [5]. The next nontrivial step is to numerically
analyze these truncated dynamical systems. Since these nonlinear coordinates are
naturally defined on Riemann surfaces (see [3], [5]-[7]), we are currently developing
efficient algorithms for these computations [8].

Appendix. Most of the numerical runs were done using a second-order in time,
fourth-order in space discretization of the sine-Gordon pde (1.1). The uxx term was
discretized by fourth-order central differences with Ax 0.20 and the ut and utt terms
were discretized by second-order central differences with At 0.02 (i.e., this is a leapfrog
scheme). The initial timestep was calculated by Taylor series, namely,

u(x, At) u(x, O) + ut(x, O)At +1/2u.(x, O)(At)2

and the u, term was replaced by using (1.1a). Selected runs were rechecked by a
fourth-order Runge-Kutta method in time using eighth-order central differences in
space (and the same Ax and At as above) on the pde to make sure that the long-time
evolution of the run was as indicated by the lower-order method. In addition the
boundaries between periodic and chaotic runs in time were determined to three decimal
places by this higher-order code.
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FAR-FIELD PATI’ERNS FOR ELECTROMAGNETIC WAVES IN AN
INHOMOGENEOUS MEDIUM*

DAVID COLTON" AND LASSI PIV,RINTA$

Abstract. This paper considers the scattering of time-harmonic electromagnetic waves by an

inhomogeneous medium of compact support, i.e., the permittivity e e(x) and the conductivity r= o’(x)
are functions of x R3. If o" > 0, it is shovn that the set of far-field patterns ofthe electric fields corresponding
to incident plane waves propagating in arbitrary directions with arbitrary polarization is complete in the
space of square integrable tangential vector fields defined on the unit sphere. On the other hand, if r--0
it is shown that for the case of a spherically stratified medium there exist values of the frequency such that
the set of far-field patterns is not complete. Finally, it is shown that, if from each far-field pattern is subtracted
the electric far-field pattern corresponding to an electromagnetic field satisfying an impedance boundary
condition on the boundary of a ball containing the inhomogeneity, then the resulting class is complete for
r_>-0 and e->0.

Key words, far-field patterns, electromagnetic waves

AMS(MOS) subject classifications. 35P25, 78A45

1. Introduction. In this paper, we are interested in the class o% of electric far-field
patterns corresponding to the scattering of time-harmonic electromagnetic plane waves
by an inhomogeneous medium of compact support. The corresponding problem for
acoustic waves has been considered in [2]. However, for electromagnetic waves the
class ff has only been considered for the case of constant permittivity and variable
conductivity, with the conclusion that o is complete in the space of square integrable
tangential vector fields defined on the unit sphere [8]. Results of this nature are of
particular interest in inverse scattering theory since they form the theoretical basis for
new algorithms for solving the inverse scattering problem [6]-[8].

Continuing the work initiated in [8], we will now concern ourselves with the class
ff of electric far-field patterns in the case when both the permittivity and conductivity
are functions of x R3. This is the case, for example, in many applications in medical
imaging [14]. We begin by deriving a reciprocity relation and using it to show that
is complete if and only if the solution of the interior transmission problem (first
introduced in [8]) is unique. We then show that this is the case if the conductivity is
positive (in the special case of constant permittivity, this provides a new proof for
Theorem 2.1 of [8]). However,. for the case of vanishing conductivity and spherically
stratified permittivities we will show that there always exists a discrete set of frequencies
such that is not complete. This analysis is based on an asymptotic analysis of the
radial Schr/Adinger equation as discussed in 12.6 of [13]. Finally, we show that if
from each element in we subtract the electric far-field pattern corresponding to an
electromagnetic field satisfying an impedance boundary condition on the boundary of
a ball containing the inhomogeneous medium in its interior, then the resulting class
of functions is complete for all conductivities r-> 0 and permittivities e _-> 0. The proof
of this result again relies heavily on the reciprocity principle.

* Received by the editors September 18, 1989; accepted for publication (in revised form) December 1,
1989.

t Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716. The research
of this author was supported in part by grants from the Air Force Office of Scientific Research and the
National Science Foundation.

$ Department of Mathematics, University of Helsinki, Helsinki, Finland.

1537



1538 D. COLTON AND L. P,IV,RINTA

In what follows, we denote the vector product of two vectors by [.,. and the
triple product of three vectors by (.,., ). A unit vector in R will always be designated
by a caret, i.e., x, c, etc.

2. Reciprocity and the interior transmission problem for electromagnetic waves. Con-
sider the propagation of a time-harmonic electromagnetic wave through a medium of
variable conductivity and permittivity. Let o-(x) denote the conductivity and e(x) the
permittivity for x R3. Assume that r(x)_->0 for all x and r(x)=0 for [xl--> a > 0,
whereas e(x) >- 0 for all x and e(x) eo for Ixl >= a, where eo is the dielectric constant.
It is assumed that a is chosen such that the supports of or(x) and e(x)- eo are properly
contained in

B={x’lxl<a}.

Then if w is the frequency of the incident field and/o is the permeability, the direct
scattering problem is to determine the electric field E(x) and the magnetic field H(x)
such that Maxwell’s equations

curl E ioJoH O,
(2.1)

curl H + iwe(x)E r(x)E

are satisfied for x R3, where E(x)= Ei(x)+ ES(x), H(x) Hi(x)+ HS(x) with
{E i, H } being the incident field and {E s, H } the scattered field. In particular, {E s, H }
is required to satisfy the Silver-Miiller radiation condition [3], [12]. We will assume

2,that or(x) and e(x) are in H61der class C ,0 < a < 1, thus allowing us to pass freely
between (2.1) and the vector Helmholtz equation [5].

Now consider the set of incident fields of the form

Hi(x; , p) =curl p exp [ikx. ],

(2.2)
Ei(x; c, p)= 1____ curl Hi(x; 3, p)

ieow

where x R3, c is a unit vector giving the direction of propagation, k2-" 6o/J,ow2 and
p is a constant vector giving the polarization. From Corollary 4.9 of [3] we see that

ES(x; c,p)=-F(:; c,p)+O
1

(2.3)

HS(x; c, p)=---[, F(; c,p)]+ O

where x/Ix] and F is the electric far-field pattern. It has been shown in [1] that if
q R3, then q. F has the representation

(2.4)
q. F(; c, p)=--/Io {()’ curl H(y; 3, p), Hi(y; -, q))

oW

+ (, HS(y; d, p), curl Hi(y;-, q))} ds (y).

Note that since

(2.5)
curly qe-ik’y ik[ q, ]e-ik’y,

curly curly qg. ik.y k2(q (q )) -ik’ye
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we have that if q then -F 0, i.e., the electric far-field pattern is tangential to
the unit sphere.

We will now prove the following reciprocity theorem for the electric far-field
patterns corresponding to the scattering problem (2.1), (2.2). Versions of the following
theorem are well known (cf. 11, p. 64]); however, we will need the precise form given
below and hence prove it here. In what follows, 0f denotes the unit sphere in R3.

THEOREM 2.1. For all vectors d, 01) and p, q R we have

q. F(; c, p)-p. F(-,-:, q).

Proof We begin by establishing three integral identities we need to prove the
theorem. Let Fh [, F]. Then

(2.6)

{(39, curl HS(y; d, p), H’(y; -, q)) + (39, HS(y; , p), curl HS(y; -, q))} ds
B

-ieotO Ion {(33, E’(y; , p), H’(y; -:, q)) + (33, H(y; d, p), E(y; -, q))} as

--iF-’O0 e2ika Ioa {(fi’ F(; , p), Fh(; --, q)) + (fi, Fn(fi; c, p), F(fi; -, q))) ds

Since

(2.7)
[F(fi; , p), Fh(fi; --:, q)] [F()3; d,, p), [fi, F(33; -:, q)]]

F(.; -:, q). F(33; , p))3,

(2.8)
[Fh()3; , p), F(y; -, q)] [[)3, F(fi; , p)], F(fi; -:, q)]

=-F(fi;-2’, q). F(fi; d, p)fi,

we have, letting a oo, that

(2.9)

9 curl H’(y; d, p), H(y; -, q)) + ()9, H(y; d, p), curl H(y; -, q))} ds =0.

This is the first identity we need.
To derive our second identity, we use the second vector Green’s theorem ([3,

p. 117]) and the fact that, from (2.1) and the regularity assumptions on tr(x) and e(x),

(2.10)
AE -grad div E + iwp,ocr(x)E + to2p,oe(x)E =0,

div E (x) 0, Ixl => a
X R3,
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to deduce that

{.(, H(y; d, p), H(y; -, q))4-(fi, H(y; , p), curl H(y; -, q)) dscurl
B

e_p_o ((fi, E(y" , p) curl E(y, -, q))

+(fi, curl E(y; , p), E(y; -x q))} ds

(2.11) u {E(y; ,p). AE(y;-, q)-E(y;-, q). AE(y; ,p)} dx

f. gra 

E(y; -, q). grad div E(y; , p)} dx

n (div E(y; , p)div E(y;-, q)

div E (y; x5 q) div E (y; 3, p)} dx O.

This is the second identity we
The final identity we shall need can be derived in exactly the same manner as

(2.11) and we simply state the result:

(2.12)

{(fi, curl Hi(y; , p), H(y; -, q))+(fi, H’(y; , p), curl Hi(y; -, q))} ds =0.
B

We can now prove our theorem. Using (2.4) and the above identities, we have

q. F(; d,p)= [ {(fi, curl H(y; , p), H(y; -, q))
o Jo

+ (;, HS(y; , p), curl H’(y;-, q))} as

[ {(fi, curl H(y , p), (H(y; -, q)- HS(y; -, q)))
o Jo

+ (fi, H(y; , p), curl (H(y;-, q)-H(y;-, q)))} ds

[ {(fi, curl (H(y" , p)-H(y; , p)) H(y;-, q))
oW o

(2.13) + (fi, (H(y; d, p) H(y; , p)), curl H(y; -, q))} ds

[ {(fi, curlH(y ,p) H(y; ,q))
o o

+ (fi, H(y; d, p), curl H(y; -, q))} ds

[ {(fi, curl H(y; -, q), H(y , p))
o o

+ (, H(y; -, q), curl H(y; d, p))} ds

p. F(-d, -, q).

This completes the proof of the theorem.
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We now want to use the above reciprocity theorem to show the equivalence of
the completeness of the set of electric far-field patterns and the uniqueness of the
solution to the interior transmission problem: Find Eo, El, Ho, H1 CI(B)f3 C(:)
such that

curl E itoloH 0
(2.14)

curl HI + itoe(x)E1 tr(x)E1
in B,

curl Eo- itoloHo 0
(2.15)

curl Ho+ itoeoEo 0
in B,

[, E Eo] 0
(2.16)

[,HI_Ho]=0
on OB

where again B {x:lx < a}. To this end, define the Hilbert space Y by

Y= {g: g L2(01), . g() 0},

let {k,}=l be a dense set of unit vectors on 01 (i.e., every surface patch on 01 contains
at least one vector of this set), and consider the set of electric far-field patterns
defined by

={F(; c,, e/) l= 1, 2, 3, n 1, 2, 3,. .}

where { g’l}--1 are the unit coordinate vectors in R3. A solution {E, H} of Maxwell’s
equations (2.1) with e(x)= eo and tr(x)= 0 will be called an electromagnetic Herglotz
pair if there exists g Y such that

(2.17) E(x) I0 g() exp [ikx. ] as ()

where again k2-- eootO 2. The function g is called the Herglotz kernel of E, and it is
easily seen from Sonine’s formula for Bessel functions that g 0 if and only if E is
identically zero. We can now prove the following theorem, where x denotes the
orthogonal complement of in Y.

THEOREM 2.2. g +/- ifand only ifthere exists a solution ofthe interior transmission
problem such that {Eo, Ho} is an electromagnetic Herglotz pair with Herglotz kernel g.

Proof Suppose there exists a g Y such that

(2.18) F(;; ,, .1) g(;) ds (;)=0

for 1- 1, 2, 3, n 1, 2, 3,.... Then by continuity and superposition we have that

(2.19) F(; , p) g() ds (;)= 0

for all c 0, p R3. By Theorem 2.1 this is equivalent to

(2.20) P" foa F(-d;-;, g(:)) ds (;)=0



1542 D. COLTON AND L. P,IV,RINTA

for all c e 01), p e R3, i.e.,

(2.21) F(; , h(c)) ds ()=0

for all ) 0f, where h(c) g(-c).
Now define the electromagnetic Herglotz pair {Eo, Ho} by

Ho(x) Ioa H’(x; 3, h(3)) ds(3)

(2.22)

=curl Ioa h(c) exp ikx ds ),

/o(X)
1

curl Ho(x)
i(.08o

=/XotO I0a h(c) exp [ikx. ] ds ().

Then, from (2.1), (2.2), and (2.21), the scattered field {E;, H;} corresponding to the
incident field {Eo, Ho} vanishes for Ix[-> a, i.e., Eo(x) El(X), Ho(x) Hi(x) for Ix[ _-> a,
where El(X)= Eo(x)+ E;(x), Hi(x) No(x)+ H;(x). But {El, H1} satisfies (2.1) for
x R3. Hence, Eo, El, Ho, H1 satisfies the interior transmission problem (2.14)-(2.16).
Conversely, if there exists a solution to (2.14)-(2.16) such that {Eo, Ho} is an electro-
magnetic Herglotz pair, then, using the representation theorem for Maxwell’s equations
and unique continuation, we can show (cf. Theorem 2.3 below) that E(x) and Hi(x)
are defined for all x eR3, El(x)=Eo(x), and Hl(x)=Ho(x) for Ixl>-a, and
{E;(x), H;(x)}, as defined above, satisfies the radiation condition. By uniqueness of
the solution to (2.1), (2.2) [12] we now have that (2.21) is valid. This completes the
proof of the theorem.

Showing that two statements are equivalent is useful only if one of the statements
is easier to apply than the other. As an example of the usefulness of Theorem 2.2, we
have Theorem 2.3 below. Recall that if D denotes the support of o-(x) then D is
properly contained in B {x" ]xl < a}. We assume without loss of generality that OD
is smooth and denote the unit outward normal to OD by .

THEOREM 2.3. Suppose D is nonempty and the support of e(x)- eo is contained in
D. Then is complete in Y.

Proof By Theorem 2.2, it suffices to show that the only solution of the interior
transmission problem (2.14)-(2.16) is Eo, El, Ho, H identically zero. Applying the
representation theorem for Maxwell’s equations [3, p. 110] to B\D shows that El-Eo
can be continued into R3\3 and satisfies the radiation condition. By the uniqueness
of the exterior Maxwell boundary value problem [3, p. 126], we see that E Eo in
R3\B and, by unique continuation, in R3\/). Using the regularity assumptions on tr(x)
and e(x), we can now replace (2.14)-(2.16) by the equivalent system

AE1 grad div E + to2txoe(x)E q- itotxoty(x)E1 =0
(2.23)

AEo+ oo2txoeoEo 0
in B,

(2.24) E Eo in B\D.

Noting that div Eo 0 in D, we now apply the first vector Green’s theorem [3, p. 117]
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to deduce that

(2.25)

0 {(, Eo, curl E0)- (, El, curl El)} ds
D

ID f (Icurl E[2-v2eftlE]2) dx- loD , l, Curl E1) ds,

(2.26) Im (t, El, curl El) ds O.
D

But the first vector Green’s theorem gives

(2.27) ID I (Jl" mE, --Icurl Ell2+ Idiv Ell 2) dx I0o (’/l, curl El) ds,

(2.28) ImIo I JI’AE1 dx-’O"

Using the fact that div E1 0 on OD, we have

(2.29)
fDf ff’l’AEldX=fml l"(graddivEl-WZle(X)El-iWl’(x)E1)dx

fo f ([div Ell:z+ o2tZoe(x)[El[2 + i,o,o,(x)lE, ) dx.

From (2.28), (2.29) we now have that

(2.30) r(x)lEl(x)l dx O,
D

i.e., E (x) 0 for x e D.
Since El(X)=0 for xD and El e CI(B), we have that El(x) and curl El(x)

vanish for x e 0D. From the representation theorem for solutions of Maxwell’s equations
defined in B\D [3, p. 110], we can now conclude that El(x)=0 for x e B and hence
that Hi(x)=0 for x B also. From (2.16) and the representation theorem again, we
have that Eo(x) 0 for x e D and hence that Ho(x) 0 for x e D also. The theorem is
now proved.

The situation in which r(x) is identically zero is more complicated. We will
examine this case for spherically stratified inhomogeneities in the next section of this
paper.

3. Nonconducting spherically stratified media. In this section of our paper, we
again want to apply Theorem 2.2, but now for the situation in which r(x) is identically
zero and e(x)= e(r), r Ixl, is spherically stratified. As will be seen, in this case there
exist frequencies w such that is not complete. To show this, we see from Theorem
2.2 that we need to examine when there exist nontrivial solutions to the interior
transmission problem (2.14)-(2.16).
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Assume tr(x)=0 and e(x)=e(r), where e(r)>0 for O<-r<a and e(r)=eo for
r>-a. Following [10], we introduce the Hertz vectors C=(ru(r, 0),0,0) and Co
(rh(r, 0), 0, 0), where (r, 0, 4) are spherical coordinates and u and h are scalar func-
tions. Then (cf. [10])

(3.1)

El(X) ito/Xo
curl e(r)C,

e(r)

0
H,(x) oo2txoe(r)C +grad rr (ru),

Eo(x) iootxo curl Co,

Ho(x) toZtzoeoCo + grad
0

0--- (rh)

will be a solution of the interior transmission problem (2.14)-(2.16) provided {u, h} is
a solution of the interior acoustic transmission problem

Au+k2n(r)u=O
(3.2)

Ah + k2h 0
in B,

u=h

(3.3) Ou Oh
Or Or

where k2= w21oeo, n(r) e(r)/eo.

on OB

To find a nontrivial solution of (3.2), (3.3), we expand u and h in a Legendre series

1
u(r, O)= X a,-ve(r)Pe(cos

1=o r
(3.4)

h(r, 0)= E btjt(kr)Pt(cos O)
/=0

where Pt is Legendre’s polynomial, jt is a spherical Bessel function, at and bt are
constants to be determined, and

(3.5) iSl+(k2n(r) -l(l+ l))r---- Vl-- 0

for 0 <- r -< a, where vt(r) rjt(kr) as n 1 in the maximum norm and vt C[0, a ].
Using Green’s function for Bessel’s equation, it can be shown that under these
assumptions vt is uniquely determined. From (3.1) it can be seen that the 0 term
in (3.4) yields a solution of the interior transmission problem (2.14)-(2.16) that is
identically zero. Hence, we are only interested in the components

(3.6) rut(r, O)= alVl(r)PI(COS 0), hi(r, O)= bljt(kr)Pl(COS O)

for -> 1. We will show that if e(r) > eo for 0-< r < a or e(r) < eo for 0<_- r < a, then for
each l->_ 1 there exists an infinite set of values of k and constants al al(k), bl bl(k),
such that (3.6) is a nontrivial solution of (3.2), (3.3), which by (3.1) defines a nontrivial
solution of (2.14)-(2.16). From (3.1) and (3.6), it is easily seen that {Eo, Ho} is an
electromagnetic Herglotz pair. Hence, by Theorem 2.2, for such values of k the set of
electric far-field patterns is not complete.
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To show the existence of values of k such that (3.6) is a nontrivial solution of
(3.2), (3.3), we need to examine the asymptotic behavior of the solution of (3.5)
satisfying the initial condition stated above. To this end, we use the Liouville transfor-
mation

(3.7) := v/n(r) dr, z()=[n(r)]l/4vt(r

to transform (3.5) to

(3.8) e+(k-p())z 0

where

1 //(r) 5 [ri(r)]2 l(l+l)
(3.9) P() = In(r)] 16 [n(r)]----+’r-n(r)
Note that since n(r)>0 for r=>0 and n(r) is in H61der class C2’, the transformation
(3.7) is invertible and p(:) is well defined and H/51der continuous for r>0. In order
to apply known asymptotic estimates given in [13], we rewrite (3.8) in the form

(3.10) ’+(k-1(I+1) )n(O)r-g(r) z=O

where

1 ti(r) 5 [ri(r)]2
(3.11) g(r) =l(l+l) /(/+1)-t----

r2n(r) ten(O) 4In(r)]2 16In(r)]3"

From (3.11) and the fact that n(r)= 1 for r_-> a, we have that

(3.121
0

Having rewritten (3.5) in the form (3.10), (3.11), we can now use Theorem 6.1
[13, p. 450] and some straightforward estimates (cf. [13, p. 210]) to deduce the
asymptotic estimate

k o(ln k’z() J(k)+
\ k ]

(3.13)

1 (1_ -1 ) /lnk\\K_,cos ..-,.- -.

where 0 < c <, j denotes a Bessel function of order , and

1.t/l(l+l)+_(3.14) ’ V n(0) 4"

Furthermore, the estimate (3.13) can be differentiated with respect to , the error
estimate remaining the same. From (3.7), (3.13), we finally conclude that

1 ( Io 1 1 ) [lnk(3.15t v,(r) k[n(r)]l/4 cos k /n(r) dr-- vTr-- 7r + 0\--5-]
where (3.15) can be differentiated with respect to r with the same error estimate.
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We now return to the interior acoustic transmission problem (3.2), (3.3) and note
that (3.6) will be a nontrivial solution provided there exists a nontrivial solution a, b
of the homogeneous algebraic system

(3.16)
a,(- vt( a ) bljl( ka O,

a-r v( r) b-r (j( kr))l= O.

But (3.16) has a nontrivial solution provided that the determinant of the coefficients
vanishes. Noting that

(3.17) jl kr r cos kr - hr - r + 0 -where (3.17) can be differentiated with respect to r, we see from (3.15), (3.19), and
the addition formula for the sine function that this determinant vanishes for k large
provided

(3.18) sin[k(f x/n(r) dr-a)-(v-/-)] 0 =0.

A sufficient condition for (3.18) to be valid for a discrete set of values of k is that
n(r) > 1 for 0 <= r < a, i.e., e(r) > eo for 0 =< r < a. We could equally well have chosen
e(r) such that e(r)< eo for 0 <- r < a. In either case, we have that there is an infinite
set of values of k wx/eolZo such that there exists a nontrivial solution at, bl of (3.16).
Summarizing our results, we have the following theorem.

THEOREM 3.1. Assume that or(x) is identically zero, e(x)=e(r) is spherically
stratified, and e(r) > eofor 0 <- r < a or e(r) <eofor 0 <- r < a. Then there exists an infinite
set offrequencies to such that gT is not complete in Y.

4. A complete set of far-field patterns. In the previous section of this paper, we
showed that in general the set is not complete in Y if tr 0. In this final section,
we will show that, if from each F F(; , p) we subtract the electric far-field
pattern Fa Fa (; c, p) corresponding to the solution of

(4.1) curl Ea itolZoHa O, curl Ha + itoeoEa 0

in the exterior of B={x:]xl<a} such that Ea(x)=Ei(x)+E(x), HA(x)=
Hi(x)+H(x) with {Ei, H1} given by (2.2), {E,H} satisfies the Silver-MiJller
radiation condition, and on OB

(4.2) [, curl HA] A[, [, Ha]]

where Im A > 0, then the resulting class of far-field patterns is complete in Y for
or(x) >- 0. That is, the eigenvalues of the interior transmission problem no longer destroy
completeness when r 0. We note that for the direct scattering problem for acoustic
waves, the idea of eliminating eigenvalues by introducing an artificial boundary on
which an auxiliary function satisfies an impedance boundary condition was first
introduced by Ursell in 1973 [15].

We draw the reader’s attention to the fact that the sign of Im A given above is the
reverse of that usually given to establish existence and uniqueness for the exterior
impedance boundary value problem (4.1), (4.2) [4]. However, (4.1), (4.2) can be
reformulated as an integral equation of the form (l+T(A ))f= g, where, except for
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possibly a discrete set of values of A, T(A) is compact, T(,) is a meromorphic operator
valued function of A and I + T(A) is invertible for Im A < 0 [4]. Hence, by the analytic
Fredholm theorem [9] and the results of [4], there exists a solution to (4.1), (4.2) for
Im A > 0, with the possible exception of a countable set of values of A. We note that
an explicit solution can also be found by the method of separation of variables. We
choose A such that A is not in this exceptional set (which is possible in theory since
the exceptional set is countable) and define the electric far-field pattern F(; c, p)
from the electric field determined by the unique solution of the above-mentioned
integral equation.

We now define the set ff of electric far-field patterns by

x {F(; c,, g,) Fx (; c,, g,,)- l= 1, 2, 3, n 1, 2, 3,. .}

where cn and g’l are as defined in 2 of this paper. We then have the following theorem.
THEOREM 4.1. For any or(x)>--0 and e(x)>-O, the set ,;, is complete in Y.
Proof It suffices to show that if

(4.3) f (F(; tin, /)-F(; cn, g’l))" g() ds ()=0

for some g e Y and 1, 2, 3, n 1, 2,..., then g() is identically zero for : 012.
Since the set {c,} is dense on 012, (4.3) implies that

(4.4) f (F(; c, p)-Fx(; c, p)). g(:) ds ()=0
do

for all c 012 and p e R3. From reciprocity (Theorem 2.1 of this paper and Theorem
3.1 of [1]) we can now conclude as in Theorem 2.2 that

(4.5) [ (F(;; c, h(c))-Fa(;; c, h(c)) ds (c) =0

for all 012 where h(c) g(-c).
Now define the electromagnetic Herglotz pair {Eo, Ho} by (2.22). Let {E, H}

be the scattered field such that {Eo+ E, Ho+ H} is a solution of (2.1) and {E, H}
be the scattered field such that {Eo+E, Ho+Hx} is a solution of (4.1) where
Hox Ho+H satisfies (4.2). Then from (4.5) we see that E and E have the same
electric far-field pattern. Definining E1 Eo+E H1 Ho+ H, and Eox Eo+ E0h,

we see (Corollary 4.10 of [3]) that E(x)= Eo(X) for x e R3\B, and hence H(x)
Hox(X) for x eR3\B. This implies that {E,H} is a solution of the following
homogeneous interior impedance boundary value problem" Determine El e
C(B) f-I C(), H e C(B) 71C() such that

curl E1 itolzoH1 0
(4.6) in B,

curl H1 + itoe(x)E1 o(x)E

(4.7) [, curl H] [, [, H1]] on OB.

We note again that if or(x) and e(x) are in H61der class C2’, then E C2(B) and
H C2(B) [5]. Our aim is to now use (4.6) and (4.7) to show that the tangential
components of E and H are identically zero and to then conclude that the Herglotz
kernel g is identically zero.

From (4.7) and the identity [, [, H1]] (:. H):-H1 we have that on OB

(4.8)
1

(). H,)) H -7 [), curl H]
A
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and hence

Im IoB (’ Hi’ curl iQ1)ds -Im 1A Ib (X’ [’ curl H1]’ curl/1) ds

(4.9) Im
1 f- Jo

[, curl H1]l2 as
B

0.

On the other hand, since div E 0 on 0B, we have from the first vector Green’s theorem
that

Im fo (, Hl, CUrl l) dS= Im e o (, curl El, l) dS
B 0 B

(4.10) :-Im e y. (e. AE + ]curl EI2+ ldiv Eli2) dxo

eIm/ I I"AEldx.
o

Since E1 C2(B), we have from (4.6) that

(4.11) AE1 grad div E + Waoe(x)E + iwo(x)E =0

and hence

ImfB I/1 AE1 dx Im ( f. f ff, grad div El W2tXoe(x)lE12) dx)

(4.12)

From (4.10) and (4.12) we have that

(4.13) Im (), H, curl H) ds >= 0
B

and hence from (4.9) we see that [;, curl H1] =0 on 0, i.e., [, Eli-0 on 0f. From
the impedance boundary condition (4.7) we now also have that [, H1] 0 on 0f, i.e.,
[, curl

We now show that g is identically zero, thus concluding the proof of the theorem.
From Theorem 4.1 of [3], we have that for x R3\j,

(4.14)

curl [2, Eo(y)](x, y) ds (y) +5 curl curl [fi, curl Eo(y)](x, y) ds (y) 0
B B
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where @(x, y) is the radiating fundamental solution of the Helmholtz equation. But,
from the previous paragraph, we have that [)3, Eo(y)] -[33, E(y)] and [33, curl E0(y)]
-[33, curl E(y)] for y OB. Hence, from Theorem 4.5 of [3], we have that the left-hand
side of (4.14) is equal to -E(x) for x R3\/, i.e., E(x)=0 for x R3\/. Thus,
[33, Eo(y)] =0 and [33, curl Eo(y)] =0 for y OB, and from Theorem 4.1 of [3] we now
have that Eo(x)=0 for x B and, by unique continuation, for x R3. We can now
conclude that g is identically zero and the proof of the theorem is complete.

REFERENCES

[1] T. S. ANGELL, D. COLTON, AND R. KRESS, Far field patterns and inverse scattering problems for
imperfectly conducting obstacles, Math. Proc. Cambridge Philos. Soc., 20 (1989), pp. 1472-1483.

[2] D. COLTON, A. KIRSCH, AND L. P,IV,RINTA, Farfieldpatternsfor acoustic waves in an inhomogeneous
medium, SIAM J. Math. Anal., 20 (1989), pp. 1472-1483.

[3] D. COLTON AND R. KRESS, Integral Equation Methods in Scattering Theory, John Wiley, New York,
1983.

[4] ., The impedance boundary value problemfor the time harmonic Maxwell equations, Math. Methods
Appl. Sci., 3 (1981), pp. 475-487.

[5] ., Time harmonic electromagnetic waves in an inhomogeneous medium, Proc. Roy. Soc. Edinburgh,
to appear.

[6] D. COLTON AND P. MONK, The inverse scattering problem for time harmonic acoustic waves in an

inhomogeneous medium, Quart. J. Mech. Appl. Math., 41 (1988), pp. 97-125.
[7] , The inverse scattering problem for time harmonic acoustic waves in an inhomogeneous medium:

numerical experiments, IMA J. Appl. Math., 42 (1989), pp. 77-95.
[8] D. COLTON AND t. P,IV.RINTA, Farfieldpatterns and the inverse scatteringproblemfor electromagnetic

waves in an inhomogeneous medium, Math. Proc. Cambridge Philos. Soc., 103 (1988), pp. 561-575.
[9] N. DUNFORD AND J. SCHWARTZ, Linear Operators, Vol. I, John Wiley, New York, 1958.

[10] B. FRIEDMAN, Propagation in a non-homogeneous atmosphere, in Theory of Electromagnetic Waves,
M. Kline, ed., Dover, New York, 1965, pp. 317-350.

[11] D. S. JONES, Acoustic and Electromagnetic Waves, Clarendon Press, Oxford, 1986.
12] C. MJLLER, Foundations of the Mathematical Theory ofElectromagnetic Waves, Springer-Verlag, New

York, 1969.
[13] F. W. J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974.
[14] W. TABBARA, B. DUCHNE, C. PICHOT, D. LESSELIER, L. CHOMMELOUX, AND N. JOACHIMOWICZ,

Diffraction tomography: contribution to the analysis ofsome applications in microwaves and ultrasonics,
Inverse Problems, 4 (1988), pp. 305-331.

[15] F. URSELL, On the exterior problems of acoustics, Proc. Cambridge Philos. Soc., 74 (1973), pp. 117-125.



SIAM J. MATH. ANAL.
Vol. 21, No. 6, pp. 1550-1562, November 1990

()1990 Society for Industrial and Applied Mathematics
010

ON THE INTEGER TRANSLATES OF A COMPACTLY SUPPORTED
FUNCTION:

DUAL BASES AND LINEAR PROJECTORS*

ASHER BEN-ARTZI] AND. AMOS RON:

Abstract. Given a multivariate compactly supported function , linear projectors to the space
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1. Introduction. Let be a complex-valued compactly supported continuous
function defined on Rs, and Ea the shift operator

Ef f(.+a).

Associated with is the semidiscrete convolution operator

which maps the set

c := {c.

of all complex-valued sequences defined on the multi-integers to the set

S() := ran,
of the functions spanned by the integer translates of .
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In multivariate spline approximation, S() is of potential use as a space of ap-
proximants for a larger function space (e.g., C(Rs)). The operator , is exploited
in the derivation of explicit approximation schemes from S(). Such a scheme may
result in a linear projector onto S() (cf. [B1] and [BF] for the construction of linear
projectors for univariate and tensor product splines). Since the construction of linear
projectors in the multivariate case is usually quite involved, we are satisfied with the
so-called quasi-interpolation schemes, which yield the same approximation order.

In case the integer translates of are globally linearly independent (i.e., ker(,)
0), a natural way to define a linear projector onto S() is with the aid of a linear
functional A that satisfies

(E) 6,0, a e .
For then the functionals A := {AEa}a form a dual basis for 0 := {E-a}a, and a
linear projector can than be defined in the usual way"

E-AE.
For the analysis of the approximation properties of the projector, its localness

is important: a projector is termed "local" if for every compact A C Rs there
exists a compact B C 8 such that (f)lA is determined by flu" The existence of a
local projector is guaranteed in case the generator A of the dual basis A is local. The
construction of local linear projectors is facilitated if it is assumed that the integer
translates of are locally linearly independent, i.e., the condition

(1.2) ( c)l A 0 and suppE- n A - == c(a) 0,

for every open A C . It is one of the main themes of this paper to show that
local projectors can be constructed even under the weaker assumption of global linear
independence. As a matter of fact, that observation neither makes use of the shift-
invariance of the space S() nor of the fact that is a function.

THEOREM 1.3. Let (I) {}aeZ8 be a locally finite collection of (globally) lin-
early independent compactly supported distributions in T)(s). Then each functional
As in the (algebraic) dual basis A {,a}aez8 of is local. Precisely, for every a
there exists a compact Ba C s such that Aa(f) 0 whenever supp f M Ba

Here, locally finite means that only finitely many elements have some of their
support in any given compact set.

In 2 we prove Theorem 1.3 and employ this result to show that the assumption
of linear independence of the integer translates of is already sufficient to allow the
existence of a dual basis based on a linear functional A of point-evaluation at a finite
set of Rs. The proof of the theorem also gives information about the diameter of supp
which in the case of local linear independence coincides with the standard result.

The construction of local projectors is then discussed in 3. There we take to be
an arbitrary function whose translates are linearly independent, and, based on a new
extended notion of a quasi interpolant, provide a necessary and sufficient condition
for a quasi interpolant to be a linear projector. With the aid of this observation, we
then describe a general scheme for the derivation of local projectors onto S().
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In the next two sections we examine the piecewise-exponential case (which con-
tains the piecewise-polynomial case). Section 4 is devoted to a brief discussion of
some known methods for constructing quasi interpolants for piecewise-exponentials.
These results, together with observations from 3, are used in the 5 where we show
that for piecewise-exponentials a slightly stronger sense of local linear independence is
sufficient to imply that every quasi interpolant is also a linear projector. We conclude
that section with a review of the constructions of linear projectors in [DM1], [DM2],
[J1], and [J2] providing thereby new proofs and extensions to these results.

Finally, we provide in the last section an example which demonstrates the fact
that a certain stronger (still natural) version of Theorem 1.3 fails to hold.

2. Linear projectors are local. In this section we prove Theorem 1.3 and
discuss some of its applications.

The following is an equivalent form of Theorem 1.3 which is slightly more conve-
nient for the proof employed.

THEOREM 2.1. Let {a}sZ8 be a locally finite collection of globally linearly
independent compactly supported distributions in D’(Rs). Then there exists a ball

(2.2) B :- {x: Ilxll L}

such that if / Esez8 c(a)s satisfies supp / f B then c(O) O.
Indeed, Theorem 1.3 readily follows from Theorem 2.1: assume (without loss)

that a 0 in Theorem 1.3. For every f se8 c(c)s E span(I), A0(f) c(0).
So, if we assume Theorem 2.1 and choose B0 of Theorem 1.3 to be B in (2.2), then
whenever supp f f B b, Theorem 1.3 implies A0(f) c(0) 0.

We postpone the proof of Theorem 2.1 to the end of this section, but discuss some
of its applications now.

Suppose that C C(8) (or any other space on which point-evaluation is well
defined) and choose a E 7/s. Let Bs be the ball associated with a (by Theorem 1.3).
Define

(2.3) us := {/3

Since is locally finite, the set us is finite. Defining

S((I)) := span (I), Ss((I)) := span{ZlB /3

Theorem 1.3 implies that any extension #s C(Rs)* of the restricted linear functional
Asls() is also an extension of As, provided that supp#s C Bs. Now,
finite-dimensional subspace of C(Bs), Bs being bounded, and hence there are various
ways available for representing the restriction of As to Ss((I)); e.g., we may choose
set bs C Bs of cardinality #us, which is total for Ss((I)) (i.e., no element in
vanishes on bs). Then there is a unique linear combination #s Y]xeb c(x)[x]
satisfying

(2.4) #s(f) As(f) Vf S((I)),

where Ix] is the functional of point-evaluation at x. Thus we conclude the following
result.
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COROLLARY 2.5. Assume that C C(Rs). Then there exists a projector

(2.6)

such that each #a is supported on a finite set.
In the special case of interest, viz., when E-, we have

{ 1, a 0,+ 0, # o

(with := o, # #o Yxeb c(x)[x], and b := b0). This proves the following.
COROLLARY 2.7. Let be a compactly supported continuous function whose in-

teger translates are globally linearly independent. Then there exists a finite linear
combination of (real) translates of satisfying

lz 5a,0.

Proof of Theorem 2.1. Assume, to the contrary, that such a ball B does not exist.
For every positive integer n, let Bn be the open ball centered at the origin with radius
n and define

/]n :-- {O E Zs" supp fl Bn =fi

Let Mn be the linear space of all sequences c defined on u, and satisfying

Since (I) is locally finite, every Un is finite, and hence every Mn is finite-dimensional.
On the other hand, no Mn is trivial, since by our assumption each Mn must contain
at least one element satisfying c(0) - 0. To obtain the desired contradiction, we will
show that there is a nontrivial sequence in C whose restriction to each u, lies in Mn.
Since the union of the sets {n}n is 7/s, such a sequence c induces a nontrivial vanishing
combination of thus contradicting the linear independence of the elements in .

For this purpose, define M0 12 and for all nonnegative integers rn >_ n > 0, let
Tnm be the restriction map from Mm to M (with T c H c(0) and ToO the identity
mapping). Clearly,

(2.10) Tn
7 0 V m.

Defining K C Mn by

we note that the condition

Kn "= A ranTS,
m>n

Kn =riO
is necessary (but apparently not sufficient) for the existence of a sequence c whose
restriction to each u, lies in Mn. Indeed, we claim that, for each n _> 0, Kn 7 O.
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For this, note that, for every n <_ k <_ m,

(2.11) Tm TnT,
while {ran Tn }m>n is a decreasing sequence of finite-dimensional vector spaces. There-
fore, for all sufficiently big k and m, Tnm Tnk, and hence Kn ran Tnm for all suffi-
ciently big m. Finally, since Tn TTm, then (2.10) implies that Tm - 0; hence so
is Kn. The fact that, for sufficiently large m, Kn ranTm implies that we can find
m such that

Kj ran T, j n, n + 1,

and thus

(2.12) mKn T+ITn+IMm T+IKn+I.
We can now complete the proof as follows: let n be arbitrary, and let Cn E K, be

an arbitrary nontrivial element. Invoking (2.12), we may choose Cn+l K+I whose
restriction to Un is Cn. Again, (2.12) can be employed to provide c+2 Kn+2 whose
restriction to Un+l is c+1. Proceeding in this manner, we obtain (Cm Km)=n such
that Tnmcm Cn. This gives rise to a sequence c satisfying

while c is nontrivial since its restriction cn to is nontrivial.
We therefore conclude that the distributions in (I) are globally linearly dependent,

in contradiction to the assumptions of the theorem. []

3. Linear projectors and quasi interpolation. Throughout this section we
assume that is a compactly supported continuous function whose integer translates
are globally linearly independent, and A C R is an open bounded set which satisfies
for every c C the condition

(3.1) (,c)1A =0 == c(0)=0.

The existence of such an A was proved in Theorem 1.3.
Given a linear functional A C(R8) - C, we examine here conditions that guar-

antee that the operator
Q := , A(.)

is a projector. Here
A: C(R) --, C: f (AEf)e.

Our aim is to generate a space F C S() (which replaces the missing polynomial space
usually associated with a piecewise-polynomial ) that is of help in the identification of
a projector Q),. We use the notation f[ := fl, and let , stand for the semidiscrete
convolution operator from C() to S() defined by

(3.2) *’ f * fl E f(a)E-"

Finally, i.,f denotes the discrete convolution
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THEOREM 3.3. Let F be a subspace of S() satisfying

(3.4)

and assume that supp A C A. Then the following conditions are equivalent:

(a) : v: F.

(b) Q is a projector, i.e.,
Q(f)-- f

Proof. The implication (b) == (a) is trivial. For the converse, it is necessary and
sufficient to prove that

1, 0,A(E-a) 0, otherwise.

Fix c and let f

Q(f)IA
Now, E- 5 (with 5(/) := 5,), while Q,(f) A(f), and therefore, by
(3.1), we must have A(f) A(f)(0) 5(0). On the other hand, A is supported on A
and therefore since E- and f coincide on A we conclude A(E-)= A(f)=

The assumption supp A C A in the theorem is essential, as shown by the following
simple example.

Example 3.5. Let be the univariate hat function supported on [0, 2]. Let F rl,

[1A 7([7] + 7]). Then Qx reproduces 1, and F 1 also satisfies (3.4) with A
being any subset of [0, 1] or [1, 2]. Yet, A is not supported in any of these A’s and
therefore Qx is not guaranteed to be a projector. Indeed,

, a 1,

0, otherwise.

Needless to say, there exist projectors whose corresponding A is supported in no ad-
2 4 5missible A; e.g., A (-[] + 2[] + 2[]- []).

We now employ the above theorem to show that, with an appropriate choice of
the space F, the task of constructing linear projectors is reduced to the construction
of the so-called quasi interpolants. For that, assume that F is a shift-invariant (i.e.,
closed under integer translates) subspace of S(). Then it follows [B2], [R] that F is
an invariant subspace for ,’. If we further assume that F is finite-dimensional and
,’ is 1-1 on F, then ,’ induces an automorphism on F. We may then follow [BH],
call this automorphism T and define a functional on F by

[0]T- f T-f(O).

For p 6 F* rather than [0IT-1, the linear independence of the integer translates of
would imply that Q, is not the identity mapping on F and therefore no extension of
such would yield a projector. On the other hand, for p [0IT-1 it follows [BH],
that p(Ef) T-f(a) and therefore (with Q, defined only on F)

Q.(f) f Vf F.
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This leads to the following conclusion.
PROPOSITION 3.6. For ) E V*, the condition

A(f) [0]T-l(f) Vf e F,

is sufficient for Q to be a quasi interpolant. Furthermore, this condition is also
necessary in case , is injective.

If we furthermore assume that f H flA is 1-1 on F, the functional # can be
extended to a functional A C(Rs) that is supported on A and then Theorem 3.3
would imply that Q is a projector.

We summarize all these observations in the following corollary.
COROLLARY 3.7. Let F be a finite-dimensional shifl-invariant subspace of 5’()

which satisfies (3.4). Assume that the operator T := ,i IF is injective and consider
the following conditions for a linear functional ) C(Rs)*:
(a) Q is a projector.
(b) ,(f) [0IT-if Vf F.
Then (a)==(b), and the converse implication holds provided that ,k is supported in A.

The construction of a quasi interpolant using the inverse of the map T appears
first in [BH] in the context of the approximation order for box splines (hence for a
polynomial F), without, however, making the connection to linear projectors. The
discussion above emphasizes the fact (which is by now well known) that this is (es-
sentially) the only way to construct quasi interpolants. In particular, other constructs
(cf., e.g., [SF], [DM1], [CD], [CL] for piecewise-polynomials and [DR] for piecewise-
exponentials) re as a matter of fact special ways to extend [0IT-.

Our next task is to prove the existence of a space F which satisfies all these con-
ditions. This purpose can be accomplished without an appeal to linear independence.
First, we associate with A the set

(A) := (A):= {a ;s: A- a N supp -which consists of all integers a whose corresponding E-a has some support on A.
Furthermore, we assume without loss that 1 : 0; otherwise can be replaced by one
of its noninteger translates.

We now look for a shift-invariant space P which on the one hand interpolates
correctly on u(A) (that is, dimP #u(A) and no p e P\0 vanishes identically
on (A)), while on the other hand has trivial intersection with ker ,1. Any space
satisfying these two conditions will do here. In particular, we may first choose P to
be a homogeneous translation-invariant polynomial space that interpolates correctly
on (A), (cf. [BR1] for construction of such P of least degree). If ,’ is not 1-1 on
P, it may be replaced by a space Pe := coP, where the exponential ee x - ee’x is
chosen such that the discrete convolution ,lee - 0. This readily implies that the
operator i,i is 1-1 on eor (and hence so is ,1). Since for every 0 E (::s, the space Pe
also interpolates correctly on (A), Pe satisfies the required conditions.

Now define
F :=*’ P.

Since Po is translation-invariant, hence shift-invariant, so is F. F is also finite-
dimensional; in fact, since , is 1-1 on Pe, dimF #(A). Moreover, by the definition
of (A), S()1A span(E-l )ae,(A), and since Po interpolates correctly on (A),
we have

FI S()1.
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Finally, the discrete convolution , is injective on Pe, thus induces an automorphism
on that space and consequently F coincides with Pe on 7/s. We then conclude as
follows.

THEOREM 3.9. Let be a compactly supported continuous function, and assume
that 1 O. Let A be an open subset ofRs. Then there exists a shift-invariant subspace
F C S() satisfying
(a) dimF #,(A);
(b) ,

IF is an automorphism;
(c) FIA
(d) F is, up to multiplication by an exponential, a homogeneous (sequence) polynomial

space.
The following scheme sketches the various steps required in the construction of

linear projectors using the approach above.
SCHEME 3.10. Let be a compactly supported continuous function whose integer

translates are globally linearly independent. Check whether 1 O; if so replace by
a translate of it. Find a subset A C Rs satisfying (3.1); then
(a) Compute the finite set
(b) Find a polynomial space P which interpolates correctly on (A). For that you

may apply the algorithm given in [BR1; 4.]
(c) Find an exponential eo such that ’zs e0(a)(-a) 0. Define F ,’ eoP.

At this point you may wish to replace F by a shift-invariant subspace of it which
still satisfies (3.4).

(d) For a given basis fl,"’, fn for F, .find the basis gl,..., gn for F that satisfies

,’gj fj, j 1,...,n.

(This step can also be executed with discrete convolution, i.e., with 1 replacing
).

(e) Define a linear functional on F by #(fj) gj(O), j 1,...,n, and extend
to your favourite choice of a functional defined on some superspace of
and supported in A. (In case the extension is to C(Rs), you may choose ) to be
supported on an appropriate finite subset of A with cardinality

(f) The resulting Q is a linear projector.

4. Piecewise-polynomials and piecewise-exponentials: quasi interpola-
tion. In this section we review some methods concerning the construction of quasi
interpolants for piecewise-exponentials (and in particular for piecewise-polynomials).
Most of the results here are known, and the approach taken follows that of [BR2].
The discussion also makes use of various observations from [BAR], [B2], and [R].

Let H be a finite-dimensional exponential space. This means, by definition, that
each function in H admits the form

n

(4 1) e pj E , j 1,...,n.
j=l

We refer to the elements of H simply as "exponentials." Furthermore, we assume
hereafter that H is translation-invariant, which implies that a basis for H is given in
terms of functions of the form
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cop, p E 7r.

The spectrum of H is the set of frequencies of all exponentials in H:

(4.2) specH:={0EC eo H}.

Now let be a compactly supported function for which

(4.3) H C S().

A quasi interpolant here means any linear map Q from some superspace V of S()
into S() which satisfies

(4.4) Q(f)= f Vf H.

Since H is shift-invariant, T := ,t IH
regularity assumption

is an endomorphism. Furthermore, under the

(4.5) (-i0) - 0 V0 e spec H,

the operator T is also an automorphism. Indeed, ker T is always shift-invariant, hence
if it is not trivial, it must contain an exponential e0. Yet, , eo (-iO)eo (as
follows, say, from Result 4.6 below), and thus, under (4.5), ker T 0.

Proposition 3.6 shows that a careful study of the map T-1, hence also of T,
is essential for construction of a quasi interpolant. This study is facilitated by the
following result, which is obtained by an application of Poisson’s summation formula.
Using the standard weak argument (i.e., applying the formula to test functions) this
result is shown [BR2], to hold for an arbitrary compactly supported distribution .

RESULT 4.6. Let cop be a function in S() (with 0 C and p rr). Then

,’ ( op)

where the right-hand side convolution is the usual convolution between functions (or
distributions).

The above result suggests that in order to find a pre-image of cop H, we may
solve the convolution equation

* (e0?) cop.

Dividing both sides by e0 and applying the Fourier transform we get

Since supp- 0 and (-i0) - 0, we may divide both sides of (4.6) by E-i to
conclude

D(O) 1
?= P ^=E DP’ (x)’=

E-i >0 (-ix)
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hence

aDP"
c>0

With Da(O)/c! denoted by ao,, we conclude the following.
PROPOSITION 4.7. For cop E H

(4.8) [O]T-l(eop) [0] E ao,D"p.
c>0

Combining the last proposition with Proposition 3.6 we finally obtain the follow-
ing.

COROLLARY 4.9. Assume that the integer translates of are globally linearly
independent. Then the condition

(eop) [0] E a,DP Veop e H

is necessary and sufficient for Q to be a quasi interpolant.

5. Piecewise-polynomials and piecewise-exponentials: linear projec-
tors. Here we combine the results of the two previous sections in the derivation of
linear projectors for the piecewise-exponential space S().

Retaining the notation of 4, we assume throughout this section that H C S(),
and that there exists an open bounded set A C R for which

(5.1) #(A) dimH

(where u(A) is as in (3.8)). It follows that H satisfies the condition required of F in
(3.4). Furthermore, the translates of are locally linearly independent on A (in the
sense of (1.2)), and in particular A satisfies (3.1). With the aid of [R, Lem. 2.2] we
can also easily conclude that ,’ is 1-1 on H.

Therefore, Corollary 3.7 reads as follows.
COROLLARY 5.2. Let be a linear functional defined on an extension V of S()

and vanishing on all f S() supported in Rs\A. If

Q(f)- f Vf H,

then Q is a projector
Equivalently, Q is a projector if A extends the linear functional [0]T-1 H*.

The precise values of [0IT-1 on H were determined in Corollary 4.9, but of course many
extensions (to various V’s) of [0IT-1 are available. To draw the connections between
the results here and the constructions of dual bases for a box spline space in [DM1.],
[DM2], [J1], and [J2], we concentrate now on the case when [0IT- is represented (and
thus extended) with the aid of differential operators. First, we associate with every
q r a linear functional q* E H* defined by

Note that for cop H

q*(f) q(D)f(O) Vf e H.

q*(eop) p*E(q) [0] E (D’q)(O)
Dp,



1560 ASHER BEN-ARTZI AND AMOS RON

while, on the other hand, by Corollary 4.9

[O]T-l(eep) [0] E ao,aDaP"

Hence we conclude the following.
COROLLARY 5.3. Let q E 7r satisfy

(5.4) Dq(0) a! ao,a V0 e specg, a] max(degp: eep e g},

with {Re,a} as in Corollary 4.9. For a space Y S(), let V* be an extension of
q* H* which vanishes on all functions in S() with support in RsA. Then Q is a
projector.

In case all the integer translates of belong to H in a neighborhood of the origin,
we may choose to extend q* (at least on S()) to the functional A(f) q(D)f(O), f
S(). We note that in general condition (5.4) is sufficient but not necessary for the
equality [0IT- q*.

Choosing to be a polynomial or exponential box spline, Corollary 5.3 verifies
IBM1, Thm. 5.1] and [DM2, Thm. 5.1]. Note that, in contrast to [DM1] and [DM2],
the approach taken here avoids the application of Poisson’s summation formula at
this stage, hence we need not impose any further restrictions on the polynomial q
(see [J2] for a discussion of the difficulty in the application of Poisson’s summation
formula). Poisson’s formula is still implicitly used here, since this is the key tool in
the proof of Result 4.6. Nevertheless, as mentioned before, that latter result holds for
any compactly supported distribution .

In case is not smooth enough at the origin, we may wish to represent [0IT-by qEe with R chosen such that S() is locally in H in a neighborhood of . To
find the connection between the various qe’s, let P C be a space dual to H in the
sense that the map

PH*:qq*

is bijective (hence every p H* is uniquely represented by some q* with q P). With
{ fJ }j and {pj }j dual bases for H and P, respectively, we have

n

j=l

Let q be the unique polynomial in P satisfying q* [0IT- and let 0 . Then

[O]T-(f) q*(f) (q*E-O)(EO f)
n

p(EOf)q*(E-Ofj)
j=l

Since H is translation-invariant and q does not vanish on spec H, q(D) is injective on
H; hence {q(D)fj}j is also a basis for H. We have proved the following corollary.

COROLLARY 5.5. Given a basis {gJ}jl for H and a dual space P C for H,
there exists a unique basis {pj}j for P stisfying for all 0 s
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[O]T_I_[O] igj(_O)pj(D)l.j=l

Moreover, (pj }jn=l is the basis for P which is dual to (fj }in=l, where (fj
defined by

}jn=l are

fj E H, q(D)fj gj, j l,...,n,

with q P the unique polynomial satisfying q* [0IT-1.
For an exponential box spline there are two natural choices for a dual P for H

(cf. [BDR, 4] for details).
For a polynomial H, we may write each of the polynomials (gj}jn=l in the above

corollary in power form and then use summation by parts to obtain the following
corollary.

COROLLARY 5.6. Assume that H C 7rk for some nonnegative integer k. Then
there exist polynomials {pa}lcl<_k such that

The sequence {pc}lal_<k is unique in case we impose the restriction {p} C P
for a space P dual to H. We mention that in case H is invariant under the complex
involution, it is self-dual and we then may choose {p } C H.

Corollary 5.6 captures the construction in [J1]. There was a polynomial box
spline and P was chosen as a specific known dual of H.

6. Global and local linear independence. Our preliminary objective in
this note was to study possible relations between global and local linear independence.
Indeed, Theorem 1.3 exhibits an equivalence between global linear independence and
a very weak notion of local independence. We hoped that, at least in the translation
invariant case, a stronger claim of the following type connecting global and local
independence would still be valid.

CLAIM 6.1. Assume that the integer translates of the compactly supported
:D(Rs) are globally linearly independent. Then there exists a bounded set A that sat-
isfies (1.2).

Unfortunately, the above claim is true only for univariate splines. The following
is a counterexample for s 2, which can be lifted to higher spatial dimensions as well.

Example 6.2. Let fl, f2, fa be three univariate functions which are locally linearly
independent over [0, 1]. Define 1, 2 as functions with support on [0, 2) and so that

1= {fl on [0, 1) 2 {f2 on [0, 1)
-f1(’-1) on[l,2)’ f3(’-1) on [1,2)"

Construct from these two functions by

1(x), 0 <_ y <_ 1,
(x, y)"-- 2(x), 1 < y < 2,

0, otherwise.
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Then the integer translates of are globally linearly independent, since the vanishing
of ez2 c(c)(. a) on some integer square Qij [i, + 1] [j, j + 1] implies that
c(i,j-1) c(i-l,j-1) 0. So, for any given bounded A, let j be a maximal
integer for which there exists an integer such that the square Qij has some open
set in common with A. Then -ke ("- (k,j)) is a nontrivial linear combination of
translates which vanishes on A. Defining therefore a sequence c" 7/2 --. {0, 1} by

1, a2 j andc(a) O, otherwise,
supp E-he N A 0,

we get ( c)l A 0, although c is nontrivial, showing that the integer translates of
are locally linearly dependent with respect to every bounded open A.

Acknowledgment. We thank Carl de Boor for his valuable suggestions made
on an early draft of the paper.
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COLLISION SINGULARITIES IN CELESTIAL MECHANICS*

MOHAMED SAMI ELBIALY"

Abstract. A general collision singularity of the n-body problem in which several clusters of particles
collapse simultaneously is replaced by a collision manifold. The flow of the original problem is extended
to the collision manifold. The flow on the collision manifold is studied and used to study the asymptotic
behaviour of collision orbits. The work of Saari and Hulkower is generalized and it is shown that near any
collision singularity of the n-body problem none of the clusters enters into an infinite spin. In order to do
that, the manifold of collinear configurations is studied as an embedded submanifold of the unit sphere.

Key.words. collision singularities, n-body problem, celestial mechanics, McGehee transformation,
Painlev6-Wintner problem

AMS(MOS) subject classifications. 34C, 58F, 70F

1. Introduction. In this work we present a geometrical theory for studying the
flow of the n-body problem near a general collision singularity (GCS). At a GCS several
clusters of particles collapse simultaneously. This theory extends McGehee’s approach
which was used successfully to study the flow near triple collisions, or total collapse,
in the collinear and isosceles three-body problem, [McG1], [Mocl], [Moc2]. We shall
extend many of the results obtained for these problems, in which the total collapse is
an isolated singularity, to a GCS, which is no longer isolated as we shall show below.

By studying the flow near a GCS this theory emphasizes and takes advantage of
the geometrical character of collision singularities, and indeed the n-body problem in
general. Instead of studying a single collision orbit, we study a collection of collision
and near collision orbits. This is what makes this approach more suitable for considering
questions of regularization of collision singularities, and detecting chaotic behaviour
near them. It isolates and reduces the number of analytical estimates to the minimum
needed by eliminating all the parts that have already been incorporated in the general
theory of dynamical systems. It also isolates the parts that have a general character
and handles them once and for all. As a byproduct of this approach we obtain all the
essential classical results about a single collision orbit as easy corollaries with obvious
geometrical meaning and with easy proofs, in sharp contrast to the lengthy and
complicated asymptotic analysis arguments that were usually repeated time and again
with each proof.

This work is divided into two parts, 1-4 and 5-7. We begin the first part by
generalizing the McGehee transformation to a GCS. In order to do this, we use cluster
coordinates to define the singularity set that we study. Then, we show how to introduce
McGehee’s coordinates in the vicinity of this singularity set, and how to replace it by
a manifold called the collision manifold. The flow in these coordinates can now be
extended analytically to the collision manifold which becomes invariant under this
extended flow. We point out here that the singularity set of a total collapse is a single
point while a general one is an open subset of a linear subspace of R3n as we shall
see later.

In 3 we extend many of the results obtained for the collinear and isosceles
three-body problem to this general case. We show that the flow on the collision manifold
is gradientlike, and that it has a compact set of rest points for each point on the
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singularity set. At these rest points each cluster forms a central configuration. We also
show that if we pay attention to a single cluster, the quantity that is a candidate for
a Lyapunov function is nondecreasing only. We end this section by giving the lineariz-
ation of the vector field at a rest point, compute the eigenvalues, and show that zero
eigenvalues correspond to zero eigenvalues of the Hessian of the potential when
restricted to a certain ellipsoid.

In 4 we study the asymptotic behaviour of collision orbits. We show that as in
the case of collinear and isosceles three-body problem, the to-limit set of a collision
orbit is a compact subset of a single set of rest points. This is shown in Theorem 4.2,
which together with a lemma by Shub [Sh] gives many of the asymptotic estimates
that appear in the literature as easy corollaries (Remark 4.14). We also show that the
relative size of each cluster and the radial component of the relative velocity of its
particles approach definite nonzero limits. We show that this implies that no cluster
collapses infinitely faster than the others. We also show that at a rest point, the flow
in the direction of the relative sizes is repelling, which implies that collisions are
unlikely to occur. We note that the variables giving the relative sizes (a unit vector
with positive components) occur for a general collision singularity but not for a total
collapse. We end this section by showing that the angular momentum of each cluster
approaches zero as 7/3, which is faster than the 5/3 shown in [S]. We also show
(Theorem 4.12) that its energy approaches a definite limit; in [Sp] it is only shown to
be bounded.

In the second part, ( 5-7), we study the problem of infinite spin, also known as
the Painlev-Wintner problem, near a general collision singularity: can any of the
clusters undergo an infinite spin as it collapses? In [S-H] it is shown that this does
not happen for a total collapse. In [S] a negative answer is given for certain cases
which are called "sufficiently hyperbolic." There are other cases which are not
"sufficiently hyperbolic" as we will show in 4.15(7). Accordingly, we will extend the
result of IS-H] to the general case directly and without having to impose any conditions
such as sufficient hyperbolicity, which are satisfied by "all currently known types of
possible collision behaviour." Those types are easier to handle case by case.

In 5, we use the action of the compact group SO (3) on 3m to give a precise
formulation of the Painlev-Wintner question. We will also be able to answer this
question for any cluster that stays away from collinear central configurations, or has
no more than two particles. Collinear central configurations are singular with respect
to the SO (3) action, since the dimension of the SO (3)-orbits drops by one when the
configuration reaches a collinear one. Yet, they are nondegenerate, and hence isolated,
when the flow of the m-body problem is considered. This result is due to Conley [Pc].
Moulton shows this fact when a collinear centre configuration is considered within
the collinear m-body problem.

In 6, we study the set of collinear configurations in a normalized ellipsoid E,
show that it is an embedded submanifold L, and give the embedding explicitly. Given
s L, we decompose the tangent space as TsE Xs Ys O) Z, where X is the tangent
to the SO (3)-orbit of s, Ys is the subspace normal to X in L, and Zs is the subspace
normal to L. This analysis will enable us to unify the classical result of Moulton (there
are exactly n /2 collinear central configurations) and Conley’s result, mentioned above,
that the Hessian of the restriction of the potential function to E is positive definite in the
direction normal to L, that is, on Z. What Moulton showed about the nondegeneracy
of collinear central configurations is that this Hessian is negative definite on Ys.

In 7, we answer the Painlev-Wintner question for collinear central configur-
ations. This is done by showing that they are compact normal-hyperbolic invariant
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manifolds for the flow of the m-body problem, and then applying the centre manifold
theorem to each of them. Here m is the number of particles in the cluster under
consideration.

In what follows the symbol [3 will indicate the end of a proof, and when it appears
at the end of a statement it will mean that the proof is by straightforward calculations.

2. Blowing up a general collision singularity. Consider the problem of n point
masses moving in a three-dimensional Euclidean space under Newton’s equations for
gravitational force. Let mj > 0 be the mass of the jth particle, and qj its position vector.
Then, the equations of motion are given by

(2.1) M -DU(q),

where

U(q)=- 2 m,mj

i<j Iqi qjl’

q (q,, q2,""", qn) E Q,

M =diag (m, m2,’", mn),

i miqi: 0}/A,
A k.J A o, Aij { q q, qj },

ij

and a dagger "?" stands for taking the transpose.
The right-hand side of (2.1) is C in Q. Hence, given any set of initial conditions

in TQ we can solve it for a maximal interval, say (a, o-). When o- < o, we say that the
solution q(t) experiences a singularity as t--> or. In that case we assume cr 0. In 1897,
Painlev6 showed that in such a case q(t) approaches the diagonal set A as t- 0 [Pn].
If q(t) tends to a specific point q* A, we call the singularity a collision singularity,
otherwise we call it a pseudocollision. Painlev6 also showed that for n 3, all singularities
are collision ones. It is not yet known whether or not pseudocollisions exist for n-> 4.
However, as 0, the moment of inertia I(t)=1/2q*Mq either diverges to infinity or
goes to a finite limit. Sundman [Su] proved this assertion in 1906 for n 3. In 1908,
von Zeipel proved it for arbitrary n and showed that if I(t) is bounded as t- 0, the
singularity is actually a collision one, that is, q(t) tends to some point q* in A. This is
known as yon Zeipel’s theorem. (See [vZ] and [McG3].) In such a case, the n particles
group themselves into several clusters, which we denote by/x,. ., u, and the particles
of each cluster collide as t- 0. Thus, we start with a partition f {/x, , u} of the
set N {1, 2,..., n}, and define the singularity set A*(12) associated with 12.

DEFINITION 2.1 (The singularity set associated with a partition 12). Let 12=
{/x,..., u} be a partition of the set N={1,2,..., n} and define the singularity set
associated with 12 by

(2.1.1) A*(12) {q Q[ qi q iff i,j tx for some/x 12}.

For a total collapse, 12 12o {N}, A*(flo) {0}. When 1 # 12o, A*(l)) is an open
subset of a linear subspace of R3n. This shows why a total collapse is an isolated
singularity while a general one is not.

2.2. It is obvious that A= U, A*(12) (disjoint union).
In order to study the singularity set A*(12), we need to use what are called cluster

coordinates.
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DEFINITION 2.3 (The cluster coordinates associated with a partition 12). For each
Ix 12, let m i mi, and define, the centre of mass of the cluster tx

z.(q) =1 miqi,
m.

the position vector of the ith particle in cluster Ix relative to the cluster’s centre of mass

xi q qi z, Ix,

and let

x.(q)=(xiliix), Ix12, x(q) (x.(q) I/x a),

z(q) (z. (q)l Ix 12) N 31al,
where [12[ is the number of classes, or clusters, of 12.

It is obvious that when Ix ,, z.(q*) z(q*), for any q* A*(12), and that we
can find a collection of disjoint closed balls around the points z. (q*) 3, Ix e iq.

2.4. Definitions and remarks.
(1) Define the following two sets:

Z {Z 31fl Z Z, when Ix u},

mixi=O for all Ix}.
Then, for each Ix 12, there is a continuous function %’Z-> , Ix 12, such that the
closures of the open balls, B(z., a.(z)), Ix 12, are disjoint.

(2) Let

Az--{(x,z)lxX, IIxll<a(z) for all Ix}, A= U Az,
zZ

So-- {(x, z) A[x- 0}, W-{ql(x(q),z(q))A}.

Then, (x, z)’Wa-> A, is a diffeomorphism, and A*(12) is diffeomorphic to So. Moreover,
So itself is diffeomorphic to Z.

(3) As a matter of fact, we shall restrict our attention to the open subset of A
given by

E U Ez, Ez {(x, z) Az IX Xj whenever j, i, j Ix 12}.
zZ

In 4 we will show that collision orbits approach the singularity set So, which is
not a subset of E, in a way that is not tangential to any of the sets {(x, z) e A x x},
for some j, i, j in some Ix e 12, which justifies our choice of the open neighbourhood
E.

DEFINITION 2.5. Using the cluster coordinates we define for each cluster Ix 12
its intrinsic potential energy, kinetic energy, total energy, angular momentum, and moment
of inertia respectively by,

1 1
milyile,U.(x.) E Uij(x, z), T(y.)-- Ilyll=-

i,j tx

1
H. r. + U. c. 2 mixi X Yi, I. IIx I1 ,
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where

Uu(x, z)--
-2lx,-xl’ i, j 6 lx,

mimj

21z z / x, xl

Uo(x, z)= E u., u.(x, z)= E uo, ,
1 1

m.lr.[ r
dt’To rll 2

,ca

(2.7.1)

(2.7.2)

where

1
Ho To + Uo. Co E mz x 7r.. Io= z .

COROLLARY 2.6. Let fa ,af,, where f stands for U, T, H, c, or L Then,
f fo +fa by virtue ofthe previous definition, and thefact that i mixi 0,/z G [-. []

2.7. Equations of motion on TE using the cluster coordinates. In the coordinate
system defined above, the equations of motion take the following form where / 1:

.f,. =-M-aDU(x.)+ F.,

F -M1Dx. Uo(x. z) + ..
(, G _1__ D, Uo(x, z) - E [DUo(x, z)],

m m i
m(x- x + z z)

[Dx.Uo(x,z)]i -mi. Ix- xi + z.- z.
1

U(x, y)= Ilyll+ u(x), c<x, y)= E mix, x

1
-Uo= E U, Uo= IIll+ Uo(x, z), E

m. E m,, M. diag (mj [j ), Ma diag (m. ).

PROPOSITION 2.8. (a) F and O are real analytic on Eo E So.
(b) Consider a collision singularity, where zz* as 0-. e velocities of the

centres of mass have a finite limit as 0-.

Proof (a) The denominators of all the terms in Uo are never zero on Eo.
(b) Suppose the solution is defined on an interval (-, 0). Since G has a limit as

0-, both z and have a finite limit as 0-.
PROPOSITION 2.9. e energy H,, of a cluster , stays bounded as O.
Proof Direct computations show that . (F., y.). Hence, we have

Moreover, define the potential energy, kinetic energy, total energy, angular momentum,
and moment of inertia due to the interaction between the clusters by
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where F.(t)= F.(x(t), z(t)) is real analytic when t [tl, 0], for some tl < O. Moreover,
x(t) is real analytic on It1, to], for all to < O, and bounded on It1, to]. Integration by
parts shows that the right-hand side is bounded.

Proposition 2.9, which is due to Sperling [Sp], enables us to handle the situation
created by the fact that the energy H, of the cluster /z is no longer conserved. In
Theorem 4.12 we will show that each H, actually tends to a finite limit. Up to this
point we cannot prove a similar assertion regarding the angular momentum c.. Later,
we will show that c, - 0 as fast as 7/3, but first we must show that [[x,I U,(x,) goes
to a finite limit as x, tends to zero.

2.10. The McGehee transformation near a total collapse. In the case of a total
collapse where the singularity set is a single point, the main steps in constructing the
collision manifold and extending the flow to it are the following:

(1) Instead of the Euclidean inner product on 3, we use the one given by the
matrix M and define the corresponding polar coordinates away from the origin,

r (q*Mq) 1/2 -1s=r q.

(2) We rescale the velocity 0 by a factor of r1/2 and factorize it into the radial
and tangential parts,

V-- rl/Zt; w-- r3/2.

(3) When (2.1) is written in this coordinate system, the singularity at the origin
appears as a factor of r-3/2, which leads to the following step.

(4) Ifwe rescale time by a factor of r3/2, the new vector field is real analytic on r _-> 0.
(5) Finally, the energy relation can be written as 2rh- v2+ [[w[[2+2U(s), which

makes sense at r 0. Actually, it gives the promised collision manifold when r 0.
Remarks 2.11. (1) The first step in the McGehee transformation can be best

understood if we rewrite (2.1) as/j=-M-1DU(q). But M-IDU(q) is the gradient of
U relative to the inner product given by M. Thus (2.1) becomes =-V U(q), where
V denotes this gradient.

(2) The second one can be best understood if we note that the following system

(*) gl= y, f;= -M-DU(q),
is invariant under the similarity transformation - a- t, q - a -2/3, and y - a /3. This
implies that (,) has similarity solutions q(t)= t2/aqo O(t)=t-1/3qo which obviously
has a collision singularity at 0. Nevertheless r/gt lqol3/ near 0. Of course,
not all collision solutions are similarity solutions, yet rescaling the velocity in this
manner reflects the hope that they follow similarity solutions near the singularity and
have the same limit. This actually turns out to be the case even for a general collision
singularity as we will show later. Finally, going to polar coordinates, with r defined
as above, is not more than blowing up the singularity set.

(3) We will show how to replace the singular set TSo for a general collision
singularity by a collision manifold, and extend the flow on TE to that manifold after
rescaling time. In the rescaled time it takes collision solutions infinitely long to reach
the singularity. We start by defining McGehee coordinates around the singular set So.
As a matter of fact there are two ways for defining what we might like to call McGehee
coordinates, both of which are useful. The first is to apply the procedure just described
to each cluster, and define a polar coordinate system around the centre of mass of
that cluster, i.e., around x, 0. In that case we will have a vector s whose components
are unit vectors, s (s, [/x i2) sl"l S I"l. The second is to apply that procedure
directly to the vector x (x, I/x l)). We will use both coordinate systems.
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and

and let

2.12. The first McGehee-coordinate system associated with a partition [1.

(1) Given a partition f {ix, , u} we define for each Ix fl the following"

..1/2, S), W
..1/2F __( S}S].

(2) Let

(3) Let

a r-lr, i.e.,

d"
"r( t) r(a) -3/ da, i.e.,

dttl

r(t) -3/2 > 0,

2

__
IIw 2) + U(%).K. (s., u, w) r/-/ -(u

Then, the first McGehee-coordinate system associated with the partition fl is given by
the (r, a, s, u, w) and time r where s= (s, IIx fl), u= (u, IIx f), and w= (w, IIX f).

Remarks 2.13. (1) The vector a is a unit vector whose components are all positive
and represent the relative sizes of the different clusters.

(2) The vector s is not a unit vector, yet it belongs to the open set Z 1-I,a Z",
where

si # s for j, misi 0} for all IX e .
Furthermore, for all Ix, rl/2i% u.s. +w., and (w., s.)=0, which means that w. TE"
at s..

(3) In these coordinates we have

E= t_J E, Z {z[ z, z for Ix ,},

Ez {(z, r, a, s)]lal 1, a, > 0, ra (0, a, (z)), s, E", for },

o= {(z, r, ,s)l r=0, zZ, s, I1:1, >0, for },

=Zx{(r,,s)lr=0, l[=l, >0,s}

=Zx{r=0}xFx H

Eo=EUo, F={a sll-la >0 for all g }.

(4) Proposition 2.9 shows that each K, tends to zero on collision orbits.
PROPOSITION 2.14. In the first McGehee coordinates, the vector field on TE takes

the following form, which is real analytic at r O, and hence can be extended to TEo"
1/2 r(o 1/2(I) r’=rZa, ,: ,u),

S/x O/x3/2Wx,
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= +llw ll=)+

where

V U,I," and V V(s) M1DU(s,) + U, (s,)s,

f(x, z)= (s,, F(x, z)) is the component of F in the direction of s,

g. F.-f,s is the component of F tangent to Z,
K h-Ho=E H, =Z alK,.

The equations for the z-variables remain unchanged.
Proof Straightforward calculations lead to these equations using Euler’s formula

which implies that (DU(s,),s)=-U(s), since each U, is homogeneous of degree
-1. Moreover, f and g are real analytic on E0 by Proposition 2.8.

DEFINITION 2.15 (The collision manifold corresponding to a partition ). The
collision manifold of (I), which is a submanifold of TE0, is given by

Ca TZxFxCo where I-{l)l--1, ,,>o,
and

{Co ((s,u,w)[/z)[(s,w)T, u[, K=La’K,=O

Remark 2.16. In the definition of the collision manifold we require K , a
to be zero. We know from Proposition 2.9 that each H, is bounded as r tends to zero
and hence each K tends to zero. Neveheless, the energy relation K r(h- Ho)=
rHa aIK leads to K 0. Collision solutions will be shown to tend to the subset
of C given by a {P Ca[K =0, for all }. The set a is not necessarily a
manifold. In the following proposition we will show that both C, and C are invariant.

PROPOSITION 2.17. e collision manifold is invariant under the vector field (I).
us, collision orbits approach the collision manifold in infinite time . Moreover, C is
also invariant.

Proof The proposition follows immediately from the following"

t 1/2

K a3/2[u,K, + (ra,)z(f + (w, g,))],

K’ ce /2, u) K.

In Proposition 4.10 we will show that each aN tends to a nonzero limit on collision
orbits, which will show that collision orbits approach C.

PROPOSITION 2.18. The vector field (I) has no rest points outside the collision

manifold.
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Proof The time scaling and change of variables that we applied are all
diffeomorphisms outside C. If (I) had a rest point outside C,, it would correspond
to a rest point for the original system. This cannot happen, for if m is a particle of
maximum distance from the centre of mass (the origin), and P is the plane, in 3,
whose normal is q, then all the other particles would lie on one side of P, namely,
the side of the centre of mass. In such a configuration, the nonzero forces that these
particles exert on m cannot balance each other to give a zero resultant. Hence there
are no rest points outside C.

Remarks 2.19. (1) As we promised in the beginning of this section, we have shown
how to replace the singularity at TSo by an invariant manifold C,, and to extend the
flow to that manifold. We have also shown that collision orbits are slowed down in
the rescaled time so that they approach Ca in infinite r-time. In Proposition 3.4 we
will show that the extended vector field has rest points on C, while the original one
did not have any.

(2) Eo is not compact since it was constructed by choosing a small neighbourhood
of each q* in A*(). Moreover, these neighbourhoods cannot be chosen uniformly.
As a matter of fact, their diameters shrink to zero as q* approaches A(’) for any
obtained from by combining some of the clusters of together. Physically, this
means that the clusters might be arbitrarily close to each other at the moment of
simultaneous collapse. Neveheless, Eo is locally compact and we will take advantage
of that and of von Zeipel’s theorem that we mentioned in the Introduction, when we
study the asymptotic behaviour of collision orbits.

(3) In 2.11 above, we defined McGehee coordinates for each cluster separately
and then defined the vector a, which couples the equations of all the clusters together
and whose components give the relative sizes of different clusters. In the next aicle
we define McGehee-coordinates for the system as a whole because some of the
asseions which we will make later will be easier to prove when the vector field is
written in these coordinates.

2.20. The second McGehee-coordinate system associated with a partition . Given
a paition , we define the following:

d r3/
dr dr"

Straightforward calculations show that v a/u
Pooso 2.21. In these variables, the vector field (2.7.1) takes the following

form, which is real analytic on Eo"
(II) r’ rv: u,

lv 1
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where

K r(h-Ho)--1/2(v2+ 3’[12) +
g (F, cr), G F gcr, V

and a dash denotes differentiation with respect to -. [3

3. The flow on the collision manifold. We shall devote this section to studying the
flow on the collision manifold. The collision manifold by itself does not have any
physical meaning. Nevertheless, some of the properties of the flow on it are useful in
describing the asymptotic behaviour of collision orbits as well as studying near collision
orbits. First, we shall give the vector field on the collision manifold explicitly. It will
turn out that this flow has a Lyapunov function. We shall describe the set of rest points
of that vector field on Ca which has already been shown in Proposition 2.18 to be the
set of rest points for the whole system. Also, we shall give the linearization of the
vector field near rest points.

3.1. The vector field on the collision manifold. The vector field on Ca is given in
the first McGehee coordinates by

and

(Io)

In the second McGehee coordinates, (Io) takes the form

(Iio) r’= %

1 2 1
v’ 2v+ll ll:+v( )  ll ll
3"p

V
 -Ilvll: -v

where Ilvll:)+ 0.
DEFINITION 3.2. A flow on a manifold M is said to be gradientlike with respect

to a function L if and only if L is strictly increasing except on rest points. L is called
a Lyapunov function.

COROLLARY 3.3. Theflow on the collision manifold is gradientlike with respect to v.
Proof. On Ca, v’(’) 1/2113’112 --> 0. Moreover, if v’(’) 0, 3’(’) 0, and hence,

tr’(r) 0. If 3"(’) 0, we have a rest point. If 3" 0, 3’ will vary and hence v continues
to increase. [3
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PROPOSITION 3.4 (The rest points). (a) A point ((0, a,, s,, u,w,)*l/z fl)Co
is a rest point of (Io), and (IIo) if and only iffor all tx l-l,

(3.4.1)

(i)

(iii)

(v)

w*=0,. (ii) K.=0,

(u*)2+2U,(s*)=0,, (iv) 7V,(s*)=0,
* (O,’3/2( ,1/2,u, , a u*) (,,

* # 0, for all tx. Moreover, from (v) above, it follows(b) Since U, never vanishes,
that the sign (u*)=sign ((a *1/2, u*))=sign (v*) for all tx at a rest point.

(c) For such a point, each a* is uniquely determined by being positive and by

(3.4.2) c* A,

* is bounded away from zero and one.and hence, each
Remarks 3.5. (1) The rest points are actually on C by virtue of (ii).

* is a critical point of the restriction V, of the potential(2) At a rest point
function of the cluster/z to the part of the unit sphere where it is defined. The set of
critical points of V, plays an important role in determining the behaviour of the cluster
/x near collisions. The structure of this set is not very simple, and we shall devote the
better part of 5-7 to studying parts of this set. For the moment we observe that if
s,* is such a critical point, and A is in SO (3), then As* is a rest point as well, where
(As,)i Asi for /x. This is true because V, is invariant under the action of SO (3).
Moreover, the SO (3) orbits of critical points need not be isolated. In fact, if the
Hessian of V, is nondegenerate in the direction normal to the SO (3) orbit of s* then
this orbit is isolated We will see that this is the case if s* is collinear, that is, if all
the particles of/z lie on the same line. For the moment, we will state a lemma about
these critical points which is due to Shub [Sh].

LEMMA 3.6 (Shub [Sh, 1971]). The critical points of V lie in a compact subset of
E, and hence are compact.

COROLLARY 3.7. The set of rest points of (I) for a fixed value of (z, i) is compact.
Proof. The set of rest points is closed because it is the zero set of a continuous

function. Moreover, all the variables at a rest point are bounded except, perhaps, u,.
2 -2 V, (s), and Shub’s lemma implies that V, is finite at a critical point.But u
DEFINITION 3.8 (Definition of central configurations). Let s, be a critical point

of V,. The SO (3) orbit of s, is {As, IA SO (3)), and is called a central configuration.
We shall denote it by Orb (s,).

Remarks 3.9. (1) Central configurations correspond to the so-called similarity
solutions as follows. If we have only one cluster with potential U, and if s is a critical
point of the restriction V= UIE, then similarity solutions are of the form x(t)=
a(t-t*)2/3S. Obviously, these solutions o not change their configurations, and this
is why they are called similarity solutions. It is also clear that they are collision solutions
and that becomes unbounded as --> t*. In the next section we will show that, although
not all collision solutions are similarity solutions, they approach the set of similarity
solutions asymptotically.

(2) The vector c has norm one, and its components represent the relative sizes
of the different clusters. Later we shall see that collision orbits approach the set of rest
points, and we have already seen that the a,’s are bounded away from zero on rest
points. This will mean that no cluster collapses faster than the others.

> 0, u, is not a Lyapunov function for the motion of the cluster(3) Although u,
/z. In order to see this we fix a subset F(y*)=Fx{y*}c a, where y* r, s, u, w)*
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and (a*, y*) is a rest point with u* < 0 for all/ e In other words we fix all variables,
except a, at a rest point with negative u.’s. Since a does not appear in the energy
relation K 0, a is not forced to be a*, and we have the following proposition.

PROPOSITION 3.10. Let F(y*) be as above and note that it is a regular submanifold
diffeomorphic to F. Let g(a) 2(b, a /2) -2v > O, where b -u* > O.

(a) F(y*) is invariant, and the flow on it is a gradient one given by

(1) a’= -Vg(a).

(b) This flow has a unique fixed point at p*= (a*, y*).
(c) The eigenvalues of the linearizedflow are all positive, and hence p* is a repeller.
(d) Moreover, since equation (1) is exactly the one forfinding the extreme points of

g, g * is maximum.
* > 0 for all i, we have a similar flow in which all the eigenvalues at p*(e) When u,

are negative.

Proof. (a) First we observe that

(2) Vg(a) Dg(a)-(Dg(a), a)a Dg(a)-1/2g(a)a.

But,

b. 1/2 b)a(3) a,=-/a,+(a
(b) The above system has a unique fixed point at a a*, which was completely

determined in terms of the vector b in Proposition 3.4. More precisely, A b2/3

(c) In order to show that the eigenvalues are all positive, we compute the Hessian
of g at a*, and show that it is negative definite. From (2), it follows that if X T.F,
i.e., (a*, X)=0, we have

Hg(c*)(X, X) (--fftt) (X, Vg(a* + tX))
t=O

1 1D2g(a*)(X, X)-- (X, a*)(Dg(a*), X)- g(a*)lX[2

1 , --3/2-Y [b,.(a q- g(o*)]X2

as

(a* X)=0, --02g tt
02g

t, b.
o. oa oa. 2[ c ,. ]-3/

Parts (d) and (e) are obvious. [3

Remark. In the previous proposition we considered only the case when all the

u’s are negative because we have seen in Proposition 3.4 that at rest points all the

u’s have the same sign. Moreover, we shall show in the next section that on a collision
orbit each u approaches a negative limit. Similarly, on an ejection orbit they all
approach positive values as r-c. For the time being, we return to the flow on the
collision manifold.

3.11. The linearization of the vector field at a rest point. Straightforward calcula-
tions show that the linearization of the vector field (I) near a rest point
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(0, a, u, , s., w., .)* is given by the matrix

where

and

v 0 0 0 *

0 -J # 0

0 0 W 0

0 0 0 B

B diag (B. I/z f),

,)_3/( 0 1)* *
B.=(c. -J a.I a.

u.
2

v v* (c*/, u*), W= diag ((ul-txl3/2’*) I/t./, -),

J Hg a *), J, HV, S* ),

and I is the 3[/x[ x 3[/x identity matrix. We have omitted the part corresponding to the
variable z, for it consists of r2 times a finite term, and hence vanishes on the collision
manifold.

PROPOSITION 3.12. The eigenvalues of the above matrix are: v*; the eigenvalues of
-J which were shown in Proposition 3.10 to be all positive (if v* < O) or all negative (if

2). for f" andv*>0); the eigenvalues of W, namely, (U/xax3/

(3.12.1) :z 1/2(a*)-3/2(a +/-x/a- 4X.), /x f,

where A. is an eigenvalue of the Hessian of V..
Proof. Only the last set of eigenvalues needs an explanation. Let y. be an eigenvec-

3/tor of J. with A. as an eigenvalue. Then, (y., cy.)* is an eigenvector c.2B, with
eigenvalue c if and only if [J.-(a.c-c2)I]=O, which occurs if and only if c=

3/2 ["]

The previous proposition shows that the critical points of V determine the
properties of the flow close to the set of rest points. In the following section, we shall
show that collision orbits approach the set of rest points. Since the other eigenvalues
do not qualitatively depend on the masses it follows that actually the critical points
of V determine the asymptotic behaviour of the cluster/z on a collision orbit.

4. The asymptotic behaviour of a collision orbit. We shall devote this section to
studying the asymptotic behaviour of a collision orbit. The main theorem of this section
is Theorem 4.2, which states that a collision orbit approaches the set of critical points
on the collision manifold. Recall that on a collision singularity (z, ) has a finite limit
(z, i)* (Proposition 2.8), and that over each (z, ) there is a compact set of rest points
(Proposition 3.4).

DEFINITION 4.1. Let th be the flow generated by the vector field given by (I), or
equivalently by (II), of the previous section. We define the to-limit set of a subset Y of
E to be

to(Y)= CI 6(Y,[z, oo[).
->0

We remark that an o-limit set is invariant, and if it is a subset of a compact set,
it is nonempty, closed, and connected whenever Y is (see [CC] and [McG4]). The
to-limit set of a collision orbit is obtained by letting Y {p} for some point p on it.
Let 4(P, ’), ’>--0, be such a collision orbit for some point p E, with r(p) small. In
what follows we fix p, with (z,)-(z,,)*, and write b(r) instead of b(p, z) for
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simplicity. Now we state the main theorem in this section and two lemmas that are
needed to prove it.

THEOREM 4.2. The to-limit set of a collision orbit is a subset of the compact set of
rest points over (z, $)*.

LEMMA 4.3. As r 0 and " o, v tends to a negative limit v*< 0.
LEMMA 4.4. The to-limit set of a collision orbit is not empty.

4.5. Proof of Lemma 4.3. (i) First we show that v(-) is bounded above by a
negative number. Recall the vector field (II) of Proposition 2.21. If v(z) was always
positive for large ’, r would not go to zero. Thus, v(r) must be negative on some
increasing sequence ’n o. Moreover, on the set given by v 0, we have

v’= (-v2/2 V(cr) + 2K + r2g(r))v=o V(tr) + 2K + r2g(r).
But (-V(o-)) has a positive minimum, and the rest of the right-hand side tends to zero
as r 0. Thus, there are constants r_ > 0, v_ < 0, and b > 0, such that, for Iv]--<[v-I and
for r_-< r_, we have v’lv_-o> b > 0. Now define the following block B and its sides A_,
Bo, and B_ as follows.

B=(xElr<=r_,v_<=v<-O}, A_={xBIr=r_},
(4.5.0) Bo {x B v =0}, B_ {x BI v

Thus, v’> b inside the block B, and hence, if a solution passes through B_, it must
cross Bo in finite time. Moreover, r’<0 on the side A_, that is, the vector field is
transversal to A_ and points inside B. See Fig. 4.1 for the illustration. On a collision
solution r- 0 as " , and hence, for some -, r(’) < r_ for all - > -. If this solution
entered B, v would have to become positive in finite time and would have to stay
positive, for the vector field on Bo points in the positive direction of v, and r is less
than r_ for large -. This would force r to increase and not go to zero, a contradiction.

v

FG. 4.1

(ii) Second, we show that v actually tends to a limit. Note that v is negative for
large -, and hence r is decreasing. From the vector field (II) we obtain that for large -,
(4.5.1)
and hence,

(4.5.2)

Thus,

(1)

(In r)’= v< v_<0,

r(-) <= r(%) exp v_(r to)], -r>7-o.

+ K + rg(’) >-_ r( ’)[ h Ho + rgJ > -Br(’),
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for some positive constant B. The last inequality holds because both (h- Ho) and g
are bounded as r- 0. Hence, using (4.5.2), we get

Bro(2) v(r)-V(ro)>[1-exp(v_(r-ro))] for r>ro.
V_

Note that by choosing large to, ro r(ro) can be made arbitrary small. Since v_ is
negative, the right-hand side of (2) can be made bigger than any negative number
which is arbitrary close to zero. Now, let Vo lim sup_ v(r)< v_<0. For e > 0,
choose ro large enough so that, v(r)< vo+e, 0< Vo-V(ro)<e, and v(r)-v(ro)>-e
for r > to. Thus, -e < Vo- v(r) < 2e, for r > to.

COROLLARY 4.6. Since v goes to a negative limit, there is a lower bound on the
decay of r in addition to the inequality (4.5.2). Thus we have, as t- 0 and r-

(4.6.1) bl exp (vlr) < r(r) < b2 exp (v2r) for some Vl, v2 < 0, and b, b2 > O.

Moreover, since dr/dt r-3/2, it follows that r( t) 2/3.

4.7. Proof of Lemma 4.4. We want to show that to(p) ;, where p is any point
on a collision orbit. First we show that there is an increasing sequence rn c, such
that y(b (rn)) 0, as n - . In order to do that let/3 (r) y(b ())11 and assume that
there is a > O, and rl > 0 such that r) > 2a for all r > r We can take % large enough
so that K + r2f> -a2, and hence v’> a2 for all r > r. Thus, v(r) > v(r) + aZ(r r),
which goes to infinity as r-, contradicting Lemma 4.3. Thus, our assumption is
wrong and we are left with its converse: for all a > O, and for all r > O, there is

such that fl(r2)=< a. It follows that there is an increasing sequence % such that,
y(r,) 0 as n- c. Since v and cr are bounded, it follows, perhaps after passing to a
subsequence, that the sequence (4(p, )[n- 1, 2, 3,... converges to a point on the
collision manifold which shows that to(p) .

4.8. Proof of Theorem 4.2. Let Po to(P) and let % o be an increasing sequence
such that ch(p,r,)-po as n, and let v*=lim,_.v(ch(p,r)). Assume that Po
is not a rest point. Let e > 0 be small and let q b(po, e). Since v’ is positive on the
collision manifold except at rest points, it follows that v*=v(po)<v(q). Then,
q=ch(po, e)=lim_cb(p, rn+e) since b is a continuous flow. Hence, v(q)=
limn+ v(ch(p, r + e)) v* < v(q), which is absurd. Thus, Po is a rest point.

COROLLARY 4.9. to(p) is compact, for it is closed and is contained in a compact
subset of rest points as was shown in Corollary 3.7.

In the last few paragraphs we viewed all the clusters as one system. In the next
few we shall study the behaviour of each single cluster as they approach simultaneous
collapse. Theorem 4.2 above and Proposition 3.4 imply that, as r- 0, the variables of
each cluster/x approach the set of rest points.

PROPOSITION 4.10. On a collision orbit, as r-c, and r-O, the following is true:

(a) For large r, each u is bounded above by a negative number, and since they are
finitely many they have a common bound Uo < O.

(b) There are numbers 0< a <b< 1 such that, for large r, and for all tx, a <
a.(r) < b.

*<0.(c) Actually, each u. tends to a negative limit u. -+ u.
(d) For each/x, a. - * (*/v*)2/3

(e) Each s, tends to the set X*={s*X"lVV,(s*)=0}.
(f) In fact, s tends to a level set of V in , That is, regardless of whether s

has a limit or not V V - 0 and V, (s) - -(u*)2/2, as r - .Proof. (a) The proof of this part is similar to that of 4.5(i) above.
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(b) As ’-* oe, v has a finite limit and u is bounded away from zero. Moreover,
3/2 cannot vanish if a. is less than a small=0 if and only if u.=a, v. Thus, a.

positive t% If a. is not bounded away from zero, there is large %, such that a,.(’o) < 6,
and a(ro) is less than (-k), for arbitrary large k. But in that case, a(-) will continue

(r)<-kto be negative for r > ’o. Thus, c% will continue to decrease which makes
for all -> to. This will force a to become negative in finite time, contradicting the
fact that it is always nonnegative. Thus, each a is bounded away from zero, and since
they are finitely many, a bound can be chosen uniformly. Also, since al l, it follows
that they are bounded away from one.

(c) Given (b) above, we can prove that u goes to a limit as we did for v in
4.5(ii) above. Furthermore, knowing that both K and w go to zero, we see that

the limit takes the value claimed above.
Parts (d) and (e) follow from Proposition 3.4 and Theorem 4.2.
(f) V(s.) tends to --(U*)2/2, since both w, and K, go to zero.
In the previous proposition we had to divide the assertion about u, into two parts

because we cannot prove that u, actually goes to a negative limit without knowing
that a, is bounded away from zero (for the vector field (I) has a factor of a3/2 in
the u-component). But to prove this assertion about a,, we need to know that u, is
bounded away from zero.

We shall use the last proposition to prove a slight generalization of a theorem of
Sundman [Su] about the angular momentum of each cluster/x, which is no longer a
constant of motion and need not be identically zero in order for a collision to take place.

PROPOSITION 4.11 (a slight generalization of a theorem by Sundman). On a
collision orbit, as r - O, - O, and " - c, the intrinsic angular momentum c. of the cluster

tends to zero and satisfies
(4.11.0) [c.(’)[ % br7/2 b exp [(7/2)v_z]- bt7/3,
where v_ < O, and b stands for a positive bounded constant that might vary from one
expression to another.

Proof First we show that c, -* 0. Let y . Since c, Yi, mi(xi x yi), it follows that
< < [H.-r(4.11.1) 1%]2= IIx. ][:[lY. I1: 2r T(t)= 2r, V,(s)].

Although s, might not have a limit, it tends to the set of critical points of V,. This
set is compact by Shub’s Lemma 3.6 [Sh]. Hence, V, stays bounded as r-0. We have
also seen that H, is bounded. Thus, c 0. Now consider the following expression:

(4.11.2) , E mi(xi X i)= E Xi X DiU(xz)+ E mi(xi x Fi).
i ip il

The first sum on the right-hand side vanishes because the terms involving xi x xj and
xj x cancel out. Moreover, each F is a linear combination of terms of the form

a x____ -3((4.11.3) [a_x13-lal l+rb)(a-x), a--z-I-Xk--Zt, kv#tx.

Each b is bounded, and the coefficients of the linear combination are constants and
do not depend on i. Since Y, mixi 0, it follows that/:, rb(r(t)), where b stands
for the function bounded as r 0. From the relation between z and it follows that

C rY/Zll(’r). For large z, r’= rv < 0 since v has a negative limit v* < 0. Thus, [de/dr[ <
br5/, and we use the mean value theorem to get

(4.11.4) Ic.(r)- c,(ro)l < brS/2(r ro), ro < r.

If we allow ro to go to zero, %(ro) will also go to zero. Thus, I% (r)] < br7/2-- bt7/3 by
(4.6.1). lq
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THEOREM 4.12. On collision orbits each H tends to a finite limit as fast as r.

Proof Recall from Proposition 2.17 that H rK, and that

K’, a3/2[uK + (rc%)Z(f +(w, g))].
* < 0. Thus,ru and u-* uMoreover, r

rH, .-575 [f, + (w, g)].

But a tends to a* >0 (Proposition 4.10(d)) and the square bracket is finite. Thus,
for large Zo, and z> Zo, IH(z)-H(zo)]<ar(A)(’-o), for some constant a>0,
and o<A < z.

COROLLARY 4.13. On a collision orbit Uo, Ho, and To have finite limits.

Proof On a collision orbit, where t- 0, z tends to a point z*, and hence Uo(x, z)
has a finite limit. Now, Ho h- Ha, and H H has a finite limit by Theorem
4.12. Moreover, To Ho- Uo.

Remarks 4.14. We mentioned in the Introduction that one of the byproducts of
the approach that we are following is that it provides the natural geometric setting
and meaning to several estimates on collision orbits that appeared in the literature in
the past. The result is that now these estimates are simple and obvious corollaries of
Proposition 3.4, Theorem 4.2, and Shub’s lemma. However, when some of these
estimates were proved for the first time McGehee’s transformation did not exist and
obtaining one of these estimates required a lot of effort. For some of these estimates
see [P-S], [S1], and [S].

(1) In Corollary 4.6 we saw that on collision orbits r bt/3.
(2) A singularity as t- 0- is a collision singularity if and only if U bt-2/3. The

proof of the sufficiency is very easy and we omit it. The necessity: U(x,z)=
Uo(x, z) + Ua(x) Uo(x, z) + r-1Va(s). But Uo(x, z) is bounded on collision orbits
(actually has a finite limit). Theorem 4.2 tells us that a collision orbit approaches a
compact set of rest points. Hence, V Va(s) - 0, and V(s) is bounded by Shub’s lemma.

(3) If two masses mi and mj collide as t-O,
t2/31s-sjl. Again, Is-sjl ij, are bounded below by Shub’s lemma.

4.15. Discussion. In 3 we showed how to blow up the singular set A*(f), how
to replace it by the collision manifold, and how to extend the vector field to that
manifold. We also showed that, although the original vector field does not have rest
points, the extended one has a set of rest points which lie on the collision manifold
and which might not be finite; yet it is the union of a family of compact sets parametrized
by the centres of mass positions and velocities (z, ). In Corollary 4.13 we showed that
(z,) has a finite limit on collision orbits. In this section (Theorem 4.12), we have
shown that collision orbits approach the set of rest points. At this point we would like
to mention some of the implications of this conclusion, and its more detailed form
of Proposition 4.10, on the behaviour of the different clusters when they collapse
simultaneously.

(1) The vector a (al/z) has norm one and its components represent the
relative sizes of the different clusters. The fact that each a has a limit that is bounded
away from zero means that no cluster collapses infinitely faster than the others. More
precisely, the ratio between the rates of collapse of any two of them is finite and not
zero. Indeed,

r’ uv "
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(2) For a cluster /z, the only variable that might not have a limit is s.. Yet, it
converges to the set of critical points of V. U, IE’, Z" (S31’I-4\A). But this set is
compact and bounded away from A, {s.lsi =sj for some i#j in }. Thus, as the
cluster/z collapses, no subcluster of/z collapses in the limit.

(3) It follows from the above that the set of rest points, and hence the to-limit set
of any collision orbit, stays away from the closure of the singular sets A*(/"), for all
partitions 12" that are obtained by further partitioning 12. This means that the stable
set of A*(12) lies inside Eo, which means that the choice of Eo was suitable for studying
the asymptotic behaviour of collision orbits. Similar conclusions can be obtained for
ejection orbits by letting t--t.

(4) In order to understand the asymptotic behaviour of the configuration s, of a

cluster/z, we need to understand the set of critical points of V.. This set need not be
finite. In fact, since V. is invariant under the diagonal SO (3) action on Z’, it follows
that if s, is a critical point of V,, its orbit under this action consists of critical points.
We have denoted such an orbit by Orb (s,) and called it a central configuration. By
Shub’s lemma, all these orbits lie in a compact subset of E". Since SO (3) is compact,
each of these orbits is a compact sUbmanifold of E’. Nevertheless, there might be
infinitely many of them.

(5) We mentioned, after defining it, that if the to-limit set of a connected set lies
in a compact set, it is also connected. Thus, if a certain central configuration is isolated,
either s. accumulates on it or it stays away from it in the limit, that is, for large -. If
all of them are isolated (or equivalently, if they are finitely many, since they lie in a
compact subset), s, approaches one and only one of them.

(6) We will devote the next three sections to showing that, whether or not s.
accumulates on only one of them, it does not go on rotating, that is, none of the
clusters enters in an infinite spin as it collapses. This is known as the Painlevd-Wintner
problem [S-H], IS], [W]. In fact, Saari and Hulkower showed in IS-HI that this cannot
happen in the case of a total collapse, that is, when all of the n particles form one
cluster and collide. The angular momentum in that case is identically zero, while for
a cluster/ it goes to zero but does not vanish identically. We will follow their approach
to prove the assertion for all cases except one case in which the cluster might approach
a collinear central configuration. But collinear central configurations are nice since
they are isolated as Conley indicated [Pc]. In order to cover this case we will study
the subset of collinear configuration in ’, and apply the centre manifold theorem to
the collinear critical points. Studying the manifold of collinear configurations is of
interest by itself, since it gives more geometrical insight into the problems, which
enables us to unify the classical theorem of Moulton about the number of collinear
central configurations and Conley’s result mentioned above, and stated in Lemma 6.11
below.

(7) In the statement of Theorem 4.1 of[S, p. 312], the author answers the Painlev6-
Wintner question negatively for all cases. The proof that is given does not cover certain
cases, namely, when one cluster v approaches a collinear central configuration while
another cluster / accumulates on a component of A, {s IV V,(s)= 0, s is not col-
linear}/SO (3), which is not a submanifold, or if the Hessian of V. is degenerate at

A.. The author defers the proof of the case when one of the clusters tends to a collinear
central configuration to Theorem 4.2 which deals with what he called "sufficiently
hyperbolic sets" IS, Def. 3.1, p. 307]. However, the discussion supporting Theorem 4.2
depends on the condition that three certain related sets are submanifolds. These three
sets are" CC =Hk CC [S, pp 304-305], "the union of components of CC whicha-l

are sufficiently hyperbolic compact submanifold" denoted by sh [S, Def. 3.1, p. 307],
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and a component 7/" of sh that "corresponds to the choice of the limiting configurations
ofthe various collisions" S, p. 3 1 7, first paragraph]. The author treats them as manifolds
and talks about the tangent space of some of their components. On page 304 the author
mentions correctly that each CCa is only real analytic, which is not necessarily a
manifold. Now, both sh and 72 are subsets of CC, and hence are not necessarily
submanifolds of the original space either, in particular, when the set A, is not a
submanifold of " or when the Hessian of V is degenerate, i.e., in the cases we
mentioned above. For 72 to satisfy 3.1 it must be a manifold, and for this to happen,
not only the component of 72 corresponding to the collinear configuration but also all
the other components must be manifolds. Thus, the proof does not apply to this
problematic case. We will prove the general case directly and without having to impose
any conditions such as sufficient hyperbolicity, which are satisfied by "all currently
known types of possible collision behavior." Those types are easier to handle on a
case-by-case basis.

5. The action of the group SO (3) and the problem of infinite spin. Before presenting
the ideas that we mentioned at the end of 4, we need to collect some standard material
about the action of Lie groups on manifolds. We will limit ourselves to the minimum
that we need without going into generalities. Our main reference is [A-M].

5.1. Definitions, notation, and facts.
(1) Let G be a Lie group and M a manifold. Let A: G M -> M be a C action

of G on M. If A(g, x) is denoted by (g. x), we have

gl’(g2"x)--(glg2)’x, e.x=x, g, gl,g2(3, x6M,

where e is the identity element of (3. Moreover, we assume that G acts faithfully (or
effectively) on M; that is, if g.x x for all x in M, then g e.

(2) Let G. x {g. x lg G} be the orbit of x M under the action of (3. If G is
compact, (3. x is a closed submanifold of M and its tangent space at x is given by

d
(5.1.1) T(G. x)= {SCM(X)[ : g}, SC4(X) =- [(exp tsc) x]t=o,

where g is the Lie algebra of (3, and :M is the vector field that : induces on M.
(3) Assume M is a Riemannian manifold with a metric denoted by (.,.). Then

the tangent space of M at a point x M is the orthogonal sum, TxM Px 03 N, where

(5.1.2) P,= T(G. x) and N={Y T,M[(Y,X)=O for all X in P}.

The dimension of P, and hence that of N, do not have to be equal for all x, for (3. x
is ditteomorphic to the quotient G! G, where Gx {g G[g. x e} is the stabilizer
ofx.

5.2. SO (3) action on !3".
(1) Let G=SO (3) ={(R)1t9 33 matrix, 19’(R) =/, det 19 1}. Then, its Lie algebra

9 is the set of all skew symmetric 3 3 matrices, ..*=-... The Lie algebra can be,
and will be, identified with R via

0 --X X2 X

..= x3 0 -x := x 3,
(5.2.1) --X2 X 0 X

From now on we shall assume that (3= SO (3) and g_N3.
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(2) The group SO (3) acts effectively on 3n by

g(X1, X2, Xn) (gxl gx2, , gx,,), g E G, xi 3, 1, 2, 3, ", n.

This action leaves S3n-1 invariant. Furthermore, it leaves the following two sets
invariant,

$3n--4"--{ SS3n-l i misi=O} and E--E3n-4---S3n-4\ A.

Note that all the unit spheres mentioned here are defined in terms of the metric
given by the matrix M, yet, Ilgsll =- y, milgsil2= Ilsll =, since Igs, I- Is, for all i.

(3) Using (5.1.1) and the identification (5.2.1) we can decompose each T,E as in
(5.1.2) as follows:

X= T(G. s) ={^ slsC3 =g},
where

and
^s=(#xs,,#xs,...,xs,),

Ns { g Y m Y O Y, rl ^ s O for a ’i’[3}
5.3. The configuration of a cluster p.
(1) Consider a fixed but arbitrary cluster/x. To simplify the notation in the next

few articles we will drop the subscript/x and assume the cluster under consideration
has n particles. Thus, for this cluster we have (s, w) TsE, a E (0, 1) has a limit that
is bounded away from zero and one, and w0 as -oe, but not necessarily fast
enough to ensure the convergence of s. We have, with all the variables below depending
on z,

(5.3.)
that is,

(5.3.2)

s O -3/2w, W X + Y for some X Xs, and Y N,,

X sc ^ s, Y, rt ^ s) 0 for some 6 N3, for all r/ 3,
Y miYi=O and X, Y-0 as zoe.

Finally, we write each si as the sum of two components, one in the direction of
and the other in the normal direction, as in Fig. 5.1.

(5.3.3) si [i -[- Zi and (Zi, ) O, 1, 2, 3," ", n.

THEOREM 5.4. (i) As z--> c, J[ I[z[[ 2---> 0 exponentially.

FIG. 5.1
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ii If is bounded or if z is bounded awayfrom zero, x I1 z - 0 exponen-
tially and s does not undergo an infinite spin as

Proof (i) Let c c, be the angular momentum of the cluster under consideration.
Then,

(5.4.1) a= (r)-l/2c:E mi(si wi)= rni(siXi)+E mi(si Yi).

The last sum is identically zero, for if rt is any vector in R3, since Y Ns, we have

(5.4.2) (r/,i mis Y)=. m(r/, six Y)= (r/^ s, Y)=0.

Using (5.3.2) above, we obtain

(5.4.3) a=, m,s, X Y., m,s, x (sC x s,) -11112( m,,z,) + Ilzl12.

Since : is orthogonal to each z, and since c satisfies the inequality (4.10.0), the norm
of the last term satisfies the following inequality, which proves part (i):

(5.4.4) I:111zll =--< Ilall -< br3 < bl exp [3v_r].

(ii) On the other hand, since each z is orthogonal to , the norm of X satisfies

(5.4.5) Ilxll =-- I1 ^ 11== I1 ^ zll 2= Il=llzll =.
Thus, if either : is bounded or Ilzll is bounded away from zero for large ’, IlXll-0
exponentially fast and the cluster under investigation does not undergo an infinite spin
as it collapses.

COROLLARY 5.5. An arbitrary cluster tx does not undergo an infinite spin as it

collapses in the following three cases:
(i) If it does not approach a collinear central configuration,
(ii) If its particles lie in a fixed plane, i.e., in the planar problem, or

(iii) If it contains exactly two particles.
Proof (i) If the cluster/x stays away from collinear central configurations, then,

for large -, Ilzll is bounded away from zero.
(ii) If the particles of the cluster are always in a fixed plane, they will always

rotate around an axis that is perpendicular to that plane. In this case, s zi and/3 0
for all i, which means that z s 1 > 0.

(iii) Let/x have exactly two particles. Since the origin of the cluster is at its centre
of mass, we can assume s has only one vector component. Thus,

(5.5.1) a--ml#12z+llzll2#-l#lllzll ml#lti+.
Both z/llzll and UIII[ are unit vectors and 1-1sl2=(t)2/llzll=. Hence, if z-0,
tll- 1, and the norm of the square bracket in (5.5.1) goes to one. Thus, I1 Ilzll-, 0
exponentially fast.

Remark 5.6. The only case that is not covered by Theorem 5.4 is when s is not
bounded away from collinear central configurations. This is a consequence of the fact
that the SO (3)-orbit of a collinear configuration is singular relative to the action of
SO (3). More precisely,

orb (s)
so (3)

G {g6 SO (3)lg" s s}.
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If s is not collinear, Gs consists of the identity element, but, if s is a collinear
configuration along the line given by the unit vector _a S2, Gs consists of all the
rotations around the axis given by _a, and hence diffeomorphic to S1.
On the other hand, collinear central configurations are isolated according to Conley’s

Lemma 6.1 [CC], which shows that either s approaches a specific collinear central
configuration or stays away from them. In the latter case, Corollary 5.5 shows that the
cluster/x does not undergo an infinite spin. In order to resolve this problem in the
former case, we shall study the set of all collinear configurations as a submanifold
of E.

6. The manifold of collinear configurations. In this section we intend to study the
set of collinear configurations of n particles in space. We shall show that it is a
submanifold L of E, diffeomorphic to ($2 x Sn-)/---, where (e, _a)-- (-e,-_a). We shall
also write TsE as the orthogonal sum TsE= TLO3Z, TL= T(G. s)O) Ys, for s L,
and G SO (3). Then, we shall study the Hessian of V, where V is the restriction of
the potential function to the unit sphere, and show that at an arbitrary collinear critical
point (central configuration) s it is identically zero on T(G. s), negative definite on
Y, and positive definite on Zs. The first assertion is expected since V is constant on
the SO (3) orbits. The second will be shown after writing the Hessian explicitly, and
will give, as a corollary, Moulton’s theorem (which states that there are n !/2 collinear
central configurations). The idea of the proof of the third is due to Conley [Pc]. From
that analysis of the Hessian of V at such a critical point, it follows that the collinear
ones are isolated. It also means that the SO (3) orbit of a collinear critical point is
normal hyperbolic which will enable us to apply the centre manifold theorem and
show that if s approaches a collinear central configuration, it must have a limit, which
means that it does not undergo an infinite spin and settles this question.

6.1. Notation and definitions. Let E be 3n--4 as defined in 5.2, and let _m
(ml, m:,..., mn). Define the following:

(6.1.1) A={_a sn-ll(_a, _m)=0 aia when ij}S"--\A,

L {s E s is collinear}
(6.1.2)

{s Zlthere are e S and _a A, such that s ae for all i},

SZxA
fl_- where (e, _a)---(f, _b) <::> (f, _b)= +(e, _a),

(6.1.3)
e, _a the equivalent class of (e, _a).

PROPOSITION 6.2. L is diffeomorphic to [L.

Proof Define 4 :_-E by 4([e, _a])=s, si=aie, for i= 1,2,..., n. Then, 4) is well
defined, injective, and b(_)=L. Actually, b defines a manifold structure on L by
carrying that of

_
to it. Thus, what we need to show is that th is an embedding. In

order to do that we compute b,: T_- TE. Near a point [e, _a]_, (e, _a) form a
coordinate system. Let (X, Y)+ {(X, Y),-(X, Y)} be in Te._l-. Then,

(X,e)=O, (Y,g)=O, (Y, _m)=O,

and

4.([e, _a]) =ff-e =0

dp((e, a)+ e(X, Y))=

alX+ Yle
a2X + Y2e

a,,X + Y,,e
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This is well defined, since if we choose (-e,-_a) as a coordinate system near [e, _a],
we replace (X, Y) by (-X,-Y). Let (X, Y) be in the kernel of b.([e, _a]). Since X
and e are orthogonal, it follows that aiX=O, Y/e 0, for i= 1,2, , n. But II_all--lel
1. Thus, X =0 and Y=0, and hence b.([e, _a]) is an isomorphism. Since the domain
and range of 4’ are compact, b is a homeomorphism in the topology that L inherits
from E. Hence, it is an embedding.

PROPOSITION 6.3. fl_, and hence L, have (n!/2) simply connected components.
Proof S2x A has n! components, one for each different ordering, al)<’’" <

an), where tr is a permutation of n objects. If we take the quotient, we get (n!/2)
components.

PROPOSITION 6.4. Let s= b([e, _a]) L. Then, G. s c L. Moreover, if we apply
th.([e, _a]) to X=(x e) Te$2 and b_ T_A, we find that TsL= Ts(G. s)Ys, where

T G. s) {X Xi ai( x e) for some 3},
Y { YI Yi bie for some b with (s, Y) (_a, _b) 0 and _m, _b) 0}.

It follows that (X, Y)= (X, Y)= O, as (e, x e)= O. Moreover, dim Xs is constant for
sL.

We shall identify X with (X, 0), and Y with (0, Y).
DEFINITION 6.5. Let (TE)IL=X0)Y0)Z, where TL=XY, and Xs Ts(G" s),

for s L. The direct sums are orthogonal relative to the inner product given by the
matrix M.

COROLLARY 6.6. If S th([ e, _a]) L andZ Zs then, for all [3 andfor all Y Y,

(6.6.1) ( miaiZi, , e) (Z, X)

(6.6.2) (i mibZi, e) (Z, Y)=0,

(6.6.3) (e, Z ) 0, for all i, j.

Proof. The first two identities follow immediately from writing X and Y explicitly.
We prove the third for 1 andj 2. Let W (m2e, -mle, 0, , 0)*, and Y W-fs,
where f W, s). Then, Ei miYi 0, and Y, s) 0, and hence, Y Y. Since (Z, s) 0
for Z TsE, it follows that 0 Y, Z) Y+fs, Z) (W, Z) mlm2(e, Z1 Z2).

PROPOSITION 6.7. Let hs be the quadratic form associated with the Hessian of the
potential V’,---> R, at a critical point s E, and let w TsE. Then,
(6.7.1)

(6.7.2)

where

hs(w) HV(s)(w, w)=(w, Bw)+ ks(w)+ V(s)[[wll 2,

ks (w) 3 , mimj
Si Sj, W Wj )2,

i<j Isi

(6.7.3) B M-1A,

with

(6.7.4)

mi(w, Bw)=(w, Aw)= E is ilw,-wl=0,i<j Sj

mi

Aj Isi Sj[3 for j,

mimk for j,

(6.7.5) (f Af Y m,mj

i<j ISi--Sjl
(f/__)2 for any vectorf6". [3



1586 MOHAMED SAMI ELBIALY

COROLLARY 6.8. (1) see is a critical point of V if and only ifA(s)s= DV(s), i.e.,
B(s)s V(s)s.

(2) Ifs E is a critical point of V, and X Ts(G" s), then ks(X) 0 and hs(X) O.
Proofi (1) This assertion follows from (6.7.5) and the fact that s is a critical point

of V if and only if M-1DV(s)=- V(s)s.
(2) The components of X are of the form Xi : x si, : 3. It follows that for

all andj (s- sj, X -X) (s- sj, scx (si- s)) =0. Thus, ks(X) =0. Direct calculations
show that AX=A(^s)=^As, and MX=M(^s)=^Ms. Using (1) we get the
following, which implies that hs (X) 0:

(X, AX) (: ^ s, : ^ As) V(s)(sc ^ s, : ^ Ms),

V(s)llXl[2= V(s)( A S, : A Ms)= -(X, AX): -(X, BX).

Remark 6.9. For the rest of this section we will consider collinear critical points.
Thus, we shall only pay attention to one component of L, say Fo. We can assume it
has a coordinate system (e, _a), such that _a F,

(6.9.1) F {_X Sn-1 [(_X, i) 0, X < x2 <" < Xn}

Note that both the vector 1 and the inner product (.,.) do not depend on the
ordering of the ai’s, and hence, we do not lose any generality by our choice of F.
Moreover, Fo can be identified with S2 x F, and we will write 4(e, _a) instead of 4([ e, _a]).

THEOREM 6.10. Let s th([ e, _a]) be a collinear criticalpointfor Vand w TsE. Then,

(6.10.1)

(6.10.2)

(6.10.3)

hs w E mimg

i<j ]a, aj[
[wi- Wj[2- 3

mimj

i<g lai
(e, w wj)2 1- V(s)ll wll 2,

hs Y is negative definite, that is, hs (Y) < 0, for all Y Y, and

for all Z

Proof The first identity follows from (6.7.1) by writing s in terms of e and _a. To
prove the second we take Y e Y with Y be for some _b satisfying (_a, _b) 0, _m, _b) 0.
Direct calculations show that ks( Y) -3( Y, AY). Thus, hs( Y) -2( Y, AY)+
V(s)ll YII 2 <0. The last identity follows from (6.6.3) and from observing that ks is
nothing but the second sum in the first identity. [3

6.11. Conley’s lemma for collinear central configurations. Let s= th([e, _a]) be a
collinear critical point for V. Then, for all Z Zs, h(Z) > O.

Remark 6.2. What this assertion means is that at a collinear central configuration,
hs is positive definite in the direction normal to the submanifold L of collinear
configurations. The idea of the proof is due to Conley [Pc]. We shall present the proof
of this theorem in a series of Lemmas A-D.

LEMMA 6.13. A. Let Z Z; then by (6.10.3), k(Z) O. Thus,

h(Z) (Z, BZ)- A IIzII 2,

Observation 6.14. To prove Conley’s lemma it is enough to show that all the
nonzero eigenvalues of B are strictly bigger than A. In the next few sections we shall
study B as an n x n matrix acting of

LEMMA 6.15. B. (1) B has zero as an eigenvalue whose eigenspace is [i] span {i}.
(2) If tx 0 is an eigenvalue of B, then Ix > O.
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(3) The subspace normal to 1 is given by P={x"IY mixi=O}.
(4) The vector _a is an eigenvector for B with eigenvalue A. Moreover, it lies in P.
Proof (1) Recall that

(Z, BZ)= (Z, AZ) Y m,mj 12Iz,

This expression vanishes if and only if Z1 Z2 Zn, i.e., Z belongs to [1].
(2) If IX # 0 and BZ IXZ, then Z [i], and Ix Ilzll = <z, nz> > 0,

(3) Since (x, 1)=i mix, the assertion follows.
(4) From Corollary 6.8(2), and the fact that each s ae, it follows that B_a A_a.

The vector _a is in P because 0 ’i misi (i miai) e, and el 1. [3

COROLLARY 6.16. Let be the bilinearform given by fl(x) (x, Bx) for x En. Let
a > O, and define

E=CNP.

Then, the following follows from the previous lemma"
(1) The surface Ca is a cylinder with axis along the vector 1.
(2) Each E, is an ellipsoid.
(3) Furthermore, since _a is an eigenvector ofB with eigenvalue A, and since it belongs

to P, it is one of the vertices of E.
(4) _a E fq F, and E is tangent to F at _a.
COROLLARY 6.17. Let tx be an eigenvalue of B, different from zero and A, with a

unit eigenvector b_. Then, b_ does not belong to an open neighbourhood of the closure of F.
Proof We know that _a F. Since A # Ix and B is symmetric with respect to the

inner product (.,.), it follows that (_a, _b)= 0. Moreover, _b does not belong to [i], and
hence, its components are not all equal. Since (_a, 1)= (_b, 1)= 0, it follows that

0: t(_a, _b)- E miaibi Z mimj(ai- aj)(bi- bj) with K Z mi.
i<j

But each (ai- aj) is negative since _a F. Hence, unless (hi- bj)> 0 for some i<j, the
right-hand side does not vanish. Since there are only finitely many eigenvectors, _a is
the only one in a neighbourhood of the closure of F except perhaps other eigenvectors
of A if they exist.

LEMMA 6.18. C. Let Sl={x6Sn-l(x, i)=0}=Sn-2, and g--/3lS. Consider the
gradient system defined on S1 by

(6.18.1)
dt

Vg(x) Dg(x) -(Dg(x), x)x 2[Bx g(x)x].

(a) dg/ dt >-0, and vanishes only at rest points, that is, g is a Lyapunov function.
(b) The flow is transversal to the boundary of F, which we denote by OF.
(c) The flow has a unique fixed point at _a, which is also an extremal point of g.
(d) Thefixed point _a is a repeller and g has a global minimum at _a and is increasing

everywhere else.
(e) E, f"l r {_a}.
Proof (a) dg/dt= [IVg(x)ll2->_0, and vanishes only at fixed points.
(b) Let x 0F, that is, Xk Xk+l, and x xt+, for some integers k between 1

and n. Moreover, x-<_.-.-<_ xn, and a <... < an. Thus, each term in the following
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sum is nonnegative and the sum is positive:

d mj(xk_xj)[1 1 ]dt (xk Xknt-1)lXk=Xk+l"
jsk,k+l laj ak[------ ]aj ak+,l

> 0.

Thus, the flow is transversal to the boundary of F, and leaves it as time progresses.
(c) A point x in F is a rest point if and only if it is an eigenvector of B with

eigenvalue/x # 0, since ker B [1]. If x # A, we conclude from Corollary 6.17 that x
could not belong to F. If/x A, and x Z span {_a}, it follows that the eigenspace of Z
is at least two-dimensional, and hence, it must intersect OF, and we can assume that
x is in OF. But we have just seen that OF contains no fixed points.

(d) The flow leaves OF as increases. Thus, for any p e cl (F), the a-limit of p,
denoted by a(p), is an invariant compact subset of the interior of F. Since the flow
is gradient, and since _a is the only fixed point there, or(p) {_a}. Hence, p is a repeller.
Thus, g takes its minimum at _a.

(e) We have already seen in Corollary 6.16(4) that _a e Ex V1F. Thus, g assumes
its minimum on E fl F, and hence, E, fl F consists of rest points, but we have only
one, _a.

Finally we give the last lemma in the proof of Conley’s Lemma 6.11.
LMM 6.19. D. The nonzero eigenvalues of B are strictly larger than A.
Proof. Let E be an ellipsoid defined by a quadratic form B0 with positive eigen-

values 0< A =<...-< Am,. Let v,..., v, be in E and be eigenvectors corresponding
to A,..., Ar, respectively. Then, v,..., v, are vertices for E and [Vll>= "lVm].
NOW, we apply this observation to the restriction B IP in order to show that A is the
smallest nonzero eigenvalue of B. What we need to show is that _a is the longest axis.
But we know that F is an open subset of the unit sphere S, and that it is tangent to

Ea at _a. Actually, we have seen in Lemma 6.18.C(d) that E fqF {_a}. Thus, S lies
either inside Ea or outside it, and hence, _a is either the shortest or the longest axis,
respectively. If it was the shortest, Ea would be tangent to F from outside, and hence,
Ea+ f3 F would be empty for all e > 0. But we know that g takes its minimum value
A at _a. Thus, this intersection cannot be empty for small e, which implies that _a is
strictly the longest axis. rq

6.20. Important remark. Conley’s lemma, whose proof has just been completed,
implies that collinear central configurations are isolated. Thus, as we mentioned in the
discussion in 4.15 above, a cluster/x either approaches one and only one collinear
central configuration or accumulates on the noncollinear ones. It was shown in
Corollary 5.5 that in the latter case, the cluster/z will not undergo an infinite spin as
it collapses. Now, since we know that each collinear central configuration is isolated,
we can study the asymptotic behaviour of/z in the former case and resolve the last
part of the question of infinite spin.

COROLLARY 6.21 (Moulton’s theorem). There are exactly (n!/2) collinear central
configurations.

Proof. Recall that a collinear central configuration is an SO (3)-orbit of a collinear
critical point of V. Moreover, we saw in Proposition 6.3 that L has (n!/2) simply
connected components. Thus, it is enough to consider the component F0 S:x F, and
consider V as a function of x, where x belongs to F which is diffeomorphic to D-2

the open ball of dimension n- 2. By (6.10.2), each critical point is nondegenerate and
a local maximum; hence, an isolated repeller and its Morse index is (n-2). Shub’s
Lemma 3.6, implies that the critical points lie in a compact subset of D"-2, hence,
they are finitely many. Moreover, V - as x approaches the boundary of F. Consider
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the gradient flow given on F by

(6.21.1) -V V(x), x F D"-.

For c < 0, define the set A {x F[ V(x) <- c}, whose boundary is B V-l(c). For
sufficiently small c < 0, all the critical points lie in the interior of A. Thus, B does
not contain any critical points, and hence is a closed regular submanifold of A, and
hence compact. It has codimension one. Moreover, V is strictly decreasing on solutions
which are not rest points. Thus, the flow is transversal, actually, normal to B and
points outward. Furthermore, the a-limit set of B is a subset of Ac, and hence, is
nonempty, compact, connected, and invariant. As -o, V increases and is bounded
above. Hence, for a point x in B, a(x) belongs to a level curve of V, and since V is
strictly decreasing on solutions which are not rest points, a(x) is actually a rest point.
Now, a(Bc) is a subset of the set of rest points. But it is connected, and the set of
rest points is finite. Thus, a(B) is actually a rest point, and hence, there is a unique
fixed point in F. [-]

7. The problem of infinite spin for collinear configurations.
7.1. We begin this section by recalling the differential equation that governs the

motion of a fixed cluster/x which approaches a collinear central configuration. We let
r, ra,, and since we are concerned with a certain cluster, and since a, goes to a

3/2 and still denote it by " and use a dashpositive limit as " , we rescale time by a,
to denote differentiation with respect to it. We will also omit the subscript /z for
simplicity:

(III) r’= ru, s’= w,

U
2

u’=--+ Ilwll = + v(s)+ r2f2

W w-I[ wll -s v V(s)/

1 (u2 + ilwll _) + V(s) rH.K=
Remark 7.2. The two functions f and g are real analytic at r 0, and represent

the effect of the rest of the particles on the cluster/z. We can consider them as C
functions of the time r and consider (III) as the differential equation governing the
motion of n particles moving under their mutual gravitational force and subjected to
an external force given by r2f and r2g. In this case the system (III) is no longer
autonomous. In order to recover this property we define a new variable/3 and enlarge
the system by adding/3 to it. We also recall that the energy function H is bounded,
but not necessarily constant, and hence K vanishes on r 0.

COROLLARY 7.3. Let fl (-o, o) - (0, +) be given by/3 (r) exp [- vr], for some
positive , to be determined soon. The mapping fl is a diffeomorphism and hence we can,
and will, consider f and g as functions of ft. Moreover, fl- 0 as ’- o, and the two

functions, f(fl) r(fl)f(fl), and ,(fl) r(fl)g(fl) can be extended to a C k at fl 0 by
choosing , small enough, with fl’-O. Hence fl can be extended to C k even functions
through O.
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Proof From Corollary 4.6 there are v, V2 > 0, and b, b2 > 0, such that, for large
exp (-v z) < r(z) < b2 exp (-v2z). Moreover,

df df -1 dr ru

r--d-= -r--dr d ’
and u has a nonzero negative limit as z--> c. Thus, the assertion follows by choosing
u small. [3

COROLLARY 7.4. Let fl belong to and let ro> 0 be small and consider thefollowing
differential equation on rl < ro: , r’ ru, s’ w,

U
2

(7.4.1) 2
+ II ll = +

W
U
w-Ilwll=s- v V(s) / rl (/3 ).

2

(1) A point p (fl, r, u, s, w)* is a rest point if and only if

(7.4.2) /3*=0, r*=0, w*=0, (u*)Z/2=-V(s*), VV(s*)=0.

(2) Let J be the negative ofthe Hessian ofVat a critical point. Then, the linearization

of this vector field at a rest point is given by

-, 0 0 0 *

u 0 0

0 u #

0 0 B

0 I )* a*
u*

B
-J aI 2

(3) The eigenvalues of A are -9; u*, with multiplicity two; and K+/-(A)
1/2(a + x/[ a2 4h ]) where h is an eigenvalue of J.

(4) Thus, (h 0 if and only if O. Also, Re ( (h)) 0 if and only if O.
(5) Consider a solution on which r 0 as "- o. Such a solution goes to a rest point

and u goes to a negative limit.

Proof The only point that needs discussion here is that r 0 for any rest point.
The rest is similar to what we have done in 3. The potential function V has a negative
maximum. Moreover,f is bounded and w 0 at a rest point. Thus, when ro is sufficiently
small and u 0, u’ cannot vanish. Thus, at rest points u # 0 and r 0.

7.5. Important remarks.
(1) Consider a collinear central configuration 5o {gr]g SO (3)}, where or=s*

is a critical point of V that comes from a rest point p as in Corollary 7.4 above. We
have seen that when considered as a quadratic form on TE:-J HV(r) vanishes
on X T(G. r) (Corollary 6.8(2)); is negative definite on Y (6.10.2); and positive
definite on Z (Lemma 6.11). Since -(A)= 0 if and only if A 0, the matrix B, and
hence A, has zero as an eigenvalue if and only if A is zero.

(2) The kernel of B, that is, its zero eigenspace, is given by K X, x {0}. Since J
is symmetric and its zero eigenspace is X, J, and hence B IK, can be diagonalized.
(This is because if y is an eigenvector of J with eigenvalue A, then (y, ny)* is an
eigenvector of B. But ,X 0 if and only if -= 0.) Moreover, the variables /3, r, u, s,
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and w are orthogonal. When u* < 0, the eigenvalues of A in the direction of the first
three variables are negative. Now we let

(7.5.1) 5= {(/3, r, u)[/3 =0, r=0, u u*} 5eo {w 0}.

The eigenspace of the zero eigenvalue of A is Tp5. The real parts of the rest of
the eigenvalues do not vanish. We remark that this analysis is true for any p O since
any point in 5o is a critical point for V.

(3) Recall that 5e is an isolated compact manifold of rest points.
(4) Now we are in a position to apply the centre manifold theorem at each point

in 5e. Our main reference on this issue is 9.2 of [Ch-H]. In the next two articles we
will state simplified versions of their assertions, which are sufficient for our purpose.

Notation. Let n+m.._n xm. We shall denote by ck( "+’’, s) the set of C k

functions whose derivatives up to order r are uniformly bounded on "+’, equipped
with the C k norm[.[k.

THEOREM 7.6 (Chow and Hale, [Ch-H]). Let (x,y)[n+m, and let u
ck(,+,, n) and v ck("+m, ’) satisfy ]U[k II)lk < E, for some positive e. Let C
and D be constant matrices and consider the system

(7.6.1) Cx + u(x, y), f Dy + v(x, y).

Assume that all eigenvalues of C have zero real parts, and all eigenvalues of D have
nonzero real parts. Then, if e is small enough, there is a function h in ck(", ’), which
depends on u and v such that

(a) h(0)=0 whenu=v=O,
(b) The set Mc {(x, y)ly= h(x)}, called the centre manifold, is a Ck manifold in

"+" and is invariant under the flow of (7.6.1);
(c) Mc contains exactly those solutions (x(t), y(t)) for which supt ly(t)l <

Moreover, M is unique with respect to properties (a)-(c). 1-1

THEOREM 7.7 (Chow and Hale, [Ch-H]). There is a homeomorphism that takes
the orbits of (7.6.1) to those of
(7.7.1) = Cw+u(w, h(w)), . Dz,

which sends the centre manifold M to {z 0}, and preserves the sense of time.
Theorem 7.7 is a generalization of the Hartman-Grobman theorem and means

that we can linearize the flow in the normal direction to the centre manifold in a small
neighbourhood of the rest point.

THEOREM 7.8. Assume that ill is an isolated compact regular submanifold that
consists entirely of rest points of (7.6.1).

(1) For each p J/t, there is a small neighbourhood Up and a coordinate system
(x,y) on Up, in terms of which Upf-)J/t={q Uply(q)=O}, and the vectorfield (7.6.1)
on Up satisfies

(7.8.1) C O, u(x, O) O, v(x, 0) 0, lull, Ivl < .
(2) The centre manifold alp is M(p) UpfqM={q Uply(q)=O}, i.e., h=-O.
(3) For afixed but arbitrary Up, let the coordinate system that gives the linearization

(7.7.1) be (w, z) Up "+’. Then (7.7.1) takes the form

(7.8.2) if=0, =Dz,

and Up f’l {q Up z(q) =0}. Hence, Up isfoliated byZ(po) {q Up lw(q) w(po)},
Po Up fq Jig. Moreover, each Z(po) is invariant and Po is a hyperbolic fixed point for the
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flow on it. The local stable and unstable manifolds ofpo, relative to the flow on Z(po),
are the same ones that come from the whole flow.

(4) has a neighbourhood which is foliated by the flow into invariant leaves Zp,
p , each of which intersects tilt exactly at p, and has p as a hyperbolic fixed point.

Proof (1) Since 5t is a regular submanifold, there is a coordinate system b (x, y)
on a neighbourhood Up of p such that, y(q)=O for all q UpSet, and b(p) =0. We
can choose Up small enough so that we can apply Theorem 7.6. Since is invariant,
v(x, 0)=0. Since it consists of rest points, C =0 and u(x, 0)=0. If we take Up small
enough, we get ]Ulk lul < .

(2) Each point in fq U is a rest point. If Mc(p) was not Up
then, by Theorem 7.6(c), the y-coordinate of the solution starting at q would be
unbounded. But q is a rest point. Thus, Up f"l Mc(p) and hence, h(x)= 0 for all x.

(3) The homeomorphism in Theorem 7.7 sends the centre manifold of (7.6.1) to
that of the linearized flow. Thus, Up fq {q Uplz(q)= 0}. Since C and h vanish
identically, and since u(x, 0)=0, it follows that the flow on Up is given by (7.8.2).
Thus, each Z(po) is invariant and the flow on it is given by the second equation above.
Moreover, Po is a hyperbolic fixed point for the flow on Z(po), and Up is foliated as
mentioned above. It is obvious that the local stable manifold of Po relative to this
restricted flow coincides with the one that comes from the whole flow. The same is
true for the unstable manifold.

(4) Since is compact, it can be covered by a finite number of neighbourhoods
of the type we saw in the previous paragraph. Let p lie in the intersection of two
such neighbourhoods. The two leaves that are attached to p and are obtained from
the two different coordinate systems intersect at the stable and unstable manifolds of
p, and hence must coincide, since in each neighbourhood each point lies in one and
only one such a leaf. Thus, in the intersection, the foliation is well defined and the
neighbourhood can be any open neighbourhood contained in the union of the
finitely many ones above.

THEOREM 7.9. Let oh(z) be a solution of (7.6.1) which approaches as z oo.
Then, d(z) converges to a single point in At. In other words, the stable manifold ofA is
given by St(All) (.Jp St(p). A similar statement holds for the unstable manifold ofA/t.

Proof. Assume Zo is large enough for b(z) to belong to for all z> To. Hence,
&(To) belongs to one and only one leaf Zp for some p in . If th(Zo) was not on the
stable manifold of p, th(z) would have to leave for some z > To, contradicting our
assumption. Thus, th(r) converges to p.

COROLLARY 7.10. A cluster tz that approaches a collinear central configuration does
not undergo an infinite spin.

Proof Let 5 in the previous two theorems, where 9 is given by (7.5.1). It is
not hard to see that the vector field (7.4.1) can be written directly in the form (7.8.1)
for as we mentioned in part (2) of Theorem 7.6, the matrix B is diagonalizable when
restricted to its zero eigenspace. Actually, this part of B is what produces the matrix
C in Theorem 7.6. Thus, C is diagonalizable, and the coordinate x can be chosen so
that C is diagonal, and hence vanishes identically as all its eigenvalues are zeros. Since
each point in 5V1 U is a rest point, it follows that both u(x, 0)=0 and v(x, 0)=0.
Also, if U is small enough, lU[k, [I)[k < E.
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UNIFORM ASYMPTOTIC SOLUTIONS OF SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS HAVING A DOUBLE POLE WITH
COMPLEX EXPONENT AND A COALESCING TURNING POINT*

T. M. DUNSTER

Abstract. Second-order linear differential equations having a turning point and double pole with complex
exponent are examined. The turning point is assumed to be a real continuous function of a parameter a,
and coalesces with the pole at the origin when a-> 0. Asymptotic expansions for solutions, as a second
parameter u-> , are constructed in terms of Bessel functions of purely imaginary order. The asymptotic
solutions are uniformly valid for the argument lying in both real and complex regions that include both the
coalescing turning point and the pole. The theory is then applied to obtain uniform asymptotic expansions
for Legendre functions of large real degree and purely imaginary order.

Key words, asymptotic expansions, Legendre functions
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1. Introduction. Consider the following second-order linear differential equation

(1.1)
d2w
dx2 {u:f(o, x)+ g(o, x)}w,

where the parameters u and a are real, and the independent variable x lies in either
a real interval (xa, x2) or a complex domain A, either of which may be unbounded.
In a paper by Boyd and Dunster [1] asymptotic solutions of equations of the form
(1.1) are derived for the case u . In that paper the class of differential equation is
that having a double pole, at x=0, say, and a turning point (a zero of f(o,x)) at
x x,(a). The position of the turning point xt(a) is assumed to be a continuous real
function of a, and tended to zero as a 0. Thus when a 0 the turning point coalesces
with the pole at x 0. It is supposed that there are no other critical points (poles or
turning points) in the real or complex regions under consideration.

The asymptotic solutions derived in 1] are uniformly valid in a real interval, or
a complex domain, that includes both critical points, and moreover the results are
uniformly valid for 0 =< a _-< A, for some positive constant A. In the case considered,
the exponent of the pole is real, and the solutions are monotonic in a neighborhood
of the pole. The asymptotic approximations for the solutions involve Bessel functions
of large argument and variable real order uc.

The purpose of the present paper is to tackle the complementary problem where,
except when a 0, the exponent of the pole is purely imaginary, and thus all real
solutions are oscillatory in a neighborhood ofthe pole. The essential difference between
the previous results and the present is that in [1] the limit of xZf(a, x) as x-0 is
assumed to be ce2/4, whereas here the limit is assumed to be --c2/4. For this problem
we will derive asymptotic solutions which involve Bessel functions of large argument
and purely imaginary order iua, and our results will again be uniformly valid for
0=<a_<A.

In a recent paper [4] new results have been recorded concerning Bessel functions
of purely imaginary order, including asymptotic expansions, and identification of
numerically satisfactory pairs. These results will be used in the subsequent analysis.

Received by the editors August 28, 1989; accepted for publication (in revised form) December 11, 1989.
Department of Mathematics, San Diego State University, San Diego, California 92182-0314.

1594



UNIFORM ASYMPTOTIC SOLUTIONS 1595

Apart from the limit of x2f(a, x) being --a2/4 as x-0 all other assumptions on
(1.1) are the same as in [1]. In the real variable case we suppose that x2f(a,x) and
x2g(a,x) are infinitely differentiable functions of x and continuous functions of x
and a simultaneously. The limit of x2g(a, x) as x-+0 is without loss of generality
assumed to be equal to -1/4.

In the complex variable case x z lies in some domain D. Except at z 0, the
functions f(a, z) and g(a, z) will be assumed to be holomorphic functions of z lying
in D and continuous functions of z and a simultaneously. As above we assume that
the only critical points in D are a pole at z 0 and a turning point on the real axis at
z x,(a). The leading terms of the Laurent series of f(a, z) and g(a, z) are assumed
to be --1/4t 2z-2 and ---Z-2, respectively.

By means of a Liouville transformation we transform (1.1) into a new equation
of the form

where the new independent variable ’(x) is related to the original variable x by an
integral equation. The variable " is real or complex according to whether x is real or
complex. Equation (1.2) has the appropriate singular behavior at sr 0, and a turning
point at ’= a2; the pole and turning points of the original equation correspond,
respectively, to the pole and turning points of the transformed equation.

The form of the function (a, ’)/" depends on the functions f(a, x) and g(a, x).
If this term is neglected in (1.2) then the resulting equation, the so-called comparison
equation, has exact solutions in terms of Bessel functions of order iuoe. From these
Bessel functions, uniform asymptotic expansions will be constructed for solutions of
(1.2), together with explicit error bounds. In 2 and 3 we consider the real variable
case, and in 4 we consider the complex variable case.

There are two reasons why we consider the real variable case separately, rather
than as merely a special case of complex variable theory. The first is that in the complex
variable case the functions f(a, z) and g(a, z) must be (infinitely) differentiable
functions of z (unequal to zero), whereas in the real variable case, f(a, x) and g(a, x)
need only be finitely differentiable functions of x (unequal to zero). A second reason
is that error bounds in the real variable case are generally simpler and sharper.

For differential equations having coalescing critical points, the first rigorous
treatment involved two coalescing turning points. This problem has been tackled by
Olver [7], who constructed uniform asymptotic solutions in terms of parabolic cylinder
functions. Olver applied this general theory to derive uniform asymptotic approxima-
tions for Legendre functions [8] and Whittaker functions [9].

More recently Nestor [5] has derived uniform asymptotic solutions, in terms of
Whittaker functions, for differential equations having a coalescing turning point and
simple pole. Nestor considers the cases where solutions are monotonic, and those
where they are oscillatory, near the pole, and applied the results to construct uniform
approximations for Jacobi polynomials. Both Nestor and Olver have obtained explicit
error bounds for their general asymptotic solutions.

The results of 1] have been used to construct uniform asymptotic expansions for
Legendre functions, and subsequently have been used by Dunster to construct uniform
asymptotic expansions for prolate spheroidal functions [2] and Whittaker functions

This condition can be relaxed to that of finite differentiability if we require only a finite number of
terms in the approximations, as opposed to asymptotic expansions.
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[3]. The new results of this paper will be used in 5 and 6 to construct asymptotic
expansions for Legendre functions of large positive degree and purely imaginary order;
5 deals with Legendre functions of real argument, and in 6 Legendre functions of

complex argument will be considered.
We plan to also apply the theory of the present paper to derive uniform asymptotic

expansions for conical functions (Legendre functions of real order, and degree -1/2+ iv,
where v is real), Whittaker functions, .and oblate spheroidal functions.

Two remarks should perhaps be made concerning asymptotic solutions of differen-
tial equations having coalescing critical points. The first is that an application of the
general theory to an equation can lead to approximations for functions that are
uniformly valid for a wide range of the parameters involved. For example, in [1]
asymptotic expansions are derived for Legendre functions of order/z and degree v.

These approximations are uniformly valid for large positive v and for 0 -</z / v + 1/2) =< A,
where A is an arbitrary constant in 0 < A < 1. Thus the results are uniformly valid for
/z ranging from zero to O(v).

The second remark is that it is highly desirable to obtain explicit error bounds.
In [10] Olver mentions several advantages of having error bounds. In the case of
coalescing critical points it is particularly important to have explicit error bounds
because the uniform validity ofthe asymptotic theory may then be rigorously established
(even if the bounds are sometimes difficult to compute numerically).

2. Formal series solutions and error bounds: Positive x and g’. We denote the domain
of (1.1) as the x interval (Xl, x2), where xl is negative, x2 is positive, and either may
be infinite. We begin by considering real solutions of (1.1) in 0<x <x2, with the
intention of constructing uniform asymptotic expansions for these solutions. In the
real variable case we consider the intervals x > 0 and x < 0 separately, because generally
no solution is real in both intervals.

The first step is to transform the original differential equation (1.1) to the new
form (1.2). The standard method for doing this is by a Liouville transformation, which
involves defining a new dependent and independent variable. For our problem this
transformation is given as follows (cf. [1, Eq. (2.1)])

1 O
2

4" 4sr2,

(2.1b) w(x)- W().

We integrate (2.1a) to obtain the following integral relationship between x and ’:
02)1/2 f(2.2a)
2

d= {f(a, t)} 1/2 dt (x> x, or ’> a),

" (02 )1/2
(2.2b) d=

{-t2f(a’ t)}1/2
dt (x 2).

2 2: J,
The lower integration limits are chosen to ensure that the turning point x, of the
original equation corresponds to the turning point a 2 of the transformed equation.
This is essential in subsequent analysis. The endpoints ’(xl) and (x2) will be denoted
by ’1 and ’, respectively.

The square roots in the above integrals are taken to be nonnegative, and it is to
be understood that the sign of " is to be the same as that of x. Thus in this section we
shall construct asymptotic solutions for (2.2) in the interval ’> 0.
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Explicit integration of the left-hand sides of (2.2a, b) can be achieved (see 1, Eq.
(2.3)]); we have, respectively,

(2.3a) (-a2)1/2 aarctan{ (r-a2)l/2} ( > ),

(2.3b) (O2 )1/20 { O -t" (O2 ) 1/2 }- In
a--i71 (r < a2).

When c 0 the limiting form of (2.2a, b) applies, namely

srl/2= {f(0, t)}1/2 dt (x>0 or r > 0),

(2.4)

{__-}1/2 {-f(0, t)}1/ dt (x < 0 or " < 0).

Whether or not a 0 the pole x 0 is mapped to r 0. By considering separately the
intervals (xl, 0), (0, x,), (x,, x2), and neighborhoods of x =0 and x x,, we can show
that the function ’(x) is monotonically increasing and infinitely differentiable in the
interval x < x < x2.

The effect of the Liouville transformation is to convert (1.1) to the form (1.2). For
this particular transformation the Schwarzian function q(a, ’) is found to be

sr + 4a 2 (- az)(4ff 5f2 + 16gfz)
(2.5) q,(a, ’)

16(’- O2)2 -- 64f
This function is infinitely differentiable in ’ < r < ’2. In particular, it is so at ff 0, as
can be seen by considering its Maclaurin series. We find that this series exists to all
orders. It can be shown under certain conditions on f(a, x) that q,(a, sr) is uniformly
continuous at a 0, " 0 in the (a, ’)-plane; see Lemma 1 of [1]. The lemma applies
in the present circumstances with p(a, x) defined by

x-x,(,)
(2.6) f(a, x)

4x2 p(a, x).

Let us now proceed to construct formal series solutions to (1.2). To do so we first
observe that if the term q,(a, ’)/" is neglected in that equation, then the resulting
equation

has exact solutions of the form l/2.iuo(Ul/2 when ’>0, where denotes the
modified Bessel functions K, I, or any linear combination of the two. For our purposes
it is necessary to select a numerically satisfactory pair for ’>0 (see [6, p. 154]). It
should be mentioned that Ii,,(x) is complex when , and x are both positive, and as
such is not an appropriate choice. On the other hand, Ki(x) is an appropriate choice,
since it is real in the same circumstances, and moreover is recessive at x o. In the
corresponding problem of [4, 7] the choice of real numerically satisfactory solutions
is K and L, where

L,,(x)
2 sinh (uTr)

{I(x) + I_,(x)} (x > 0).
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The function Liv is a numerically satisfactory companion to Kiv(x) in 0< x < oo for
each fixed positive value of u. However, the function is not defined when u 0. In the
present case we require a numerically satisfactory companion to Ki(x) for 0-< u < c.
With these considerations in mind we define the following real solution as our com-
panion to Ki(x):

(2.8) I,,(x) 2 sinh (uTr) e-"=Li,,(x)= "rr e-"={Ii,,(x)+ I_(x)}.

C.learly this is defined for 0 -< u < c, and in particular Io(x)= 27rio(x). Thus when u=0
Ii(x) has the characteristic property of being recessive at x =0.

Note the following asymptotic forms as u-> o in terms of Airy functions (see
[4, 4])"

(2.9) Ki,,(uz),.,,’rre-"’r"/:( 4 )1/4U
1/3 1 Z

:i Ai (--/2/3),

(2.10) ,,(uz)-- 7r e-/2 ( 4 1/4

u 1/3 1 z2,] Bi (- u2/3),

where

(2.11)
2 3/2(z)=ln {l +(1-z2)/2} (1_ z)/.
3 z

These asymptotic formulas are uniformly valid for [arg (z)l_<-Tr-8(<Tr) in the

complex z plane. The branches in (2.11) take their principal values when z (0, 1) and

’ (0, c), and are continuous elsewhere. The points z =0, 1, on the real axis
correspond to sr , 0, -o, respectively. For a detailed discussion on this transforma-
tion see [6, pp. 419-422]; we have written Olver’s variable " with a circumflex here
to avoid confusion with the different variable sr defined by (2.2a, b).

From the asymptotic forms (2.9) and (2.10), and the known asymptotic, behavior
of Airy functions (see, e.g., [6, pp. 392-393]), we see that the functions Ii,,(x) and
K,,(x) are oscillatory in 0 < x < x,(ce) with a phase difference of 7r/2, and exponentially
large and small, respectively, in the interval x,(a)< x < o. It is these properties that
make them a numerically satisfactory pair. For other properties of Ki(x) and (x)
see [4, 2].

Having selected a numerically satisfactory pair of solutions for the comparison
equation (2.7), we now seek formal series solutions for the full equation (1.2) ofthe form

(2.12) /:i,o,(U/2) Z
A(c, sr) " B(c, r)
U2

q-- uo(U1/2) Z u2S (> 0),
=0 =0

where denotes K or , or any combination of the two. Primes (’) denote the derivative
with respect to the argument. After formally substituting (2.12) into (1.2) and following
the same technique as in [1, 2] we obtain the relations

(2.13) Bs(a, ’)-- I- ce2[ -1/2 I:-ce2]-l/:{(c, ,)As(a, ,)-A’s(a, ,)-A’’(a, :)} d,
2

(2.14) As(a, sr) -’Bs_l(Ce, ’)+ (ce, )Bs_l(Ce, :) dsC+ As.

In (2.14), {As} are arbitrary constants of integration. The corresponding integration
constants in (2.13) are set to zero to ensure that the coefficient functions {Bs} are
differentiable at the turning point sr a 2. We choose Ao Ao 1; the remaining con-
stants A, A_,... can be chosen according to the particular application. Relations
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(2.13) and (2.14) successively determine B0, A1, B1," ", and each of these is readily
shown to be an infinitely differentiable function of " in the interval 0 <_-" < ’2 for each
value of a in the interval O<-a<-A (cf. [6, p. 410]).

The foregoing analysis is formal. Our task now is to terminate the series (2.12)
after a finite number of terms, and then find an upper bound on the error. In doing
this we will establish rigorously that the formal series solution is an asymptotic
expansion of an exact solution of (1.2), uniformly valid for 0 < " ’2, 0 _-< c -< A, u > 0.

Therefore we define the following expansion to be an exact solution of (1.2):

(2.15)
W2 ,(u, a, ) /2.,o,(u,/2) As(a,

,,+
s=O /g

’ Bs(a, sr)
=o u-+ e2.+(u, a, ).

We obtain a bound for the unknown error term e2,+ by the following standard method
First, from the condition that W2,+1 satisfies the differential equation (1.2), we find
that e2,+ satisfies an inhomogeneous differential equation (of. [1, 3]). Choosing an
arbitrary value of ff in the interval [0, ) and applying the method of variation of
parameters on the equation yields

ez,+,(u, a, )= K(, ) {l-a B,(a, )}tl/2iua(ul/2
(2.16)

+ I-1-’/6(, ).+,(u, , )J
this being a Volterra integral equation for a solution that satisfies the boundary condition
e,+(u, a, )= e,+(u, , 0 =0. In this equation K(ff, ) is given by

e
K(, )=l-l’/{’/L.(uCl/)-’/K,.(u/)

(2.17)
l/K,.(uCl/)-’/Lu(ul/)}.

We shall use Theorem 10.1 of [6, Chap. 10] on the integral equation (2.16) to derive
the desired bounds on e,+ and e,+l. The essential pa in the application of this
theorem is to meet condition (v) with suitable continuous functions Po, P1, Q. The
standard method to achieve this is to introduce so-called auxiliary functions, satisfying
the relations

(2.18) (x) E,(x)M(x) cos {0(x)},

(2.19) K(x) E,(x)M(x) sin {0(x)}.

The weight functions E,(x) and E,z(X) are to be continuous monotonic functions of
x. They must be prescribed in such a way that Theorem 10.1 of Olver can be applied,
such that the resulting error bounds reflect the asymptotic behavior of the error term.
Once chosen, the modulus and phase auxiliary functions M(x) and O(x) are given
implicitly by the relations (2.18) and (2.19).

We define the weight functions as follows. Let x X be the largest positive root
of

(2.20) K(x)-(x)=O.
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It can be shown that X0> O, and that X is a monotonically increasing function of v.
Moreover, for each positive value of u

O<k, <1, <X
where k,l and l, are, respectively, the largest zeros of Ki,(x) and I,,(x) (cf. [4, eq.
(6.2)]).

Let x c denote the negative root of the equation Ai (x)= Bi (x) ([6, p. 395]).
Then from (2.9)-(2.11) we find that as u - oo

(2.21)

We prescribe

X,--

1 (0<x-<X),
(2.22) E"I(X) (iv(x)/Kiv(x)) ’/2 (X,,=X

SUpx____x IK,(:)I (O<x<-X),
(2.23) E,:(x) (K,,(x)/(x))-)’2-"
In defining Eu,a(X we have taken into account the behavior of K(x) near x =0; see
[4, Eq. (2.14)]. In particular, it should be noted that the oscillation amplitude of the
function near x 1 becomes unbounded as u 0, reflecting its logarithmic behavior
at the singularity when u=0. The factor K(X,)- is introduced to ensure continuity
of the weight function at x X.

The weight functions E,(x) and E,2(X are, respectively, monotonically increasing
and decreasing functions of x for 0 < x < (of. [4, eq. (6.4)]). As x we find that

(2.24) E,,(x), Eu,2(x)-’ e-/2 ex.
Having defined these weight functions we find from (2.18) and (2.19) that the modulus
and phase functions are real, and are given by

2
nt- Kiu(x)2/Eu,2(x)2}1/2 (O<xXu),

(2.25) M+(x) {2,(x)Ki,(x)}/2 (X, X < o0),

{K(/) }
0+(x)

arctan E,dx)(x)

4

(2.26)
(0< x <_- x),

(X-< x < c).

The branch on the inverse tangent is chosen so that O+(x) is continuous. Note that

(2.27) M+"(x)" (2"n" e-"=)
and when u=0andx0

Iln (x)l
(2.28a) E0,2(x Ko(Xo--,
(2.28b) M-(x) - (4r: + K20(Xo)) 1/2.

Next, we introduce modulus and phase functions for the derivatives. We define them
implicitly as the real functions satisfying

(2.29) fv(x)’ E,,(x)N+(x) cos {w (x)},+

(2.30) I(lv(x) E,2(x)N+(x) sin {w+(x)}.

as x-oo
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(2.31)

(2.32)

(2.33)

The following constants will appear in the subsequent error bounds:

t<+=sup{lX2--u2ll/2E I(x)F_,2(x){M+(x)}2}
jld, --sup Ix2- v2ll/2E,,,2(x)M+(x)l,,(x)l

each supremum being evaluated over x > 0 and u >= 0. The existence of these suprema,
and the corresponding ones for the negative variable case (see (3.12)-(3.14) below),
can be established in a manner similar to the proof of Lemma 2 in [1, App. B], using
the asymptotic results of [4, 2-4].

We now are in a position to state our theorem on error bounds, the proof of which
has been outlined above.

THEOREM 1. With the conditions given in this and the previous section, (1.2) has,
for each positive u, nonnegative a, and nonnegative integer n, the following pair of
solutions, which are infinitely differentiable in 0 < " < ’2:

(2.34)

(2.35)
Wzn+l,z(U, c, )-- l/2Kiua(U’/2 As(a,

0 lg2s

1 B(a, )q_d K,,u( u’/2)
l,I
2s

b/ s=0

where

(2.36)
+

< Jld’l 211/2B.(a=u2n+ E.,,(ul/2)o,{IC- a r)}

(2.37)

exp 7/’c,c2{l’-a 1/2Bo(o ’)}

When ’2 , (2.37) is meaningful, and the expansions (2.34), (2.35) are uniformly
valid throughout O< sr <, provided the variations of (sr- aa)1/2B() (s =0, 1, 2,. .)
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converge at infinity. A sufficient condition for this to be true is for the ’-derivatives
to satisfy

(2.38) d/(s)(a,
where o- is any positive constant (cf. [6, p. 445, Ex. 4.2]).

The importance of the bounds (2.36), (2.37) is that from them we can establish
the asymptotic nature of the error terms, and hence also of the expansions (2.12). For
example, consider the behavior of e_,+1,1 as r_+0. From (2.36) we see that

(2.39) 82n+l,l(U t9l, )’- l/2iua(bll/2)O( as ’-->0.
Consider next the asymptotic behavior of e.+,l as u-+ oo. The bound (2.38) can

be used to show that (2.12), with = I, is a uniformly valid compound asymptotic
expansion of W,+,l(U, a, st). This can be achieved in a similar manner to that in
[1, 3]. Discussions similar to those above hold for the second solution W2,+I,.

Finally, we remark that there are solutions Wl(U, a, sr) and W2(u, a, ’), indepen-
dent of n, which have the infinite series (2.12), with , K, respectively, as their
compound asymptotic expansions. This can be shown in a manner similar to that of
[6, Chap. 10, 6].

3. Formal series solutions and error bounds: Negative x and ’. Now consider (2.7)
for the case " < 0. Exact numerically satisfactory solutions of this comparison equation
are ]1/2%,(u1[/2), where (i, denotes either of the Bessel functions Fir and
which are defined in [4, 3]. Relevant properties of these functions are given in this
reference. An important observation is that both functions are oscillatory in 0 < x < oo
for v>0, and when v=O, Go(X) is logarithmically singular at x=O, and Fo(x) is
bounded at x 0.

For correspondence to (2.12) we seek formal series solutions to (1.2) for sr < 0 of
the form

(3.1) ll’/2%,,(ul[ ’/2) Z As(a, ) I1 1/2) Bs(o, )E <0),
=0 =0

and in doing so we find that the coefficients {As} and {Bs} are the same as those given
by (2.13) and (2.14) for the case ’>0. It is readily shown that these coefficients are
infinitely differentiable in ’1 < " < ’2.

Before stating our theorem on error bounds we define auxiliary functions as
follows. We define a continuous monotonically decreasing weight function for Gi(x)
by

(3.2) E,,a(x)=max {1, sup IGiv(s)l} (X>0).

The introduction of this weight function is necessary on account of the unbounded
behavior of G,,(x) near x 0 as v -+ 0 (cf. (2.23) above). Note that for every nonnegative
/2, Ev,a(X): 1 for sufficiently large x. Also, there exists a positive value of v, v say,
such that E,,,4(x 1 identically for all v => v (see [4, Eq. (5.16)]).

We next set

(3.3) F,,(x) M-(x) cos {0;(x)},
(3.4) G,,,(x) E,,,4(x)M-(x) sin {0;(x)}.
The modulus and phase functions are real functions explicitly given by

(3.5) M-(x) {Fir(x)2
.-1

t-- Gi,,(x)2/ Eu,4(x)2} 1/2,

(3.6) O-2(x) arctan
Ev,4(x)F(x)
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The inverse tangent is chosen to ensure that O-(x) is continuous, and

(3.7) O-(x)=x---+o(1) as x - oe.
4

Other asymptotic behaviors are as follows. As x ee

(2) 1/2

(3.8) M-(x)--. x
and when 0, x - 0,

(3.9a) Eo,4(x ...2 Iln (x)l,

(3.9b)

For the derivatives we define

M x - x/.

(3.10) Fly(x) N-(x) cos {w;(x)},

(3.11) G’i(x) E,4(x)N-(x) sin {w;(x)}.

The following constants will appear in the theorem on error bounds"

(3.12) K- sup {7r(x2 + uz)’/ZE,4(x){M-(x)}-},
(3.13) ]- sup {(x+ u)/2E.4(x)M;(x)lF,(x)l},
(3.14) sup {(x2 + 2)’/2M;(x)lGi,(x)l}.
Again, these suprema are evaluated over x > 0 and u 0.

We now apply Theorem 10.1 of [6, Chap. 6] to obtain the following result.
THEOREM 2. With the conditions given in 1 and 2, (1.2) has, for each positive

u, nonnegative a, and nonnegative integer n, the following pair of solutions, which are
infinitely differentiable in 1 < < O"

W2.+,.(u, , C)= [cll/2F,.(u[Cl 1/2) A(, C)
=0 2s

(3.5)
+ [ F:,(u[[ l/) 1 Bs( )

U s=o U+en+,3(U, a, ),

(3.16)
W2n+l,4(lg, o, ’)--]ll/2G.,o(u[l 1/2) As(a, )

lt2s=0

=0 u2S - E2n+ 1,4(b/, 0, ’),

where

(3.17)

le:zn+l,3(u, a, g’)l IOe2,,+1,3(u, ,
Iffll/ML(ulffl’/Z) uNL(ulffll/=) +lffl-/=ML(ulffl ’/2)

/’d’l //"50{IK ceZl 1/2u2.+ B.(a,

exp {U- Vc,o{I sr a l 1/Bo(a, r)}}
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le2.+l,4(u, a, ’)l IOe2.+1.4(u, C5/ 1
Ill/M(ull/) 1/2uN(ull/-)+ll-/M-(ull/

< 2 1/2) 211(3.18) =ua,+1E,.4(ul ,c{l-a /2B,(, )}

exp{ ,z{,- aZll/ZB0(a, )}}.
If as the -derivatives 6)(a, ) are O(]]-/--) for some positive , then

can be set to -, and the expansions will be uniformly valid in the -interval (-, 0).
The bounds (3.17), (3.18) can be used to deduce the asymptotic behavior, with

respect to both and u, of expansions (3.1). The discussions are similar to the
corresponding ones following Theorem 1.

4. Uniform asymptotic expansions: Complex z and . Having tackled the real
variable case, let us now consider the case where the variables x (hereafter denoted
by z) and are complex. Our task is to derive asymptotic expansions for solutions of
(1.1), via (1.2), with now lying in some complex domain A containing both the
critical points 0 and a 2.

The Liouville transformation equations (2.1a, b) still apply (with x replaced by
z), transforming (1.1) to the new form (1.2). Equations (2.2a, b) are of course no longer
appropriate, and we must reexamine the z transformation. Integration of (2.1a)
yields the relationship

(-a2)1/2 f:{t2f(a,t)}l/2dt"(4.1) de=
2

It can be readily shown that the branches for the square roots and logarithmic
singularities can be chosen so that (z) is analytic at both 0 and a 2. We choose
any branches satisfying this requirement.

The effect of the Liouville transformation is to yield the new form of differential
equation

d 4
+ W,4a

where the new dependent variable is related to the original by

(4.3) W()
4 , z)

w(z).

Neglecting the term (, )/ in (4.2) again results in the comparison equation
(2.7) which has solutions /(u/), where again represents the modified Bessel
functions I or K or any linear combination of the two. As in the real variable case
we must select numerically satisfactory solutions. The major criterion is that all solutions
that are recessive in the domain under consideration must be included.

Consider all modified Bessel functions (z) that are recessive when is positive
and the complex argument z takes its principal value (- <arg (z)N ). There are
three such functions, namely, K(z e-), K(z e ), and K(z), these being recessive
at infinity for /2 < arg (z) N , -< arg (z) < /2, and -/2 < arg (z) < /2,
respectively.

The variable z here denotes a generic complex argument, and has no relation to that of (4.1).
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We thus introduce at this stage the notation

’i,,(;)=Ki,,(ze ),Ki,,(ze ),2cosh(v)Ki,,(z),(4.4) (j) --’n’i

for j 1, 2, 3, respectively, with the definition that ll)(z) and (2)’ivz) are to be
continuous in the principal plane -or < arg (z) _-< 7r, taking their principal values respec-
tively above and below the cut arg (z)-

The factor 2 cosh (ver) in (4.4) was introduced for convenience; from the relations

Ki,,(z e-i) e-"Ki,(z)+ ’rriIi,(z), Ki,(z ei) e"Ki,,(z)-Trili,(z),

we find that the Wronskian

i " 1)(u’l/a)} rr cosh (,rr),

a result that will be used in the proof of the theorem on error bounds below. Here and
subsequently it will be supposed that j is enumerated modulo 3.

When u > 0 no modified Bessel function i(z) is recessive at z 0. When u 0,
however, the modified Bessel function Io(z) is uniquely characterized as being recessive
at z =0; all other independent solutions, including (oJ(z) (j 1, 2, 3), are logarithmi-
cally singular at z 0. To complete our numerically satisfactory set we require, therefore,
a fourth solution (z), which is proportional to Io(z) when u 0. The function I(z)
defined by (2.8) is not satisfactory, since it is not linearly independent of each of
i (z) for all values of v in 0_< v<c. We find from the Wronskian of (z) and

o9(2).z) that these functions are multiples of each other when v (In 3)/(2r)
Our choice of a fourth numerically satisfactory solution then is simply the modified

Bessel function I(z) itself, since it is linearly independent of each of the other three
for all values of v in 0-<_ v < oo.

We shall seek formal series solutions of (4.2) in the form

(4.6a) r/2-( A,(a,_,(uC/) u-+-_,.uC E u. (j 1, 2, 3),
1,/ s=0

(4.6b) /2i(u/2 y A,(a,
0 u
2+-I(ug/

u2g s=O

where the coecients {As} and {B} are the analytic continuations of those given by
(2.13) and (2.14). The square root /2, which appears in (4.6a, b), is defined to satisfy

(4.7) o< arg ff/2
for some o in - o0. The choice of o depends on the paicular application.
We denote by & the -domain having a cut along arg 2o; we will seek solutions
of the form (4.6a, b) in &, considering the series (4.6a) first.

In order to construct the desired error bounds we must define appropriate auxiliary
functions for each of (() (j 1, 2, 3). In order to do this we must take into account
the uniform asymptotic behavior of these functions in the z plane as vm; see
[4, } 4]. With these results in mind we will sholy define eight functions. Before
doing so we need to give a number of definitions. First define X X, where denotes
the real root of the equation

v=+c()’/.

It is necessary to introduce this new turning point in order that subsequent suprema
appearing in error bounds should exist; see [1, Eq. (B.4)].
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Note that _-< v, and increases monotonically from zero to infinity as v increases
from zero to infinity. Thus => ’o Xo> 0. From (2.21) we observe that

’u b’ -1"- O(/2-1/3) as(4.8)

Next define

(j=l 2,3).(4.9) dt

These functions have branchpoints at z =0, +’. With respect to the logarithmic
branchpoint at z=0 we introduce (for all three functions) a cut along arg z= r;

likewise, for the branchpoint at z =-X we introduce a cut along the real axis from
z =-X, to z =-o. For the branchpoint z
we assign a cut along the real axis from z X to z =-.

Let F denote the curve emanating from z X, in the first quadrant such that
Re (z)=0. This is illustrated in Fig. 1; it makes an angle of /3 with the real axis,
and is asymptotic to the line Re z=(/2) as zm. More precisely, we have
parametrically as z

Denote by F2 the curve conjugate to F1. We then define (f)(z) to have a cut along
F1, and ()(z) to have a cut along [’2

FIG. 1. z plane.

The cuts emanating from X and -X divide the z plane into three regions. We
denote these domains (including their boundaries) by 5), (j= 1,2, 3) (see Fig. 1).
The branches for )(z) are now chosen so that

Re7)(z)>0 forzeS7), Re7)(z)<0 forz97+’)US7-’).

We now are in a position to introduce the three weight functions. We define

(4. 1) ET)(z)=[exp(a7)(z))l (j= 1,2,3).

Thus, with our choice of branches for )(z), we see that E)(z)>= 1 in 5( and
E)(z) <- 1 in (+I)U5-1). This is as desired since, except in a neighborhood of
z 0 when v 0, -)--i (z) is recessive in 5 and dominant in /+)U -1).
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Consider the behavior of the weight functions as z- O. We find from residue
theory and (4.9) that the limiting behavior depends on the argument of z only, not on
the modulus of z; setting z--e ei*(-zr < b < zr) in (4.11) and letting e-0 yield the
following limits:

E)(e ei) exp

(4.12) E)(e ei) exp {-},
E?)( e ei) exp

for each value of v in 0 v <.
The level curves of E)(z) play an impoant role in the development and

application of the following asymptotic expansions. From the definition of the weight
functions we see that these are the family of curves defined by

(4.13) Re )(z)= k, -< k <,
which include for k 0 the curves F, F2, and real interval 0< z <. The general
configuration of these curves in the z plane is indicated in Fig. 2.

FIG. 2. Level curves in z plane.

The following observations can be noted for the level curves when j 1. First, the
curves in 51) have k-> 0, and in 5( U 5e(3 they have k =< 0. The value of k for each
curve emanating from z 0 is b, where b is the (principal) angle the curve makes
with the real z axis. The curves emanating from z -X + i0 have k +Tr. If z ZR
denotes the intersection of a level curve with the real axis, then the curves in 5 are
such that k oo as Izl-, , and those in ow or 5 are such that k
Finally, each curve is asymptotic at infinity to a line parallel to the imaginary axis.
Similar arguments to those above apply when j 2 and 3.

We next define modulus and phase functions by the relations

(4.14a) E(uJ+l)()l,l+l)(z)l MT)(z)sin (07)(z)},

(4.14b) cos {0()()},"

The notation +i0 refers to points above and below a branchcut on the real axis.
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where M)(z) is real and positive, and O)(z) is real. They are thus explicitly given by

(4.15)

(4.16) O(z) arctan E_i)l_j_l)
where the inverse tangent takes its principal value. Note that for 0 and z 0

 zl,(4.17)

where

(4.18)
c,,2(b (exp {:2o4} + 4 exp {-2olb [})1/2,

c3(b) (2 cosh {2ob})’/2,
and Arg z.

We define modulus and phase functions for the derivatives by
(4.19a) E+’(z)[+’’(z) N(z) sin {)(z)},
(4.19b) ET-’)(z)]{-1)’(z)[ NT)(z) cos

where N(z) is real and positive, and w(z) is real.
The following constants will appear in the theorem on error bounds below. We

define

(4.20) (J) sup {sech u) z2-

each supremum being evaluated over 0 and z e U (]. The existence of these
suprema, and of those given by (4.32) and (4.33) below, can be established in a manner
similar to the proof of Lemma 3 in [1, App. B].

Now let us focus our attention on the plane. Under the transformation z u1/,
where the branch of the square root is given by (4.7) above, we define regions S in
the plane to be those corresponding to the regions ( in the z plane. These regions
are illustrated in Fig. 3a for-<o< 0, and it is seen that in this case S is bounded.

..(3)

"-

FIG. 3a. " plane. FIG. 3b. Level curves in plane.
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When -r < f0 < r the region S is bounded. Note also that S(2) vanishes when
fo 0, and S(3) vanishes when fo =-r.

The error bounds below will be valid in subdomains _A (j) of _A, which are defined
as follows. Let (J) S (j 1, 2, 3) denote three reference points chosen, possibly at
infinity, to suit our purposes. The domains _A (j) (j 1, 2, 3) are defined to be the set
of points in _A that can be linked to (J) by a path (J), which consists of a finite chain
of R2 arcs having the property that as : passes along (J) from (J) to "
(4.22) Re (I)(22(U1/2) Re (f12(u"/2).

A sufficient condition for this to be true is for Re ()(u:1/2) to be nonincreasing as s
passes from ((J) to ’. If this condition is met the path (J) is said to be progressive.
A knowledge of the general configuration of the level curves Re (J)" 1

uaU /2) constant
in the " plane is therefore helpful in determining the domains of validity A_ (j). These
correspond to the level curves in the z plane (see Fig. 2), and are indicated in Fig. 3b.
Each of the level curves in the " plane is asymptotic to a parabola at infinity.

We now are in a position to state our theorem on error bounds, which can be
proved in a manner similar to Theorems 1 and 2.

THEOREM 3a. With the conditions given in 1 and the present section, (4.2) has,
for each positive u, nonnegative a, and nonnegative integer n, thefollowing three solutions
(j 1, 2, 3), which are holomorphic in A_ and satisfy

(4.23)

w(j) 1/2f/0.(j)(ul/2 si0 As(a,:.+,(u, , ) C _,. u

’ Bs(a, )3t_" ,J)(/./,.1/2) 2.__ E(2J2+l(//, , ,.),
// s=0 g

where

(4.24) /.
(j+/- 1)

,(j) 2)b/2n+l ---ua(Ul/2) //’(j){(-- t 1/2Bn(ol )}

(j+l) }exp %(;){(sr- a2)l/2Bo(a, st)}

when 4(J). In (4.24) the suffix on M, N, x, and K isj+ l when KesYus(2-, and
j- 1 when S U S+’).

When the domain 4 is unbounded, Theorem 3a is uniformly valid for unbounded
values of sr, provided the variations of (’-a2)/2Bs(a, sr) converge as r-, oe in 4.

It remains to construct an error bound corresponding to expansion (4.6b). To do
this we again must introduce appropriate auxiliary functions. Bearing in mind that
L(z) is dominant at infinity for u >_-0, we assign for this function the weight function

(4.25) g(z) [exp (-)(z))[, z e 9 (j 1, 2, 3).

In constructing the error bound we shall consider the cases z 5 (j 1, 2, 3)
(j)separately. In each domain we will use () as the companion solution to I(z).

f..(1) f-(2)(Z) inThis time it is necessary to define new weight functions for
_

z) and .
order to take into account their logarithmic behavior at z 0 when , 0.
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TO this end we first define domains )(z) (j l, 2) to be the set of points in the
plane satisfying the conditions

(4.26a) Re )(t)> Re )(z),
(4.268) It > min {Izl, ’},
(4.26c)

For example, the domain @(z) is the shaded region illustrated in Fig. 4 (for the case
Iz>2).

We now define for j 1, 2

1
(4.27) 7)(z)- supa tz)

where the normalizing coefficient a is chosen so that (z)= 1 for z F. Thus

(4.28) a7= sup {It

Since for all u 0 the singularity {0} ), it is not necessary to introduce a
different weight function for (z). Thus

(4.29) )(z) E(z).
Note that, for j 1 and 2, it has been necessary to define only )(z) for z ).

Real and positive modulus functions (z) and real phase functions O)(z) are
now defined for z ) by

(4.30a) )(z) sin {O)(z)},
(4.308) )(z)[{)(z)[ )(z) cos {O)(z)}.
Likewise, for the derivatives we define real and positive modulus functions )(z),
and real phase functions )(z), by

(4.31a) (z)lI’,(z)l )(z) sin {&)(z)},
(4.31b) )(z)l’(z)l )(z) cos ()(z),

FIG. 4. plane.
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For correspondence to (4.20) and (4.21) we introduce the following constants"

(4.32) o2= sup {/(J)(/)lz2- ld2ll/2,/[/[7)(z)2c,(z)-lc-7)(z)-l},
(4.33) /Xo)= sup {a )(v)lz2- vZl/27)(z)
each supremum being evaluated over v 0 and z {fl). In these equations aO)(v) are
constants involving Wronskians, viz.

Thus

(4.34) A() 2 e

Next we define, for j 1 and 2, a domain
that can be linked to ff 0 by a ceaain path 2) in . The path 2) is one consisting
of a finite chain of R2 arcs, and has the propeaies that as passes along 2) from
zero to ( S)
(4.35) Re o, 1 o)( 1/2),,u/) Re ,,uff
(4.36) lu*/21

Similarly, we define 83 as the set of points in S that can be linked to ff 0 by
a path 3) in 8 consisting of a finite chain of R arcs, and has the propey that as
passes along 3) from zero to if( S))
(4.37) Re 2(u1/) Re 2(u/).

If all points in the interval [0, /u2] are in 8, then a natural choice for 3)
would be the path consisting of the real interval [0, /u2] linked to a progressive
path in

We now state the following theorem on error bounds for a solution that is recessive
at if=0 when a =0.

THEOREM 3b. With the conditions given in 1 and the present section, (4.2) has,
for each positive u, nonnegative a, and nonnegative integer n, a solution that is holomorphic
in satisfying

w.+,(u, , )= ’/I,u(UC
=0 2s

(4.38)
+-I(u/) +1

where the following bounds hold for ,
1. (j) 2) (j)(,(u

(4.39)
U

K(J) }exp {--- Vo,){(’-02)1/2B0(0 )}

As before, Theorem 3b is valid for unbounded sr, provided the variations of
(- a2)l/2Bs(a, ) converge as sr- .

Finally, we remark that discussions similar to those following Theorems 1 and 2
hold for the asymptotic behavior of the expansions (4.6a, b); see also [1, eqs.
(5.17)-(5.19)].
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5. Legendre functions of purely imaginary order and real argument and degree. As
an illustration of the preceding theory we shall derive asymptotic expansions, as v + oo,
of solutions of the following form of the associated Legendre equation

d2w { v(v+l) z2+l }(5.1)
dx2- l-x:-(i-Y): w.

In this section we shall suppose that the variables x, v, are real, and hence so
too is the differential equation (5.1). We restrict our attention to the case where x->_ 0,
v > -1/2, and/, ->_ 0. Corresponding results for other real values of these variables (except
v =-1/2) can be obtained using appropriate connection formulas. In 6 we tackle the
case where the argument x is complex.

We consider the intervals 0_-<x < 1 and 1 <x oo separately. Solutions of (5.1) in
the former interval are the Ferrers functions (1-xE)l/2p(x), (1-x)l/2Qi(x), or any
linear combination of them. For x > I solutions are linear combinations ofthe Legendre
functions (x2-1)l/2p(x) and (x2-1)I/EQ(x). For definitions of these standard
functions see [6, pp. 170, 185].

Equation (5.1) can be identified with (1.1) by defining

(5.2) u v +- a
2’ v+1/2’

2a 1 1 1
(5.3) f(ce, x)---(l_x2)2 l_x2 g(a,x)= (l_x2)2-4(l_x2)
Thus for x >_-0 the equation has regular singularities at 1 and infinity, and a turning
point at x, (1 + a2)1/2. It is necessary for us to impose the restriction 0_<- a <_- A, i.e.,

(5.4) 0 < /x <A,

where A is an arbitrary positive constant. Thus we consider the case where the turning
point x, is bounded, and in the limiting case a - 0 coalesces with the singularity at x 1.

We now apply the Liouville transformation described in {} 2. From (2.2a, b) we
define a new independent variable " by

fa: (f--a2) 1/2 I( (t2--1--a2) ’/2

2),(5.5a)
2so

d=
+a2)1/2 12 -1

dt (X (1 + a2)1/2 or ff > a

fa" (a2_ )112 f(x 2 1/2

2),(5.5b)
2

d=
(1 + a 2)

at (x < (1 + a2) ’/2 or ff < a
1+2) 1/2 2- 1

where the Cauchy principal values are taken for (5.5b). Note that the singularities
x 1 and x m are mapped to 0 and m, respectively, and the turning point
x (1 + a2)x/2 is mapped to ff a 2.

The ff integrals are given explicitly by (2.3a, b). The x integrals can also be
evaluated, and their explicit forms will be of use below. We obtain for the right-hand
sides (RHS) of (5.5a, b), respectively,

1 2} {(X2-- 1 a2) 1/2}(5.6a) In {(x2- 1 a2) 1/2 + X}-- In {1 + a a arctan
ax

(5.6b) ln _-i;-(i! In +arccos
+ 1 (1 + a2) 1/2

Here the inverse trigonometric functions take their principal values.
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From (2.2b) and (5.6b) we see that the x interval [0, ) is mapped to the " interval
[’1, ), where ’l is the negative root of the equation

We see that the x-ff transformation is quite complicated (as compared, say, to
the corresponding transformations involved in a Liouville-Green approximation), and
this may be regarded as the price we pay for the uniformity of the resulting asymptotic
solutions.

To complete the Liouville transformation for this problem we define the new
dependent variable W by

(

_
2 )1/4(--1)O X2 1/2

(5.7) w w,
X
2 a \ 2sr

and as a result (5.1) is transformed to the desired form (1.2). The Schwarzian q is
readily found to be given by

’+4a 2 (x2 1)(" c2){(402 + 1)x2 nt- 04- 1}
(5.8) q(a, sr) 16(’- a)- 16sr(x2-1 a)

In the identification ofthe asymptotic solutions it is necessary to know the behavior
of the x-sr transformation near x 1 and x c. First, from (2.2b) and (5.5b) we find

sr 0 as x- 1 such that

(5.9) x-1 =exp{T(a)} sr + O(sr2),
2(l+a2)

where

2
(5.10) T(a) 2--- arctan (a).

This result is uniformly valid for 0 _-< a -< A. In particular, when a 0 the limiting form
x 1 1/2" applies.

Next, from (2.2a) and (5.5a) we find ’-o as x o such that

(5.11) x=1/2(1 -i" 02) 1/2 exp {1/2_ V(a)}(1 + O(’-l/z)),
where

(5.12) V(a) a arctan (a).
Again when a 0 the limiting form x---1/2 exp {.1/} applies.

An application of Theorem 2 to the transformed equation (1.2) yields the two real
solutions W2n+l,3 and W2+1,4. Let us identify the solution W2n+l,3 with Ferrers func-
tions. For these functions it is convenient to set the integration constants that appear
in (2.14) so that

(5.13) Ao(a, )=- l, A(a, O)=O (s=l,2,...).
To facilitate identification we introduce two new parameters, defined by

(5.14a)

(5.14b)

U U
to -=ln2 {U2(1 + ce2)}-- T(a)

=/x In {(u +1/2)+/x2}-/x + u arctan {/x/u},
2

2/x ,l B(a, 0)}/3.=arctan =o u2
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With these definitions we introduce the following Ferrers function:
ip(5.15) Pn(I, tJ., x)-{ei(’+")P-i(x)/ e-i(’+ )Pv (x)},

which, unlike P (x), is a real solution. Note also that

(5.16) P,(u,O,x)=P,,(x),

and hence P,(v,/x, x) is recessive at x 1 when/x =0.
From (5.15) and the known behavior of Ferrers functions near x= 1 (see, e.g.,

[6, p. 186]), it is seen that as x- 1- (/z > 0)

(5.17) P.(v,/z, x)-- (sinh (tzTr)) 1/2

cos {z In (X_) b.o+ to +/3. }
where

(5.18) q.o arg F 1 + i/z ).

The phase b.,o is defined to be continuous in/x, such that bo,o 0. The limiting form
of (5.17) applies when/x =0. From (5.2) and (5.9) we find that in terms of the new
variables

(5.19) Pn(u,/, x)(sinh(ua’rr))
1/2

cos {ua In (ul’[1/2) 4..,o / n},
uoTr

as ’-* 0-.
Consider now the asymptotic solution of (1.2):

(5.20)
1 12. ]]-l/2w2n+l,3(u ol, ).

The behavior of this function near st=0 can be established from (3.15) and the
corresponding behavior of Fi,(u]] 1/2) (see [4, eq. (3.15)]). We find as ’0-that
(5.20) is of the form

(2 tanh (/xrr/2))1/2[COS {UO In

2J../, 1/2) nl Bs 01., O)
U2 sin {ua In (ul’[ -)uc,O} U2+o()],

or equivalently

(5.21)

(2tanh(/zTr/2))l/2(l+(2/x ))n Bs(ol, O) 2 1/2

jIA,’W -s=0 U2s COS {UO ln(ulll/2)-rkuo,.o/8,}/O(),

where , is defined by (5.14b). On comparing (5.21) with (5.19) we conclude that the
two solutions must be identical to within a multiplicative constant. Therefore

(5,22)
1 + 2 []-l/2W2n+l,a(U , )= e2n+l,3(p, )Pn(p, , x),

where Rn+,3 is independent of x. If we compare both sides at 0 we find that

(5.23) e2n+l’a(P )=cosh (/2) 1+ s=o u2s
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As a useful independent check on the correctness of this asymptotic result we can
show that at x 0 the asymptotic behavior as u - oo of both sides of (5.22) is identical.
This can be done as in the corresponding case in 1, 4], using the well-known formula
for Ferrers functions at the origin (see, e.g., [6, p. 187]), and the asymptotic formula
for Fi(ull 1/2) having large order and argument (see [4, eq. (5.15)]).

Provided a > 0, the solution W2,+1,4 is uniquely characterized by its oscillatory
behavior at " 0, and therefore it can also be identified with Ferrers functions. The
coefficients in the resulting equation involve unknown terms that have explicit upper
bounds, and are O(U-2n-1) as u oe. However, as a0 it turns out that one of the
bounds no longer holds, and as such the asymptotic expansion is not uniformly valid
in 0-< a =< A. This is perhaps as we would expect, since W2,+1,4 is dominant at " 0
when a 0 and is therefore not uniquely characterized. For this reason we will defer
the identification of a second independent solution in 0 <_- x < 1 until 6, using complex
variable results to do so.

For correspondence to (5.15) we define for x> 1

(5.24) P,,(u, ix, x)=-1/2{ei(’+,)P-it(x)+ e-i(’+,)P(x)}.
This Legendre function is real, and can be shown in a manner similar to the example
above to have the following asymptotic expansion"

(5.25) x .: -/w,+,(u, ,, )= R:,+,(,,, )P,(,,, , x),

where

(5.26) (Rzn+ 1,1 (/2, ix 27r e-" 1 + u2s:0

The integration constants associated with the coefficients {As} in Wa,+, are the
same as those for the function W:,+l,3. Note that (5.8) and (5.11) imply that the
Schwarzian q, given by (5.8), has the property that its sth derivative q(s)(a, st)
O("-S-) as sr - ee. Thus the asymptotic solutions W2,+, and W2,+,2 given by Theorem
2 are uniformly valid for 0 < <.

Finally, we identify the asymptotic solution given by (2.35) of Theorem 1. There
exists a constant Rzn+l,2 such that

(5.27) x_l_ -l/w,+,2(u, , ) R2,+l,(, )Q(x),

since the functions on both sides satisfy the same differential equation and have the
unique property ofbeing recessive as x - oe (st . oe). We choose the integration constants
in (2.14) so that

(5.28) As(oo) 0 (s 1, 2,. ),

and determine the constant of proportionality R2n+l,2 by comparing both sides of (5.27)
as r- oe. From (2.35), (5.2), (5.11), (5.12), and [4, eq. (2.16)] we find by this method

r(l.+-})((l,"-t-1/2):2-t-ix:2)’/:Z+l/4 e-("+/:2)v[ 1 NIs ](5.29) R.+,.2= (u+1/2),.+
1- v+--- s=o (u+1/2)2s

where

(5.30) s lim l/2Bs(a, ).

As a check on the results in st>0 we can compare both sides of (5.25) at
and both sides of (5.27) at r 0, as u oe. First, on employing (5.24) and the asymptotic
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formula for Pi(x) at x oo (see, for example, [6, p. 173]) we find that the right-hand
side (RHS) of (5.25) is of the form

(5.31) (2x) ’/2(2x)U exp {ua arctan (a)- uarr}
(1 + a2)"/2 (1 + o(1))

for fixed positive a and large positive u and x. With the aid of (5.11) we find that, to
leading order, the corresponding asymptotic behavior of the left-hand side (LHS) of
(5.25) is identical.

On using (5.9), (5.24), and [6, p. 171, eqs. (12.08), (12.11)] the RHS of (5.27) is
found to be of the form

exp {-uarr/2} sin {ua In (r)/2- ua In (2a)+ ua rr/4}(1 + o(1)),

for fixed positive a, small ’, and large positive u. Again, this is found to be in agreement
with the corresponding behavior of the LHS of (5.27) (see [4, eqs. (2.14), (2.29)]).

The derivation ofboth (5.31) and (5.32) involved a considerable amount of algebra,
which was eased somewhat by taking logarithms at appropriate stages and later
exponentiating.

6. Legendre functions of purely imaginary order, real degree, and complex
argument. In this section we will construct asymptotic expansions as u- c for the
Legendre functions of complex argument P-iv(2) and Q (z). The results will be
uniformly valid for the parameters u and /z satisfying (5.4), and for simplicity we
assume Re (z) => 0. Corresponding results for other values of z may be readily obtained
using the appropriate connection formulas for Legendre functions.

With u and a defined as before, the Liouville transformation in this case is given
by

Ia" (_ O2)1/2 i(z t2 2)1/2
(6.1)

2sc
dsC=

-1-a
dt.

l+t2) 1/2 2- 1

The effect of this transformation is to map the half plane Re (z)_-> 0 to the domain
illustrated in Fig. 5a. The branchcut associated with the singularities at z +1 for

FIG. 5a. Domain A_ in plane. FIG. 5b. z plane.
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Legendre functions is customarily taken to run along the real axis from z 1 to z -.
Thus in the half plane Re (z) _>- 0 we take the cut associated with z 1 to be the interval
[0, 1 ]. The corresponding cut in the domain _A runs from " 0 to " ’1. In the notation
of 4 we thus have rio =-r/2.

The curves in the z plane corresponding to the level curves in the " plane are
indicated in Fig. 5b. From the configuration of the level curves in the " plane it is
readily verified that 01) t_J 2) U 3) A. Also on taking the reference point for i[(3)

2n+l

to be 3)= we find that A3) A. The asymptotic solutions W2.+ and 2n+l are
therefore uniformly valid throughout 6.

The identification of the first of these follows in a similar manner to that of (5.25).
From the behavior of the following solutions at z 1 we deduce that

--1/2(6.2)
z2-12 W2,+l(U, a, )= Rzn+x(V, )P;"(z),

where, if we assign the integration constants as in (5.13), the propoionality constant
is given by

(6.3) Ran (V,)=e-i’T/2((V+)2+2) ’’/2

1+2u+i =o (v+)

Likewise, we can show that the following relationship holds:

(6.4)
z2 1 22 --1/2 IIZ(3) D(3).+(u, , )= ..:.(, )Q (z),

since both solutions are recessive at z ( ). By comparing both sides at infinity,
and assigning the integration constants so that (5.28) holds, we find that

2 cosh ()((+):+)+/4r(+) e-+/:vR(3) - ,=o’
where the coecients {N} are defined by (5.30).

It remains to tackle the problem left unsolved in 5, namely, the identification
of a second real asymptotic solution in the interval [, 0). It is convenient to define
the following real Ferrers function:

(6.6) Q (x)--{Q"(x+iO)+Q (x- i0)},

and derive an asymptotic expansion for this function. Note that in terms of standard
Ferrers functions

{(.7
cosh (/) r(+ i + ) Q(x)+r(- i + )

see, for example, [6, p. 185, eq. (15.02)]. Employing (6.4)-(6.6) and [4, eq. (3.9)] we
derive the following asymptotic expansion"

.1(, (x)

(6.8)
15z1 a’u(ull’/)

,=o e(a,uas + Iffl’/u a:"(ull’/) =o1 ns(
+ { (32n+ 2n+llffll/a l(U, a, if+ io) o(3) (u, a, ff i0)}
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We remark that, since the LHS of this equation is real, the error term on the RHS
must also be real. However, unlike the corresponding result in [1, eq. (6.12)], it does

(3)not follow from their integral equations that e2./l(u, a, + iO) and 2,/1r3 (u, c, - i0)
are necessarily complex conjugates.
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A UNIFORM EXPANSION FOR THE EIGENFUNCTION OF A SINGULAR
SECOND-ORDER DIFFERENTIAL OPERATOR*

A. FITOUHIt AND M. M. HAMZAt

Abstract. In a recent work, Frenzen and Wong Canad. J. Math., 37 (1985), pp. 979-1007] have obtained
a uniform asymptotic expansion for the Jacobi polynomials in terms of Bessel functions. An analogous
expansion for the Jacobi functions had been given earlier by Stanton and Tomas [Acta Math., 140 (1978),
pp. 251-276]. The common starting point of these papers is an integral representation.

In this paper it is shown that in general such expansions can be obtained directly from an eigenfunction
of a singular second-order differential operator, and with additional assumptions they converge in some
interval. This leads to an expansion for the eigenfunction of an integral representation of Mehler type with
good information on the kernel.

Key words, singular second-order differential equation, Bessel functions, Jacobi functions, integral
equation, asymptotic expansion

AMS(MOS) subject classifications. 33A65, 33A40, 34E05

1. Introduction. In [3] Frenzen and Wong have established an asymptotic
expansion for Jacobi polynomials P’(cos 0) in terms of Bessel functions J/p,
p -0, 1, 2, . They used an integral representation of the Jacobi polynomials due to
Gasper [4].

Stanton and Tomas [8] have given a similar expansion for spherical functions
on noncompact symmetric spaces; they used an integral representation due to
Koornwinder [5].

We note that such expansions can be rewritten as expansions of Olver type [7,
Chap. 12] for more general differential operators.

In this paper we are concerned with a class of second-order singular differential
equations of the form

)(A) u"- \ x2 - -X(x) u(x)=0, a>--.2
This class contains (after simple transformation) a wide class of differential equations
of the form

1
IX2c/1C(x)ut(x)]"-[- (/d, 2 -[- q(x))u(x) 0

x:+lC(x)
with C(x) an even positive function which is analytic or c. The radial parts of the
Laplace-Beltrami operator on a symmetric Riemannian space of rank one are of this
type; the differential equation related to special functions such as those of Legendre,
Gegenbauer, and Jacobi on a finite or an unbounded interval are also of this type.

Following Olver [7] we begin by seeking a formal series solution of equation (A)
of the form

jo+p(l.zX
Vt (x) E xp+I/2Bp(x) o+p

p=0

* Received by the editors November 10, 1986; accepted for publication (in revised form) December 11,
1989.

? D6partement de Math6matiques, Facult6 des Sciences de Tunis, Campus Universitaire, 1060 Tunis,
Tunisie.
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The central result is that this series is a solution of (A) on some interval of the real
line when X(z) is an even holomorphic function in a disc centered at the origin. This
result leads to an integral representation of Mehler type for the solution with a kernel

k(x, t) (1 t2) -1/2 2
=o F(a +p+1/2) (1

We note that Trimche [9, p. 71] has combined an asymptotic expansion of Olver
type and a Paley-Wiener theorem to obtain a similar integral representation but with
less information on the kernel.

In the case X(x) 2, by using the results and the methods of Olver [7, Chap.
12] we deduce the following estimate:

with an upper bound of the majorant (x), where ,,(x) is the remainder term
defined by

+p real.
p=0

The methods are more constructive and direct than those of [3] and [8] and lead
to more general results. For instance, we obtain the asymptotic expansion for the
Jacobi polynomials P’(cos 0) given in [3] with only the restrictions a > -, > -1.
We also obtain the asymptotic expansion for the Jacobi functions when a and are
half odd integers given in [8], with only the restriction a -.

2. Formal computation. Let V be a solution of the differential equation

d2V (a2 } 1,,-- 2(2.1) & x - -x(x) v. >
2’

when x (0, a). Here a is a positive constant, is a real or a complex parameter, and
X(x) is an even sufficiently differentiable function.

We shall seek a formal solution of (2.1) of the form

E A.(x) J+.(x)
a+p

p=0

where J(x) denotes the Bessel function of first kind of index u. We recall that J(gx)
is a solution of the equation

and that the functions J(x) satisfy the recurrence relations

X

J._(x) J.+(x) 2J(x).

We denote by L the operator defined by
2

Lau u"-X2 U.
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Using these relations, we find that

L, + tx
2 + X(x))(ap(x)ff- J+p(/Xx))

1-2(or +p)
J+p(txx) a’/,(x)+

X

+ 2px/ J+,_l(txx)a(x).

A’p(X)+
p(p+2c)

X
2 a.(x) + x(x)ap(x) }

Thus if the series o Ap(x)(x/- J,+p(txx)/tx +P) is to be a formal solution of (2.1) it
suffices to choose the coefficients Ap(x) to satisfy the following relations:

A’o(X) =0,

1-2(a +p) {p(p+2a) }(2.2)
-2A+l(x) Ap(x) +

x
A’v(x) + x2

t- X(x) Ap(x).

In what follows we show that such a choice is possible and can be made to yield
coefficients Ap(x) that are analytic or q functions according to whether the function
X(X) is analytic or .

Let us put A,(x)= xPBp(x). Then (2.2) can be written as

B;(x) =0,

_1 { 1-2cr(2.3) {xp+IBp+I(X)}’=
2
xp Bp(x)-f-

X
B’.(x) + x(x)B. (x) }.

Denoting by Bo the constant value of Bo(x), we choose B(x) by

--x X(t) dt if x # O,

B,(x)
Bo--- X(0) if x 0.

It is clear that Bl(x) is an even analytic or (g function depending on the nature of
X(x). From the relations

1
tp

1 --2a

2XP+ Bp(t)+ dt if x#0,

(2.4) Bp+(x)=

2(p+l)
{2(1 or)B;(0)+ X(0) Bp(0)} if x=0,

we see by induction that the same is true of each functoin Bp(x). Thus we have the
formal solution

(2.5) V,(x) E xPBp(x)
J+p(lXx)

+p
p=0 tx

of (2.1) where the functions Bp(x) are defined by the recursive formula (2.4) and are
even and analytic or q8, depending on the nature of X(x).

3. Convergence of the series (2.5). In this section we show that with the additional
assumption that X(z) is holomorphic in a disc D(0, 2b) {z C, Izl <2b}, the series
(2.5) converges on an interval of the real line. This is achieved by estimating the
coefficients Bp(x) by using Leibniz’s formula and the maximum-modulus theorem.
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THEOREM 1. Suppose that X(Z) is holomorphic in the disc D(0,2b). Then the
functions Bp x defined by the recursive relation (2.3) satisfy

(3.1) IB(pq)(x)l <= c/ 2)Pd P-l b-P-q(p -t- q 1)!

for all x [0, b], p- 1, 2,... and q--O, 1, 2,..., where

c=max{l+12c-l[,2sup([x(z)l, lzl<-2b)}, d-=(b+b-1).

Proof Since X(z) is holomorphic in the disc D(0, 2b), by the maximum-modulus
theorem we have

(3.2) Ix(q)(x)l<-_b-qq!, q=0,1,2,..., x[0, b],

where =2sup{lx(z)l, lzl<-2b}. Iff is a cg function on N, then for p= 1,2,... let
us denote by Hpf the function defined on N by- tP-f( t) dt ifx0,

(3.3) (Hpf)(x)
-f(0) if x=0.
P

By Lemma 3.1 of [9], Hpf is a (o function on and

Hpf) (q) gp+q(f(q)), q O, 1, 2,’’’.

Thus the recursive formula (2.4) can be written as

+ -/-/.[ +(- +x],
and hence we obtain

B(pq+2) B(pq+2)+(xBp)(q)a-p+l](q) --Hp+q+l[ --(1 -21)gq+

This relation leads to the following estimate:

1 +2)(3.4) ](q) leo {(1 +12t ll)lB(pq Ioo+l(/Bp) leo}--p+l 2(p+q+ 1)

where

luloo sup {lu(x)l, 0 < x < b}.

Using Leibniz’s formula and the estimate (3.2) we deduce that

q! b
(3.5) ](XBp)(q)]o

Substituting (3.5) in (3.4) we obtain

(3.6) [(q),p+ll=2(p+q+l) j=O

where e =max (1 +[2a- 1[, ). Using (3.6) we shall prove (3.1) by induction. Since

B -Hx, we have =-sHq+ From (3.2) we deduce that

2q)
q q
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If p 1, then the recurrence hypothesis is true for all integers q. Suppose that (3.1) is
valid for a given positive integer p, and for all integers q. Then using (3.6) we have

]B(q 1oo< (q+p)Idp_
q! (j+p_- 1)!

p+l +b(q+l+p)!j=o j!

and by noting that the sequence {(j +p- 1)!/j!} is increasing we deduce that

q! L (j+p-1)! (q+l)! (q+p-1)!
<- <-1.

(q+p+ 1) j=0 j! (q+p+ 1)! q!

The required result is a consequence of this inequality.
THEOREM 2. With the assumptions of Theorem 1 and the conditions

(3.7) V(x).-.x+1/2, V’,(x)---(a+1/2)x-1/2 (xO),

equation (2.1) has a unique solution Vi x such that

(3.8) V.(x) E x(x)
4L+(x)

+p
p=O

the infinite series being uniformly convergent on [0, y] with y=min {b, 2(b/(cd))l/2}.
Proof From (3.1) and the fact that for real x and complex/x

[J+o(/xx)l-<_ e I"xl IlXXl+P
2+PF(a +p+ 1)’

we obtain

x"(x)
4Y L+p(x) _-< e I"xl ix]S+,/2 b ( dx2 p

2 - C4b ]
r(p)

F(p+c+l)"

The right member of this inequality is the general term of a uniformly convergent
series on [0, y] with y defined as above.

THEOREM 3. For x [0, y], where y is as defined in Theorem 2, the solution V, of
(2.1) that satisfies the conditions (3.7) has the following representation of Mehler type:

g (x, t) cos (txxt) dt,V x - -,

with

K (x, t) (1 t2)-l/2H(x, t),

and

H(x,t)==0
Proof It is known that [6, p. 114]

(z/2) t -,/)-J(z)=v?i;;1/2) -,(1-)
From Theorem 2 for x [0, y) we have

Vlx(X)
xa+l/2 p (x2/2)PBp(x)f (l--t2) a+p-1/2

:o r(+p+) _,

p(x)
F(a +p+1/2) (1- t2)p.

cos (zt) dt.

cos (htxt) dt.
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On the other hand, for e [0, 1] we have

F(a + p + 1/2)
1 t2) a+p-1/: COS (tzxt)

x t.(x)
2" r( +p+1/2)

The second member of this inequality is the general term of a convergent series on
[0, y), thus the interchange of the operations I, Y is valid, and the result follows.

4. Asymptotic expansion of V for real p. Let us write

V. (x) E Ap(x)
J+p(tXx)
+p + 9t,(x).

p=O

In [7, p. 445] a majorization of Im,(x)l is given for a more general equation than
(2.1). By taking this into account we are able to give an estimate for .,..(x), which
improves and generalizes the results of [3] and [8].

Using (La+IX2+x)V.=O and the relation (2.2), we obtain

2
a+rn(La + tx ,(x) -X(x),.,(x)+2A+(x)

J.+m(X)

The functions J(x) and Y.(px), where Y(x) denotes the Bessel function of
second kind, are two linearly independent solutions of the equation (L. + pZ)u 0;
thus the method ofvariation of parameters shows that ,. is a solution ofthe following
singular Volterra integral equation"

y(x) x(t)y(t) 2A+1(t) L2Pt)

[Ya(ftt)J(ftx)-J(ftt)Ya(x)] dt.

This equation has the form

ioy(x) Ha(tzx, txt)[q(t)g(txt)+ b(t)y(t)] dt,

where the functions Ha, q, o, and g are defined by

Ha(x, t)= ().f[Ja (x)Ya(t)-Ja(t)Ya (x)],

-2t
q( t)g(txt) a-+-m+l Ja+,(tzt)A’+l( t),

lp(t):lx(t).

To deduce an integral inequality satisfied by the remainder ,.,. we recall the following
estimate of the kernel Ha(x, t) from [7, pp. 437,445].

Hypothesis. Suppose that

IH (x, t)l - Pa(x)Q.(t),

where Pa(x) and Qa(t) are the (continuous) functions defined by
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(i) If-1/2<a_<-, P(x)=Q,(x)=x//er,
(ii) If a >

x/[J(x)] if0<x<=X,
P(x) (x/-(x if x >_ X,

x/lg(x)l if0<xX,
Q(x)

(4N(x) if x X,

where N(x)= x(J](x)+ Y](x)) is the Nicolson function, and X is the first positive
zero of J(x)+ Y(x).

By application of these definitions, we see that the remainder ,. satisfies the
following integral inequality

where

(4.2)

or

qv( t) -2tx-(’+m+3/Z)Am+( t), g(/xt) x//xt J+.(txt),

(4.3) q(t) -2/x-(+m+l)x/- A+l(t), g(txt) J+m(tZt).

Since P.(x), P(x)Q.(x), and J+m(x)Q(x) are continuous on [0, ) and have
finite limits at zero and infinity, the following suprema are finite:

ko(a) sup {P(x)Q(x), x > 0},

(4.4) k(a) sup {P (x), x > 0},

Cm(a sup{ [L+(x)Q(x)l, x > 0}.

Note that ko(a) is denoted in [7, p. 443] by h(a) and Co(a) by h3(a). By applying
Theorem 10.1 of [7, p. 219] with and g given by (4.2) we obtain the next theorem.

TEOREM 4. Let X(x) and V, be the unique solution of (2.1) that satisfies the
conditions (3.7). en

(4.5)

where the coefficients Bp(x) are defined by the recursive relation (2.4) and the remainder.. satisfies

<
1

.(x) exp(ko(a)fo,(t)ldt)(4.6) Im,(x)l

with

g.,..(x) rP(Ixx) sup Ix/-J+..(t)Q(t)[ [(tm+Bm+(t))’[ at.
o<= t<=txx

Furthermore,

Cm.(X ,rrkl(a)cm(o) I(tm+lBm+l(t)) ’1 at,

where kl(a) and c,,,(a) are given by (4.4).
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Remark. (1) In Theorem 2 we established that the series (2.5) is convergent on
some interval of the real line. When we are outside this interval, or when the function
/ is 62 and does not satisfy the assumptions of Theorem 2, Theorem 4 shows that the
series (2.5) is a useful approximation of V for large

(2) Under the assumptions of Theorem 2, and with q and g given by (4.3), it can
be shown that

d m+l m! xm+3/2
o+m+l on [0, b], /x_-> 1,

where the constant k depends only on X and b.
(3) In addition, since ,,, satisfies the integral inequality (4.1) it can be shown

by using Gronwall’s lemma, rather than Picard’s method of successive approximations,
that gm,,(X) can be taken to be

g,,,(x) 7rP(txx) IJ+,,(Ixt)Q(tzt){tm+lBm+l(t)}’[ dt.

5. Error bounds. In this section we give upper bounds for the suprema defined
above.

LEMMA. The Bessel functions satisfy

(iii)

1 1
(i) [J(x)l < x x>0, v>--.=2F(v+ 1) 2’

,/
(ii) IJ,+m(X)l<=2F(v+1/2)x, x>0, v>0, meN;

1 1
IL(x)l <_--+ x>0, >0;

(iv) xHT)(x)lN (2x)-’/+ r(u) x>0,
2’

1
x>O,

2

For (v) we use

-1/2

+
and the convexity of the function u +1/2.

,+1/2

5.1. Case -< t < 1/2. For m 1, 2,... we use the inequalities (iii) and (v) of the
lemma to bound x/ IJ+,,(x)[, respectively, on [0, 1] and [1, oe) to obtain

{ 1 2+m 22+2m }Cm(Ce)<--max +(oz+l)., v/-- + F(ce+m+l)

Furthermore, it is clear that Co(C) =< x//r.

Here H(l)(x)= J(x)+ iY(x) is the Hankel function in the usual notation.
Inequalities (i) and (iii) are consequences of the integral representation 11, p. 48]

and [11, p. 177]. The use of the Sonine formula [11, p. 373] leads to the inequality (ii).
To prove (iv) and (v) we use the integral representation of Hl)(x) given in [11, p. 168].

For (iv) we subdivide the interval [0, ee) into [0,2x] and [2x, oe), and bound
1 + t/2x by 2 in the first part and by t/x in the second part.
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5.2. Case t>. In this case, the Nicolson function N(x) is continuous and
decreasing [11, p. 416]. In consequence, the suprema ko(a) and kl(a) are attained on
(0, X], and we deduce by (i) and (v) of the lemma that

{ 2’-’/2
ko(51 x+l/2 qt- I"( q- 1)

r(a+ 1 -and by (iii) of the lemma that

2kl(a) (2+ a)

Using first (ii) and then (iv) of the lemma we obtain, for 0 < x X,

L+(x)Q(x)l
2r( +) x+’l Y(xl

<X{(X)-l/22}
We have also by (v) of the lemma and the inequality

lJ+(X O(x) <X J(X){2++1/2 22+2

+(X)+m+/+F(+m+l), xX.

Finally, we have

cm() < max [X (X)-I/+2+/F()r(+- + ( + m + 1(X) L(X)
2

2+mF

6.1. Cse (x) s estm. In (2.1) if (x) I, where I is a given real or complex
number, then the coecients B(x) defined by (2.4) are given by

(xl pe,

and it is clear then that the series

is uniformly convergent on every compact interval of [0, ), and is the unique solution
of (2.1) that satisfies the conditions (3.7).

From these considerations we deduce the following classical relations:

(i) With X(x) 0, 0 C, we obtain

+p X>0.
p=0

(ii) With X(x) 0-, 0 C, and , we obtain
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6.2. Uniform asymptotic expansion for the eigenfunction of a singular second-order
differential operator. With a (0, ) we denote by L a differential operator of the
second order on (0, a) having the form

1
(Lu)(x)

x+’c(x) {X2a+l C(x)blt(X)}t3v q(X)U(X),

where a > -, and the functions C(x) and q(x) are even and analytic or ( further-
more, C(x) > O.

These operators generalize second-order differential operators related to special
functions. The Bessel operator is obtained by putting a +oo, C(x)= 1, and q(x)= O.
The Jacobi operators on (0, r) or (0, oo) are obtained by taking, respectively,

(6.1)
1 )2q(x) -- (a + fl + l

and

(6.2)
(ch X) 2/3+1, 0 < X < O0,

When a =/3 we have the Gegenbauer operator. The Legendre operator is obtained by
setting a =/3 0. In what follows we consider a real or complex parameter for which
it is known [2] that there exists a unique function q satisfying

(6.3)
Lq +/d,2(4--0 on (0, a),

(o)=o.p(O) 1, q

Putting V,(x)= x+l/2x/C(x) q,(x), we see that V satisfies

)(G +x(x)+ V(x)=0,

where L,, the Bessel operator, and X(x) are defined by

2

(L,u)(x) u"(x)
a

x2 u(x),

(6.4)
Ct(x) l ( C’(x) 1 (,,C’(x) 2

X(x) q(x)-(Za+l) 2xC(x)-- C(x)] - C(x)]

In [9, p. 60] Trimhche gives the following asymptotic expansion of Olver type
[7, Chap. 12] for the solution q of (6.3), being real and n 1, 2,.

C(O)
q.(x)=j(/.tx) +

q=0 d’2q
X
2 n-1 bq(x) 1

2(a+l)J-+,(x) Y’. "2-q ’]- "’a+l/20,n(X),
q=0 ]d, X

where

j,,(x) 2F(u + 1)x-"J(x) with j(0) 1.
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This expansion can be deduced from Theorem 4 by using the recurrence relation [ 11,
p. 295] for the Bessel functions in terms of Lommel polynomials. In this way we obtain

ao(x) 1,

aq(X)=F(a+q+l)
q-1 (_1

=q+l r-q-1 F(a+r-q+l)’
q=l,2,...,

1 ( )-q-1 2q+l ( )(-1/2)rBr(x)bq(x)--F(a+q+l) Z
q

r-q- q:O,

the value of Bo(x) being 2F(a+I)(C(O)) 1/2. These relations show how the two
expansions are linked, and that they are equivalent.

Last, we give an expression of A2(x) in the general case in terms of X(x). With
Ao(x) 1 we have

(x=- x( a.

From A(x)= xB(x) and (2.4), we derive

f Io ;o ]A2(x)= (s2x"(s)+(1-2a)sx’(s)) ds+x(t) X(s) ds dt- fo [ ( fo X(S) ds-x(t))+x(t) Io X(S) ds] dt.-4 X’(t)+(2a+l)
1 1

We deduce that

(6.5) A:(x)={X(X)-X(O)+2(2a+I)(B(x)-B(O))+2(A(x)):}.
More generally, we can use the following formula for computing A(x)

where Hpf is defined by (3.3) and is the differential operator defined by

1-2a

X

Noting that (Hpf)= Hp+:(f), we may verify by induction that

q=O

.3. EsfJells. When >-1, >-1, it is known that

nr( + 1) P’(cos x)u(x) =r(n+ +)
where P’ denotes the Jacobi polynomial of order n, is the solution on (0, ) of the
system

1
Ix+C(xu’(x]’ + g + q(xu(x o,x+C(x)

u(o , u’(o o.
Here

C(x) sin cos N= n+ (a + # + 1),
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and

q(x)= -1/4(a + fl + l)2.

Also, in this case X(x) is given by

X(x) a2 1 --- + 24 sin2 (x/2) 4 cos2 (x/2)

Theorem 4 leads to the following result. If a >-1/2 and/3 >-1, then P(,’(cos 0) has
the following expansion:

(.
r(n+a+l) ( 1/2 J+e(Nx) X+,

2/ Z a.(x) N+, + m.(x).n
with

(1)m,N-- 0 Na+m+3/2

uniformly on [0, 7r-e], e being arbitrary. Here Ap(x)= xPBp(x), the functions Bp(x)
being analytic on [0, rr) and defined recursively by (2.3). Direct computation gives

Ao(x) 1,

( (4al(x)= a2- -cotg t_ 3 2 tg,

x- 4 sin2 (x/2)+-i- + -/32 1
cos2 (x/2)

1 ( __)(2 1 x )(f12 )( X )+-(12 +2ce) a2- 5--cOtgx- + tg-

+ [(a2-)(- cotg ) + (/32-) tg ] z.
Remark. The expansion (6.6) has been obtained by Frenzen and Wong [3] in the

case a > 1/2, a -/3 > 2m, a +/3 _-> 1, by using an integral representation due to Gasper
[4]. We note that our approach is entirely different. Furthermore, by Theorem 2 we
derive the following result.

THEOREM 5. If a >-- and fl >-1, then

( )ce+l/2( )t+l/2p(na,[3)(COS X) F(N++I)()1/2 Ja+p(Nx)
sin cos 2 xPBp(x) Na+pn! p=O

the infinite series being uniformly convergent on [0, y). Here

y=min -e,
6 2

e+ C,
r -2e

C max {1 +12a II, 2 sup {lx(z)l, Izl-<- -2}},

e being an arbitrary positive number.
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6.4. Expansion of Jacobi functions. It is known [5] that for the Jacobi operator
on (0,

where

(Lu)(x)=(A,t3(x))-ld[ du ] 2a,(x)(x) +(++ u(x),

A,,t(x (e e-X)2,+l(eX + e-X) 2/3+1,

The system

Lu + ],2U O, ]db ff, u(O) 1, u’(O) 0

has a unique solution given by

q’t3(x) F(1/2(a +/3 + 1 + i/z), 1/2(a + fl + 1 -i/z); a + 1; -sh x),

where F is the hypergeometric function. In this case X is given by

X(x):(a2-)( 1 1 )+(/32--) 1

X
2 sh2 x ch2 x"

THEOREM 6. [f a>--, then

(sh x)"+’/(ch X)+l/2’(X): 2+’+ 2 Ap(x)
L+p(X) m+l 1

p:o #+p
+x O #++3/2

where Ap(x)= xPBv(x), the functions Bp(x) being analytic and defined by (2.4).
For computing Ap(x) we may use the same method as the previous case. For

example, we find that

2A,(x):(a2-)(+cothx) + (B-)thx.
7. Summa. The aim of this work is to show that the eigenfunction of a singular

second-order differential equation can be expanded in a Bessel-function series, the
coefficients being functions defined by an explicit recursive relation. This leads, without
using a Paley-Wiener theorem, to an integral representation of Mehler type for the
eigenfunction, with useful information on the kernel.

Fuhermore, using the methods of Olver, we give an asymptotic expansion for
the eigenfunction, with an upper bound for the remainder. In applications we recover
asymptotic expansions for some special functions without staing from an integral
representation.
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MONOTONIC AND OSCILLATORY SOLUTIONS OF A LINEAR NEUTRAL
DELAY EQUATION WITH INFINITE LAG*

YANG KUANGt AND ALAN FELDSTEIN?

Abstract. This paper is devoted to the discussion of monotonic and oscillatory solutions of the linear
neutral delay equation

M N

y’(t)=Ay(t)+ Y. Biy(Ait)+ Z Ciy’(Tqit),
i=1 i---1

where 0 < ,i < for 1, , M, and 0 < r/i < for 1, , N. Under one set of conditions, all nontrivial
solutions are absolutely monotone. Under a different set of conditions, all nontrivial solutions oscillate
unboundedly. This resolves most parts of the conjecture recently made by Feldstein and Jackiewicz. Some
existence, uniqueness, and analyticity results are also included.

Key words, monotonic solutions, oscillatory solutions, unbounded oscillations, neutral delay equation,
infinite lag, Phragm6n-Lindel/Sf principle

AMS(MOS) subject classifications. 34K05, 34K15

1. Introduction. In a recent paper, Feldstein and Jackiewicz [6] investigate the
neutral functional differential equation (where is complex)

(1.1) y’(t) Ay(t)+ By(At)+ Cy’(qt)

where A, B, C, A, and r/ are complex parameters and 0-<IA]<I, 0_<-Ir/]<l. The
derivative y’(r/t) means y’(x) evaluated at x r/t. Obviously, as -> +, the lag in (1.1)
becomes infinite. At the end oftheir manuscript, the following conjecture was proposed.

CONJECa’tRE. In (1.1), suppose that A 0, that B, C, A, and r/ are all real, and
that -1 < C < 1.

(a) If B < 0, then every nontrivial solution to (1.1) oscillates (unboundedly).
(b) If B> 0, then every nontrivial solution to (1.1) is monotonic.
This paper is motivated mainly by their conjecture. The equation discussed here

is the following generalized version of (1.1):
M N

(1.2) y’(t) Ay(t)+ Biy(Ait)+ Ciy’(rlit) for 6 R.
i=1 i=l

The analysis presented here indicates that most parts of the above conjecture are indeed
true and even true for (1.2).

When C 0, equation (1.1) arises as a mathematical idealization and simplification
of an industrial problem involving wave motion in the overhead supply line to an
electrified railway system (see Fox et al. [8]). In this special case, (1.1) has been
considered by Feldstein and Grafton [5], by Kato and McLeod [13], and by Morris,
Feldstein, and Bowen [15], as well as second-order variations by Waltman [17] and
B61air 1 ].

As indicated in Feldstein and Jackiewicz [6], the existence of monotonic or
oscillatory solutions to (1.2), while of considerable interest in its own right, is of
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1634 YANG KUANG AND ALAN FELDSTEIN

particular importance in numerical analysis because of its applicability to the develop-
ment of stiffly stable numerical methods for neutral equations. See, for example,
Dahlquist [4], Gear [9], and Bellen, Jackiewicz, and Zennaro [2].

This paper is organized as follows. Section 2 establishes theorems on existence,
uniqueness, and analyticity of solutions to (1.2), followed by a section devoted to a
discussion of conditions under which solutions to (1.2) are monotonic. Section 4
contains oscillatory and unboundedness results; Theorem 4.1 is the main result of this
investigation. This paper concludes with a brief discussion and a list of some open
questions.

2. Existence, uniqueness, and differentiability of solutions. This paper is devoted
primarily to the discussion of monotonic and oscillatory solutions of the following
linear neutral functional differential equation:

y(0)=yo,
M N

y’(t)=Ay(t)+ 2 Biy(Ait)+ Z Ciy’(Tqit)
i=1 i=1

for teR,

where 0<,i < 1, 0< r/i < 1, and the coefficients A, Bi, and Ci are all real constants.
First, this section establishes some basic results about the existence, uniqueness, and
differentiability of solutions to (2.1).

For a < b, let C[a, b] denote the complete metric space consisting of continuous
functions on [a, b], with the metric function p defined as

(2.2) p(yl(t) y2(t))= max ]y,(t)-yz(t)]
a_tb

where each y(t) is continuous on [a, b]. The following theorem presents conditions
for the local existence and uniqueness of solutions to (2.1).

N -1THEOREM 2.1. Suppose that a "i-----1 Ci’li 1< 1 and that 0< T <
(1 a)(iA[ +ti=11Bil) Then (2.1) has a unique solution on [0, T].

N -1[ N
Proof Existence. Since a Y=I [C07 < 1, it follows that Yi=l [C[_-< a < 1. Let

(2.3) Zo A+ Y Bi 1-2 Ci Yo,
i=1 i--1

(2.4) S {z(t) z(0) Zo, z(t) C[0, T]},
M

where 0< T<(1-a)(IA[+Yi=I [Bil) -1 Obviously, S with the metric defined in (2.2)
constitutes a complete metric space.

Consider the mapping L" S- S defined as

(2.5) Lz(t)=zo+a z(s) ds+ B, z(s) as+ , C,(z(rlt)-Zo).
i=1 i=1

Let zl(t) e S and z2(t) e S. Denote

p(z, z2)= p(z(t), z2(t)) max [z(t)-z2(t)[.
O<=t<__T

It is easy to see that

Io’ IoLzl(t)-Lz2(t)=A (Zl(S)-z2(s)) ds-I- B (ZI(S)--Z2(S)) as
i=1

(2.6)
s

+ E Ci(Zl(rlit)-z2(rlit)).
i=1
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Hence, for E [0, T],

[Zz(t)-Lz2(t)[]A[tp(z, z)+ ( ,= h,IBl)tp(
This implies that

(2.7) p(Lz,, Lz2) <- T IA[+ E A,IB, + E IC, p(z,,).
i=1 i=1

M N
Let/3 T([AI+Ei= AilBi[)+.,i= ICi[. Then the second hypothesis implies that

fl -< T IAI + E IBil + E c, < 1 a + E C,
i=1 i=1 i=1

N N

-<_1-E Ic, l+ E Ic, 1,
i--1 i=1

i.e.,/3 < 1. Therefore, L is a contraction mapping. Hence, there exists a unique z(t)E S
(Waltman [18, p. 170]) such that Lz(t)= z(t). This is equivalent to

(2.8) z(t)= zo+A z(s) ds+ Bi z(s) ds+ E Ci(z(rlit)-Zo).
i=1 i=1

Now, let y(t)=yo+I’o z(s)ds. It is easy to see that y(0) =yo, and

M N

y’(t)=Ay(t)+ E B,y(Ait)+ E CiY’(rl,t).
i=1 i=1

In other words, y(t)=yo+oZ(S) ds is a solution of (2.1) on [0, T].
Uniqueness. Assume y(t) is a solution of (2.1) on some interval [0, T], where

0< T< (1- c)(IAI +Y i=1 ]Bil) Then y(t) must be a solution of

(2.9) Ioi N
-1y(t)=yo+A y(s) ds+ BiA[ y(s) ds+ E CiTli (Y(rlit)--Yo),

i=l i=l

which is obtained by integrating both sides of (2.1).
Let

(2.10) S={y(t)[y(O)=yo, y(t) C[0, T]}.

S, with the metric defined in (2.2), constitutes a complete metric space. Consider the
mapping L" S S defined by

--1Ly(t)=yo+A y(s) ds+ BA y(s) ds
i=1

(2.11)
N

+ E Cl,l(Y(lit)-yo)
i=1

By an argument similar to that in the proof for the existence part, it is easy to see that
L is a contraction mapping. Hence, the solution of the integral equation (2.9) is unique.
This implies that there is a unique solution y(t) of (2.1) and so completes the
proof.
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THEOREM 2.2. Under the same assumptions as in Theorem 2.1, the solution of (2.1)
is analytic.

Proof. For any given positive integer l, consider the differential equation

X(O)--yl,

M N(2.12)
X’(t) AX( t) + E Bil x(it) + CiT ’(X "Oit),

i=l i=l

where
MA+ ,i=1 biA(2.13) Yj+I=I_ICi/+1 yj forj=0,1,...,l-1.

It is easy to see that the conditions in Theorem 2.1 are satisfied for (2.12). Hence, the
existence and uniqueness of its solution is guaranteed. Let X(t) be such a solution.
Then it can be shown by induction that y(t) given by

Io’( Io (Ios2 ’X(s) ds dsl dst-l+(2.14) y(t) Y
j=O

is a solution of (2.1). Theorem 2.1 implies that y(t) is the unique solution of (2.1).
Since this is true for all l, then y(t) is infinitely many times differentiable.

Consider the possible power series expression of the unique solution y(t). Assume
y(t) -1=o altl. Then

(2.15) (l+ 1)a1+1 A+ ni Al at -31- E CiT l+ (l+ 1)at+
i=1 i=1

Hence
MA+i=1 BiA al(2.16) at+l 1-2 Cin l+l "I+ 1’i=1

which leads to

Mao 1-1 A +)-’i=1 BiAi(2.17) al=. :o i-.-- -1,.

By the ratio test, it is easy to see that the series 1=o attl converges everywhere. Indeed,
y(t) =o attt is the unique solution of (2.1) provided that ao Yo. Obviously, t=o attt
represents an analytic function. This proves the theorem. ]

Remark 2.1. Since (2.1) is autonomous, it is easy to see that the local existence
result in Theorem 2.1 is indeed a global one in the sense that the solution, in fact,
exists for all >_-0. This can be shown rigorously by a simple induction argument.

3. Monotonicity results. This section presents conditions under which solutions
of (2.1) are monotone, or nonoscillatory. By virtue of the proof of Theorem 2.2, the
following lemma is true.

LEMMA 3.1. Suppose E i=I]CiTQ ]< 1; then the unique solution of (2.1) is given by

A i.:1 B_..2iA__Ji tl
y t :yo

1:o

where empty products are equal to 1.
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DEFINITION 3.1. Let y(t) 1=o altl" If dky(t)/dtk > 0 (<0) for all nonnegative
integers k and for all > 0, then y(t) is said to be strictly absolutely monotone increasing
(decreasing), or simply absolutely monotone. (Compare with Widder [19, p. 144], who
does not require the strict inequality for the derivatives.) If dky(t)/dtk>--O (--<_0) for
all nonnegative integers k and for all t-> T>0, then y(t) is said to be eventually
absolutely monotone.

The following lemma is obviously true.
LEMMA 3.2. If y(t)=l=oat is absolutely monotone or eventually absolutely

monotone, then it is nonoscillatory.
M

min {0, Bi}, and EiN=I ]Ci[i < 1 then the powerLEMMA 3.3.. If Yo O, A >= -=
series in (3.1) is absolutely monotone.

l--1 M BA)/(I_ENProof Let a 1--Ij=o ((A + = i= CiTl+1)). Then it is easy to see that
the assumptions made in this lemma ensure that a > 0 for integer l=> 0. Note that
Y(t)=Yol=O altl/l!, and that dky(t)/dtk=yol=o (al+ktl)/l!. Obviously,
dky(t)/dtk>o (<0) for all k_->0 and for all t>0, if yo>0 (<0). This completes the
proof.

NLEMMA 3.4. IfA+Ei=l BiA0 for all integers j >- O, Eg=l ICilr/i <1, and A>0,
then the power series in (3.1) is eventually absolutely monotone.

N
Proof Let aj (A +i=lM BgA)/(1-Yi=I Cir/]+1) for integers j>0.= The second

Cir/+ > O. Since 0 < Ag < 1hypothesis together with 0 < r/i < 1 implies that 1 -g=l
there exists a nonnegative integer J, such that A+ BiA < 0 for j < J and such thati=1

MA +g=l BgA > 0 for j -> J. Without loss of generality, assume yo 1. Then

1(1I1(3.2) y(t)=
/=0 \j=O l=J \j=0

Obviously, the second summation term on the right-hand side of (3.2) is absolutely
monotone and the first summation term is a polynomial of degree =J-1. Therefore,
there exists a sufficiently large T>0 such that the dominant terms in dky(t)/dt will
be given by dk/dtk(l=J (1-I-lo cej)tl/l!) for k_->0 and >- T. This implies that y(t) is
eventually absolutely monotone.

The combination of the above lemmas results in the following theorem.
N --1]THEOREM 3.1. Assume that i= ICirli < 1 and that Yo O.

M
min {0, Bi}, then the unique solution of (2.1) is absolutely(i) If A> --Ei=I

monotone.
(ii) If A > O and A + .i= BiA O, for j > O, then the unique solution of (2.1) is

eventually absolutely monotone.

Proof. The proof follows immediately from the theorems in 2 and the lemmas
in this section.

M BgAsO, andi Ci,o+lRemark 3.1. Suppose that Yo
1. From the power series expression of y(t) in (3.1), it is then easy to see that
limt_ y(t)e-<A+t=O and that limt_ ly(t)e-<A-)t =. This indicates that y(t) is
eventually absolutely monotone and grows like the function eA’.

4. Oscillatory and unboundedness results. This section presents conditions under
which solutions of (2.1) are oscillatory, or unbounded, or both.

DEFINITION 4.1. Letf(t) be defined on (-, ), the orderp off(t) is defined as

(4.1) p=inf{w’f(t)=O(exp (t)), [tl- }.
See Titchmarsh [16, p. 248] for more details.

Cgrl+l s 1 for all integersj > O, then the power seriesLEMMA 4.1. IfA 0 and -’i=1
y (t) defined by (3.1) has order zero.
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M
Proof Let B Z,=I In, I, max {A, , 2,. ., M}. Then

lY(t)l <- lYo] N
k=O \=o 1--E Cirri+1i=1

--lyol BkA(k/2)(k-1) 1- 2 Ci+1

=0 \j=O i=1

Obviously,

N

lim CiTJ+I--o.
j-+cx3

Hence, for any 1 > e > O, there exists a K -> O, such that

(4.2) (1 e) k < 1 2 cr/ < (1 + e for k -> g.
j=O i=1

It is known (see Titchmarsh [16, p. 253]) that the power series k=o aktk has a finite
order p if and only if

(4.3) lira inf
k Ink p

In the case of y(t) from (3.1), k->_ K implies that

In (1/lak[) k(ln (1 e)-ln B)-(k/2)(k- 1) In A -ln (Yo)
lim => lim
k-, kink k-, klnk

-1/2(k-l) In A
lim
k- In k

hence, p 0. [3

The following so-called Phragm6n-Lindel/Sf principle can be found in 8.73 of
Titchmarsh [1958, p. 274].

PHRAGMgN-LINDEL6F PRINCIPLE. Let f(z) be a complex function given byf(z)=
,=o a,z Let m(r) denote the minimum of If(z)l on the circle Izl-- r. Iff(z) has order

less than 1/2, then there is a sequence ofvalues oft tending to infinity through which re(r) --> .
Applying this principle to the solution of (2.1) yields the lemma below. It general-

izes Corollary 2 of Feldstein and Jackiewicz [6] and Theorem 5 of Morris, Feldstein,
and Bowen [15].

N CiTi+l M
LEMMA 4.2. IfA O, i=1 1, and =1 BA 0 forj>= O, then the solution

of (2.1), and all of its derivatives, is unbounded.
Proof. Let y(t) E l=o alt be the solution of (2.1). It follows from Lemma 4.1 that

the order of y(t) is zero. Apply the Phragm6n-Lindel6f principle to y(z), here z is a

complex variable. Then y(z) is unbounded on any ray. In particular, y(z) is unbounded
on the real line; that is, y(t) is unbounded for the real variable t. Let

yi(t)
diy(t--) E (i + 1)!

it
dt /=o i!.

ai+ltl 1=o a
where

(i+ l)!
al i+!
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The same argument as in the proof of Lemma 4.1 yields

-(ln [ai+kl) In (i + k) -ln
lira

In (1/[ak[) > lim lim
k-cx3 k In k kcx3 k In k kcx3 k In k

-1/2(k+i)(k+ i- 1) In A
lim
k--, k Ink

Hence the order of Yi(t) is zero for 1, 2, . Thus, the Phragm6n-Lindel6f principle
implies that the Yi(t) are all unbounded for i= 1, 2,. .. This proves the lemma.

NTHEOREM 4.1. In (2.1), assume that i=1 r/- max {0, Ci}< 1, that A =0, and that
Bi < 0 for 1, 2,. ., M. Then every nontrivial solution of (2.1) oscillates unboundedly.

Proof Assume y(t)#0 is a solution of (2.1) which is not oscillatory. By the
linearity of (2.1), -y(t) is also a nonoscillatory solution. Therefore, without loss of
generality, assume that y(t) is eventually positive. That is, assume that there exists a
?> 0 such that y(t) > 0 for -> . Let

(4.4) r min (Ai, r/j),
i,j

(4.5) to /r.

If > to, then y(Ait) for i= 1,2,... ,M and y(Tjt) for j= 1,2,..., N are all positive.
Integrating both sides of (2.1) results in

N

-ly t)= (to)(4.6) y(t)- CiTi (’li y y(s) ds.
i=1 i=1 i=1

Since Bi < 0 and y(s) > 0 for s [hito, hit] and for 1, 2, , M, it follows that

N N

(4.7) y(t)- Z Crl:,’y(rlit)<y(to)- Cirl;ly(rlito) for all t>=to.
i:1 i=1

Denote

g(t) =rain {sls[to, t] and such that y(s) =max {y(z)l - [to, t]}}.

Clearly, g(t) and y(g(t)) are nondecreasing, and, by Lemma 4.2,

(4.8) lim g(t) and lim y(g(t)) .
t-->

Choose t* large enough so that rg(t*)> to, and so that

y(g(t*))> y(to)+ Z [CilTl[y(hto) 1- r/71 max {0, C,}
i=1 i=1

Then for this t*,
N N

y(g(t*))- , CirlT, ly(rl,g(t*))>- y(g(t*)) max{O, Ci}rlT, ly(g(t*))
i=1 i-1

(4.9) ( N )=y(g(t*)) 1- r/, max{0, Ci}
i=1

N

> y(to) + E ICir1711Y(rlito).
i-----1
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Obviously, (4.9) contradicts (4.7); this contradiction implies that y(t) must be oscilla-
tory. By Lemma 4.2, y(t) in fact oscillates unboundedly as

Theorem 4.1 clearly implies the following corollary.
COROLLARY 4.1. If the coefficients in (2.1) satisfy A O, Bi < O, and Ci < O, then

every nontrivial solution oscillates unboundedly.
Remark 4.1. Note here that [C need not necessarily be less than 1. This indicates

that Theorem 4.1 exceeds the expectation of Feldstein and Jackiewicz [6] in their
conjecture. The proof of Theorem 4.1 for the case N M 1, A 0, and B < 0 shows
that a smaller upper bound for C may be required in order to make nontrivial solutions
of (2.1) oscillate. In Theorem 4.1, this bound is r/, which is smaller than the one
suggested in the conjecture in Feldstein and Jackiewicz [6]. This is also in agreement
with the assumptions in Theorems 2.1 and 2.2.

5. Discussion. This paper responds to the conjecture recently proposed by Feld-
stein and Jackiewicz [6] based on their numerical experiments. It turns out that most
parts of their conjecture are indeed true, and in fact, much more has been proved in
the last two sections. These results are relevant to the work of Morris, Feldstein, and
Bowen [15], and those in Fox et al. [8] and Kato and McLeod [13].

When A 0, the conclusion to Lemma 4.2 may no longer be true. That is why
Theorem 4.1 assumes A 0, although the proof of its conclusion seems very promising
when A < 0. This certainly raises an interesting question to be answered. The other
problems remaining to be investigated are:

(1) Can an existence and uniqueness theorem similar to Theorem 2.1 be established
in the case i=l Ci’ [ 1 ? If this can be resolved affirmatively, then the power series
solution in (3.1) is the unique solution of (2.1). In that case, the assumption

Y= [Cr/ I< 1 could be deleted from Theorem 3.1.
M B > 0, then what are the conditions for which every nontrivial(2) IfA<0 andi=

solution of (2.1) oscillates ?
(3) What can be said if the delay functions )it and r/jr are replaced by A(t- -)

and by r/j(t- trj), where -i=>0 and o-j->_ 0? When Ai= r/j= 1, various results have been
recently obtained by Grammatikopoulos, Grove, Ladas, and Meimaridou [10], [11]
and Freedman and Kuang [7]. The method developed in Cooke and Grossman [3]
may contribute to the discussion of this problem.

(4) It may be interesting to consider the case where the coefficients in (2.1) are
matrix rather than scalar quantities. Aspects of such problems have been considered
by Waltman [17] and B61air 1 for the case C 0, M 1, and the order of the matrix
is 2.

(5) Nonautonomous and nonlinear versions of (2.1) can also be investigated.
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Abstract. The paper combines classical reducibility criteria for monodromy groups of second-order
Fuchsian equations with recent methods of Ziglin for establishing the nonintegrability of complex analytic
Hamiltonian systems. The preliminaries on reducibility are isolated from the nonintegrability results.
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Introduction. The most general second-order Fuchsian equation on p1 with three
singular points is Riemann’s equation, or, in an equivalent sense, the hypergeometric
equation. The monodromy groups were computed a century ago (see [5] for recent
work). The most general second-order Fuchsian equation on p1 with four singular
points is Heun’s equation" only in the past decade did methods become available for
computing the monodromy (see [12] and references therein), and, as far as we are
aware, the results have yet to be tabulated. In fact, these groups have been explicitly
calculated for very few equations (e.g., see [16]).

This is in spite of their increasing importance. For example, it is now known that
when the monodromy group of an nth-order Fuchsian equation contains a solvable
subgroup of finite index the equation must be "solvable by quadratures" (see 1, p. 128]
or [15, p. 1096], and [9] in the case of second-order equations). A different example
kindled our interest" if the monodromy group of a certain linearized equation admits
no nontrivial rational integral, then an associated complex Hamiltonian system admits
no meromorphic integral independent of the Hamiltonian (see 4).

This note is concerned with extracting such information without actually comput-
ing the groups. In particular, we provide criteria which guarantee the nonintegrability
of certain classes ofcomplex Hamiltonian systems when the relevant linearized equation
is Fuchsian on P1 with an arbitrary number of singular points. Previous techniques
have been limited to the hypergeometric equation, or have required the presence of
elliptic functions (e.g., see [6]). We introduce a general class of examples amenable
to our methods, and illustrate the ideas with a specific problem involving Heun’s
equation (for related material, see [2]).

Our nonintegrability criteria require, among other things, that the relevant linear-
ized equation be irreducible. This is a classical topic of independent interest, and for
this reason the preliminaries on reducibility ( 1 and 2) are isolated from the material
on nonintegrability ( 3 and 4).

1. Pseudo-Abelian subgroups of GI (2, C). The commutator uvu-iv- of elements
u, v G1 (2, C) will be denoted (u, v), and the trace and determinant of u by tr (u)
and det (u), respectively. Pu is the M6bius transformation induced by u on p1.

An element u G1 (2, C) is parabolic (generic) if Pu has exactly one (two) fixed
point(s). An equivalent condition for parabolicity is: uS AI but tr2 (u)=4det (u).
Equivalent conditions for genericity are: u has distinct eigenvalues; tr2 (u) 4 det (u).
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We say that elements u, v G1 (2, C) quasi commute if and only if tr ((u, v)) 2.
PROPOSITION 1.1. Let u, v G1 (2, C).
(a) u and v quasi commute if and only if Pu and Pv have (at least) one common

fixed point, if and only if u and v can be simultaneously triangularized.
(b) Suppose u # AI v, A C. Then u and v commute if and only if u and v quasi

commute and the fixed-point sets of Pu and Pv are identical. In particular, a generic and
a parabolic element cannot commute.

(c) If u and v quasi commute but do not commute, then (u, v) is parabolic.
Proof. It suffices to assume that u, v S1 (2, C), in which case the result is standard

(e.g., see [3, Thm. 4.3.5, p. 68]).
Let G be a subgroup of G1 (2, C) and let G’:= (G, G) denote the commutator

subgroup. G is pseudo-Abelian if and only if tr G’-= 2. Note that:
(i) If G is pseudo-Abelian, then so is the closure of G in G1 (2, C);
(ii) Every pseudo-Abelian group is contained in a maximal one;
(iii) Every maximal pseudo-Abelian group is closed; and that
(iv) The subgroup T of G1 (2, C) of lower triangular matrices is maximal pseudo-

Abelian. Indeed, by Proposition 1.1(a) any element quasi commuting with [1 o] must
have [0] as an eigenvector.

PROPOSITION 1.2. The following statements concerning a subgroup G of G1 (2, C)
are equivalent:

(a) G is pseudo-Abelian.
(b) G is reducible, i.e., conjugate to a subgroup of the triangular group T (see (iv)

above).
_Proof. Only (a)(b) requires proof, so assume G is pseudo-Abelian. We consider

two cases separately: (i) G contains a parabolic element; (ii) G admits no such element.
(i) Let g e G be parabolic. By Proposition 1.1(a) any x G has the property that

Px fixes the (unique) fixed point of _Pg. An eigenvector of g is therefore an eigenvector
of every element of G. But then G is triangular in any basis involving that common
eigenvector.

(ii) In this case G is Abelian; otherwise some (u, v) must be parabolic, which is
a contradiction. Unless G is diagonal, in which case the result is obvious, G must
contain a generic element u, and since G is Abelian every other element of G must
preserve the eigendirections of u. But then G is diagonal with respect to a basis of
eigenvectors of u.

COROLLARY 1.3. The maximal pseudo-Abelian subgroups of G1 (2, C) are precisely
the conjugates of T.

COROLLARY 1.4. Pseudo-Abelian subgroups of G1 (2, C) are solvable.
Proof. The commutator subgroup of T is Abelian.
COROLLARY 1.5. Elements u, v G1 (2, C) quasi commute ifand only (fthey generate

a pseudo-Abelian subgroup.
A simple modification of the proof of Proposition 1.2 leads to the following

standard result.
PROPOSITION 1.6. A subgroup of G1 (2, C) is commutative if and only if it is

conjugate to either
(a) A diagonal group, or
(b) A subgroup of

Everything stated thus far holds with G1 (2, C) replaced by S1 (2, C). For the
remainder of the section we restrict our attention to the latter group.
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With each subset T of C let Q(T) denote the subfield of C generated by T. Now
associate with each subset S of S1 (2, C) the following objects:

(a) G(S), the subgroup generated by S;
(b) Q(tr (S)), where tr (S)".= {tr (u): u S}; and
(c) Q(cr(S)), where tr(S) := U {tr(u) (the spectrum of u): u S}.
For gS and )t tr(g) the relation AE-tr(g)A+l=0 implies that Q(tr(S))_

Q(tr(S)), and that the extension is algebraic. We thus have a diagram

Q(tr(S)) -> Q(cr(G(S)))

Q(tr (S)) -* Q(tr (G(S)))

of field extensions, with vertical arrows algebraic.
THEOREM 1.7. If G(S)_S1 (2, C) is a pseudo-Abelian group, then Q(tr(S))=

Q(tr(G(S))). In particular, Q(tr(G(S))) is algebraic over Q(tr (S)); hence the trace of
any element ofG G(S) is algebraic over thefield generated by the traces ofthe generators
of.

Proof. By Proposition 1.2 we may assume S is contained in the triangular group
T, in which case the result is obvious.

COROLLARY 1.8. Suppose s, , s,+ S1 (2, C) satisfy
1-[ n+l(a) ,= s =/, and

(b) tr (s,+) is transcendental over Q(tr ({s,..., s,})).
Then G := G({s,. ., s,}) is not pseudo-Abelian, and hence not Abelian.

2. Pseudo-Abelian monodromy groups. Let X be a Zariski open set of projective
space p1 with complement {a,..., a,,, am+l a= c}, and let vj denote the usual
order function [7, p. 130] on the space of germs of meromorphic functions at a. The
most general nth order Fuchsian equation on X has the form

(2.1) y") + Cl(X)y(n-1) dr dr c,(x)y O,

where the rational functions cj satisfy

(2.2)
vj(Ck)>--_--k, l <--j<--m, l <-k<-n, and

v(Ck) >-- k, l<-k<-_n.

In the terminology of algebraic geometry the relations (2.2) are equivalent to

CkL(kD), where D is the divisor al+a2+" "+cem-a (cf., e.g., [7, p. 130]). Each
element Ck of L(kD) can be uniquely written in the form

(2.3) Ck(X)
p(x)

((X- OI)(X- O2) (X- Om))k’

where p(x) is a polynomial of degree at most k(m-1). Since the map cp is an
isomorphism between L(kD) and the space of all such polynomials, dim (L(kD))
k(m-1)+ 1. We will regard the finite-dimensional vector space L =H= L(kD) as
the parameter space for all Fuchsian equations on X of the form (2.1), and will denote
the elements by (c,..., c,), where c L(kD).

Define ,(=) L(kD)* by

2j(c) := lim (x- c2)kc(x), j 1,. ., m,
cj

X(c) := lim x%(x).
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Remark 2.4. The meaning of the Aj at the finite poles can be understood from
the partial fraction expansion

Ck E k
=, (x-)

where the dots represent lower-order poles at the %, and A A(Ck). Writing Ck in the
form (2.3) and assuming the identification Ck p, we immediately see that for finite
the linear form A is a constant multiple of the evaluation map (Dirac delta) at %, and
A is the leading coefficient of p. This shows that the A for j 1,. ., m are linearly
independent. In the special case when k 1 or m 1, we have dim L(kD)= m, so that
{A}"=I is a basis of L(kD), and direct calculation yields A= =1Aj. However, in all
other cases A is independent of the remaining { }--1.

Henceforth we assume m => 2, i.e., that the number of singular points is at least
3, and to study monodromy we fix a point Xo X. Analytic continuation of solution
germs of (2.1) along loops based at Xo yields a right representation of the homotopy
group rl(X, Xo) on the n-dimensional vector space V of solution germs of (2.1) at Xo.
In discussing this representation we will not distinguish loops and their corresponding
homotopy classes. For 3’ 7/’1(X, x0) let s(3"; .) G1 V, C) be the corresponding mono-
dromy element. In view of analytic dependence on parameters, the function .
from Ln to G1 (V, C) is entire. For each j choose a positively oriented loop 3’ enclosing
a and no other singularity. As is well known, 7rl(X, x0) is freely generated by the
corresponding to finite singularities, and we may assume (perhaps after a permutation)
that the relation 3’1"" 3",,3’o-- 1 holds. This implies the analogous relation

(2.5) Sl(.) s,,,(E)s(.)= 1

at the monodromy level, where s(z):= s(%; z).
Now we restrict ourselves to second-order linear equations, and write (2.1) as

(2.6) L(y) := y"+ Cl(X)y’ / c(x)y O.

THEOREM 2.7. Let G be the monodromy group of (2.6). Then thefollowing statements
are equivalent"

(a) G is pseudo-Abelian;
(b) G is reducible;
(c) L L1 L2, where the operators L correspond to first-order Fuchsian equations.
The reducibility of a Fuchsian equation can always be effectively determined [13,

176-178]; special cases are considered in Theorem 2.24 and its corollaries. The
result here goes back to Beke [4] (see also [8]).

Proof The equivalence of (a) and (b) is a restatement of Proposition 1.2. Now
for any local solution z of L(z)=0, we readily check that L admits the (local)
factorization L L1 L2, where L1 := d/ dx / r / Cl, L2 := d/ dx r, and r := z’/z. Assum-
ing (b), we choose z to be a common eigenvector for G. In that case r is G-invariant
and therefore single-valued on the punctured sphere. Moreover, the Fuchsian character
of L implies that the singularities of r are at worst (simple) poles. Thus L1 and L2 are
Fuchsian, and the above factorization is global.

Conversely, if L= L1 L2, then G has a one-dimensional invariant subspace,
namely, the space of solutions of L2(y)= O.

2With reference to (2.6), set a:= Aj(cl), b:= A(c), j= 1,..., m+ 1. Then the
characteristic exponents at a are

(2.8)
1/2(1-aj+/-x/ia-l)2-abj), j= l,. ,m,
1/2(1-a+x/(a-l)--4b),
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from which we compute the traces of the monodromy elements corresponding to the
generating loops 3’j to be

tj -2 e-=a cos zrx/(a- 1)2-4b, j 1, , m,
(2.9)

t -2 e-cos r/(a 1 )2 4b.
Remark 2.10. Since the function cos 7rx/ is entire, the traces (2.9) are entire

functions on the parameter space L2. This is in agreement with our earlier remark
concerning the analyticity of . s(y; .).

The "normal form" of (2.6) is

(2.11) y"+ c(x)y =0, c(x) :- c2-(c,/2)2-(c)’/2,
and is obtained from (2.6) after multiplying the dependent function by a conveniently
chosen (generally multivalued) function of x. Thus the projective representations of
the monodromy of both equations are the same. More to the point here is the fact that
the monodromy groups of equations (2.6) and (2.11) are simultaneously Abelian or
non-Abelian, and the same holds for the pseudo-Abelian property. The advantage of
(2.11) is that the monodromy is a subgroup of S1 (2, C), allowing application of the
results of 1. Identities (2.9) now become

(2.12)
tj -2 cos (7rx/(aj- 1)2- 4bj), j= 1, , m,

t -2 cos (zrx/(a 1)2 4b),

where the a, b are computed in terms of the coefficients of (2.6).
Remark 2.13. The last set of trace equations exhibit a remarkable property which

becomes apparent when contrasted with the relation (2.5) satisfied by the corresponding
monodromy matrices. While s(z) is a function of the s(z) associated with finite
singularities, t is independent of the remaining tj. Indeed, it follows from the italicized
statement at the end of Remark 2.4 that while a Yj= a, b is linearly independent
of those b with 1 <_-j _-< m.

Examples 2.14.
(a) The hypergeometric equation. In (2.6) let

3"- (a +/3 + 1)x
c(x) and c2(x)

x(1 -x) x(1 -x)’

where a,/3, 3’ C are arbitrary. Using a =0, a2 1, a3 =o, (2.12) gives

tl -2 cos 7r(3’ 1), t2 -2 cos 7r(a +/3 3’), -2 cos 7r(a -/3),

for (2.11).
(b) Riemann’s equation. In (2.6) let

+ andel(X)
X x-1

C2(X) Tll’L1 ’2]’/’X2
"k-
(X 1)2+ x(x-1)

where /, j C are arbitrary other than ] (/+/)= 1. Using a=O,
(2.12) gives

tj -2 cos

for (2.11).
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(c) Heun’s equation. In (2.6) let

6 e (a/3x 1)cl(x)=-Y++ and c2(x)=
x x-1 x-a x(x-1)(x-a)’

where a,/3, y, 6, e, and a C are arbitrary other than a +/3 + 1 3/+ 6 + e, [a[ _-> 1, and
a 1. For al =0, a2 1, a3 a, and a4= oo, (2.12) gives

tl 2 cos zry, t2 2 cos 7r6, 2 cos 7re, -2 cos 7r(a -/3),

for (2.10).
THEOREM 2.15. Suppose to in (2.12) is transcendental over Q(q,..., t,,). Then

the monodromy of (2.6) is not pseudo-Abelian (hence not Abelian).
Proof. In view of (2.5), Corollary 1.7 applies to the monodromy of the normalized

equation and thus to (2.6).
COROLLARY 2.16. Given an arbitrary el L(D) there exist C2 L(2D) such that the

monodromy of (2.6) is not pseudo-Abelian.
Proof To obtain the proof use Remark 2.13 in conjunction with Theorem

2.15.
COROLLARY 2.17. The monodromy of the second-order Fuchsian equation (2.6) is

generically nonpseudo-Abelian. More precisely, there is an analytic subvariety V of the
parameter space such that V if the monodromy of (2.6) is pseudo-Abelian.

Proof By the previous corollary there exist loops y, y’ such that the entire function
f(.) :=tr (s(y; ), s(y’; z)) is not a constant. Set V:= {z: f(.) 2}.

COROLLARV 2.18. The general Fuchsian equation oforder n >= 2 with more than two
singular points is generically non-Abelian.

Proof "Prolongation" (i.e., differentiation n-2 times) of (2.6) gives rise to a
particular Fuchsian equation of type (2.1) with non-Abelian monodromy if that of
(2.6) is so. Choose loops y, y’ so that the map z (s(y; z), s(y’; z)) is not constant on

Lz--H=I L(kD). Since the identity map injects solutions of (2.6) into solutions of
(2.1), it is clear that for the same loops the corresponding map on L, I-lk=l L(kD)
is also nonconstant.

Specific illustrations of Theorem 2.15 can be constructed using Examples 2.14 and
the following remark.

Remark 2.19. cos z is transcendental over C if zC is algebraic. Indeed, eiz=

cos z+/sin z is transcendental by the result of Hermite-Lindemann (e.g., see [10,
p. 681]).

We will give an explicit description of the conditions in Theorem 2.15 and its
corollaries for equations with three and four singular points. Let

(2.20) 2pij(x) := x2- titjx + t2 + tj -4,

where t) is as in (2.12).
PROPOSITION 2.21. Si and s) quasi commute if and only if tr (SiSj) is a zero of

po(x).
Proof The result follows from the standard Fricke-Klein formula (e.g.,

see [11, p. 703]) tr((u,v))=trZ(uv)-tr(u)tr(v)tr(uv)+trZ(u)+tr(v)-2, u,v
S1 (2, C). [3

PROPOSITION 2.22. The monodromy group ofa second-order Fuchsian equation with
three singular points is pseudo-Abelian ifand only if t3 is a zero ofplz(x) or, equivalently,
if and only if
(2.23) t2 + t + t] tlt2t3 4 O.
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Proof S3---(SLS2) -1 by (2.5), and therefore t3--tr(sls2). Now apply Proposition
2.21 and Corollary 1.5. l-I

We shall now derive an explicit condition equivalent to (2.23).
THEOREM 2.24. A second-order Fuchsian equation with three singular points is

reducible ifand only ifat least one ofthe (up to sign) four determinations ofthe expression

(2.25) ((al-1)2-4bl)l/2+((a-l)2-4b2)l/2+((a3-1)2-4b3) 1/2

is an odd integer.

Proof (following a suggestion by the referee). Choose a specific square root A of
(a- 1)-4b, j--1, 2, 3, and observe that instead of (2.25) it suffices to consider the
four quantities A + A2+ A3, A +A- A3, A A+ A3, and -A +A+A Introduce
quantities u, j 1, 2, 3 solving

(2.26) ul + u+ 1 A3, U:z+ U3 A1, u3 + u A2.
By (2.12) t =-2 cos 7rA, so that using (2.26) the left-hand side of (2.23) be-

comes 4(cos 7r(ul + u2) + cos 7r(u2 + u3) + cos2 r(u3 + u) 2 cos 7r(u + u) cos 7r(u+
u3) cos 7r(u3 + u) 1 (by a trigonometric identity) -16(sin (7rul) sin (7ru2)
sin (Tru3) sin (Tr(u + u2+ u3))). Thus (2.23) holds if and only if one of ul, u2, u3, and

ul + u2+ u3 is an integer. Solving (2.26) we obtain
__1 _A2_l)u=1/2(A:z+A3-A 1), u2 (A3+A1

U (A q- A2 A + 1), u -[- u2 -- u 1/2(A -k A2 + A 1),

from which the result readily follows.
COROLLARY 2.27. The hypergeometric equation is reducible if and only if at least

one of a, fl, 3/- fl, and 3"-a is an integer.

Proof The expression (2.25) becomes +(3’- 1)+/-(a +/3 3’) + (a -/3), and at least
one of these must be an odd integer.

Corollary 2.27 was already known to Frobenius, who used Kummer’s table of
solutions for the hypergeometric equation to establish it. For another "algebraic" proof,
see [14].

COROLLAR 2.28. Riemann’s equation is reducible if and only if at least one of
?Ol - "02 "31- 3"13, 301 -" "02 "- [alL3, TI Af_ lib2 _[_ T]3, and [Jb + T2 - T3 is an integer.

Proof The expression (2.25) becomes )= +/-(rb-/xj). The result follows because
of Z (n+tz) 1.

With pj(x) as given by (2.20) we have Proposition 2.29.
PROPOSITION 2.29. The monodromy group ofa second-order Fuchsian equation with

four singular points is pseudo-Abelian only ifply(X) and P34(X) have a common zero.

Proof s3s4=(s1s2) -1 by (2.5); hence tr(sls2)=tr(s3s4). Now apply Proposition
2.21.

Remark 2.30. Using the resultant of the two polynomials in Proposition 2.29, we
can write down a condition in terms of the traces similar to (2.23). These conditions
constitute an explicit description of the variety V of Corollary 2.17.

3. Ziglin groups. Let D S1 (2, C) consist of those elements which preserve the
coordinate axes of C:; let P consist of those which permute these axes. Thus

D:= "AC,
0 A -1

P:= p C,
0

where C, := C\{0}. D P is a group, and D is a normal subgroup.
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PROPOSITION 3.1. Suppose u, v D LJ P.
(a) If vPthen tr(v)=0 and v2=-L
(b) IfuD then (u, v)=I ifvD, and (u, v)=u2 ifvP.
The proof is a straightforward verification.
If e_ Ca is a basis and u S1 (2, C), denote the corresponding matrix of u by ue.
THEOREM 3.2. Let u, v6 S1 (2, C) with u generic, and suppose (u, v)# L Then u

permutes the eigenspaces of u if and only if (u, v) preserves these spaces. Moreover, if
this is the case then u, v)= u2.

Proof Let e be an eigenbasis of u. If v permutes the eigenspaces then ve P,
whereas u D. But then (u, v)= u2 by Proposition 3.1(b); hence (u, v) preserves the
eigenspaces.

To prove the converse let 0, p1 be the eigendirections of u, and set a := Pu,
b := Pv, c := P(a, b). If x e {0, oo} then x cx aba-lb-lx implies b-la-lx a-lb-lx,
and therefore b-ix-- aa-lb-lx ab-la-lx ab-lx. Thus b-ix {0, oo}, and so
b{0, } {0, }. Since (u, v) # I, we conclude that v permutes the eigenspaces.

A subgroup G of S1 (2, C) is a DP-group if there are two distinct one-dimensional
subspaces of C2 which are either preserved or permuted by each element of G.
Equivalently, G is conjugate to a subgroup of D P.

PROPOSITION 3.3. Suppose S S1 (2, C) is a set of generators for a DP-group and
tr (s) 0 for each s S. Then G is diagonalizable, and therefore Abelian.

Proof The proof is obtained by Proposition 3.1.
If u S1 (2, C) has spectrum {A, A-i}, then

(3.4) tr(u")=An+A -", n6Z.

When A, A -1 are roots of unity, u is resonant. Nonresonant elements are obviously
generic, and by (3.4) have infinite order. Since

A 1/2(t-/t2-4), =tr (u),

resonance can be determined directly from tr (u). Note that u is nonresonant if tr (u)
is transcendental (see Remark 2.19).

A subgroup G of S1 (2, C) is a Ziglin group if there is a nonconstant rational
function on C2 which is preserved by the action of G.

THEOREM 3.5. Let G S1 (2, C) be a group with a nonresonant element. Then G is
a DP-group if and only if G is a Ziglin group. Moreover, the forward implication is true
without the nonresonance hypothesis.

Proof Suppose G is a DP-group and let x, y be the usual coordinate functions
on C2. Then z (xy) is preserved by the action of G, and the forward implication
follows by conjugation.

The converse is a particular case of a result of Ziglin (see [17, Thm. 2, p. 182]).
For the sake of completeness we give a short proof only valid in the two-dimensional
case. First observe that if G has a rational integral f=p(x, y)/q(x, y) (i.e., invariant
function), then it also has a homogeneous integral (for example, the quotient of the
lowest homogeneous components ofp and q). Now a homogeneous integral is express-
ible as f= Hk=I lJk where the lk akX + bky are linear forms and the jk are nonzero
integers, so that the finite set {lk 0} ,=1 of projective space is PG-invariant, and, in
particular, Pu-invariant where u is a nonresonant element of G. But the only finite
nonempty invariant subsets of Pu have either one or two elements, as they consist of
eigendirections of u. Thus n is at most 2, and n 1 is impossible by nonresonance.
Changing coordinates we can write ll x and 12 y. The invariance of f now implies
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that for any v G, either v*x Ax or v*x tzy. In the first case v*y A-ly and in the
second v’y=--[.Ib-IXo

THEOREM 3.6. Suppose a group G S1 (2, C) contains a nonresonant element u and
an element v such that I u, v) u 2. Then G is not a Ziglin group.

Proof The proof is obtained by Theorem 3.5 and Proposition 3.1.
The importance of knowing when a subgroup G c_ S1 (2, C) is not a Ziglin group

will be discussed in 4 (cf. Theorem 4.5). Theorem 3.6 has been the standard method
for establishing this fact (e.g., see [6] and references therein). We offer the following
alternative.

THEOREM 3.7. Suppose SI, Sm+ SI (2, C) satisfy
]-]- m+l(a) ,,j: sj= 1,

(b) tr (s) 0, j= 1,. ., m, and
(c) t,,+a is transcendental over Q({t,..., t,,}).

Then G G({s,. ., s,,}) is not a Ziglin group.
Proof Otherwise G is a DP-group by Theorem 3.5, and must be Abelian by (b)

and Proposition 3.3. But (c) then contradicts Corollary 1.8.
There is an "eigenvalue" version of Theorem 3.7.

+1THEOREM 3.8. Suppose Sl, , s,,+l S1 (2, C), and let Aj be the eigenvalues of
sj, j 1,. ., m+ 1. Assume

(a) I-Ij"__ s 1,
(b) some s is nonresonant,
(c) tr (s) #0, j= 1,. ., m, and

[-[ n+l +1(d) ,,j=
, 1.

Then G G({s,. ., Sm}) is not a Ziglin group.
Proof Otherwise G is diagonalizable (Theorem 3.5 and Proposition 3.3), and in

such a context we easily see that (a) and (d) are inconsistent.

4. Nonintegrability. On Ca {(x, x2, y, Y2)} with symplectic structure dx ^ dy +
dx2 ^ dy2 consider a meromorphic Hamiltonian of the form

1 1 Oh
(4.1) H(x, x2, y, Y2) h(x, y) +- p(x, y)x22 +- (x, y)y+ O3(x2, y2),

where

OC
(4.2) p(x, y): a(x) -y (x, y), h(x, y)= b(x)c(x, y).

The xy-plane is tangent to the vector field XH associated with H, and if we endow
that plane with the symplectic structure dx ^ dy, then the restriction is precisely the
vector field Xh.

A phase curve F of Xr contained in the xy-plane must also be contained within
the analytic set defined by

(4.3) b(x)c(x,y)=E,

where E is the energy of the curve. For example, if b(x) is a separable polynomial of
degree 2g + 1 or 2g + 2, 1 <-_ g Z, c(x, y) y-2 and E # 0, then F lies on a surface of
genus g. If F is maximal then it must be a component of (4.3) after singular points
have been removed.

The tangency assumption on the xy-plane implies that the variational equation
along F decouples into two sets of equations. One set is immediately identified as the
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variational equation of F as a phase curve of Xh; the other is

(4.4) - rl2 -p(x, y) 0 rl2

and is called the normal variational equation (NVE) along F.
THEOREM 4.5 (Ziglin 17]). IfXH admits a meromorphic integral in a neighborhood

of F which is independent ofH, then the monodromy group of the NVE is a Ziglin group.
Using (4.2), and the observation that on F we have

d=
dy dx

oh/ox -oh/oy’
equation (4.4) assumes the simpler form

dw=[ 0 1] dx.
-a(x)/ b(x) 0

We can therefore view the NVE as the pull-back of

(4.6) "+(a(x)/b(x))=O (’= d/dx)
under the mapping p (x, y) F -* x C. As a consequence the monodromy of the NVE
embeds into that of (4.6), and is identical when p is injective (see [6, 2]).

Example 4.7. In (4.1) let

p(x, y) p(x) (4-) r2- rl2)x -1, h(x, y) x(x2-1)y,

where r C is arbitrary. If *7 is algebraic the vector field X, associated with (4.1) is
nonintegrable.

Indeed, in terms of (4.2) we have a(x) (1/4rZ)(r2- rZ)x 1, b(x) x(x- 1),
and c(x,y)=-y. Letting E =0 in (4.3) we can take F=pI\{0, 1,-1, co}, in which case
p is the identity map, and (4.6) is

(1 /4rZ)(r rZ)x 1
(4.8) "+ x(x2_ 1

x=0.

Defining a,/3 C by

a+fl=-l,

we have cfl ((a +/3):- (a -/3)2) (1/4r:)(’:- rt:) and (4.8) becomes

ax-1"+x =0, a+fl+l=O.x(x2-1)
This is Heun’s equation with y- e-0, and so (see Example 2.14(c))

11 2 13 2, too -2 cos r(a -/3).
If r/= r(a-/3) is algebraic, then t is transcendental by Remark 2.19, and the
monodromy group cannot be a Ziglin group by Theorem 3.7. The assertion now follows
from Theorem 4.5.

When the mapping p (x, y) F - x C is not injective Theorem 3.7 does not apply.
The situation is investigated extensively in [2].
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